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Abstract: Electrically as well as magnetically charged states are constructed in the
2+1-dimensional Euclidean Z^-Higgs lattice gauge model, the former following
ideas of Fredenhagen and Marcu [1] and the latter using duality transformations on
the algebra of observables. The existence of electrically and of magnetically charged
particles is also established. With this work we prepare the ground for the construc-
tive study of anyonic statistics of multiparticle scattering states of electrically and
magnetically charged particles in this model.
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1. Introduction

The study of the statistics of particles and fields in low dimensional Quantum Field
Theory became one of the most fruitful lines of research of the last few years, in part
due to some physically and mathematically appealing connections, like those to the
Quantum Hall effect, to the so-called exactly integrable models, to the theory of the
"Quantum Groups" and to the so called "Topological Quantum Field Theories." The
emergence of non-trivial, i.e., non-bosonic and non-fermionic, statistics in two and
three space-time dimensions has been already described in the general framework
of the Algebraic Quantum Field Theory [2].

In the work started with the present paper we intend to exhibit in a purely con-
structive way the emergence of non-trivial statistics in a (2+l)-dimensional quan-
tum spin system, namely in a self-dual Z^-Higgs lattice gauge field theory with
a dynamics defined through the transfer matrix formalism. The vacuum expecta-
tions in this theory are given by classical expectations of an (Euclidean) statistical
mechanics model with an action given by a generalized Wilson action:

1 N~ι ίlπn \ 1 N~ι

Σ Σ βg(n) cos —dA{p) - ^ Σ Σ βh(n)

x cos ( (dφ(b) — A(b)) ) , O l)

where φ and A are ZJV-valued Higgs fields, respectively gauge fields, taking values
in {0,.. .,N — 1}. βg and βh are the gauge and Higgs coupling constants. They will
be chosen to satisfy βg{n) — βg(N — n), βh(n) — βh(N — n). We will be mostly
interested in the so-called "free charges phase" of this model, corresponding for
instance to "large" positive values of all the {βg(\),...,βg(N— 1)} and "small"
positive values of all the {/?/,(1),..., βh(N - 1 )}3. In this region convergent polymer
and cluster expansions are available and are analyzed in detail here. Other phases
like the "confinement" and the "Higgs" phase may also exist, but we will not
consider them since no charged states are expected there. See [1] for a study of
these phases in the Z2 case.

In [1] Fredenhagen and Marcu have shown the existence of electrically charged
states in the phase of "free charges" of the Z2-Higgs gauge model in three or more
space time dimensions. Subsequently, the existence of electrically charged particles
in this model was established in [3]. Multiparticle scattering states were constructed
in [4], combining the methods of [1] with a general analysis of particle scattering
the Euclidean lattice field theories given in [5].

In three space-time dimensions Z#-Higgs models are well known to enjoy self-
duality properties [6,7]. This suggests that there should exist magnetically charged
states as well. For Z2-model, this has been established in [8], where also a dyonic
state (i.e., electrically and magnetically charged) has been constructed.

In the present work we extend these results to general ZN-Higgs models. In
the above mentioned region of parameter space we construct electrically charged
states with Z^-charges n = l,...,N — 1 in three or more space-time dimensions,
following the lines of [1]. For the (2+1 )-dimensional case we then give a detailed

3 The values of βίy(0) and βg(0) only determine additive constants to the action, which will be
fixed by convenient normalization conditions. The precise convergence region is described below.
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discussion of algebraic duality transformations, which in many aspects appear to be
more subtle than the corresponding Euclidean Lattice formulation [6,7]. The reason
for this lies on the fact that there are two choices for defining transfer matrices
from the Euclidean actions. This corresponds to the fact that in the Osterwalder-
Schrader reconstruction one may use reflection positivity for time reflection across
spatial planes of either the original lattice or of the dual lattice. Correspondingly,
the algebraic version of duality transformations maps one choice of the Euclidean
dynamics onto the other.

Among other results we are able to show that the global transfer matrices as-
sociated to dual states are unitarily equivalent. We then use these results to prove
that there is an isomorphism between the model at parameters (βg,βh) and the dual
model at the dual parameter (β'g,β

f

h), mapping electric states onto magnetic ones
and vice-versa. We finally construct unitary generators of the translation group and
prove the existence of electrically (and therefore, in 2+1 space-time dimensions,
also of magnetically) charged particles.

In a forthcoming paper [9] we will construct the dyonic sectors of this model,
i.e., sectors where electric and magnetic charge distributions are simultaneously
present. There translation invariant global transfer matrices will be constructed and
the existence of a unitary representation of the translation group, a question which
is much more subtle in the dyonic case, will be analyzed. No trace of the existence
of dyonic particles, i.e., of particles carrying simultaneously electric and magnetic
charges, was found and it remains an open problem to prove or to disprove their
existence.

Our ultimate goal is to show the emergence of anyonic statistics in this model.
Since no method is available for constructing fields generating the various sectors
mentioned above, in [9] we will address the question of the statistics through the
analysis of multiparticle scattering states of electrically and magnetically charged
particles, whose existence will be proven in the present article.

For the orientation of the reader we describe now the organization of the work.
Section 2 is devoted to the description of the Zw-Higgs gauge model as a quantum
spin system. The algebras of fields and of observables are defined, local trans-
fer matrices are introduced as well as the important concept of a ground state. In
Sect. 3 we describe how to use the transfer matrix formalism in order to reconstruct
the classical (Euclidean) vacuum expectations. In Sect. 4 we develop polymer and
cluster expansions for classical expectations in the so-called free charges phase,
combining high and low temperature expansions. A full convergence proof is given
in Appendix A. In Sect. 5 we resume our algebraic analysis and consider duality
transformations from the algebraic point of view. Four different types of ground
states related by duality transformations are presented. Global transfer matrices are
defined for each of these states and their interplay is discussed. One shows in a pre-
cise sense that duality transformations keep the joint spectrum of the transfer matrix
and momentum operator invariant. Section 6 is devoted to the construction of elec-
trically and of magnetically charged states-the first following [1], the latter using
duality transformations. This method provides a natural frame for further analyses,
especially concerning the relationship between transfer matrices in magnetically and
electrically charged sectors and concerning the structure of charged particles. In this
section we also establish that our charged states are ground states with respect to
certain automorphisms generated by modified transfer matrices, a fact which will
be of relevance for our future construction of dyonic states. In Sect. 7 we define
global transfer matrices for the charged sectors and analyze the relationship between
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then, and in Sect. 8 the translation invariance of these global transfer matrices is
established. We prove that, due to the duality transformations, the existence of elec-
tric particles implies the existence of magnetic ones with masses related by dually
transformed couplings. In Sect. 9 the existence of electrically and of magnetically
charged particles is directly established through the analysis of suitably defined two
point functions. In the other appendices we complete some important proofs.

Remarks on the notation. The symbol • indicates end of statement and • end
of proof. Products of operators run from the left to the right, i.e., Π«=i Aa means
A\ An. For an invertible operator B, ad# is the automorphism B B~ι. ^ denotes
the set of all functions {0,... ,N - 1} -* <C. D

2. Basic Setting and Algebraic Formulation

In this paper we use the well known transfer matrix formalism to represent the
Euclidean lattice Z^-Higgs model (N e N, N ^ 2) as d-dimensional quantum spin
system, rather than a (d-h 1 )-dimensional classical statistical system. This brings us
closer to quantum field theories where relevant quantities are described in terms of
operators and states. Here the dynamics is described by a transfer matrix, which
has to be interpreted as the generator of time translations by one unit in imaginary
time direction. In a first step transfer matrices can only be properly defined at finite
volume. The associated ground state is a ground state for a finite volume system
but, if its thermodynamic limit exists, one can use the GNS construction associated
to the limit state to define a global (infinite volume) transfer matrix, in a fashion
first proposed in [1]. Translation invariance of the limit state also provides a way
for defining generators of space translations in this GNS Hubert space, thus making
the analogy with quantum field theoretical systems even more appealing. In this
work we build up these structures for neutral and charged states associated to the
^Ar-Higgs model and study some of their properties. We now start by describing
our quantum spin system.

We will consider the hypercubic Έd+ι Euclidean space-time lattice with d ^ 2
and particularly the case d = 2, where our main results hold. For simplicity we will
fix the lattice spacing as a — 1. We denote by U the set of /-cells of Έd+ι with the
identification /0 = Έd+ι. l\ is the set of oriented bonds associated to Zd+ι, l2 the
set of oriented plaquettes, etc. The quantum spin system is defined on a Έd lattice,
the time-zero hyperplane. In our notation the elements of Zd, its cells or subsets
are usually underlined.

We introduce the local algebra of time-zero Higgs and gauge fields in the fol-
lowing way. To each x £ /0 we associate the unitary ^-fields PH(X) and QH(X) and
to each b e lx we associate the unitary Z^-fields Pβih) and QGQI) (the subscripts
G and H stand for "gauge" and "Higgs" respectively) satisfying the relations:

PH(X)* = PH(XY1 - PH(xf - 1 , (2.1)

QHQU* = QH(X)~1 = QH(X)N~1 , (2.2)

itT = PGU>Γ1 = Poikf-1 , (2.3)

T - QGOIΓ1 = QG(bf"1 , (2.4)
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and the Έ^ Weyl-algebra relations

QHW) = e~ψ{aJ)L°QH(β)PH(a), (2.5)

PG(y)QG(δ) = e~ψM)ι-x QG{δ)PG{y), (2.6)

where α,J? G /° : /0 —• {0,...,7V — 1} are 0-forms with finite support; y9δ e I1 :
/j —> {0,...,N — 1} are 1-forms with finite support and P//(α) := ΠXG/

P//(—x)0^, etc. The brackets ( , ) indicate the scalar product of forms. We also
use the convention that PH(~X.) — PH(X)~\ e t c

 ? where here —x indicates cell x
with reverse orientation. Operators at different sites and bonds commute. Finally the
G operators commute with the H operators.

We will generally define [δQH](a) := QH(d*)9 [δ*PG](β) := PG(d*β)9 etc.,
where d is the exterior derivative on forms.

We will realize these operators by attaching to each lattice point and to each
lattice bond a Hubert space ^ = ^ = <£N with each QH(x\ PH(X), Qc(k) and
PG(b) acting on Jti?x, respectively on J% as matrices with matrix elements:

Pπ{x)a,b = PG(t)a,b = δa,b+\(modN) > (2.7)

and
2

(x)a,b = QG(b)a,b = δa,be
2^ (2.8)

for a,be {0,...,N- 1}.

One should interpret the operators QH and QG as the TLN versions of the Higgs
field and gauge field, respectively: QH(X) = e~$~ψ{--\ QG(x) = e^~Λ{--\ with φ and
A taking values in {0,...,N— 1}. The operators PH and PG are their respective
canonically conjugated momenta, in ΈN version.

We denote by 5o the * -algebra generated by these operators together with
a unit 1. Denoting by 5 ( F ) the C*-subalgebra generated by 1, β//(x), PH(X)>
QG(b) and PG(b) for x, ieVc Έά\ a finite set, one has g 0 = Uμ^ooSGl)-
The algebra 5 ( F ) a c t s on «#V := Θ x e ^ ^ ^ e F , - ^ We will denote by g the
unique C*-algebra generated by gO By ^ we denote the *-automorphism of g
implementing translations by x G Z J .

The dynamics we will consider is invariant under the *-automorphism imple-
mented by the unitaries

Ά{x) := PH(x)[δ*PG](xy . (2.9)

Note that J(x)* = J(x)~ [ = J ( x ) ^ " 1 . The operator J(x) is to be interpreted as the
generator of a Έ^ gauge transformation at the point x, as one can easily checks,
since it can be interpreted as exp(—2π/(divE — p)/N).

The algebra of observables 21 is defined as the set of fixed points of $ by
ad-2 )̂ for all x:

9ί := {A e g : &(x)A&(xf = A for all x_eZd} . (2.10)

The norm dense sub-algebra $lo is generated by H, PG(b), [δQH](b)QG(b)* and
PH(X),XΛ e Έd. We call SIQ1) := S ( 4 ) Π 91.

The algebra 2ί contains a non-trivial two-sided norm closed ideal J generated
by l(x)a - 1, xeΈd, a = 1,...,N - 1. Since the operator J(x) can be inter-
preted as an operator measuring a external Z^ -electric charge at x the relevant
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algebra of observables in actually 93 := 21/J. The elements of 33 are equivalence
classes [A] := {B G 21, so that A — B G J}. Below we will mostly prefer the nota-
tion A +J for [A], Λ G 21. We call 33(/l) := {A + J, ASΆ(Λ)} the *-algebra which
is generated by 11 + J, PG(b)+J and [<5gjy] (δ)βG(£)* + Λ k G A Finally we call
®o = U|yi|<oo®(A) The algebras © and 33(yl) can be regarded as C*-algebras with
norm ||[Λ]|| := mf{\\A + y | | J eJ} (for a proof see [10], Proposition 2.2.19). We
will denote by

Uι(b):=PG(b)+J, (2.11)

(2.12)

the generators of 33O

Let us now introduce the dynamics we are interested in by defining suitable
finite volume transfer matrices. The form of the transfer matrix is justified by the
finite volume ground state we will associate to it, which is identical to the classical
expectation associated to the Euclidean ZΛΓ-Higgs model we are considering.

We will consider local transfer matrices Tγ G Slo? Y C TLd defined by:

(2.13)

with

+ -7Γ7 Σ "Σ βh(n)([δQH](b)QG(byγ , (2.14)
VN bev+ n=0

— — 1

and

By := -1= Σ ϊ'yίίΛ^σί*)" + 4 Σ Σ'ftί'ίftίϊ)" , (2-15)
x G j /

where Vf are the positively oriented elements of the set of /-cells of V. The relation
of these definitions with a formulation in terms of an Euclidean action will be given
below (Eqs.(3.16)).

Above βg, βh, yg and ŷ  G «2Γ, the set of functions {0,...,N — 1} —> (C, and
satisfy the condition

- ή) (2.16)

for all ne{09...9N- 1}, with ββth(N) := ft,A(0), y^Λ(iV) := y^A(0) in order to
assure self-adjointness of Tv. They are the coupling constants of the model. Later
when we treat the duality transformation we will have to restrict ourself to real
couplings. For further purposes we also define

2 . (2.17)

Notice that transfer matrices of a classical statistical mechanics spin system are
usually defined in order to provide a way of expressing the partition function as
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Z = Tr(Γ^), for a system in a volume V x [0,...,«] and periodic boundary con-
ditions in "time" direction. In this particular sense it should be immaterial to use
Ty or Ty, as defined above. However, from the point of view of the quantum spin
system we are constructing, both transfer matrices provide different quantum dy-
namics. Interestingly, the interplay between both will be of relevance for the study
of duality transformations in this model.

We can also write

eA-v = Π QG(P) Π QHQL) , (2-18)
f€K+ 66K+

eB-r = Π ζβ(&) Π CH(X) , (2-19)
— — 1 — — 0

where,

QG(P) •= eχP ( —γ= Σ βg(n)[δQG](pT ) — ~η=1 Σ $iβgMm)[δQG](p)m •> (2.20)
V v N n=o " J VN m=o

QH(b) := exp ( ^ Σ βh(n)([δQH](b)QG(byy

1 N-\

m=Q

ζG(b) := exp (-)= NΣ yg{n)PG(bf] = -]= "f} S[yg\{m)PG{b)m , (2.22)

ζH(x) := exp (-1= *Σ yh(n)PH(xy) = -J= ^ ^^](m)P//(xΓ , (2.23)
\vN n=o J yN m=o

w h e r e , for f u n c t i o n s α e f w e def ine t h e t r a n s f o r m a t i o n s § : ^ —• J ^ b y

<?[α] = # " 1 [ e x p ( # ' [ α ] ) ] , ( 2 . 2 4 )

w h e r e t h e F o u r i e r t r a n s f o r m J ^ a n d i ts i n v e r s e J ^ " 1 a r e d e f i n e d o n f u n c t i o n s p e f
b y

^ m ί ; , (2.25)

P{v)e-^mυ, (2.26)
ϋ€{0,...,iV-l}

and satisfy

, (2.27)

where, by definition, a#(n) := α(7V - w), n e {0,...,iV - 1} with α(



34 J.C.A. Barata, F. Nill

Note that a C*-algebra, by the Gelfand transform [11], ρ = e^n=o a<^^ with
a(n) = a(N — n\ a(N) := α(0) is the most general way of writing a positive self-
adjoint element ρ of the abelian sub-algebra generated by 1 and an element 8P
satisfying ^ * = &~x — £PN~X. In this way the generalized 2^-Higgs model above
represents the most general class of models with "nearest neighbors" interactions of
the sort considered.

At this algebraic level the Euclidean dynamics is given by the strong limit of
local (non-*)-automorphisms of go generated by local transfer matrices:

<xt(A) : = lim <Xi(A)v, A G go , (2.28)
V_\Ίβ

where αz ( )y is the automorphism of g defined through

(Xi(A)v := TγATy\ A G g , (2.29)

The limit in (2.28) clearly exists and defines a (non *)-automorphism of go- Follow-
ing the notation introduced in [1] the subindex i in at is due to the interpretation
of α, as the generator of translations of one unit in imaginary (Euclidean) time
direction. Frequently we will use the notation air for (α2) r, for r G l

Since αz keeps the ideal J invariant one naturally defines the action of αz on 33o>
which we will denote by the same symbol αz , by 0Cj(A + J) — a^A) + J, A G 2Xo>
as a non-* automorphism.

For further purposes we introduce the important concept of a ground state.
According to the definition introduced in [1], a state ω of g is called a "ground
state" with respect to the dynamics defined by αz if it is α,-invariant and if

0 ^ co(A*0Li(A)) S ω(A*A)9 A G go (2.30)

Let us generalize this concept and derive some general results from it. Let y
be an automorphism of a unital *-algebra (£. A state ω o n ϊ is called a "ground
state" with respect to y and (I if it is y-invariant and if

0 ^ ω(A*y(A)) ^ ω(A*A), \/A e & . (2.31)

Actually the y-invariance of ω follows from (2.31). If one has 0 ^ ω(A*y(A)),
\/A G (£, then the sesquilinear form on (£, (X, Y) := ω(X*y(Y)\X, Y G £ is positive
and so (X, 7) = (Y9X) [10]. Therefore ω(X*y(7)) = ω(y(X)*7). Taking X = 1 the
invariance of ω under y follows. Let us now introduce two important concepts.

First, the adjoint y* of automorphism y of a unital *-algebra (£ is defined through
y*(A) := (y(A*))*, A G CL. Note that y is a *-automorphism iff -y = y*. In general,
y** = y and note also that for the composition of automorphisms one has (α o β)* =
α* o jS* and consequently α*"1 = α" 1*. For an invertible element A G £ one also
has (ad^)* = ad^*-i. Finally, note that if ω is a y-invariant state on (£ then it is
also y*-invariant.

Second, we say that a state ω on a *-algebra (£ has the cluster property for the
automorphism y if, for all A, B G £ , one has

lim ω(Ayn(B)) = ω(A)ω{B). (2.32)
n—> σ o

Using these definitions we are prepared to formulate the following lemma, which
will be very useful for proving that certain states are ground states with respect to
a given automorphism. This lemma was already implicitly used in [1].
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Lemma 2.1. Let y be an automorphism on a *-algebra (E satisfying y* = y~ι and
let ω be a y-ίnvariant state on (E which has the cluster property for γ. Actually
one just needs that, for each A G (E, the sequence ω(A*ya(A)),a G N, is bounded,
what follows from the cluster property. Then, for all A G (E,

\ω(A*γ(A))\ ^ ω(A*A). D (2.33)

Proof If we use α-times the Cauchy-Schwarz inequality and the invariance of ω
we get

\ω(A*γ(A))\ g ω(A*A)ι-2~a \ω(A*y2a(A))2~a . (2.34)

By the cluster property, the factor ω(A*y2a(A)) on the right-hand side is bounded
on a and taking a —» oo we complete the proof. •

3. The Ground State, the Construction of the Path Space and
the Associated Classical Spin System

This section is basically devoted to the construction of a ground state w.r.t. α, by
means of the transfer matrix formalism as described in [1]. The ground state we
will find is given by the expectation of a classical statistical mechanics spin system.

D e f i n e f o r n,nf e{09...9N- 1 } ,

NΣ QH(x)m} PH{x)N~nf , (3.1)
m=0 J

A
 N' (3.2)

^nf(x_) and E^n,(b) are unit matrices with matrix elements

> (33)

a,be {O,...,ΛΓ- 1}.
Let be the functions φ : V0-^{0,...,N - 1}, A : Vx - ^ { 0 , . . . , N - 1}. Here

f C Z 2 is a finite set, for instance a square centered at the origin. Define

E{Ψ,A),{Ψ',A>) : = Π ^ ( χ ) , / ( χ ) f e ) Π EA(b%A'(b)(b). (3.4)

Since the E^φA^φι^Λι^ form a basis of unit matrices we can write

Tv = Σ Tv(φ,A;φ\A')E(φ^AUφ^Af). (3.5)
(φ,AUφ',A')

The £(<p,Λ),(<p',y4') a r e partial isometries with one dimensional range and one finds for
the expansion coefficients of TV,

T_v(φ,A; ψ',A') = Tr^γ (E^^^TV) . (3.6)
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Using the last equalities in (2.20)-(2.23), the relation

TV ( V [

and expression (2.24) we get:

Tr(φ,A; φ',A') = exp I \

J.C.A. Barata, F. Nill

( 3 J )

X£V+ V^V fey-

We will assume γg and yπ to be such that

S[yg]{m) =

for some β® h € 3f. Since in general <S"[yg,h] =
means that

= &-1 [In

= ^ " ' [In

= JΓ- [In

(3.8)

(3.9)

(3.10)

this assumption

(3.11)

(3.12)

(3.13)

the last equality coming form (2.27). Note that, for a Ξg 0, the Fourier transform
and the inverse Fourier transform of exp(<F±ι[a]) are strictly positive since, for
instance,

* a (3.14)

with the convolution product defined by

a * b(n) =

The same can be proven for functions a with a(n) ^ 0 for wφO, but with
α(0) being eventually negative, which is our case of interest. For, define b G JΓ

with 6(m) = (-fl(0)+ε)ί jn,0, e ^ 0. One has ^-ι[exp(^[a])] = e-
+ b])] > 0 by the previous argument since a + b Ξ> 0.
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In order to have isotropic couplings in the classical expectations to be defined
below we will take β®h = βg,h Expression (3.8) becomes

xexp ( \ Σ

x exp [ Σ ^Vβg\{A{b) — A'(b)) + Σ ^[βh](φXx) — φ(x))

\ (3.16)

where we used ^~ι[βh](β) = ^[βhλi—n) on the last factor.
The correspondence to the TL^ case of Fredenhagen and Marcu, whose cou-

plings we call β™9 is found by taking βg(l) = -βg(0) = Λ / 2 ^ M , with βh(0) =

-2- 1/ 2ln(2cos i8™) 2) and βh(l) = VϊβζM.
Following the argumentation of [1], since the expansion coefficients (3.16) of

Tγ are strictly positive, we conclude by the Perron-Frobenius Theorem that there
exists in &?v a unique eigenvector Ωy of 7> corresponding to eigenvalue \\Ty\\^γ.

The associated vector state ωy can be obtained by

ty (τn

vATn

vEv\
ωv(A) = lim V 7 - Γ y , A G g ( f ) , (3.17)

where Eγ is any matrix with strictly positive expansion coefficients in the basis
E{φ,A){φ',Af) Again by the Perron-Frobenius Theorem the spectral projection asso-
ciated with Ωv has also strictly positive expansion coefficients and therefore one
has (Ωy,EyΩy)φO. In order to obtain for ωy a classical expectation with free
boundary conditions in Euclidean time direction the choice for Ev is [1]:

v := Σ ey(φ,A)ey(φ\A/)Ei^AUφf^) , (3.18)
{ψ,A),{φf,A')

where

ev(φ,A) := exp \ Σ F\βg\{dA(p))+}- Σ ^[βh](dφ(b) - A(b)) . (3.19)

Periodic boundary conditions can be obtained with the choice Ev — 1. We have,

for VW :=V x { -«+l , . . . , « } C Z\

ωv{B)=\im ψ*)VM = U ^ { ψ ; ) , (3.20)



38

where,

with the generalized Wilson action

n

-Hvin)(φ,A) := Σ
a=-n+\

+ Σ

n-\

+ Σ

J.C.A. Barata, F. Nill

(3.21)

Σ ^ίβg](A((b,a))-A((b,a+\))

Σ &ίβk](φ(.(x,a+l))-φ((x,a))) (3.22)

with free boundary conditions. Here (x,α) G Έd+ι, etc. Above Bcl is a classical
function of the classical fields φ and A associated to the operator B. The choice of
Bcl is generally non-unique and some prescriptions for determining it from a given
operator can be found in [1]. We will not enter into details here. The important
fact is that one can choose Bcl as

•"(φ(0),A(0)),(φ(\),A(\)yBTV)
(3.23)

where φ(k), A(k) refers to the variables in the kth Euclidean time hyperplane. One
can also use the following useful rules. If B e SKFi) a n d C G <S(V2) with dist
(Vl9V2) ^ 2, then one can choose (BC)cl =BclCcl. Beyond this, if B is of the
form B = θίiaϊ(C1)' aiak(Ck) with a\ < - - < a^ then one can choose

Bd =

y=i

ajUiaj)', φ(aj 1)) . (3.24)

Finally we note that Jcl — 0 and so the classical function above is constant on the
equivalence classes defining the elements of So-

li is useful to change to the unitary gauge by defining the new function u,
V[n) -* {0,... ,N - 1} : u(b) = dφ- A(b) modN, if b is a space-like bond, u(b) =
ψ(yb) — φ(xb)modN; for b time-like, where the x^ and yt —Xb + (1,0) are the
boundaries of the bond b. We get for the partition function

Zy(n) = Π (3.25)

bev
(n)

pev:
(n)

with the following important definitions:

a n d (3.26)
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For gauge invariant classical observables one has,

rf Π 9(du(p)). (3.27)
bev\\

n)+

The existence of the thermodynamic limit of the last classical expectation can
be established. by standard techniques, for instance, using the polymer expansion
introduced below or Griffiths inequalities. We will not enter into details here. This
limit defines a translation invariant state ω0 of 2Iθ5 which we call the vacuum state.
By construction it is a ground state with respect to α, (see [1]).

An important observation is the fact that, for J ( l ) := Y[χ Q(x)A("-\ where λ is a

0-form with finite support in Z 2 , and for all F E 3o?

 o n e has

ωo(F(l(λ) - \)) = 0 . (3.28)

This follows from (3.18)-(3.17) and from the fact that l(λ)E(φ,A)Λφ^Af) =
E(φ+χ^+dλ),(φ',A')i which by (3.19) implies Q(λ)Eγ — Ey. Therefore, for the pre-
viously defined two-sided ideal J one has ω$(J) = 0, and so we are allowed to
define ωo on 33 by COQ(A + J ) := CUQ(A),A G $ί.

4. The Polymer Expansion

In this section we develop polymer and cluster expansions for the classical expec-
tations found in the previous section in their "free charges" phase and show their
convergence regions. Cluster expansions are the technically most important tool of
this work (see also [1]) because they provide a method for rigorously extracting
information from the classical expectations, and therefore, from the various states
we will consider on the quantum spin system.

Let V C Zd+ι be a cubic box of the form F = f x {-n + 1,...,«}. To sim-
plify matters we can consider periodic boundary conditions here. Free boundary
conditions can also be treated with the polymer expansions below. Call Q)y the set
of all defect-networks of V, i.e., a function D: V2 —» {0,...,N — 1} belongs to Q)γ
iff dD = 0 mod N. We write the partition function as

Π
/?€suppZ)

Σ Π nh](u(b)). (4.1)
u:du=D mod N

1

Above we have chosen βg(0) so that #(0) = 1.

Let us associate to each D G Q)γ a configuration uD G V1 so that duD = D. Then
we can write:

Σ Π ^[h](u(b))= Σ Π

h(E(b))

(4.2)
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Since the sum over χ above equals 7V'Fo *δd*EtomodN we get:

dD=0 mod N d*E=Q mod N

Π
/?£supρZ)

Π h(E(b))
bGsuppE

(4.3)

where we have chosen h(0) = 1.
We will use the following

Notation 4.1. For \-forms E with d*E = 0 and for 2-forms D with dD = 0, both
with finite support we define

[D:E]:=cxp(j±{uD,Eή . D (4.4)

Define the sets

0>(V) = {P e F2

+ : P is co-connected and P = suppZ),

for some D e V2, dD = 0, £>Φ0} , (4.5)

^(V) = {M e Vf : M is connected and M = supp^1,

for some E G F 1 , d*E = 0, .E'ΦO} , (4.6)

and
^toto/(^) = {̂ P € F+ so that P - supp A

for some £> e V2, dD = 0} , (4.7)

®totai(V) = {M e V+ : so that M = supp£,

for some £" G V\ d*E = 0} . (4.8)

Above and below relations like dD = 0 mean, more precisely, that dD = 0 mod TV.
Note that the sets 0* total (V) and & total (V) contain the empty set and that the

non-empty elements of &totai(Y) and of 0fttotai(V) are build up by unions of co-
disjoint elements of 0*(V), respectively, by unions of disjoint elements of
One has naturally 0>(V) c

We get

4 = Σ ΣP€& total(V) D£V2

Me^totali V) SUPP D~P

dD=0

^total and .

Σ [D
E€Vι

' supp E—M

d*E=0

\

:E}\

1

) c atotal(

Π QiDb
.PeP

1 Γ

σ)) Π KE(b))
1 ibeM

(4.9)

We recall the assumptions that g(0) — 1 and Λ(0) = 1.
Each non-empty set P 6 ^totaiiY) and M G $totai(V) can be uniquely de-

composed into disjoint unions P = P\ H h P ^ , M — M\Λ '+ MBM, where
Pi G ̂ ( K ) and M7 G ̂ ( F ) . Then, if Z) G F 2 is such that supp D = P, there is
a unique decomposition £> = £>H H-AίP with A G F 2 , supp Z); = P, and re-
spectively, if E e V1 is such that supp E — M, then there is a unique decompo-
sition E = E\ -\- " + EβM with i^ G V1, supp ̂  = M, . One can also decompose
u = wDi + + UDAP with wD' G F 1 , di^' - A
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We get

Ly — Σ
M£@total(V)

X Π g(
peP,

AP

Pi

:A

π Σ
supp D, —P,

dD,=O

>1 L a
J L ^

supp£'y=Λ//

d*Ej=O

KEm (4.10)

with the conventions A$ = 0, £ 0 = 0. For P G &u>tai(V) and M G 3Stotai{V) we
define the sets

;= {D G V2 so that supp D = P and dD = 0} , (4.11)

<ί(M) := {£ G F 1 so that supp E = M and ί/*̂  = 0} . (4.12)

We consider now pairs (P,D) with P G ̂ W ( F ) and D G ̂ ( P ) and pair (M,E)
with AfG^ t o t e /(K) and E e @(M) and define w((P,D), (M,E)) = w((M,E\
(P9D)) e {O9...,N - 1} as the "Z^-winding number" of (M,E) around (P,D):

w((P,D), (M,^)) = w((M,^), (P,D)) := (w0,^) mod Λ .̂ (4.13)

The pairs with P e # ( F ) and M e 0S(V) will be the building blocks of our poly-
mers.

With the help of w we can establish a connectivity relation between pairs
(P,D) with P e &>(V\ D e 2{P) and pairs (M,E) with M e 0$(V\ E £ δ(M):
we say that (P,D) and (M,E) are "w-connected" if w((P,D% (M,£))φO and
"w-disconnected" otherwise.

Now we are able to define our polymer model. A polymer y is formed by two
pairs

with P^ G PtotaiiV), My G « t o t e /(F) and Dy G ̂ ( P y ) , ^ y G £{My\ so that the set

{(P^Z>Ϊ),..., ( P ? ^ (4.14)

formed by the decompositions P y = P{ H f- P\,, M7' = M/ -j h M^ with

Pj G ̂ ( K ) , My G J*(F) and D y = D\ H hD^,, ^ = ̂  H + Ey

B.t with Z)J G

j), E] G ̂ (Mj) is w-connected. Below when we write (M,E)ey and (P,D) £

y we are intrinsically assuming that M G &(Έd+ι) with £ G (f(M) and that P G
^ ( Z ^ + 1 ) with De 2{P).

For a polymer y = ({P\Dy\ (My,Ey)) we call the pair yg^ := (Py,My) the ge-
ometrical part of y and the pair yc := (Dy,Ey) is the "colouring" of y. Each pair
( A ^ ) , ^ G ̂ ( P ) , E G <ί(M) with P G ̂ ( ^ + 1 ) ? M G @(Έd+ι) is a colour for
(P,M). Another important definition is the "size" of a polymer. For reasons which
will be clear in Appendix A we define the size of y by \y\ — \yg\ \— \Py\ + \My\,
where \Py\ (respectively \My\) is the number of plaquettes (respectively bonds)
making up Py (respectively My).

A remark which will be of some relevance for the proof of convergence of the
polymer expansion we are going to define is the fact that the sets Q)(P) and $(M)
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above have at most (N — l ) ' p ' , respectively (N — 1)'MI elements. This estimate
comes from the simple fact that the forms D and E can assume at each plaquette,
respectively, at each bond, at most (N — 1) different values. Hence yg can have
at most (N — 1)W different colourings, i.e., there are at most (N — 1)'^' different
polymers with the same geometrical part yg.

The activity μ(y) G C of a polymer y is defined to be

μ(y) :=
ι = l

Π
pep;

Π KE]{b)) (4.15)

with μ(0) = 1.
We need a notion of "compatibility" for pairs of polymers. Two polymers y and

/ are said to be incompatible, y / y' if at least one of the following conditions
hold:

1. There exist Ml G yg and My

b G y'g, so that Ml and My

b are connected (i.e.,

there exists at least one lattice point x so that x e db and x e db1 for some bonds

be Ml andZ/ E M / ) ;

2. There exists Pi 6 yg and Py

b G ŷ , so that Pi and P£ are co-connected (i.e.,

there exists at least one 3-cube c in the lattice so that p G dc and p' G 5c for some

plaquettes p G Pi and p ; G P^ );

3. There exists (AfZ,Ey

a) G y and (P{,D{) G / , so that (Mj,
are w-connected. Or the same with γ and / interchanged.
They are said to be compatible, y ~ y\ otherwise.

We denote by 9{V) the set of all polymers in V and by ^Com{V) the set of all
finite sets of compatible polymers. Having these definitions at hand we can write
(4.10) as:

4 = Σ μΓ, (4-16)

and (P{,D{)

in multi-index notation. We will often identify the elements of ^com with their
characteristic functions.

We want to express the expectation of classical observables (3.27) in terms of
our polymer expansion. We consider the following

Definition 4.1. Let α and β be a \-form, respectively a 2-forrn with finite support.
Define

[ ^ ] ^ ^ • (4.Π,

Since any classical observable can be written as a linear combination of such func-
tions we consider

- Σ Σ [D-β:E-a]\ Π
D£V2 EeV1 IpGSUppZ)

d(D-β)=Q d*(E-y)=O

Π (4.18)
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One has the following positivity properties:

(B(0,β))v ^ 0 , (B(oc,O))v £ (4.19)

The first one is obvious from (4.17) and the second follows from the first using
the duality results proven in Proposition B.I, Appendix B. Both follow also from
Griffiths inequalities. Expectations like (B(oc,β))y are generally complex numbers
but one can easily check that the following relations hold:

(B(a,β))v = (B(-ocJ))v = (B(a,-β)}v = (B(-oc,-β))v . (4.20)

The forms D above can uniquely be decomposed in such a way that D = Do + D\
with d(Do — β) — 0 and dD\ = 0 and so that supp Do is co-connected and co-
disconnected from supp D\. If dβ — 0, we choose Do = 0. The forms E above, in
turn, can be decomposed uniquely in such a way that E — Eo +E\ with d*(Eo -
α) = 0 and d*E\ = 0 and so that supp Eo is connected and disconnected from supp
Eι. If d*aι = 0, we choose Eo = 0.

We denote by #i(α) the set of the supports of all such £Ό's, for a given α and
by ($2(β) the set of the supports of all such Do's, for a given β. For J*α = 0 we
have ^i(α) = 0 and for dβ — 0, we have ^i{β) = 0. We define the sets of pairs

(4.21)

{(M,£), so that M e ^i(α) and E e V\

with supp E = M and d*E = d*oc} ,

Conn2(/?) := {(P,D), so that P e <£2(β) and D G V2,

with supp D = P and JD =

We then write

(B(a,β))r= Σ [ D - / J : £ - α ]
(M,£)GConnj(α)
(P,Z))€Conn2(/i)

π
bEM

for
0, if My is connected with M,
p y :E-al otherwise

and

, if P 7 is co-connected with P
D - β : Ey], otherwise

It is for many puφoses useful to write (4.16) in the form

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)Z\ =

Let us explain the symbols used above. Our notation is close to that of [1]. ^c

is the set of all finite clusters of polymers in V, i.e., an element Γ € r$cius is a fi-
nite set of (not necessarily distinct) polymers building a connected "incompatibility
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graph." An incompatibility graph is a graph which has polymers as vertices and
where two vertices are connected by a line if the corresponding polymers are in-
compatible. We will often identify an element Γ e ^cius with a function Γ : ̂  —• N,
where Γ(y) is the multiplicity of y in Γ G ̂ cius The coefficients c^ are the "Ursell
functions" and are of purely combinatorial nature. They are defined (see [1] and
[12]) by

(4.27)
n=\ n

where Jfn{Γ) is the number of ways of writing Γ in the form Γ — Γ\-\ (- Γm

where OφΓt e ^COm, i = l,...,w.
Relation (4.26) makes sense provided the sum over clusters is convergent. As

discussed in [1] and Appendix A, a sufficient condition for this is | |μ| | ̂  | |μ||c,
where | |μ| | := s u p ^ l μ ^ ) ! 1 ^ ' , and | |μ | | c is a constant defined in [1] (see also
Appendix A below). By (4.15),

|μ(y)| ^ [max{g(\),...,g(N-\),h(\),...,h(N-\)}p , (4.28)

and by the condition 0(0) = 1 and A(0) = 1 we have ^[βg](0) = 0 and #TyA](O) =
0, from which it follows that, for n e {l,...,N — 1},

g (cos ί2^] - Λ Λ/Λf < 0 , (4.29)

and

(cos f ̂ ) - Λ Λ/Λf < 0 , (4.30)
m=0 V \ M J J

if ^ ( m ) > 0 and y^(m) > 0 for all m = 1,...,N — 1. Therefore one has
^~^, where this b can be chosen to be arbitrarily large, for each N fixed, by choosing
for instance m i n { ^ ( 1), . . . , βg(N — 1), ^ ( 1), . . . , y/*(jV — 1)} to be large enough. All
results concerning charged states presented below hold inside of the convergence
region above.

We also write

{B(a,β))v= Σ [D-β .E-a]
(M,E )eCoι

(P,D)eConn2(β)

Π Π KE{b))

xexp Σ cr(a(MtEUb^D)tβ-\)μΓ) . (4.31)

J

5. Duality Transformations. Algebraic Aspects

In this section we will review and extend some results of Gaebler [8] on duality
transformations and apply them in the definition and study of algebraic properties
of global transfer matrices in the vacuum sector.

Let us start defining Sγ = exp(Bv/2)exp(Av/2), Av and Bv defined in
(2.14)—(2.15). Defining the automorphism of 5

β v ( A ) : = S v A S y \ Ae%, (5.1)
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one has α,( ) v = βy~ι o βv( ). The adjoint y* of an automorphism y was previ-
ously defined through y*(A) := (y(A*))*. The limit V ] Έd oϊ βv exists on g 0 for
the same reason why it exists for ahγ and defines a non-* automorphism we will
denote by β. One has α, = β*~ι o β. Since β keeps the ideal J invariant one nat-
urally defines the action of β on 33O> which we again denote by the same symbol
/?, by β(A +J),= /?04) +«Λ 4̂ £ $Io> a s a non-* automorphism.

Below we will also be considering the dynamics defined by the automorphism
ocf := βo β*~ι, which is obtained by interchanging Tγ by Tfi in the definition of
α,.

The automoφhism β has been introduced in [8] and plays an important role in
the study of duality transformations. At algebraic level duality transformations are
introduced by a *- endomoφhism A of the observable algebra which, in the model
we are considering, is defined on the generators of 9IQ by

A(t) := 1, (5.2)

A(PG{b)) := [δQH](~ * b)QG(- * b)\ (5.3)

έ)*) := PG(*k)9 (5.4)

), (5.5)

where the geometric duality transformations on Έ? and its cells are presented in
Fig. 1.

Above x, *p e lo;b, *b e [{ and p, *x e /2. With these definitions one has on

the α-cells ** = (—l)α/(ij), where f(x,y) is a shift of the cells by (x,y) in Z 2 .

Definition 5.1. Consider a \-form y. Define (*y)(έ) •— y(—/-(i,i)(*έ))
translation on forms (g(a,b)j)(b) := y(/-(fl,6)(έ)) ^*e operation * w analogous to
the Hodge-* operation. One also has (* * y)(έ) = —(^(

Since zl(g(x)) = t, A annihilates the ideal J , and therefore the action of A
on 33 is a *-automorphism. We denote this action by the same symbol A. On the
generators of 93o it acts like

A(l+J):=l+J, (5.6)

A{Ux(y)) := C/3(-(*y)), (5.7)

(5.8)

for a 1-form y. One can check that on © one has A2 — τ(i,i).
In order to analyze the interplay between A and β let us define the duality

transformations of the couplings. Let ^ be the set of all functions {0,... ,N — 1} —>
€ , let D and D" 1 be the transformations 2£ -+ & defined by

D[a] := J^"1 [ln(#"[exp(J^[α])])], (5.9)

-![fl] := J^-1 [In (jF-1 [exp^M)])]

( [ 1 ] ) ] (5.10)
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bl ' *x t E '

b

Fig. 1. The transformations b —> *b, x —> *x and /?—>*/?.

One easily checks that really DoD 1 = D ι o D = id. Let (a, b) be a pair of func-
tions in k. We call the map

(a9b) ^ (a,b)f := (Z)- 1 ^], /)[«]) (5.11)

a duality transformation. Note that, in general, (a,b)' = (a,b) and that, according
to (3.11)-(3.13), for the coupling functions βg,βh the duality transformations are
simply

in

We extend this notation to arbitrary functions of the couplings with values
(C. For a map / : 2ί x 2£ -> C we define / ' : 3Γ x JT -> C by f(a,b) :=

1 ^ ] , ^ ) ^ ] ) . In particular ff(βg,βh) denotes fiyh^lg)- We also generalize this
notion to operators, states and automorphisms in go- F° r this, denote by Et a gen-
erator of go, i.e., ZS/ is a finite product involving 1, QH(X),PH(X),QG(II) and Pe(b)
for x,Z? G 7Ld. Writing for A G go? ^ — Σ i cί^/ a s a finite sum, where the c/s even-
tually depend on the couplings, we define A' := X ^ c ^ as a mapping go -^ go-
One easily sees that this definition is independent of the basis of generators chosen,
if the elements of the base do not depend on the couplings. For states we de-
fine ω'{A) := {ω{A'))\ i.e., ω'(A) = Σici(ω(Ei))'> w * m ω(βi) taken as a function
of the couplings. Finally we define for an automorphism y : y'(A) := (y(A'))\ i.e.,
y'(A) = Σij cιd'i j Ej> where y(Et) = V djj Ej, the dit/s being eventually functions
of the couplings. Since this duality map keeps the ideal J invariant these definitions
extend to ©o as well. Finally note that for all objects a above one has a! — a.

With these definitions at hand and assuming βg,βh,yg and y^ to be real couplings
one can easily verify the following relations (c.p. [8]):

Δ(AV+J) = Br^v + J, Δ(β

Δ{SV + J ) = 0S*F)* H-J, zl(ΓF -f J ) = (ΓfF)* + J, (5.13)

which justify calling J a duality transformation. They imply the following relation
between A and β, as automorphisms on S o :

from which we derive the following useful relations on 93O:

Aoβ*~ι = β'oA ,

A o oc, = txf o A ,

{{β*-χ)loΔ)oai = a'io{{β*-χ)ΌΔ),

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)
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We also remark that, generally

βoa^aξoβ, (5.19)

β* o at = αf o β* . (5.20)

In order to establish some properties of duality transformations we need a general
abstract result. Let {ωa} be a finite set of states on a unital *-algebra (£ and let us
assume the existence of automorphisms ya,b of (£ such that, for all pairs (a,b),

ωa = ωbo y M = ωb o γ^a , (5.21)

y*>b = 7b,la a n d Ίa^a = i d . (5.22)

Define

, (5.23)

jώ = <* (5 2 4 )
Clearly one has ωα o αα?^ = coα o yab o γ*>α = ωb o y^a — ωa. The following theorem
generalizes a result of [8].

Theorem 5.1. For a fixed pair (a,b) the statements

0 S ωa(A*oca,b(A)) ^ Kωa(A*A)9 VA e d , (5.25)

and
0 ^ ω 6(^*α~](^)) ̂  ^ω f t (^*^), V^ G C , (5.26)

/<9r some K > 0, αr^ equivalent. D

Pwo/ (Taken in adapted form from [8]). i) (5.25)=> (5.26). First note that

0 ^ ω f l((yβ,A(^))*yβ,6(^)) - ω, o γta((ya,b^)TyaA^)) = ω ^ α ^ ( ^ ) ) , (5.27)

the first inequality to be proven. Beyond this one has

ωb(A*A) = ωa o γatb(A*A) = ω α ( 7 ; 6 (^)*α β , , o yα* 6 (^)) . (5.28)

By the hypothesis this shows that ωb(A*A) ^ 0 and that ωb(A*A) <£ AΓωα(y* 6 ( ^ ) *
VΪ,6(^)) T h e right-hand side equals ωaoγaib(A*γb9aγ*fb(A)) = ωb(A*ocbia(AJ) and
we arrive at

ωb(A*A) g ^ ω ^ * α f t f Λ ( ^ ) ) . (5.29)

Assuming without loss that ωb(A*(x^l(A))) + 0 we get by the Cauchy-Schwarz in-
equality that

(5.30)

(5.31)
by (5.29)

that means:
ωb(A*a-ι

a(A)) g AΓ©^*^), (5.32)

completing the proof of the statement.
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ii) (5.26)=>(5.25). This proof is analogous to the previous one. We can get to
it through the replacement a <—> b and by interchanging γ <—> y*9 because these
automorphisms play a symmetric role by (5.21). •

Using the automorphism β we can consider four possible dynamics:

α? = αI :=/r- 1 o/?; «} = of := βo β*~ι;

α? = αJ

/:=(/r-1)Όj8 /; α? = αf := β'o (/?-')' .

From Theorem 5.1 we get the following

Corollary 5.1. Consider the following four states on S 0

o β*~ι, ω 2 : = ω 0 o β*~ι o Δ9 ω 3 : = ω 0 o A .

(5.33)

ω 0, ωi := (534)

Then the claims that, for all j = 0,..., 3, ωy is a ground state w.r.t. ocj, are equiv-
alent claims. D

Remarks. Actually, since we are assuming that ωo is a ground state w.r.t. α,°, this
corollary says that ωy is a ground state w.r.t. ^ for j = 1,2 and 3 as well [8].
Note also that ω\ is really a state, i.e., a positive linear functional, since 0 ^
ωo(β~ι(A)*(Xi(β~ι(A))) — ωo o β*~ι(A*A). For ωι and ω3 the proof is analogous,
since A is a *-automorphism. Finally remark that ωo is a ground state w.r.t. α̂  for
the whole algebra g 0 and therefore the same holds for ωi. D

Proof. We need a family of automorphisms ya^ satisfying (5.21) and (5.22) for all
these ω, 's. A possible choice can be represented in matrix notation as

,o 70,1 70,2 7o,3

7i,o 7i,i 7i,2 7i,3

72,0 72,1 72,2 72,3

.73,0 73,1 73,2 73,3

- 1

β*~ιoΔ

A

id

Δ~ o /Γ~

(5.35)

The reader is invited to check that (5.21) and (5.22) are satisfied by this choice.
From this, using (5.14) and (5.15) we get for the α-automorphisms

αi,o

\,2 α 3 ? 3 y

of «?
id id
id id

'id j S ^ o β
_ [ β*oβ~ι id

β'-ιoβf* id
,id βΌβ'*-1

id

(α?)-1 I ~
id

/id
r - i id

id

ocf

(5.36)
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Now applying Theorem 5.1 and looking at the matrix of α-automorphisms above,
we get the following chain:

coo is a ground state w.r.t. αf = αo,i <=> ω\ is a ground state w.r.t. α^1 = cc],

a>o is a ground state w.r.t. αf = αo,2 ^=^ &>2 is a ground state w.r.t. α^J = α ,̂

coi is a ground state w.r.t. α* = α^1 <=> ω 3 is a ground state w.r.t. α3?i = α?,

ω2 is a ground state w.r.t. α? = α^1 4=> ω 3 is a ground state w.r.t. α2,3 = α?. •

Let us now investigate the properties of the transfer matrix associated to the
states ωι. Call (πω /,^fω 7,Ωω 7) the GNS-triple associated to the state ωι and the
algebra of observables 93o

For a fixed pair (a,b) we will assume that ωa is a ground state w.r.t. afljj>.
Define £/α_»6 : tfωa -+ J^ωh by

υa^hπωa{A)Qωa := π ω , o y£β(Λ)Oω6 . (5.37)

£/Λ_>6 is densely defined and is actually well defined since, in case πωa(A)Ωωa — 0,
one has

0 = ωa(A*ya,b o ylJA)) = ωb(yla(A)*y*bJA)) = \\πωb o yla(A)Ωωb\\2 . (5.38)

Analogously, if na>b o y*ba(A)Ωωb = 0, then

0 = ωb(yla{ATybM)) = ωb(n,a(A*A)) = ωβ(A*A) = | |π ω a (Λ)Ω ω a | | 2 , (5.39)

and so Ker£/α_^ = {0}. One also has Ran Ua^b — $fωh, since γh a is invertible.
One easily sees that Ua->b is bounded since, by the hypothesis,

b = ωa(A* ^

S ωa(A*A) = \\πωa(A)Ωωa\\%>ωa . (5.40)

Since y*b a is invertible Ua-±b is also invertible and the inverse is C4_»α, which is
densely defined. Note that this inverse is not, in general, bounded since cob is not
a ground state w.r.t. α^β but w.r.t. v~^\. One can also easily check that

(Ua^bTπωb(B)Ωωb = πωa o ya,b(B)Ωωa . (5.41)

We can now define two transfer matrices Tωa^ab and T - i , acting on the

spaces 3tifωa and 3tifωb, respectively, by

Tωa,X(,b := {Ua^b)*Ua^b and T , := Ua^b{Ua^b)* . (5.42)
b' b,a

and one easily sees that the natural definitions for such transfer matrices (as pro-
posed in [1]), namely: Tωai0La hπωa(A)Ωωa := πωa o aa,b(A)Ωωcι and T \πωb(A)Ω(ύb

"* b,a

:=r nωb o a^l(A)Ωωb, hold. These two transfer matrices are positive and bounded
(since Ua-+b is bounded) and have densely defined inverses. We now establish the
following propostion:
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Proposition 5.1. The transfer matrices TW(l^ab and T _i defined above are uni-

tarily equivalent. D

Proof By the polar decomposition one has Ua-^b — %a-+bTωaAa b, where °Ua-^b •
#ωa -> ^ωb is a unitary map. By (5.42) one has Ua^bTωcXb = T a-ιUa^b,

' ®' b,a

and using the polar decomposition above one easily verifies that tf/a->bTωa^a b =

From this it immediately follows the

Corollary 5.2. The transfer matrices Tω^Jωua\Jωi^2 and Tω^ acting on the

spaces 3^ωp j = 0,...,3, respectively, associated to the states ωJ9 and defined by

TωaAaπωa(A)Ωωa:= πωa(<x?(A))Ωωa, A e 8 0 , are unitarily equivalent. D

We will simplify the notation and call Tωa := Tωay(Xa. If τ* is the *-automoφhism

group generating translations by x G Tίd we can define the unitary operators

Uωa(x)πωa(A)Ωωa : = πωa(τx_(A))Ωωa (5.43)

implementing the translations on J^ωa, Since τ^ commutes with all ya,b and with
all ^ one easily verifies that Ua^bUωa(x) = Uωb(x)Ua-+b and that Uωa(x)Tωa =
^ωα^ω«fe) Using the polar decomposition above for Ua-*b we get ^a-^bUWa(x) —
Uωb(x)^a-^b Define the momentum operators by Uωo(x) = eιPωa-,spΦωa = (—π,π]d.
Since the unitary operators intertwining the operators U(x) are the same which
intertwine the transfer matrices we have established the following

Corollary 5.3. The joint spectrum of the transfer matrix and the momentum
operator, sp(Γωβ,IPωfl), is the same for all a. D

It is interesting to see that the operators l/o->3 and £/i_»2 are related to the al-
gebraic duality transformations in a simple way. One has namely £/o
* o - 3 π ω o = πω3(A~ι(A))Ωω3 and U\^2πωι(A)Ωω] = ^ίι

πωi{Δ-\A))Ωωi.
At this point of our analysis an important question rises. Since ω'o and <x>2

are ground states w.r.t. the same dynamics, namely αj, one could suppose that the
identification ωf

0 = α>2 holds. However, this is by no means a trivial statement since
the ground state w.r.t. a given dynamics must not be unique. In spite of this, for the
Έ2 case, this identification has been proven to be true in the region of convergence
of the polymer expansions [8]. We have the following

Theorem 5.2. For the Έ^ model considered here one has the following relations for
states on 23o> valid at least in the region of convergence of the polymer expansions
already described'.

i) COQ = (o2 and ii) ω'3 = ω\ . D (5.44)

Note that i) and ii) are equivalent. We are going to present a proof of /) for the ΈN
case in Appendix B. We remark that this theorem holds as far as one can establish
the existence of a unique thermodynamic limit for the classical expectations.

Theorem 5.2 shows that the states C02 and C03, originally defined on 33o> have
natural extensions to 93O, namely ωf

0 and ω[, respectively.
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Corollary 5.4. Under the assumptions of Theorem 5.2 the operators Tωt and Tωb

are, for all pairs (a,b), unitarily equivalent. The same holds for the operators
Uωf(x) and Uωb(x) and so the joint spectra sp(Γω/,Pω/) and sp(Tωb,Ψωb) are
identical for all pairs (a,b). D

Actually, under Theorem 5.2, we can identify Tωt = Tω2, Tωι = Γω i, etc. This
last corollary describes in which sense duality transformations are a symmetry of
the quantum spin system. The corollary says in particular that the particle content
of the sectors described by all ωa and ω'a is the same. A generalization of this
corollary to the charged sectors constructed below will also be found.

6. The Construction of Electrically and of Magnetically Charged States

We start defining some operators which will naturally emerge in the discussion
presented below and show some useful relations among them. Defining X^n\y)χl2 :=
β*(QH(y)n)QH(yTn e 2I0, one has

X™(y) = exp I -i= NΣ yh(j)(e2< - \)PH(y)j 1 = Y{n\y) + J , (6.1)
[VN J

for

γW(y) := exp i ^ Έ

From this we notice that X^n\y) and Y^n\y) are self-adjoint and therefore one has

χ(»>ωi/2 = QH(χfβ{QH(x_γ*). (6.3)

Definition 6.1. Let s_ be an a-cell on Έ2. Then I denotes (—l)α/(_i5_i)(*^), where

f(x,y) denotes translation by (x, y) E 2£2. D

Define also, for y e Z2,

) ) f B 0 , (6.4)

that means

Z(n\y) = exp I J = NΣ βgiJXe^ - 1 )(δU3(y)* )j 1 , (6.5)

which is also self-adjoint. In (6.4), the symbol ; refers to the duality transformation
among the couplings, as defined before, mapping βg -* yπ, and has been used there
for further purposes.

The following operators from $l0 are also important:

f{

o

n\x) := oξ{QH{xγ)QH{xγn , (6.6)

f\n\x) := *}(QH(X)H)QH(XΓ (6.7)
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Define also in © 0 the operators,

f(

2

n\x) := A-ι(f\n\x) + J) and /»\x) := J-^/^fe) + 7), (6.8)

for x E Έ2. Clearly all fa are invertible. We will frequently assume /o and fι as
elements of 33o As such one can establish that:

f(o\y) = β*-\Y(n\yTλ), (6.9)

fΐ\y)' = Λl{ZSH\y)-λl1)Zf-n\yrιl2, (6.10)

as well as the identities

(6.11)

For all x, y,n and m, one can see that the operator Z^n\x) commutes with

Y(m)(Λ with~β*~ι(Y<<m\y)) and with β~\Y{m\y)). This in particular implies that

foίy) a n d J2&f also commute.
It is interesting to compute the classical functions of some of these operators.

One has

f * * * * > - ^ (6.12)
g(du(p0))

^ ) , (6.13)

in the unitary gauge, where po is the plaquette 0 placed at the Euclidean time
hyperplane zero and bo is the bond spanned by (0,0) and (0,1) oriented in this
direction. One can say that Z^m\θ) creates a m-frustrated plaquette at p^ or a
magnetic vortex with charge m and that / ^ ( Q ) " 1 creates a frustrated bond at the
vertical bond b with charge n. All the operators above appear naturally in our
construction.

Now we go over to the construction of charged states. Following [1] an electri-
cally charged state on go with a ΈN -charge n can be produced as the limit of the
following sequence of "dipole" states:

ω0 ( ^ B ) ^ B ) )

for r G N, with F(

o

n\r) := F(

0"\r,r), where F(

o

n\a,b), α , k N , is defined as

F^\a,b) := QHiOTQHix.Γ^biQGiU") e ®o , (6.15)

where j ^ has coordinates (la, 0, . . . ,0),/^ is a finite set of bonds with dL^ = {0,^}
and QG(LO) = ΓLez, QGQU The number α measures the distance between the
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charges of the dipole and b the Euclidean time evolution applied to the Mandelstam
string connecting both charges. As an element of 93 o we write

( ) J ari(U3(LrΓ), (6.16)

for t/ 3 (4) := Πiei, U3(b).

For all elements of 5o the states ωr converge in the considered region of
the phase diagram to a state which we denote by ωE^n\ We omit the proof since
it is analogous to the case of [1]. The interpretation of ωE^ as a charged state is
confirmed by the following. Let V G Έd be a finite set of lattice sites, say, a cube
centered at 0 and let ΦE(V) := HxeV[δ*PG](x) = Hbed*vPG(b) be the operator
measuring the Z#-electric flux through dV, where d*V is the set of all oriented
bonds b so that db Π V consists of only one element. Then

γridr-*oo ωO

(6.17)

Using our polymer expansion the proof is again essentially analogous to the corre-
sponding one in [1]. We present this proof together with the proof of Theorem 6.2
(below) in Appendix C.

Since the FQ(T) are gauge-invariant one has ωE(jι\J) — 0, and hence

ωE{n\A + J) := ωE(n\A\ A e 9l0, defines ωE{n) on 33O.
Important for the physical interpretation of these dipole states is the fact that

their energy remains bounded for increasing values of r. Precisely one has that for
all m e N,

V))) /ωo ( ^ V ) * ^ V ) ) < cm , (6.18)ω0

where cn is a positive constant independent of r. The proof is found in [1]. The
"perimeter law" of the Wilson loops, needed for that proof, also holds in our model
(see [13]).

Before we introduce the magnetically charged states we need some results on
states with external electric charge which can be constructed from ωE^n\ Defin-
ing the *-automorphism po(A) := QH(QMQH(Q.T9 Λ e g , we can define a state
on g with an external electric charge n located at 0 through ωE^ := α/ ( w ) opg.

Note that, for any x, y, px o adρ^n = adρ^yi o pn

χ and for this reason ωE^ is gauge

invariant.
Let us now define the following states on 5o (to keep the notation as simple as

possible we will often omit the reference to the charge n and to the point 0):

λ0 : = ωE^] , (6.19)

λx := λ0oβ*-1 . (6.20)

Note that the λ\ is indeed a state for the reasons explained in the remarks after the
statement of Corollary 5.1. We have the following important theorem.
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Theorem 6.1. For the states λ0 and λ\ above the two following statements hold:

I) For a — 0 and a — 1, λa is a ground state with respect to the dynamics ccf
and the observable algebra $lo, i.e.:

0 ^ λo(A*<*i(A)) S λo(A*A), \/AeM0, (6.21)

0 ^ λλ(A*<x\(A)) ^ λχ(A*A), MA G 9I0 (6.22)

II) For the field algebra $o we have the following generalization of the in-
equalities above: there exists a finite constant Ke ^ 1 so that

0 ^ λo(F*θLi(F)) rg Keλ0(F*F), VF G So , (6.23)

0 ^ λ{(F*a](F)) g Keλx{F*F), VF G go . • (6.24)

Proof We will prove the statements only for Λo. Then for Ai they will follow from
the general Theorem 5.1.

Proof of I. By the definition one has, for all A G 3lo>

= tan

from the fact that ωo is a ground state for gO The second equality is crucial and
follows from the representation of the states in terms of classical expectations and
from the cluster expansions using the fact that, for a local observable A, the classical
function [A]cl is also local in the unitary gauge, i.e., has finite support. This last
fact is not true in general for elements of So a n d for this reason we have in that
case only bounds like II (see below).

In order to complete the proof we need to show, according to Lemma 2.1, that
λo has the cluster property for at and 9ϊO This again follows, using (3.24), from
the representation of the state λ$ as

(B(an

r,0) is defined after (6.47)-(6.48) and [B]cl(k) is the function [B]cl translated
by k G 7L in time direction), and from the cluster expansions, using again the fact
that, for a local observable A, the classical function [A]cl is also local in the unitary
gauge, i.e., has finite support.

Proof of II. Call Gy the group of all gauge-transformations inside of a finite vol-

ume V G Ί?\ for λ G Gv, call gλ := adβ(; t ) and EG := \imv^z2\Gv\~ι ΣλeGy Gλ, the

projector of 5o onto 2to Since λo is gauge invariant one has λ$ o EQ(F) =
VF G 5o Hence, using the same trick as in (6.25) we have, for F G 5o?

= l im ω o ^ c g ^ n r ^ 1)(gG(4f))
r->oo f̂ (r, r + 1)
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where ΛF :— EG(F*oti(F)) G $Io and, to simplify the notation, we used, for a,b G N,

W(a9b) := ωQ({aia{QG{Lr)
n))\θLίb{QG{Lrγ))) . (6.28)

Now we write this, using the gauge invariance of ωo, as

Iim J _ y lim ω° ((^(g XQβiL.γWF^XF) (uι(r+l)(gλ(QG(Lr)"))))
™ h^ W(r,r+\)

" ) ) * ^ , ^ ) {Hr+X){QG{Lr)")))
£ 2 o W ( r , r + l ) '

because, in general, gxiQaiLr)") = ΘQG{Lr)
n, for some θ € <C with |θ | = 1. From,

this and from the fact that ωo is a ground state for α, and 5o it follows that

0 g λo(F*a,(F)) ^ KLλQ{F*F), (6.30)

with

- ™ fΓ(r,r + 1 ) r-oo | | Γ « « ^ ( i U β < ! (

Note that by the last equality Kj ^ 1. This constant KL already appears in [1]. The
existence of the limit in the definition of KL can be seen with the cluster expansions.
We do not enter into details. (KL also depends on the path Lr connecting 0 and
x.) The constant Ke of the theorem is the infimum over all constants satisfying
λo(A*QLi(A)) g Kω(A*A) for all A G go- Clearly Ke ^ 1 (take the case A = 1) and
in particular we have seen that Ke is finite. •

Now we want to define the magnetically charged states using the electrically
charged ones and duality transformations. Consider now the following four states:

μo : = λ0 o p~_n = ωE(n) , (6.32)

μi : = λλ o p-_n = ωE^ o β*~ι o ad/(/7)(o)i/2 , (6.33)

μ2 : = μi o A , (6.34)

μ3:=μ0oA, (6.35)

where μ0 and μ\ are states on go and μ2 and μ3 are states on 23O? which are well
defined, since μo(</) = μ\(J) — 0. Above we used the identify pn

y o β*~ι o p~n —

jS*"1 oadZ(f l)Wi/2. The automorphism β*~ι ° a d ^ j ^ i ^ is naturally defined on 25O

since X(w)(jμ) is gauge-invariant.
The states μo and μ\ are electrically charged, μ2 and μ3 are magnetically charged.

The precise meaning of this claim is explained in the next theorem. Notice that the
magnetic states are the duals of electric ones, what makes the definitions (6.34)
and (6.35) very natural. The definition (6.33) is also natural since λ\ is, as already
discussed, a state with an external electric charge.

In order to understand in which sense the states above are charged we need
some definitions. For V C Έ2, finite, define the charge measuring operators

ΦE(V) := Π δ PG(x) and Φ"(?) := Π δU3(p), (6.36)
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both being unitary and related through Φ^ζv) := A~ι(ΦE(V)). They are interpreted
as operators measuring the ZN-electric flux through δ*V, respectively the 7LN-
magnetic flux through V. We use these operators in the next theorem to justify
why the states above deserve the interpretation of being (electrically or magneti-
cally) charged states.

Theorem 6.2. If V C Έ2 is e.g. a square centered at the origin, one has:

(6.37)

lim ff;
ω2(ΦM(V)) vφ ω1(ΦE(V))

and

φ lim
ωo(ΦM(V)) V\Ί? ω3

φ
ω3(ΦM(V))

( 6 . 3 9 )

u2(ΦE(V)) u](ΦM(V))
lim , r }) - Hm μ u yίJ} = 1 . D (6.40)
v^ω(ΦE{V)) viz* ωι(ΦM(V))

The proof of this theorem is found in Appendix C. An interesting and important
point is that it shows that the different states are charged with respect to different
ground states of different dynamics. In particular one sees that there is a special
interest on the states μo and μ'2, since they are, respectively, electrically and mag-
netically charged states with respect to the same state: ωo

For this reason we turn back until the end of this section to the previous notation
and call ωE{n) := μ0 and ω M ( w ) := μf

2.

Theorem 6.3. In analogy with (6.14) and (6.16), one has:

coo {Ff\r)*AF^\r))
< C>(Λ):= \ — - ^ , Λ e g 0 (6.41)

ωo ( i f V ) * ^ V))

with F(

2

n\r) := F(

2"\r,r), where, for a,b € N,

x abi (Z<n\0f2Z<N-n\xaγ'2β*-ι(Uι(Lr)) • (6.42)

The operator F2 (a,b) creates a "dipole" of magnetic vortices separated by a and
connected by a magnetic vortex string translated by b in Euclidean time direction.

Proof. To simplify the notation we frequently drop the reference to the ideal J. Let
us look more closely at state μ2. By definition one has, for A e 33O?

ω 0 o Z?*-1 o A | > i o β%F(

0

n\rγ)^z(n)6ι/2f(A)A-1 o J8*(i^n)(r
= lim

ω 0 o j8*-i o zl

(6.43)
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Using the representation (6.16), (6.9), (5.14) and the fact that Δ~ι o β* o aaι• =

α ^ - D , 0 ^ * " 1 ) ' 0 ^ " 1 , we get zT 1 o j9*(F<π)(r)) = H'rr_x, where, for general
N

M ^ ^ ^ , ^ ) . (6.44)

Since

( " ^ ) - 1 ^ , , ) ' * , (6.45)

it is possible to write the state μ'2 in the form

ω0 (Ff\rrAFin\r, r - 1)) ω0 ^()^\))
μ'2(A) = lim \ ^- = lira \ +- . (6.46)

~°° ω0 (F^\ryF^\r, r - 1)) ^°° ω0 ( ^ B ) ( ) ^ B ) ( ) )

The last equality in (6.46) comes from the polymer and cluster expansions. •

Considering F2 (r) as an element of $to m e last expression above also defines
an extension of μ2 on go> provided the limit exists, what can also be proven using
the polymer expansion.

One can express ωE^n\A) and ωM^n\Λ) in terms of classical expectation values.
Using Definition 4.1 one has

where αj? and βn

r is a 1-form, respectively a 2-form, with J*α" = 0 and dβn

r — 0,
as indicated in Fig. 2. In this figure we indicate the support of the forms. The
value that the form βn

r (respectively α") assumes at a plaquette p of its support
(respectively, at a bond b of its support) is n for p (respectively, b) oriented in the
sense indicated by the curly arrow.

The functions [A]E and [A]M are given (in the unitary gauge) for r large enough
by

[At := exp v v i y ' κ £" Δ"'(O)"1 Λ/Γ(0Γ> , (6.49)

/ s'Ύ f y~4 /• i f -Ci > I -»̂ « 1 \

V g(du(p0))

where b\ and Z?2 are the bonds spanned by (0,-1) and (0,0) and by (0,0) and
by (0,1), respectively, po is the plaquette 0 at Euclidean time 0. Actually a
straightforward computation shows that, for A £ 9I0, [A]E = [QHn(0)AQ^(0)]cl and
[A]M = [AY1.
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J L T

Γ *•

Fig. 2. The supports of the forms β" (left) and αj! (right). /?0 is the plaquette 6 at Euclidean time
0. The horizontal axis indicates the x-direction and the vertical the Euclidean time-direction.

Remark. We warn the reader that, due to the appearance of other factors in the
expectation values in the right-hand side of (6.47) and (6.48), relation (3.24) cannot
be used for the functions [A]E and [A]M. D

Let us now study some properties of the states ωE and ωM. We start with a
simple lemma:

Lemma 6.1. i) For any p G N and for both a — 0 and a — 2 we have

ωo(Fa(rγAFa(r)) ωo(Fa(ryAFa(r,r+p))
, A e (6.51)

ii) O«e λαs co0(Fa(r)*Fa(r, r -f 2)) = ωo(Fa(r, r + 1 )*^(r, r + 1)) αwrf
ωo(Fa(r)*Fa(r9r + /?)) ̂  0 /or απj / ? e N . •

/ The equality in part ii) is evident from the representation as classical ex-
pectations and translation invariance. The other claim follows from (4.19) or from
Griffiths inequalities. Part i) can be proven with the polymer and cluster expansions,
as one can see from the proof of the existence of the limit states. We do not repeat
the details. •

Now we establish some important properties of the electrically and magnetically

f(0 f)
p pp

charged states. We will denote by ωf(#0 := ω*(Λ> o τ_^ and ωfn) := ωM^ o τ_ z ,

the electrically and magnetically charged states with charges centered at x and y.

Theorem 6.4. For the states ωχ{n) and ω~{n) defined above the following invariance

properties and inequalities can be established:

1. For the charged states one has ωfn) o δξ}n) = ωfn) and ωfn) o δfn) =

ωψn), where the automorphism δξ(n) and δψn) are defined by

(6.52)
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δψn) : = 2Lά{f{m){9)l)_x o α ; = oii o a d ( / ( / ? 0 ^ ) , r _ 1 . (6.53)

Note that (δξωγ = (^W)"1 α ^ (#<">)' = ( i f 0 ) " ' .
2. /br α// y4,^ G S o /Ae following cluster properties hold in the region of

convergence of the polymer and cluster expansions:

lim ωf(n) (A (δξ{n))a(B)) = ωξ(n\A)ωE(n\B) , (6.54)
α—> oo - \ \ - / / - -

lim ωfn) (A (δfn)Y (B)) = ωfn)(A)ωf"\B). (6.55)

3. F<9Γ α//̂ 4 G So the following inequalities hold:

0 ^ cΰf (Λ)(^*δf (Λ)(^)) ^ ωξ(n)(A*A), (6.56)

0 ^ ωf w ) (^*^ ( λ z ) (^)) g ω f n ) ( ^ * ^ ) , (6.57)

means, ωf(n) w α ground state with respect to δ^ and αλjf(π) is a ground

state with respect to δψn\

4. For all A e So we have the following inequalities:

0 ^ oξM {A*ai(A)f^\xή , (6.58)

0 ^ ω j ( π ) (>α,04)/<n)(7)') • (6.59)

Proof of Theorem 6.4. We present the proof for the magnetic states ωMi<n\ The

ofgeneralization to ω ~ is trivial. The case of the electric states is similar.

Part 1. Invariance of the states already follows from the first inequality in (6.57).
We give another more direct proof, which follows from the fact that, by (6.51),

ω^\A)= lim ω^f(\tζf'rϊ^l Ae*0, (6.60)
r-oo ωo(F2(r)*F2(r,r + 2))

from the fact that

F2(r,r + 1) = ( / f ( 0 ) 7 f ~ w ) &y)* oc_z(F2(r,r + 2)) , (6.61)

and from the fact that ωo(F2(r,r + l)*F 2(r,r + 1)) = ωQ(F2(r)*F2(r, r + 2)).

Part 2. Writing ωM{n) as the limit (6.41), using

- ^ ( β r i y ° ° a d , ( β . I ) ( ( / Λ δ " 1 ) ' ) ° *aι' ( 6 ' 6 2 )

and using (3.24) we get, after some simple manipulations,
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where [B]M(a), is the classical function [B]M translated to the ath Euclidean time-
slice. The desired cluster property is obtained writing the expectation values above
in terms of the polymer and cluster expansions and using the standard techniques.
From the same expansions one sees that the clustering is exponential.

Part 3. We consider ωM(λ2> (A*δψn)(A)) and write the state as in (6.60). A com-

putation then shows that

ωMin) (A*δf*\A)) = l i m ωo(^(I))
V Q V V r-,ooω o(F 2(r)*F 2(r,r+l)) - v

where L := Z{n)(0)AZ{N~n)(xr)F2(r). The second inequality follows from the cluster
property and Lemma 2.1.

Part 4. Again by (6.51) we can write

Using (6.42) and taking B :=>4*αI (^)/^ ) (0) / the operator F2(r)*AF2(r,r + 1) can
be written as F*α, (F), for F :=y4Z ( Λ ^ m ) (£ r )F 2 (r) and the result follows from the
ground state property of ωo •

We finish this section with some observations concerning the automorphisms

(5Q(Π) and δ^m\ As automorphisms acting on 2I0 we can write then as the limit

V t Έ2 and adjy^o) and adτy(o,m) respectively, where we introduced the finite-

volume modified transfer matrices:

7V(/i, 0) := QH(3fTvQH{0rn , (6.66)

7V(0,m) := Z ( m ) (0) 1 / 2 7>Z ( m ) (0) 1 / 2 . (6.67)

Recalling relations (2.13)—(2.15) one easily sees that Ty(n,0) differs from 7> by

the replacement PH(Q) -> e^PπiQ) and Tv(0,m) by the replacement

β ^ [ ^ 2 G ] ( 0). This means that these modified transfer matrices differ from the usual
one by the introduction of a "shift" in a vertical bond starting at 0, respectively, in
a horizontal plaquette located at 0. A generalization of this idea will be used in the
construction of dyonic states with multiple electric and magnetic charges located at
different points.

7. The Global Transfer Matrices on the Charged Sectors

In this section we are interested in defining transfer matrices on the sectors de-
fined by the electrically and magnetically charged states constructed before and in
studying the relations among them. The question of the translation invariance of the
global transfer matrices will be discussed in Sect. 8 below.

Let us first consider the electrically charged states io?^i?^o and μ\. Call
(πλa9^λa,Φλa) the GNS-triple associated to the states λa and the algebra go- Based
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on our experience with the vacuum sector we define the operator Ko^\ : J4?χ0 —» #f\x

by
Kϋ^πλΰ(B)φ>ίϋ := πχι(β(B))φiι , B e %0 , (7.1)

with
K^πλl(B)φλ] := πλo(β*-ι(B))φ^ , B e So • (7.2)

This operator J^O-^I is analogous to the operator £/o-̂ i previously defined. Using
Theorem 6.1, part II, one easily checks that | |^o-

We then define transfer matrices on Jfχ0 and

Tλ{ -^Ko

with the result that, as expected, one has

Tλoπλo(B)φλo : = π ^ o

Tλίπλί(B)φλl : = π ^ ,

Analogously to the previously treated case Tχ0 and Tχχ are unitarily equivalent
but \\Tλa\\ —Ke, a = 0,1. Next we want to define transfer matrices on the gauge
invariant sectors generated by the states μo and μ\ and the relevant algebra of
observables 93o Let us first consider the GNS triple (πμb,J^μb,φμh) associated to
the states μ& (b = 0,1) and the larger algebra go-

= κl12.
,, respectively,

Beΰo,

B€%o,

by

(7.3)

(7.4)

(7.5)

(7.6)

Define the unitary operators La: J4fλa

V α = 0,1, by
R a '

Raπμa(A)φμa : = π ^ ^ G go

G go ,

by

^ f f and Sa: J^μa ->

go , (7.7)

(7.8)

(7.9)

(7.10)

(7.11)

(7.12)

(7.13)

The operator Ra defines a canonical map between the GNS Hubert spaces Jfμa

and Jf;Lα, what makes the definitions above particularly natural. A simple computation
shows that

with Sa =LaRa. Define also,

with

We then define the transfer matrices associated to μo,i and go by

Tμo := W^x Wo-,1 = R*oTλoRo ,

and
Tμι : =

Tμ(lπμo{A)φμo = πμo

Tμiπμι(A)φμι = π μ i

0

B ) ( 0 ) ) φ
μo,

A e

A €

(7.14)

(7.15)
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The inverses of the transfer matrices are given by

T^nμa{A)Φμa = πμa (αL. (Af^O)'1)) φμa, A G %0 . (7.16)

a — 0,1, and are densely defined.

Inspired in the previous construction consider also XQ-+\: ^ μ 0 —» ^μx by

X0-»i := S* KQ^\SO , (7.17)

with

-Yo*-*i := ô̂ o—>i*̂ i (7.18)
We then define the global modified transfer matrices associated to μ01 and 5o

by

Vμo •= ^Γ-^i^Ό-^i = SQT^SO , (7.19)

and

^ , :=* 0 ->i*αUi = SΐTλιSx . (7.20)

As one easily checks, one has for a = 0,1,

^ Λ ^ , ( f ( ^ ) ) 0, f l, Λ e S o (7.21)

Clearly

Vμa=KTμaRa, (7.22)

and

( ? ) 1 ) M β . (7.23)

Observe that VμQ - Γμo - Tλo - Γλl - Γμ,
fiAs in the vacuum sector case the definitions (7.12)—(7.13) imply WQ-+\T^ =

Tμιif
ro-+ι, where τFo->i is the unitary operator defined through the polar decom-

position of Wo-,1 : ίΓo-i = 1V^XT]!^. Note that by (6.3),

Wo^ιπμo(A)φμo = π ^ ί / ϊ ^ ^ ί O Γ 1 / 2 ) ^ ^ , ^ G So . (7.24)

Hence Wo-+ιJf9

μo C Jf9

μ], where 3%% := {πμa(A)φμa9 A e 9Io} is the subspace
without external charges. This holds also for i^o-+i, since Tμa keeps J^g

μa invariant
for both a = 0,1. Defining Tg

μa := Γμα f Jf^fl we conclude that

Since μo(J) — μ\(J) — 0 there is, for both b — 0,1, a canonical identification
between the GNS-triple associated to 2ίo a n d th e GNS-triple associated to So- F° r

this last we have

WO-,ιπμo(A)φμo = πμι(β(A)Y(n\0Γι/2)φμι , A e So , (7.26)

Tβμoπμo(A)φμo - π ^ C α f ^ ) / ^ ^ ) ) ^ , A e ® 0 , (7.27)

Tg

μιπμι(A)φμι = πμι(aj(A)f\n\θ))φμι , Λ 6 » 0 . (7.28)
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Now we treat the magnetic states. Call (πμb,Jfg

μb,φμb) the GNS-triple associated
to the states μ&, b — 2,3 and the algebra 93o There are natural unitary maps Jf^0 —>
Jtff3 and jeg

μι -> Jf^2 given by

:= πμ3(Δ-\A))φμ3 , ^ « 0 , (7.29)

ι := π ^ z Γ 1 ^ ) ) ^ , Λ G 93O . (7.30)

This naturally invites the following definitions for the transfer matrices on the mag-
netic sectors associated to μι and μ^:

7* := W^T^W^ and 7* := W^T^W^ , (7.31)

which leads to

T*2πμ2(A)φμ2 = πμ2(oξ(A)f(

2

n\θ))φμ2, Ae<80, (7.32)

T°3πμi{A)φβ3 = πμ3(of(A)fi"\θ))φμ3, Ae<B0. (7.33)

The inverses are given by

(7* ) " ' nμa(A)Φμa = π f t l (αi ι (^/( " ) (δ)- 1 ) )0 f t , , ^ S B O , (7.34)

β = 2,3, and are densely defined.
From (7.25) and (7.31) we conclude Tj^ - T9

μλ - Tfi2 - T%, where - means
unitary equivalence. After a simple computation one can see that

Γ ^ ) " 1 πμa{C)φμc) = μa(A*a«(B)C) (7.35)

for all a G {0,...,3}, and for all A,B,C e 95O

For completeness and further uses we also write down the explicit definitions
of the operators W^-,2,Wχ^i and PF2-+3

G ©0 , (7.36)

φμ3 , ^ G ̂ Bo , (7.37)

W2^πμ2(A)φμ2 = πμ3 ( > ' (^ ( Z ( w ) ( 0 ) - 1 / 2 ) ' ) ) ̂ 3 , A G ® 0 . (7.38)

We close this section mentioning without proof an elementary proposition we
will use.

Proposition 7.1. Using the definitions given above one has:

{TfS φμa - nμa (α(V1);. (/<«)(0)) < (/W(0)) /in)(0)) 0,lf, (7.39)

/or α// α, and for all B e N, 5 ^ 1, and finally

) (δΓ 1 )Z<-)(0Γ 1 )^ , (7.40)

all B G IN, 5 ^ 1 , where ψμr := nμι (Z^(O) 1 ' 2 ) φμt. D
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8. The Translation Operators on the Charged Sectors

So far, we have not discussed the question of the translation invariance of the global
transfer matrices defined above. Let us first analyze this question for the GNS triple
associated to the electric state μ0 and 33O

Our task is to exhibit a unitary operator acting in Jf^0 implementing the trans-
lations and to show the translation invariance of the global transfer matrix Tμo. We
will be following the steps of [1] with some adaptations. We remember that the
state μo and all GNS objects associated to it have been constructed with a charge
"located" at 0. For an arbitrary point xeZ2, we have to show the existence of
vectors in J^g

μo implementing the states μo o τ_ x, the electrically charged state with
charge "sitting" at x.

Let us start defining the following operator on J^fi0:

ίΰ, Ae<80. (8.1)

This operator is well-defined, bounded with ||Fo|| = 1, self-adjoint and, by (6.56),
positive. Clearly Vo coincides with Vμo \ Jfμ0, defined in the previous section.
Boundedness follows from the Cauchy-Schwarz inequality and from the cluster
property of μo with respect to δ0 . The same cluster property also implies the
uniqueness up to a phase of the eigenvector of VQ with eigenvalue one. Note that
this operator has been defined here only for the point 0. Later we will extend the
definition to arbitrary x.

Let La^fj denote a finite connected set of bonds in Έ? having a and b as end
points, oriented from a to b. We will call these sets of bonds transporter bonds.
For such transporter bonds and for p G N define the operator

\p-\

(8.2)
The idea behind this definition is that the operator Ap(Lx_+x,)τx(Fo(r)), p < r,

is associated to a classical function described in Fig. 3.

Proposition 8.1. For fixed L0_+x the sequence defined by

1 Φμol\\πμo \ApiU_S) φμo\\ , p G N , (8.3)

is a Cauchy sequence in J ^ o . Call ιAx(̂ o->χ) t n e ^m^ vector of the Cauchy
sequence above. Then ψx(L0_+x) is independent of the transporter bonds

Proof. Call ψp := ΨP(LQ_+X). By (4.19), (φn,ψm) ^ 0 and can be written as

[(ψmψm)(Ψm,Ψn)]1^2- Expressing this in terms of cluster expansions one sees,
for n and m large, that the only clusters which contribute are of size larger
than 2min(«,m) and that for l lnK^,,^)] ! we have the bound {const.) (|ZO_^X|)

e-(const.) mm (n,m)^ g 0 ( ^ ? ^ m ) _>. i ? for 72, m —> oo and this implies convergence. Now
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. The arrowFig. 3. Semi-loop of bounds associated to the classical function of ̂ p
indicates the orientation sense of the corresponding 1 -form.

we are going to prove the independence of the limit vectors on the transporter
bonds. The argument is analogous to the previous one. Consider

1/2

Expressing this in terms of cluster expansions one sees that, for p large the only

clusters which contribute are of size larger than 2p and that for In (φp(R0_+x),

ΨP(LQ-,X)) we have the upper bound (const.) (\LQ^X\ + \R^x\)e-(consL)p -> 0

for p 0 0 .

Definition 8.1. Call φμo(x) := ΦΛLo->χ) for any LQ__X, with φμo(0) := φ

Proposition 8.2. i) One has for all A e So,

(φμo(x),πμo(A)φμo(x)) = μo(τ-χ(A)) .

ϋ) ΦμoQϋ) ^ a cyclic vector with respect to π μ o ( S o ) Π

μo.

(8.5)

Proof The proof of part i) is easily obtained using the definitions and the cluster
expansions. We omit the details. Part ii) holds if there exists a sequence

n := πμo(Bn)φμo(x)/\\πμo(Bn)φμo(x)\\ , (8.6)

Bn e 33o> « E N, converging to eιfφμo,f e IR which is cyclic, by construction.
Write φμo(x) = ψx(Lo-*x). We will show that one has such a sequence for a choice
like Bq — Aq(Rx_^0), in particular with RX_>Q — —L0_+x. The fact that, for this choice,
φn is a Cauchy sequence can be proven similarly to the previous case using part
i) of this proposition. In order to show the convergence to eιfφμo we observe that,
for arbitrary x,L and R, one has

since, in general

δf">

and

(8.7)

(8.8)

(8.9)
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This implies that

— lim lim
-+00

πμo

Ψ, (8.10)

where φ is the limit of the sequence φn. In Appendix D we will prove that the
factor inside of the brackets converges to one in the limits above. Therefore, φ is
an eigenvector of Fg with eigenvalue one and has to be equal to eιfφμo. •

Now we are able to generalize the definition of the operator VQ_ on Jf^0. Define

Vx_πμo(A)φμo(x) = πμo(δ^n\A))φμo(x), A e= © 0 (8.11)

This operator is well-defined, densely defined, bounded with \\VX\\ — 1, self-adjoint
and, by (6.56), positive. Boundedness follows from the Cauchy-^Schwarz inequality
and from the cluster property of μo with respect to δx . The same cluster property
also implies the uniqueness up to a phase of the eigenvector of Vx with eigenvalue
one.

Let us now introduce the generators of the translations. Following [1], define

Uμo(z)πμo(A)φμo := πμo(τx_(A))φμo(z) , A € S o (8.12)

for all zeZ2 and A e 93o This is a densely defined isometry with dense range
and so it defines a unitary operator. The family {C/μo(z), z G Z2} defines a unitary
representation of ΊL2 in ^ μ 0 . This follows from the same arguments as in [1] and
we will not repeat the details. As we will discuss in [9], the corresponding situation
in the dyonic case is more complicated, since the positivity argument used in [1]
does not hold for expectations involving loops of bonds and of plaquettes.

With this definition we easily check that Uμo(z)Vx — Vx+zUμQ(z_) and Uμo(z)Tμo —

TzUμo(z_) where, for x G Z 2 , we define the operator

Tx_ := πμo(f$\x))Vx_ . (8.13)

As one sees, this is a self-adjoint operator and, by (6.58), one has 0 ^ Tx ^

| |/o°(*)| | . Clearly TQ = Tj}o and we want to show that Tx_ = 7)?0 for all x. For,
observe that

| | μ o q + ι ( x ^ 0 ) ) φμo()\\
Tx = lim ^ -—^ Tμo , (8.14)

" ( ) )

what can be seen applying the definitions on the dense set {πμo(A)φμo, A G So}
and using (8.8) and (8.9). Using arguments analogous to that used in Appendix D
we can see that the factor between parentheses in (8.14) is equal to one. This can
be also more directly seen from the fact that Tx and Tμo have the same norm since
kμ0Q0 i s unitary and intertwines both. From this it follows that Uμo(z) and Tμo

commute for all z e Z2.
Now we present the definitions of the translation operators in the GNS-sectors

associated to the states μ\,μ2 and μ^. We simply define, for all zeZ2 and
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a — 1,2,3: Uμa(z_) := Wo-^aUμo(z_)Wo_^a. Let us look at each case more closely. Us-
ing the previously discussed polar decomposition of the operator JF0-+1 one has

Uμι(z) := - 1 (8.15)

and since U
μo

commutes with Tμoo o we conclude that, for each z9Uμι(z) and Uμo(z)
are unitarily equivalent. Analogously we conclude that Uμ2(z) and Uμo(z) are uni-
tarily equivalent since JF0-+2 — JP1-+2^o-*i a n d Ĵ i->2 is unitary. Finally Uμ3(z_)
and Uμo(z) are unitarily equivalent because #o-*3 is unitary. Note that the unitary
operators intertwining Uμa(z_) and Uμb(z_) are the same intertwining 7^ and Tμb, as
found in the previous section. In this way we have found an equivalent to Corollary
5.3 for the charged sectors:

Corollary 8.1. The joint spectrum of the transfer matrix and the momentum
operator, sp(Tμa,Φμa), is the same for all a. D

This in particular says that, if there exists an electrically charged particle in the
sector associated to μ0 there must be a magnetically charged particle in the sector
associated to μι with the same mass and dispersion relation.

It is interesting to study in more detail how Uμ2(z_) acts. We will in particular
derive a result which will be useful in the proof of the existence of magnetic
particles.

Definition 8.2. Let LQ-+Z, Z_£ Έ? be transporter bounds. Define for p G N,

U) j

Π abι (Z

b=\

~P~l

a=\

)

Z^(z)Y

- 1

(Z n (
(8.16)

Call

Φμ2(ί) •= li
1 p— φβ2

(8.17)

with ψμ2(0) := nμi ((Z(n\θ)ι/2)') φβ2 as in Proposition 7.1. D

In (8.17) we used the fact that

φμ2,

(8.18)

The existence of the limit in (8.17) can be established with the same methods
used in the electric case. Analogously to Proposition 7.1 one can show that

(8.19)
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Theorem 8.1. With the definitions above

Uμ2(z)πμi(A)φμ2(0) = πμ2(τ2_(A))ψμ2(z) (8.20)

for all A e 33O, I & %2- •

Proof. Using the definition Uμ2(z) := fVo-*2U^(z)W^"_l2 one can show that

πμ2 (τz{A)Kp{LϋA φμ2

Uμ2(z)πμ2(A)φμ2 = lim -Ύ±^? ~~' , (8.21)

^°° \\πμo{AP(LQr.ί))φμii\\

with

KP(L^) := (Z^(Zy'2)Ά-1 o β(Ap(L^z)) (Z<">(0)-'/2)' . (8.22)

A lengthy but straightforward computation shows that

KP(LO_^_) = (Z<">(I)1/2)'α; {{Z(n\zγl2)'Bp^{L^zj) f(

2

n)(0). (8.23)

Hence, the numerator in (8.21) can be written as

πμ2 (τz_(A) (Z("XzJI2)') T^πμi ((Z^W2)'B^O^S) φμi . (8.24)

Concerning the denominator in (8.21) one can show that it equals

)p^(L0^_)) φμ2\\ . (8.25)

Therefore, after the limit is taken we get

Uμ2(z)πμ2(A)φμ2 =πμ2 (τ £ (A ( ^ ( O ) 1 / 2 ) 7 )

=πμ2 (τz_ (A {Z^Cor112)')) Φμ2(z) , (8.26)

where here we used (8.19). To finish the proof, replace A -> A (Z{n\θ)ι/2)f. •

9. The Existence of Electrically and of Magnetically Charged Particles

The existence of an electrically charged particle in the Tίi case in d ^ 2 was
established in [3] using methods previously developed by Schor and collaborators
in the vacuum sector (see references in [3]). Here we will use the same techniques
to show the existence of N — 1 electrically and magnetically charged particles in our
3-dimensional ΈN model. We will restrict ourself to present only the basic results
concerning the existence of electric charged particles in the Έ^ case. Further details
for the proof of existence of the one-particle states can be inferred from the basic
discussion found in [3]. By duality, or more precisely, by Corollary 8.1, we conclude
the existence of N — 1 magnetically charged particles as well. Nonetheless a direct
proof of the existence of magnetic particles can be found repeating the steps of the
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electric case. As in the previous sections our results are restricted to the region of
couplings with max{#( 1),..., g(N — 1), Λ( 1),..., h(N — 1)} small enough.

Due to some special problems already observed in [3] we have to represent
(B(oc,β)) in a slightly different way form (4.31). Here we write

(B(a,β))=
(M,E)eConn\(y.,X)
(P,D)EConn2(β,C)

[D-β:E-oi\

x exp Σ cr

π

b(P,D),β;C

Π KE(b))

We used the following definitions:

• Conni(α X) equals Conni(α) if ί/αΦO and otherwise equals the set &x of all
polymers whose geometric part is formed by a simple connected set of bonds
which are connected to at least one point of the finite set X C IQ — Έ?. One also
has 0 e <0X.

• Comi2(β; C) equals Conn2(β) if d*βή=0 and otherwise equals the set ^c of all
polymers whose geometric part is formed a simple co-connected set of plaquettes
which are co-connected to at least one cube of the finite set C c / 3 . One also
has 0 e <SC.

• a(M,E),a\x(y) equals a^εiΛy) but is zero in the case da = 0 if there are bonds
composing y connected with at least one point of X.

• b(pyo)j;c(y) equals b(p^β(y) but is zero in the case d*β = 0 if there are pla-
quettes composing y co-connected with at least one cube of C.

The convergence of this representation can be proven by the same methods. We
note that (9.1) does not depend on X and C, which can be chosen arbitrarily. We
indicate the choice of X and C by writing ( )χ;c- This representation only differs
from (4.31) if da = 0 or d*β = 0.

Starting from the states μo and μ'2 on the algebra 33o we associate via the GNS
construction the objects

μo -> ΦE, πE, #E, TE, UE(X) (9.2)

μf

2 -• ΦM, πM, ^M, τM, uM(χ) (9.3)

where we introduced the new notations φβ — φμo, etc, and ΦM = φμ'9 etc.

We will always be assuming that these states have (electric or magnetic) charge
n. We will analyze the following two-point functions of vector states with charge
(/i):

GEM(xo,x) :=

M*nGM*n\x0,x) :=

for (x,jco) G Z 3 , with

:= πM(Z{n\0)ι/2)φM .

(9.4)

(9.5)

(9.6)
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The factor Tj 7j w a s introduced for convenience. The results we are

going to establish say that the vectors ΦE and Tj ifa have non-vanishing com-
ponents on one-particle subspaces. The same holds for the vector
commutes with the momentum operator. Note that

since TM

GMλn\x0,x) = (9.7)

We now introduce a convention frequently used below.

Notation 9.1. If y is a form in Έ3 with finite support we will denote by y[x] the
form y translated by xe Z2. Clearly y[0] — y. D

We represent these two two-point functions as the square root of the Green
functions of two infinitely separated charges. Having (7.39) in mind we write, for
two fixed points x = (XQ,X) and y = (yo,y) G 2£3,

•«Λ <*(«?[*], o»
(9.8)

y) = lim
1/2

(9.9)

where the forms yn

r and αj? are defined in Fig. 4 (see also Notation 9.1). The forms
δ" and β" are the analogues of the forms yn

r and α", respectively, on the dual lattice.
In the method we follow we consider configurations of complex space-time

dependent coupling constants k := {A(l)(b),...,h(N)(b\g(l)(p),...,g(N)(p% b e
h,p€ h}- The configurations we will consider are invariant under space transla-
tions. We denote by ( }(k) the classical expectations associated to the configuration
of couplings k.

o

y -x

(0,Q) (0, XT)

(0, xr]

Fig. 4. The forms fr = #[0] (left) and of = <[0] (right).
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We define the Green functions for space-time dependent couplings for XQ S yo

where we have chosen X — {y,yr} and C = {cy,cyr}, where cy the cube spanned
by the plaquettes (y,yo) and (y,yo + 1 ) In [3] another representation of G^ for
variable couplings Eas been used. Both lead to the same results.

We identify bonds, plaquettes, and cubes with their geometric central points
(which are points in Z3/2). For a < b we call by ^a,b the subset of @cius composed
by clusters whose bonds and plaquettes are contained in the time-slice a < x0 < b.
We also define %h := #c/lt f\(#-oo,« U ̂ ,oo)

To handle with (9.10) and (9.11) we need some abbreviations and call

[χ_l;y(y) > ( 9 1 2 )

>![x];cv(y) , (9.13)

(9.15)

From now on we concentrate on the analysis of GE^n\ The treatment of GM^ is
analogous. Before the limit r —> oo, the right-hand side of (9.10) can be written as

r

k {(a{M,E),x,y)
Γ ~ K f ) + Σ cΓμ

Γ

k {{a[M>E),x,y)
Γ - « ) Γ ) i ,

where μ(y)k, etc, means that the activity is defined on the configuration of couplings
k. We have

Σ cΓμ
r

k ((<)Γ - l) = Σ c Γ μ [ ( ( α y r - l ) (9.17)

because the sum is convergent for finite r and the result is translation invariant. An
analogous argument implies that

Σ cΓμ[ ( K ) r - l) = Σ cΓμ[ ((ar

χl)
Γ - l) (9.18)

for an arbitrary x' G 2 2 . The limit r —» oo of this expression is also convergent.
Using now these facts and applying the polymer and cluster expansion machinery

we can control the limit above and get, for x j £ 2 3 ,
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GEM(x,y)k= Σ \γih(E(b))k]ρ((M,E);x,y), (9.19)
(M,E)e ibeM J

Connx(-;n[x]:\,v)

where γn[x] = lim^^ooy^x] and

ρ((M,E);x,y) = expφ((M, E);x,y)) , (9.20)

with

D((M,E);x,y)=A+((M,E);x,y) + A-((M,E);x,y) + B((M,E);x,y), (9.21)

where, finally,

( r r) (9.22)

A.((M,E);x,y):= Σ ^ [ ((a ( ί ί,£ ) ; ι,y)
r - ( α / ) , (9.23)

B((M,E);x,y):= £ crμ[ ( ( α W £ w ) Γ - (<v)Γ), (9.24)

o o

for arbitrary x' G Z 2 , as described above and with the definition ax(γ) := limr

a^(y) and, for (M,£) G Conni(y"[x];x,^), with a{M,E);x,y := l imr->oo«(M/^/);x?>; for
some (Mf,Ef) G Conni(/*[x];x,jμ) containing (M,E).

Using the polymer expansion techniques we can prove that

|D((M,Z<);*,}0| ^ * i | M | + f e , (9.25)

for positive constants k\,k2.
Now we start to collect the results concerning these Green functions which lead

to the proof of the existence of one particle states. We omit the proofs since they
can be established in the same way as in [3]. First for the Green function with
constant couplings one can show that

GEM(x0 = 1, x = 0) ^ kh(n), (9.26)

for some positive constant k and h small enough.
For the Green functions with variable couplings we have to use a special sort

of configurations k. We will namely consider g(a)(p) = gt(a), a — 1,...,Λf - 1 for
all plaquettes lying on the plane XQ = t, h(a)(b) — ht(a) for all time-like bonds
connecting the planes x0 = t and x0 = t 4- 1. For all time-like plaquettes and space-
like bonds we fix g(a)(p) — g(a), h(a)(b) = h(a).

The next step is to study the analytical dependence of the Green function on the
variable couplings, which lead to analytical properties of the original Green function
in momentum-space. We performed this analysis using the techniques of [3] and
the results are captured in the following

Theorem 9.1. For the electric Green function with charge n and variable couplings
as defined above one has the following facts:
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1. At ht{\) = = ht(N — 1) = 0 and for xQ ^ t < y0, one has

O. (9.27)

2. At 0,(1) = A,(l) = - - = £,(# - 1) = A,(tf - 1) = 0, for x0 £ t < yQ one
has:

dh({n)G
EM(x; y)k = exp (/,+ 1) £ G^>(%; α),G^>(α + eo; y)k , (9.28)

Λt is the plane x0 — t, e0 is the unit vector in positive time direction and f
is a holomorphic function of the couplings.

3. At ht(l) = = ht(N - 1) = 0, for x0 ^ t < yQ one has:

^-o, (9.29)

4. At 0,(1) = = 0,(N - 1) = 0, for all t one has:

' ^ - O , (9.30)

in the case Σ^Z\ abaφn mod N.

in the case X α̂=Γ1 aca φ n mod iV. D

An analogous result can be proven for GM ' ( w ) by interchanging gt <-> /zf above.
According to the methods explained in [3] the results above lead to the following

Theorem 9.2. For a given n, for max{#( 1),..., g(N - 1), h{ 1),..., h(N - 1)} small
enough and under the condition

h(n) > max { Π h{a)b% \fba,0 ^ ba G N with Σaba = n mod N\ , (9.31)

ί/ze Fourier transform of the 2-point function GEM((XQ,X) can be analytically

extended, for each /?G(—π, π] 2 , to a meromorphic function of po in the re-

gion Im po < vE'(n\p) with an isolated simple pole at po — ivEM(p), where

vE^n\p), the energy-momentum relation of the particle, is smooth and vE^n\p)

is continuous with vEM(p) > vE^n\p) ^ mE^n\ mE^ being the mass gap. The

group velocity grad vEM(p) is nowhere constant. For GM^n\(x0,x) one has the

same results with dispersion relation vMM(p), etc. Concerning the dependence

on the couplings one has v^")(/?)(#,A) = vE^n\p)(g,h)' = vE^n\p){h,g), etc, i.e.,

dual particles have dispersion relation related by dual couplings. One also has

vE^n\p)(g,h) = vE^N~n\p)(g,h), etc. i.e., particles and anti-particles have the

same dispersion relation. D

Remark. The condition (9.31) is for technical reasons necessary in order to guaran-
tee that we have an upper mass gap, i.e., the "mass shell" related to the particle with
charge n is isolated from the absolutely continuous spectrum associated to scatter-
ing states with total charge n, since it essentially says that the mass of the particle
with charge n has to be smaller than the sum over all masses of particles whose
charges sum up to n mod N. But the particles may exist without this condition.
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Note that condition (9.31) can be satisfied simultaneously for all n, for instance if
all h(a), a— l,...,N — 1, are approximately equal. D

This theorem implies the existence of closed subspaces J^ι

E C Jfg, J^ι

M C J^M

(the single particle subspaces) on which the relations ( TE/M ~~ e~v '" ) \

^E/M ~ ^' hold. Here P is the momentum operator. 3^E and fflx

M are the clo-

sures of the linear spaces Q)^ and £ ^ , where

™ = I ΨE

f, Ψf = Σfdtf(xj)T^UE(x)φE ,

supp/nsp(//£,P) C {(vE(p\p),p G (-π,π]2}, / G ^(R 3) L (9.32)

and Q)\J is defined analogously replacing E —> M and with ι/̂  replacing
are the Hamiltonians defined as HE/M =: — l

Appendices

A. The Convergence of the Cluster Expansion

In this appendix we will present a proof of the convergence of the cluster expansion
together with some useful estimates. Out proof uses some ideas contained in [1],
Appendix A.3, but we organize the material differently. Adaptations to our case have
been done in the proof of Lemma A.2 below. We made no attempt to find optimal
estimates and so, no concrete numerical predictions for the size of convergence
regions for the couplings will be presented. We refer the reader to [1] where this
has been performed for the TLi case.

Let Γ be a cluster of polymers. We say that a polymer γ is incompatible with
Γ, i.e., y Φ Γ, if there is at least one / G Γ with y </ y1'. For two clusters Γ,Γ' we
have T φ T1 if there is at least one y G Γ with y ηί> Γ'.

For the polymer system discussed in this work we are going to prove the fol-
lowing result:

Theorem A.I. There is a convex, differ-entiable, monotonically decreasing function
FQ : (ao,oo) —> IR+,/or some a§ ^ 0, with \ιma^00Fo(a) = 0 such that, for all sets
of polymers Γ, and for all a > ao,

M (A.I)

where\\Γ\\ = ΣΓ(/) |/ | ,Γ(y ' ) being the multiplicity of y1 in Γ. D

Once inequality (A.I) has been established, it has been proven in [1],
Appendix A.I, that the two following results hold:

, (A.2)
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\cΓ\\μΓ\ϊ ( J 4 V HA)||F0(αc) , (A3)Σ

where ac and ||μc | | > 0 are constants defined in [1], F\ : (ac -\-Fo(ac),oo) —> 1R+
is the solution of Fχ(a + F0(a)) = F0(a) and \\μ\\ := sup^^y)^ ' . For a proof we
refer the reader to [1].

The inequalities (A.2) and (A.3) are of central importance in the theory of
cluster expansions and are often used in this work. This makes it relevant to prove
Theorem A.I.

Since, in general

Σe-a\y\ ^ Σ Σe-a\y\ ^ £ Γ (/) £ e-«M , (A.4)

y^Γ γ'eΓγφy' γ'eΓ yφi

it is enough to prove (A.I) for the case in which Γ is composed by a unique
polymer / , i.e., Γ = y'. This will be performed in Theorem A.2 below. We first
need some definitions:

Definition A.I. Let the sets

Cb(M) := {Mf e @(Zd+ι) so that Mf is connected with M} , (A.5)

CP(P) := {P1 e 0>(Zd+ι) so that P' is co-connected with P} , (A.6)

P e ^totai{Zd+x)\ and the sets

Wb(P) := {M1 e M(Έd+ι) so that w(M /,P)Φ0} , (A.7)

P Z PtotalΦ*+l\

Wp(M) := {P1 e 0>(Zd+ι) so that w(P', M) + 0} , (A.8)

M e @total(Zd+ι\

W[ota\P) := {Mf e @totaι(Zd+ι) so that w(M\ P)φO} , (A.9)

^ := {Pr e 0>totaι{Zd+λ) so that w(P', M)Φ0} , (A.10)

M e ®total(Zd+x), where, for M e @total(Zd+ι) and P £ 0>totaΐ(Zd+ι)MM,P) =
w(P, M) G {0, ...,N — 1} is the "Z^-winding number"' of M around P:

w(M, P) - w{P,M) := max w((M, £"), (P, D)) = max ((wD, E) mod /V) .
EeS(M) E,supp E=M

(AM)

For M e 08totai(Zd+ι) and P £ ̂ totai(Zd+ι) we define \M\ as the number of
bonds contained in M and \P\ as the number of plaquettes contained in P. D
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Proposition A.I. Let two polymers (P,D) with P e ^(Zd+ι) and (M,E)
with M € &(Έd+ι) be given. Then there are convex, differ entiable, mono-
tonically decreasing functions Fb, Fp : (ao,oo) —> 1R+ , for some a0 ^ 0, with
\ima^ooFbiP(a) — 0 such that, for all a > α 0 ,

Σ e~alyl ^ Fp(<*)\P\ (A.12)
y</>(P,D)

and
Σ e~a^ S Fb(a)\M\ . D (A.13)

v/*{MtE)

The proof of Proposition A.I is given immediately after the proof of Corol-
lary A. 1. We now establish the main result of this appendix:

Theorem A.2. There is a convex, differentiable, monotonically decreasing function
Fo : (a0,oo) —» R + , for some a0 ^ 0, with lim^ooFoία) = 0 such that, for all
y1 € &, and for all a > a0,

$>- β b Ί ^ F 0 ( α ) | / | . • (A14)

Proof of Theorem A.2. Let {(Mj ,EMJ )}, and {(/?',/// )} be the set of mutually
disconnected sets of bonds, respectively the set of mutually co-disconnected sets of
plaquettes and their colours which make up y1. Then

y^ e~a*γ* < y^ y^ e~a*y* + y^ y^ e~a>"

where the second inequality comes from Proposition A.I and where Fo := Fb +FP

is diίferentiable, convex and decreases monotonically to zero. •

As mentioned, this proves Theorem A.I. To prove Proposotion A.I we need
two lemmas and a corollary.

Lemma A.I. There are convex, differ entiable, monotonically decreasing functions
gb,gp : (α0 ?oo) —• IR+, for some α0 ^ 0, with \ima^OGg

bίP(a) = 0 such that for
all a £ R + , a large enough,

Σ e~a\M'\ S g\a)\M\ , (A.16)
M'eCB(M)

for all M e &toίaι(Zd+ι) and

Σ e~ f l | p / | ^ ^(f l) l^l , (A.17)
p'eCp{P)

for all P e 0>totaι{Έd+ι). D

Lemma A.2. There are convex, differ entiable, and monotonically decreasing func-
tions fb,fp : Oo,oo) —> 1R+ ,/or some a0 ^ 0, w/ί/ί l im e _oo/^(u0 = 0
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for all a G IR+, a large enough,

Σ e~aW'\ g f\a)\P\ , (A.18)

M'ewb(P)

for all P G & total (%d+ι) and

f Σ e~a^ ύ fp(a)\M\ , (A.19)

for allM e@totaι(Zd+ι). D

To avoid breaking the stream of the argument we postpone the proof of these
lemmas to the end of this appendix.

Corollary A.I. If Lemma A.2 holds one has:

Σ —a\M'\ < / (a)\P\ /A ™\

^~ f l | p / |

D

Important Remark. To avoid misunderstandings we stress that in (A.20), (A.21)
and all below we will always be assuming that in the sums over all subsets M1 G
Wlotal(P) and, respectively, over all subsets P' G W^ίal(M) the terms corresponding
to the empty sets M1 — 0 and, respectively, Pr = 0 are being included. D

Proof of Corollary A.I. For (A.20) one has, as one easily sees

l (A.22)

where the factor \jm\ has been introduced to compensate overcountings and where
the last inequality follows from Lemma A. 2. We used the fact the non-empty el-
ements of Wl°tal(P) are built up by disjoint unions of elements of Wb(P). Note
also that m = 0 is included in the sum over m because the empty set is included
in the sum of the left-hand side, as already remarked. The proof of (A.21) is
analogous. •

Proof of Proposition A.I. We prove (A. 12), the proof of (A. 13) being analo-
gous. To prove (A. 12) first note that if γ ^ (P,D) then either there exists at least
one connected subset of bounds MQ G yg with Mo G Wt,(P) or there exists at least
one co-connected subset of plaquettes Po G yg with Po G CP(P). Keeping this in
mind, one can, after some thought, convince oneself that the following inequality
holds:

Σ e~a^ S Jc(a - \n(N - \)) + Jw(a - ln(7V - 1)) , (A.23)
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where

Jc(a) := lim Σ e~a[P°l Σ e~aWx' Σ * ~ β | P l I . . .

Σ e~a\MΛ Σ e~a[Pίl ( A 2 4 )
Mi e w^ta\Pi_ i) Pi e wfcύ{Mι)

and

Jw(a) := lim
I^ooM0eW

Σ ^PΛ Σ e~aWΛ ( A 2 5 )

The idea is the following. If, for instance, there exists a PQ E yg with Po e CP(P)
then, since y is a polymer, there exists M\ e #^oto/(Po) contained in yg9 P\ e
Wfptal{M\) contained in yg and so on. Since all polymers are finite this chain
has to break somewhere, what is considered in (A.24) and (A.25) since Mi = 0
or Pj = 0, /, jφO, are allowed to occur in the sums and since fl^fl/(0) — 0. The

factors (N — l)lMαl and (N — l) ' F α ' , which are intrinsically present in (A.24) and
(A.25) for a —> a — ln(N - 1), as needed for the left-hand side of (A.23) are, as
already observed, upper bounds on the number of different colourings associated to
each geometric object Ma and Pa appearing in the sums.

Making alternate use of (A.20) and (A.21) one gets:

Jc(a) ^ lim Σ e- ( α-L/P ( α ) ) | P o 1 (A.26)

and

Jw(a) ^ lim Σ e-(a~Lfiam^ , (A.27)

where L)p is defined inductively by L\p(a) = f\a - fP{a)\L)lx{a) = f\a - fp

(LjP(a))), and analogously for Lf with the upper indices b and p interchanged.

Define LbP(a) = lim/^ooZ^α) and Uh(a) - lim/^oolf (a). These functions
satisfy

Lbp{a) = f\a - fp(Lbp(a))) , Lp\ά) = fp(a - fb(Lpb(a))) . (A.28)

Using Lemma A.I for (A.26) and Lemma A.2 for (A.27), we get

Jc(a) £ gP(a - l/*(a))\P\ (A.29)

and

Jw{a)<,fb{a-Lp\a))\P\. (A.30)

Hence it is natural to define Fp(a) := gP(a'-LbP(d)) +f\a! =LP\a!))
and, correspondingly, Fb(a) := gb(af - LPb(a')) +fp(af - LbP(a')), where
a' :=a-\n(N - 1).
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The proof of the lemma is then finished showing that the function gp(a —
LbP(a)\f\a - LP\a)\gb{a - L?b(a)) and fP(a - Lb?(a)) are, for a large enough,
positive, diίferentiable, convex and decay monotonically to zero for a —> oo. We es-
tablish this separately in Proposition A.2 and Corollary A.2 at the end. •

Proof of Lemma A.I. The proof of this lemma is a standard piece of the literature
of cluster expansions and relies in the solution of "Kόnigsberger Brύckenproblem"
(see f.i. [12], Lemma 3.11). Let us show the proof of (A.16). The proof of (A.17)
is analogous. Let bo be an arbitrary bond of M. Since there are \M\ such bonds we
have

Σ e-fl |M'l S \M\ ^
M'eCh(M) M'eCb(b0) m=\

where C(™\b0) := {Mf G Cb(b0) such that \M'\ = m}. We can find an estimate

for \Cb (bo)\ in the following way. Starting from bo one can move through
b

M1 e Cbibo) in a path that meets each bond in M ; at most twice. So, one can
find a geometry-dependent constant Gbj+i (fc>r sets of bonds one can choose, for
instance, G M + 1 = Id + 1) so that \C^m\b0)\ g ( G M + i ) 2 m , since ( G M + 1 ) 2 w is the
number of connected paths of length 2m starting from a fixed point. Returning
to (A.31) the proof is completed by choosing gb(a) := Gb,d+\e~a/(l — Gb,d+\e~a)
with a > \nGb,d+\- One easily checks that this gb is convex and decays monotoni-
cally to zero. For the proof of (A. 17) one has to replace G^d+i by an other constant

Finest estimates for the general case of /-cells in d + 1 dimensions can be found
in [1].

Proof of Lemma A.2. This lemma is analogous to Proposition A.3.3 in [1] but our
proof is a little different, since we were not able to reproduce all estimates used in
that proof for the kind of polymers we deal with here. In spite of this our proof
seems to be simpler, although our estimates may not be optimal.

Let us prove (A. 18), the proof of (A. 19) is analogous. We have

£ e-a\M'\ = Σe-™\wlm\p)\ , (A.32)
M'£Wb{P) m=\

where W(

b

m)(P) := {M' e Wb(P) so that \Mr\ = m}. In order to find an estimate

for \wlm)(P)\ we note that if M' e W^m)(P) then there exists at least one p0 e P so

that D(>o)#(>())ΦO, where S e (Zd+ι)2 is such that supp d*S = M' with minimal

(5,5)^+1)2. All M' e ^(Zd+ι),\M'\ —m eventually satisfying such a condition

for a given po are contained in a (d + 1 )-dimensional cube, KPo, of size (2m)d+ι

centered at po. The total number of sets M' G &(%d+ι), \M'\ = m, contained inside

of KP0 is bounded by (2m)d+ι(Gbid+ι)2m, since there are (2m)d+ι starting points

in KPo for a path of length 2m in Έd+X and since there are at most (Gb,d+ι)2m

such paths for a fixed starting point (see proof of Lemma A.I). Hence \Wb (P)\ ^

\P\(2m)d+ι(Gbtd+ι)2m, the factor \P\ coming from the fact that there are |P | possible
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choices for />o Therefore, choosing a >

<£ e-*W'\ g |p|2rf+i Σlnΐf+ie-™ = \P\2d+\-l)d+ιh(£+ι
= \P\2d+\-l)d+ιh(£+ι\c) , (A.33)

where c = α - l n ( G M + i ) A ( c ) = e~c/(l - e~c) and h[k) is the &th derivative of hb.
Defining Hb^(c) = (~\)khf\c) we complete the proof of the lemma showing

that the function H^k R+ —> R is, for all A: e N, positive, convex,
monotonically decreasing with limc_+00/4 ^(c) = 0. But this is clear since Hbfk(c) =
Σ™=ιrnke-cm > 0 for all k and by the definition ( # M ) ' = (-)#*,*+1
< 0 and (//*,, * ) " = #6,£+2 > 0. The fact that l i m c ^ o o # ^ ( c ) = 0 follows from

Σ(m+ \)ke~cm) , (A.34)
m=\ J

which implies, using m + 1 ^ 2m, Hc^(c) ^ e~7(l — 2ke~c) for c large enough.
The proof of the lemma is then completed by choosing fb = Hb,d+ι •

Let us now complete the details for the proof of Proposition A. 1.

Proposition A.2. The functions Lhp(a) and Lpb(a) are positive, differentiable,
convex and decay monotonically to zero for a —* oo. •

Proof We will proof the proposition for Lbp, the proof for Lpb is identical. To sim-
plify the notation we call L(a) := Lbp(a) and h(a) := a - fp(Lbp(a)). By (A.28),
L = fboh.

First note that, since fp is bounded, limβ^oo/?(β) = oo. Hence limα_+oo£(#) =
lim^oo/^ACα)) = 0. Now V = ((fb)' o h) h\ and since ti = 1 - ( ( / 6 ) 7 o L) - V
one gets

since (/*)' < 0 and (fp)' < 0. Analogously L" - ϋfb)"oh) (h')2+((fb)' o
A) A" and using the fact that A" = - ( ( / * ) " oL) . (L ;)2 ~ ((/*) ' oL) L;/, one
gets

" i+((/*yo*)((/pyoi) > 0 ' ( A 3 6 )

since ( / 6 ) ; < 0, (fp)' < 0, ( / 6 ) / ; > 0 and (fp)" > 0.

Corollary A.2. ΓAe functions gb(a - ! / * ( » ) , / ^ ( α - L^(α)),gp(a - Lbp(a)) and
fh(a — Lpb{a)) are positive, differ entiable, convex and decay monotocinally to zero
for a —> ex). •

Proof We establish this for G(a) := gp(a - Lbp(a)). The proof, for the other
cases is identical. Define k(a) \— a — Lbp{a). Since Lbp is bounded, \ima^OQG(a) =
lima^oogPWa)) = 0. Now G' = ((^^)7 ok) - k' = ((gp)' o A) . (1 - L 7 ) . Since, by
the previous proposition, Lf < 0 and (gp)') < 0 one concludes G; < 0. Analo-
gously one has G" = ((gp)"ok) (A7)2 - ( ( / / o i l ) - I 7 7 > 0, since Z77 > 0, by
the previous proposition, and (gp)f/ > 0, (gp)' < 0.

With this, the proof of Proposition A.I is now complete. •
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B. Classical Duality Transformations and the Proof of Theorem 5.2

81

This theorem has been first proven for the Έ2 case in [8] using polymer expansions.
Let us first study duality transformation for the classical expectations of the

Z^-Higgs model. Let us consider the sets of oriented 1- and 2-cells in Z3, which
we call l\ and I2, respectively. Let us define a geometric duality map δ between
l\ and I2 mapping oriented bonds in oriented plaquettes and oriented plaquettes in
oriented bonds as described in Fig. 5. These transformations can be described in
words in the following way. Considering the cells as points in Ί?β the transfor-
mation δ translates the cells by (1/2,1/2,1/2) and reverses their orientation. The
transformation δ induces naturally a transformation between 1- and 2-forms. Let
Z1 and I2 be the linear spaces of 1- and 2-forms on Έ?, respectively, with finite
support. Define

2 : Z1

3) : Z2

Z2 : 2(<*)(p) := a(δ(p)),

> Z1 : 2(β)(b) := *(δ(b)) , (B.I)

for all a € / \ β € Z2 and all b e l\, p € Z2. Note that δ and 2 are invertible and
that δ2 is a translation by (1,1,1) in l\ and Z2.

The following important relations can be established:

on Z1

on Z2 :

2 o d = d* o

o d* = d o 2 (B.2)

This in particular means that, if α G Z1, β <G Z2 satisfy J*α = 0 and dβ = 0, then
ιa) = 0 and d*{β~~xβ) = 0. With this we are able to establish the

(B.3)

Proposition B.I. With the definitions above and for all a e Z1, β e I2

(α, β))v =

where the prime denotes the previously discussed duality transformation on func-
tions of the couplings, and F* = V + (1/2, 1/2, 1/2). D

Fig. 5. The geometric durality transformation δ acting on oriented bonds and plaquettes.
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Proof. This proposition follows directly from (4.18) using also the fact that, for
ael\βel2 with rf*α = 0 and dβ = 0, then [β : α] = [S>~1OL : ®~ιβ\, which,
in turn, comes from the fact that (α,'y)/1 = (^α, @y)ι2, with α,y £ Z1, from the
symmetry of this scalar product and from relations (B.2). •

If γ is a 1-form defined in Έ? we denote by yn the embedding of y in Z1

defined in the following way: if b £ Zi is a space-like bond at Euclidean time n £ Z
then y«(Z?) := y(z^),z^ £ Zi being the projection of b on the time-zero hypeφlane.
Otherwise yn(b) = 0. In words: yn is a copy of y at time «. For such a y and
a £ Έ one can also associate an element ya,a+\ £ Z2 in the following way: if p £ Z2
is a time-like plaquette spanned by the oriented space-like bonds Z?Λ and ba+\,
at Euclidean times α and a + 1 £ Z, respectively, then yβ,α+i(/0 := 7((z^fl)) (note
that ẑ ,rt = —Zba+]). Otherwise we define ya,a+ι(p) '=0. Using Definition 5.1 we
can establish the following two facts:

(B.4)

Now we are able to complete our task. Without loss we consider an element of
©0 of the form A := Ui(y)β*~λ(U\(δ))f, where γ and δ are 1-forms with finite sup-
port in Ί?. For such operators one has jβ*"1 o A(A) = β*-ι(
We have to show that ωo(Af)f = ω 0 o ^*~ ! o J(i4), i.e., that

([A']*1)'= ([β*-1 ° A(A)]cl) . (B.5)

For the classical functions we have [A']cl = B(-yQ, -δQΛ) and [β*~ι o A(A)]cl =
B((*δ)u -(*y)o,i) In face of (4.20), (B.3) and (B.4) the proof is completed if the
classical expectations have a unique translation invariant thermodynamic limit, what
can be proven, for instance, in the convergence region of the polymer and cluster
expansions. •

C. Proof of Theorem 6.2

In order to prove Theorem 6.2 notice first that the equalities

(C.I)

(C.2)

=

ω3(ΦM(V)) '

μ2(ΦM(V))

ω2(ΦM(V))

and

μo(ΦM(V))

=

ωo(ΦM(V)) ω3(ΦE(Vλ)) '
) μι(ΦM(V))

=

ω2(ΦE(V1)) ωι(ΦM(V))

(C.3)

(C.4)

follow trivially from the definitions. Above F 1 is simply V translated of (—1, —1).
Using polymer expansions we will prove that the left-hand side of both (C. 1) and
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(C.2) converge to the factor e N and that the left-hand side of both (C.3) and
(C.4) converge to 1.

Case {C.I). This first case has to be analyzed with more detail because its proof
differs slightly from that of the simple Έ2 case, as found in [1], due to some
additional effects present in the Έ^ case.

First consider ωo(ΦE(V)). The classical function associated to ΦE{V) is

g(du(p)-\) (&[h\(u(b) - 1)V/2

pilv 9{du{p)) J} )
(C.5)

where b G (δ*V, n) is the set of bonds δ*V placed at Euclidean time n and Pδ*y

is the set of plaquettes spanned by (δ*V, 0) and (δ*V9 1). Introducing this function

in the expectation values we get

ωo(ΦE(ϊ)) =
V\

D£VZ E£Vι

d(D-βV)=0 cί*E=0

Π

Π hs{{E){c))

π
besυpvE\(δ*V,O)

where βγ is the closed two form which takes the value —1 on
H(n)/H{0), with

H(ή) := ^~ι[HιH2](n)

and

H2(m) : = i

Repeating the steps which led to (4.23) we get

cΓ (bΓ

H μΓ

s - μΓ

where

1=1
Π

pep;

B .

π
7 = 1

Π KE]{b))
b€Mj\(δ*V,0)

Π hs(E](c))
_c<E(0*V,0)

(C.6)

and hs(n) :=

(C.7)

(C.8)

(C.9)

(CIO)

(CM)
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First we have to show that (CIO) makes sense. For that we have to prove that
||μ$Ί| can be chosen small and for this it is enough to prove that hs(m), for mφO,
can be chosen small. This is the content of the following lemma.

Lemma C.I. For the function hs defined above one has

where c(m), m — 0,... ,N — 1, are analytical functions of h(\),...,h(N — 1) and
converge to zero when \h\ \— max{|/z( 1),...,\h(N — 1)|} goes to zero. D

Remark. In the Έ? case has h$(n) = δn$. D

Proof Since A(0) = 1 one has (^[h](n))ι/2 = N~ι/2 + a(n), where a(n), n = 0,...,
Λf — 1, are analytical functions of h(\),...,h(N — 1) and go to zero for \h\ —• 0. In
this way we can write H\{n)U2{n) — N~λ +b(n\ where b is again analytical and
goes to zero for \h\ —> 0. Therefore, if we compute the Fourier transform of H\H2,
we get H(n) — N~~ι/2(δno + c(n)), where c is analytical and converges to zero for
|A|-+0. •

If we now compute μo(ΦE(V)) we get

^ ,̂  w x ] exp (x^r. r. n ) , (C,3)

where

v(Γ, r, V) := aζnbΓ

βvμξ - a^μΓ - bΓ

βγμ
Γ

s + μΓ . (C.14)

Above we used a simplified notation and called aa for a$)0L and bβ for b$j.
For r large enough one concludes after a careful inspection that the only clusters

for which v(Γ, r, V) is non-zero are those which simultaneously have polymers with
a non-trivial winding number with αj? and polymers which have either a non-trivial
winding number with βv or have bonds contained in (δ*V, 0) or both. Since such
Γ's are clusters their size has to be at least dist (Br, (δ*V, 0)). By (A.3) their
contribution disappears after taking the limits r —> oo and V | ΊLd, in this order.

The factor [βy : αj?] remains and equals e~^~. This proves (6.37). •

(C.2). This case is simpler. Using the fact that ω2 = ω^ and using (6.48)
we write the left-hand side of (C.2) as

where αj/ is a closed 1-form and takes value ±1 on its support *(5*F (which
is a closed loop). By an analogous argumentation to the previous case one sees
that the sum over clusters converges to zero and we get the final factor from

[-βHr : OLvl •
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Case (C.3) For the left-hand side of (C.3) we have

which analogously converges to 1. •

Case (C4) For this case we have to deal with

lim exp Σ crζ(Γ, r, V) ,
\Γ€9clm I

where
ζ(Γ, r, V) : = bΓ_βl,b

Γ

βvμ's
Γ - bΓ_β,,μ'Γ - bΓ

βγμ's
Γ + μ'Γ

which analogously converges to 1. •
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(C.16)

(C.17)

(C.18)

D. Finishing the Proof of Proposition 8.2

We want to show that

(D.I)

converges to one when the limits p', p —» oo are taken. There are many ways to
show this fact using cluster expansions. The one we present is perhaps the quickest.
In terms of cluster expansions the expression above is given by the limit r —» oo
of

(D.2)

where in the figure above we represented schematically the terms corresponding to
winding numbers of clusters with respect to four loops. The limit r, presents no dif-
ficulties. As for the limits p' and p —» oo, we argue as follows. The contributions of
the clusters incompatible with the boxes v\ and v2 in the first and second loops are
canceled by the corresponding ones incompatible with the boxes VT, — v\ — (1, 0, 0)
and v4 = v2 4- (1, 0, 0) of the third and fourth loops, except for some cluster which
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are simultaneously incompatible with, say, υ\ and ι?2, and for this reason have sizes

larger than p. Other clusters are either canceled exactly or have sizes larger than

p. Hence, the expression above converges quickly to 1. •
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