
Commun. Math. Phys. 170, 541 - 582 (1995) Communications ifl

Mathematical
Physics

© Springer-Verlag 1995

Prescribing Topological Defects for the Coupled
Einstein and Abelian Higgs Equations

Yisong Yang*
School of Mathematics, Institute for Advanced Study, Princeton, NJ 08540, USA

Received: 21 March 1994/in revised form: 28 November 1994

Abstract: We construct multi-string solutions of the coupled Einstein and Abelian
Higgs equations so that the spacetime is uniform along the time axis and a vertical
direction and nontrivial geometry is coded on a Riemann surface M. We concentrate
on the critical BogomoΓnyi phase. When M is compact, the Abelian Higgs model is
defined by a complex line bundle L over M. We prove that, due to the coupling of
the Einstein equations, the Euler characteristic of M and the first Chern number of
the line bundle L identified as the total string number impose an exact obstruction
to the existence of a string solution. Such an obstruction leads to some interesting
implications. We then study the existence of multi-string solutions which can realize
a prescribed string distribution. We show that there are such solutions when the local
string winding numbers do not exceed half of the total string number. When M is
noncompact and globally conformal to a plane, we show that the energy scale of
symmetry breaking plays a crucial role and there are finite-energy radially symmetric
string solutions realizing a given string number if and only if the symmetry breaking
scale is sufficiently small but nonvanishing. Finally, we obtain finite-energy multi-
string solutions with an arbitrary string distribution and associated local winding
numbers. These solutions are not radially symmetric and are regular everywhere
and topologically nontrivial so that both the energy of the matter-gauge sector and
the energy of the gravitational sector viewed as the total Gauss curvature of M are
quantized.

0. Introduction

Domain walls, strings, and monopoles are interesting topological defects arising as
static solutions of gauge field equations with broken symmetry and nontrivial topol-
ogy. When the Einstein equations are coupled into the theory, these solutions give
rise to various cosmological implications. Cosmic strings are static solutions of the
coupled Einstein and Yang-Mills-Higgs equations so that the spacetime is uniform
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along the time axis as well as a vertical direction. When the gauge group is Abelian,
the system represents the coupling of gravity and a condensed matter system (super-
conductivity). In this framework, cosmic strings are static vortex-like solutions
which are believed to be relevant in the theory of galaxy formation in the early
universe [Kl, V, G,W,Gr]. A basic perception is that cosmic strings might generate
the necessary density perturbations and curvature concentrations from which galax-
ies evolve. For a comprehensive but nontechnical survey article, see [K2]. See also
[Bra].

The main purpose of this paper is to construct cosmic strings solutions of the
coupled Einstein and Abelian Higgs equations in the BogomoΓnyi phase. These
solutions realize an arbitrarily prescribed string distribution.

It may be instructive to recall that, in the absence of gravity, the Abelian Higgs
action density in suitably normalized units is given by the expression [NO, JT]

<g = l-FμvF^ + l-(Dμφ}(D»φγ + ^(\φ\2 - ε2)2 ,

where φ is a complex scalar, Aμ a real vector potential, Fμv = dμAv — dvAμ the
Maxwell field tensor, Dμ = dμ — iAμ the gauge-covariant derivative, the flat Mink-
owski metric diag(—1,1,1,1) is used to raise or lower indices, and the constant
ε > 0 measures the energy scale of symmetry breaking of the model. The dimen-
sionless parameter λ > 0 is known to characterize the types of superconductivity.
The case λ < 1 corresponds to type-I superconductivity, while λ > 1, type-II, char-
acterized by the existence of a sublevel critical magnetic field. The situation λ — I
is the intermediate type called the BogomoΓnyi critical phase which is characterized
by a zero surface-energy and only in such a situation can all string-like solutions
be constructed [JT, T1,T2] due to a reduction from the second-order equations to
a first-order system [B]. In this case the vortex or string number TV is a topologi-
cal invariant characterizing the homotopy class of the solutions in the fundamental
group π\(S{) — Z and there are no restrictions to the ranges of the string number
TV and the symmetry breaking scale ε.

In the present paper, it will be seen that some new phenomena take place when
gravity is put into the model through the coupling of the Einstein equations. Since
we are interested in cosmic strings solutions, the Minkowski spacetime takes the

form R1'1 x M, where M may be assumed to be a Riemann surface equipped with
an unknown gravitational metric which will be determined by the coupled Einstein
and Abelian Higgs equations. We will concentrate on the critical BogomoΓnyi phase
λ = 1. The case λή=l is more difficult and will be pursued elsewhere.

The following two types of results will be presented.

I. Exact obstructions to the ranges of TV and ε for the existence of an TV-string
solution. When M is compact, the obstruction is related to topology. When M is
noncompact, the obstruction comes from the finite-energy requirement or geodesic
completeness.

II. Existence theorems for multi-string solutions. We aim at getting static reg-
ular solutions that can realize a prescribed string distribution. These solutions are
nonradially symmetric, thus, may not be obtained by a dynamical system approach.

In Sect. 1, we consider the case that M is compact. In this circumstance the
Abelian Higgs sector is defined by a complex line bundle L over M and the string
number is the first Chern number of L. The bundle L reflects the magnetic excita-
tion pattern of the gauge and matter fields. We show that the Euler characteristic
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χ(M) of M and the first Chern number c\(L) of L or the string number N impose
an explicit constraint on the symmetry-breaking parameter ε for the existence of
a solution. Under our notation there, the constraint reads χ(M) = 2πε2GN, where
G is Newton's gravitational constant. This equation relates the topology of the
underlying gravitational surface M to the topology (N = \c\(L)\) of the magnetic
excitation pattern of the matter-gauge sector. In particular, we observe that there are
only countably many values of ε accumulated at ε = 0 to permit the existence of
cosmic strings. We then state some existence results for multi-string solutions. For
the prescribed string problem, our sufficient condition for existence requires that the
local winding numbers do not exceed half of the total string number N.

In Sect. 2, we consider the case that M is noncompact. We shall assume that

M is conformally R2. We have already found in [CHMcY] that, for self-dual equa-
tions [CG, L], the energy scale of symmetry breaking imposes an obstruction to the
string number N. We shall prove the equivalence of the self-dual equations and the
second-order Einstein and Abelian Higgs equations under the cylindrical symmetry
assumption, regardless of the asymptotic behavior of the metric. Therefore we arrive
at a true obstruction to the topological charge N for finite-energy cosmic strings.
Roughly speaking, the obstruction is less stringent for small scales of symmetry
breaking. This observation raises the question whether there are string solutions
when symmetry is restored. We shall show that then, there will be no finite-energy
string solutions. There, again, we state an existence theorem for multi-string solu-
tions. The basic assumption reads N ^ l/2πε2G which imposes no restrictions to
the local winding number. The borderline N — \/2πε2G is a special situation that
the choice of a background metric becomes crucial, which signals the appearance of
some obstructions when N is large or gravitation is strong (large G). In particular,
beyond this barrier, metric incompleteness will occur.

Section 3 studies what happens when strings are absent. We will show in the
compact case and for the general coupling parameter λ > 0 that in this situation
there will be only trivial solutions and M must be a flat torus. In other words, the
absence of string defects implies the absence of gravity.

Section 4 is a proof of the existence theorem for multi-string solutions on a
compact Riemann surface M. The Einstein equations reduce to a scalar equation
relating the unknown Gauss curvature of M to the energy density of the Abelian
Higgs sector while the string or vortex equations are sitting in the unknown grav-
itational background. In such a setting, prescribing TV strings is like prescribing a
Gauss curvature through the influence of matter-gauge fields, while the former also
determines the latter through the background metric. We use a standard device to
reduce the unknown metric to an unknown conformal factor. Under the topological
constraint χ(M) = 2πε2GTV, we can combine the Einstein and Abelian Higgs equa-
tions into a single elliptic scalar equation with an adjustable free parameter which
may be used to get a subsolution as was done earlier in a different problem [CY].
The difficulty in getting a classical supersolution forces us to introduce a <5-perturbed
version of the equation. We then pass to the δ —> 0 limit of the solution sequence
of the (5-equations. There we see that, in order to acquire Lp-convergence for some
p > 1, we need to assume that the local winding numbers are all below TV/2. In
particular it follows that, when N ^ 3, there are N-string solutions over M if and
only if the condition χ(M) = 2πε2GTV holds.

In Sect. 5, we prove the existence of multi-string solutions on a conformally flat
surface. Again the method is to construct sub/supersolution pairs for a family of
(5-regularized equations. It is interesting to observe that the condition TV g l/2πε2G
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plays crucial roles both locally at the string axises in order to achieve an Lp-
convergence ( / ? > ! ) and asymptotically at infinity in order to make an adjustable
term dominant to allow the existence of a special subsolution. Note that, here, we
do not have a suitable variational principle to work with.

In Sect. 6, we complete our proof of existence by showing that the solutions
obtained in Sect. 6 are of finite energies. More precisely, we establish sharp decay
estimates for the physical quantities at infinity when TV < l/2πε2G. The solutions are
in the category that the Higgs field approaches the asymmetric vacuum \φ\ = 1 at

infinity. Nevertheless, the gravitational metric vanishes asymptotically like r~4πε GN

which results in the property that the Gauss curvature, the magnetic field, the kinetic
energy of φ, and the Higgs potential all go to zero at infinity faster than any power
function of the type r~b (b > 0). Hence both the total curvature and the Abelian
Higgs energy are quantized. At the borderline N — l/2πε2G, our estimates still
ensure curvature and energy quantizations and metric completeness.

In a broader sense, this work is related to the problem of constructing regular
static solutions of the Einstein equations coupled with matter and gauge fields. It
is well known that the Schwarzschild blackhole is the only solution of the vacuum
Einstein equations which is singular somewhere. When coupled with the Maxwell
equations, the only solution is the Reissner-Nordstrom solution which is again sin-
gular somewhere. Recently, it is shown in [BMc, SWYMc] that, when the Einstein
equations are coupled with the SU(2) Yang-Mills fields, there exist static regular
solutions. All the above-mentioned solutions are radially symmetric. Our solutions
constructed here are all static finite-energy regular solutions. Besides, they are non-
radially symmetric and carry nontrivial topology.

It has been observed in [BMc] that the existence of regular static solutions of
the coupled Einstein and Yang-Mills equations in three space dimensions indicates
that the weak gravitational effect cannot be neglected. The obstruction theorems in
the present paper provide further evidence to the above observation. For example,
the inequality TV ^ l/2πε2G in the noncompact case imposes a very weak upper
threshold to admissible string numbers N since G is a small quantity. However,
because GφO, such a constraint must not be ignored in order to avoid energy
blow-ups. There is no such a phenomenon when gravity is absent [JT].

1. The Case of a Compact Surface

We divide our discussion into three subsections. We first introduce quickly the cou-
pled Einstein and Abelian Higgs equations in the aforementioned two-dimensional
setting of current interest. We then establish an obstruction theorem and point out its
important consequences. Finally we state our existence theorem for the prescribed
string solutions.

1.1. The Governing Equations. We begin by assuming that gμv is a general metric
tensor with signature (—h ++), Rμv the Ricci tensor, and R the scalar curvature.
Recall that the Einstein tensor takes the form

^μv ~ -K μv 'ϊϊdμv K .

In order to define the Abelian Higgs sector properly, we need to work in a
frame-work in which the Higgs field φ is a cross-section on a t/(l)-line bundle
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L over the spacetime and the gauge field, say A, is a connection 1-form. Suppose
that h is a Hermitian metric of L and {(Uy.,e%)} is such an atlas of local trivial-
izations of L that e% satisfies h(e^e%) = 1, Vα. Let 0α be the local representation
of φ on Uyr : φ = φ^e^. Then we have h(φ,φ) = \φχ 2 which is obviously a local-
chart-independent scalar field, thus, may conveniently be denoted by \φ\2. Therefore,
using local coordinates and local representations, we can write the Abelian Higgs
action density at the BogomoΓnyi phase λ = 1 in the form

^ - \gμμgvvfFμvFμ,v, + ̂ gμv(Dμφ)(Dvφγ + l-(\φ\2 - ε2)2 ,

where and in the sequel we also allow the vanishing of the symmetry-breaking
parameter, ε = 0, to include in the model the restoration of symmetry. Note that,
in the above expression and subsequent discussion, we suppress the subscript "α"
when there is no risk of confusion, and that, D is the covariant derivative induced
from the gauge connection A and F = άA is the curvature of A or the Maxwell
field. The presence of the gravitational metric gμv indicates the influence of gravity.

The Einstein equations coupled with the Abelian Higgs model are l

Gμv = — 4πG Tμv,

]) = kψι 2 -e 2 )Ψ,

where G is Newton's gravitational constant (or more precisely a dimensionless
rescaling factor of the gravitational constant) and

Γμv = 9μvFμμ,Fn,, + -([Dμφ](DvφT

is the energy-momentum tensor of the Abelian Higgs sector obtained by varying
the gravitational metric.

We assume that the spacetime is uniform along the time axis x° and the x3-
direction so that the line element takes the form

ds2 - s^dxW

= -dt2 + dz2 + gikάxjάxk, j,k=\,2,

where t—xQ,z—x^, and 0β is the Riemannian metric tensor of an orientable
2-surface M (without boundary), and that Aμ, φ depend only on the coordinates
on M and

Aμ = (Q9Al9A2,Q).

1 In literature, the matter-coupling factor 4πG in the Einstein equations is often written 8πG.
Here we still use 4πG in order to be consistent with our notation in [CHMcY].
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Then Tμv is simplified to

ΓQO = $, Γ33 = — <f , Γ03 — Γ0y = Γ3/ = 0 ,

7> = /*>,/**/ + i([£7(/>][ZW + [Dyψr lAfl) - gjkδ ,

where
7 - ε2)2

is the energy density of the Abelian Higgs sector which is now defined by the line
bundle L restricted to the 2-surface M. The Maxwell field F^ represents the first
Chern class, of course. Besides, if we use Kg to denote the Gauss curvature of
(M, {0jk}\ the Einstein tensor reduces under local isothermal coordinates into the
form

-GOO = £r33 = Kg ,

Gμv — 0 for other values of μ, v .

As a consequence, the system becomes the following two-dimensional Einstein and
Abelian Higgs equations on M:

*'* v^*') = 9Jk(Φ[DkΦT - Φ*[Dkφ]) , (1)

where g also stands for the determinant formed from {gjk}

1.2. The Obstruction Theorem. The system (1) describes the interaction of the
gravitational and gauge-matter sectors confined in a two-dimensional space. We will
see that these two sectors are so strongly coupled that, topologically, they totally
determine one another. In fact, the first Chern number

classifies the line bundle L up to isomorphisms which clearly indicates the magnetic
excitation pattern of the theory because the integer N = c\(L)\ is the number of
magnetic strings through M, identified as the algebraic number of zeros of the order
parameter φ. On the other hand, the Gauss curvature Kg reflects the topology of
M and measures the gravitational strength, which, by the first equation in (1), is
determined by the energy distribution of the matter and gauge fields. Thus it is clear
that there must be a link between these structures through the coupling of gravity
with the matter-gauge fields such as that given in (1).

More precisely, calling a solution of (1) with |cι(£)l = N an TV-string, we have
the following basic result.
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Theorem 1.1. Given an integer N ^ 0, there exists an N-string solution for the
Einstein and Abelian Hίggs equations (I) on a line bundle L equipped with a cer-
tain Hermίtian structure over an appropriate compact Riemann surface M, only
if the string number N, the first Chern number c\(L) of L, the Euler character-
istic χ(M) of M, the symmetry-breaking parameter ε > 0, and the gravitational
coupling factor G satisfy the exact relation

χ(M) = 2πε2GN = 2πε2G\cl(L}\ . (2)

Furthermore, if N ^ 3, the condition (2) is necessary and sufficient for the exis-
tence of an N-string solution. In any case, the solutions o/(l) can all be obtained
from a self-dual or anti-self-dual system in which the matter-gauge equations are
all of the first order.

Before going into the proof of the above theorem, we would like to point out
some of its interesting implications.

1. The Unique Topology of the Underlying Surface. It is well known that a com-
pact orientable 2-surface M is topologically a sphere with n handles and the num-
ber n is called the genus of M. The Euler characteristic satisfies the equation
χ(M) = 2-2n (see e.g. [NS]). Thus the relation (2) implies that the only pos-
sible situation we may have so that the Einstein and Abelian Higgs system (1)
has a cosmic string solution is given by n — 0. In other words, the 2-surface must
be diffeomorphic to the Riemann sphere S2 and all other geometries with #ΦO are
ruled out. In particular, the surface M cannot be a torus (n — 1). This result implies
the nonexistence of gravitational string condensation realized by the appearance of
a periodic lattice structure.

2. The Quantization of Symmetry Breaking Scale. Now we use the conclusion
χ(M) — 2 (or n = 0) arrived above and rewrite (2) in the form

β = εN = ^——, N =1,2 , . . . . (3)

We view the gravitational constant G as fixed. Equation (3) says that there are only
countably many levels of the symmetry breaking scale ε for which there may exist
cosmic string solutions, and, when ε is away from those quantized levels, there will
be no strings. In particular, when ε > εi = l/\/ττG, there is nonexistence. Such a
fact seems to suggest that the existence of string solutions prefers lower values of
the symmetry breaking scale ε. Indeed, in (2), the vanishing of ε implies that M is
topologically a torus and (2) no longer presents a constraint to the string number N.
However, we will see that in this case there is no nontrivial solutions. This simple
fact will be established later. Thus, we observe that the existence of cosmic strings
indeed requires symmetry breaking. Such a fact is also true for the noncompact
case.

3. Effective Radius vs. Gravitational Attraction. Finally, since M is topologically a
sphere, we may define the "effective radius" of M, say R^, by setting 4π/ζff = \M\g.
Then we find that RQR has the lower bound

(4)
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This simple inequality says that, as the gravitational constant, a smaller value of
the symmetry-breaking scale leads to a larger RQff . Thus it looks as if ε make an
effective contribution to the attractive gravitational force.

Proof of Theorem LI. Following the work of [CG, L], it is known that Eqs. (1)
possess the following BogomoΓnyi self-dual structure

Kg - 4πG£ = 0 ,

Djφ±iήDkφ = 0,

-ε2ϊ = 0. (5)

Namely, the solutions of (5) verify (1). Here εβ is the standard Levi-Civita skew-
symmetric 2-tensor satisfying £12 = ^/g.

We first show that the systems (1) and (5) are actually equivalent. Note
that a formally special case of the equivalence has been studied in [Yl]. This
equivalence problem is of interest in a broader sense in general gauge theo-
ries. For Yang-Mills with non-Abelian gauge groups, the equivalence is false
[Bu,T3,SSU,P,BM,SS,Bo]. In our problem here, the equivalence of (1) and (5)
is the crucial point.

Use Δg to denote the Laplace-Beltrami operator with respect to the unknown
metric g — {gjk} with the sign convention that, on a compact surface, all its nonzero
eigenvalues are negative. Rewrite the last equation in (1) as

dJ(εJ'k'FJ,k,) + iεjj,gj'k'(φ[Dk,φr - φ*[Dk,φ\) = 0 .

Therefore

- φ*(Dkφ)\) = 0 .
\9 \Q

Thus
Ag(εJkFJk) - \φ\\εJkFjk) + 2iεjk(Djφ)(Dkφ)* = 0 .

Besides, we also have by using the second equation in (1) that

Δg\Φ\2 = \Φ\\\Φ\2 ~ ε2) + 2gJk(Djφ)(Dkφ)* .

These equations give us the useful expression

Δβ(ε*FJk ± [\φ\2 - ε2]) = \φ\2(εjkFβ ± [\φ\2 - ε2])

± gJk(Djφ ± iεJj'Dj,φ)(Dkφ ± iejΆt/φ)* . (6)

Define for a solution triplet of ( 1 ) the quantities

p+ = ε'*F> + (|<£|2-ε2) and P~ = εjkFjk - (\φ\2 - ε2) .

Thus, according to the first equation in (1), we have, after a lengthy calculation,

(7)
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The first part of (6) implies the elliptic inequality

ΔgP
+ = \φ\2P+ + gϊk(Djφ + iήD]fφ}(Dkφ + i^D^φT

^ \Φ\2P+ . (8)

Since M is compact, the maximum principle implies that, either P+ = 0 or P+ < 0
on M.

Similarly, the second part of (6) implies

ΔgP~ = \φ\2P~ - g>k(Djφ - iήDjfφ)(Dkφ - i^D^φΓ

^ \Φ\2P~ - (9)

The maximum principle again says that, either P~ = 0 or P~ > 0.
Using these observations in (7) we see that either P+ = 0 or P~ = 0. Accord-

ingly, we have either Djφ + iή Dkφ = 0 or Djφ - iήDkφ = 0. Thus (5) is fulfilled
and the two systems (1) and (5) are equivalent.

As a consequence, we may concentrate on the system (5).
It is easily seen that the energy density $ of the Abelian Higgs theory can be

rewritten in the form

jk ± ̂ jk(\Φ\2 - ε2)) (FW ± l-εrk,(\φ\2 - ε2)

,φ ± iεJj'Drφ)(Dkφ ± iej'z)t/ψ)*

where V7 is the covariant derivative with respect to the metric {g}k} and J^ is the
current vector defined by

T - φ*[Dkφ]) . (10)

Hence the curvature equation in (5) becomes

Kg = ±πε2 GεJkFβ ± 4πG Vj(εJkJk ), x e M . (11)

We are now ready to determine the relation between the topology of M and the
string number of a solution.

For given p G M, choose a specific isothermal coordinate system (U,(xJ)) so
that p G U C M and x*(p) — 0,7 = 1,2. Thus, around p9 the second equation in
(5) is simplified to

which says in view of the d*-Poincare lemma (see [JT]) that, up to a nonvanishing
factor, φ or φ* is holomorphic around p. In particular, if p is a zero of φ, then
locally,

W*)| = M"A(*) , (12)
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where h > 0 and n ^ 1 is an integer. The zero is obviously isolated. In this case,
people say there is a string passing through p with the winding number n. It is not
hard to show that, for a nontrivial solution, \φ\ < ε everywhere on M. Thus the
third equation in (5) implies that the vorticity field acquires its maximal magnitude
at the zeros of φ. In other words, the zeros of φ give the locations of the vortices
or strings of a solution.

Suppose the zeros of the Higgs field φ are labeled by p\,...,pm eM with
multiplicities n\,...,nm, respectively. N — n\ + + nm is the total string or vortex
number. The easily verified relation (cf. [N1,N2, Br, Ga])

pJkF; άOb Γjk Ui<5£
M

says that N = |cj(L)| (the first Chern number). Since \φ\ has the local represen-
tation (12) around each point p — p\ (with H — HI), I = l, . . . ,m, we see that the
substitution u = In \φ\2 renders the last two equations in (5) into the form

m

(13)

where δp is the Dirac distribution on (M, {#/&}) concentrated at p.
Using the last two equations in (5) and (10), we obtain

± JeV*F,t ± V/ε'*Λ) = -l-ε\\φ\2 - ε2) + l-Ag\φ\2

4 4 9

Hence Eq. (11) becomes

Kg = -πG(εV - ε2] - Δg<?). (14)

Let i/o be a solution of the equation

4πN
~'~Wϊj'

where \M\g is the total surface area of (M, {#/&}) (see [A]). Thus (13)-(14) may
be put into the form

2 u 2 κd 4πε27V
Ag(£ u-e - ε MO) = + . . .

πG \M\g

Since the function ω = ε2u — eu — ε2UQ is smooth on M, the above equation leads
to the consistency condition

-1-fKgdΩg =4πε2N, (16)
πGM

where άΩg is the canonical surface element of M with respect to the metric
g = {gjk}. As a consequence of the well-known Gauss-Bonnet theorem, we are
led from the relation (16) to Eq. (2).
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On the other hand, suppose that (2) is fulfilled. The existence part is a weaker
version of the statement in Theorem 1.2 in the next subsection.

The theorem is proven.

Proof of the lower bound (4). We subtract (15) from (13) to obtain the equation

(17)

Since u — UQ and eu are smooth functions, integrating (17) yields the inequality

4πN<ε2\M\g. (18)

Combining (2), (18) and using χ(M) = 2, we arrive at (4).

The Case of Symmetry- Rest oration. Now set ε = 0. We have seen that (1) and
(5) are equivalent. Using the last equation in (5), we obtain

4πN = ±fεjkFjk άΩg = -f\φ\2 άΩg .
M M

Thus TV = 0 and φ = 0. The 2-surface M must be a flat torus, the energy density
of the matter-gauge sector vanishes everywhere, and there is no gravity.

1.3. Existence of Multi-Strings. In the following, we state some existence results
for TV-string solutions over a compact Riemann surface M.

Theorem 1.2. Suppose that the integer N satisfies the condition (2). For any
p\,...,pm G M and integers n\,...,nm with n\ + + nm — N and

(19)

Eq. (1) or (5) have a smooth solution triplet (g, φ, A) so that it defines an appro-
priate Hermitίan line bundle L over M with the first Chern number c\(L) = N and
the zeros of the Higgs cross-section φ are exactly p\,...,pm with the respective
multiplicities n\,...,nm. In particular, when N Ξ> 3, the system (1) or (5) has an
N-string solution so that the Higgs field has simple zeros at N distinct prescribed
locations on M if and only if the condition (2) is fulfilled.

The condition (19) is a technical restriction on the local string numbers. It is
not clear at this moment whether it may be dropped. The existence theorem will
be proved in Sect. 4.

Remark. Our results may be compared with the interesting work [GOR] on Abelian
global gravitational strings. There we find no-go theorems forbidding the existence
of regular solutions without the gauge field coupling in a compact setting and asymp-
totically well-behaved solutions in a noncompact setting. Here, in the context of
local strings with gauge field coupling, we have seen that there are values of the
physical parameters which allow the existence of regular solutions in both settings
(for existence results in the noncompact case, see [CHMcY] and Theorem 2.3 in
the next section).
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2. The Noncompact Case

In this section, we study the cosmic string solutions of the coupled Einstein and
Abelian Higgs equations (1) under the condition that the surface M is noncompact
and open. A typical case is that M is globally conformal to the Euclidean plane
R2. Thus we have (M,g) = (R2,eηδjk). Two problems are considered. First, we
will derive a class of obstructions of the form (2) to the existence of finite-energy
string solutions under a radial symmetry assumption. Next, we obtain multi-string
solutions realizing an arbitrarily prescribed string distribution and associated local
string or vortex charges.

2.1. Obstructions to the Existence of Finite-Energy Solutions. We impose the
following specific form for the unknown field configurations of solutions of Eqs.
(1) which is standard in physics literature:

η(x) = η(r) ,

φ(x) = U(r)em ,

A2(x) = NV(ri , (20)

where (r, θ) are the polar coordinates of the point x G R2 and the integer TV is the
topological charge or the winding number.

Since the space is not compact, we do not expect to have an exact topological
constraint like (2). Instead, we can state the following result.

Theorem 2.1. Under the cylindrical symmetry assumption (20) and the finite-
energy condition

f£eηdx < oo, fK eηdx < oc ,
R2 R2

Eqs. ( 1 ) have a solution for ε > 0 if and only if the topological charge N satisfies
the condition

In addition, the solution gives rise to a geodesίcally complete metric if and only
if it fulfills the conditions stated in Theorem 2.3 below.

If ε — 0, the system (1) has no solution except the trivial ones.

Our first recognition of an obstruction of the form (21) came through a study
[CHMcY] of the self-dual reduction of (1), namely, the system (5) over (R2,^^),
where N = \/2πε2G was recognized also as an obstruction. In this paper, we show
that N — l/2πε2G is no longer an obstruction provided that the background metric
is suitably chosen (see Theorem 2.3 below). In fact, that the existence at the critical
case N = l/2πε2G eluded our detection in [CHMcY] was due to a special assump-
tion on the background metric. There, we proved that no matter how the background
metric is chosen, there is no finite-energy solution when (21) is violated. However,
in the ranges

1 1 1
0 < N < - — — and - — ̂ — < N < — — ,

2πε2G 2πε2G πε2G
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there are finite-energy solutions with an arbitrary choice of the background metric
(see Remark (b) in Sect. 6 for details). Therefore, in the radially symmetric case, the
equality N = l/2πε2G is to be understood as an obstruction to the arbitrary choice
of background metric. Here, to establish Theorem 2.1, we need only to show that
(1) and (5) are equivalent under the symmetry assumption (20).

Theorem 2.2. The coupled Einstein and Abelian Higgs equations (1) and the self-
dual system (5) are equivalent in the category of cylin drically symmetric solutions.

Remark. It is interesting to note that the equivalence assertion of Theorem 2.2
is valid for any cylindrically symmetric solutions, regardless of the asymptotic
behavior. In particular, it says that for solutions of infinite energy, Eqs. (1) and
(5) are also equivalent. Thus we can describe, as well, all infinite-energy solutions
of (1) with the symmetry (20) by studying (5). In [CHMcY], we have shown that
the equations (5) have regular entire solutions outside the region (21) for which
the energy blows-ups take place at spatial infinity.

Proof of Theorem 2.2. The proof depends on the radial symmetry (20) because the
asymptotic behavior of a solution triplet is not a priori known.

As in the last section, it suffices to show either P+ = 0 or P~ = 0. Suppose
otherwise that P~ φ 0. Then (7) says that P+ — 0 somewhere. Using the radial
ansatz (20), we see that there exists an r g: 0 so that

(U2(r) - ε2) - 0 .

Set Z = {r ^ 0 I P+(r) = 0}. We assert that the number of points in Z, #Z,
does not exceed 3 unless P+ ΞΞ 0. In fact, if #Z ^ 4 but P+ φ 0, then there were
Π, τ*2, 7*3 £ Z so that 0 < r\ < r2 < r3.

Inserting the radial ansatz (20), we reduce (8) to the form

P+ + -P? ^ U2eηP+ . (22)

Consider (22) over (rj,r3). Since P+(r2) = 0, P+ would have a nonnegative
maximum inside the interval (^1,^3), contradicting the strong maximum principle
[GT]. Consequently #Z ̂  3. Hence P+(r)Φθ for all r > 0, with at most three
exceptions. Therefore we must have P~ = 0, another contradiction.

Assume now P+ φ 0. Then (7) says that P~ — 0 somewhere. The radial version
of (9) reads

P- + ~P7 ^ U2eηp- . (23)

Again, according to the strong maximum principle, P" cannot have a nonpositive
local minimum unless it is a constant. Thus we obtain P" = 0.

Proof of Theorem 2.1. If ε > 0, it is convenient to introduce the rescaling

φ \-+ εφ, AJ i— > εAj .
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Then the energy density and Gaussian curvature obey the transformation rules

g ̂  ε4<ί, K9 ^ ε2Kg

in the new coordinates so that the Higgs potential function takes the normalized
form

As a consequence, the self-dual system (5) is written

Djφ ± iεJDkφ = 0 ,

ε*Fjk±(\φ\2-l) = 09 (24)

which is the system studied in detail in [CHMcY]. It is known that a solution of
(24) with the symmetry (20) carries finite energy if and only if (21) is satisfied.
However, since by Theorem 2.2, Eqs. (1) and (5) are equivalent, we arrive at the
first part of the conclusion.

The assertion on metric completeness is established in Sect. 6.
Assume now ε = 0. Since Eqs. (1) and (5) are equivalent, we will use both of

them to argue freely depending on convenience.
First, we observe that for a nontrivial solution of the form (20), we have

t/(r)ΦO at any r > 0. In fact, if there is an r0 > 0 so that C/(r0) = 0, then,
applying the boundary condition φ = 0 on x\ — r0 in the inequality Δg\φ\2 ^ \φ\4

over \x\ < TO, we have φ = 0 for |jc| < ΓQ. That is, U(r) — 0 for r < ΓQ.
With the radial symmetry (20), we have

Λ f WFn = N - .

Inserting this expression into the last equation in (5), i.e., 2eηF\2 ± U2 = 0, we
obtain V(r) — const, for r < r0. However, the regularity of Aj requires F(0) = 0.
Thus V(r) = 0 for r < ΓQ. As a consequence, we find that ^(φ,^()(r) = 0, r < ΓQ.
Using these facts in the radial version of (1), namely,

nn + -ηr + 8πGW = 0 ,

Urr + -Ur - ^(V - ifU - \eηU* = 0 ,
r rλ 2

Vrr ~ V + rηr)Vr ~ e\V - l)U2 = 0 , (25)

and applying in (25) the uniqueness theorem for the initial value problem of ordinary
differential equations, we conclude that U(r) = 0, V(r) — 0, and η — const, for all
r > 0. Thus, we arrive at a trivial solution.

Consequently, we may assume in the following that £/(r)Φθ for r > 0. Since
(25) is invariant under the reflection U •— > — £/, we may assume also that U(r) > 0,
r > 0.
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Suppose in (20), N ^ 1. The regularity of φ at the origin requires that £7(0 ) = 0
and U(r) = rN f(r) near r = 0, where /(0)φO. Hence the substitution u = lnU2

reduces the last two equations in (5) to

urr + -ur = eη+u, r > 0 ,
r

The boundary condition above implies limr_+o rur(r) = 2N. Thus

rur(r) = 2N + fpeηpudp, r > 0 .
o

In particular, rur(r) > 27V, r > 0, which implies, say,

u(r) > 27V In r + u(\\ r > 1 .

On the other hand, it is easy to calculate that \D\φ\2 + \D2φ\2 = \u2eu. There-
fore we obtain the lower bound

\D,φ\2 + \D2φ\2 ^ i . -̂L- . r2V<]> = 2N2eu^r2N~2 , |x| = r > 1 .

Consequently,
oo

f£eηdx > 4π7VV(1) fr2N~lάr = oo .j — j
R2 1

In other words, we have energy blow-up.
If N = 0, then by (20), Aj = 0, j = 1,2. Thus the last equation in (5) implies

that U = 0, contradicting the assumption that U(r) > 0, r > 0.
In conclusion, there is no nontrivial solution when ε — 0 except those carrying

infinite energy. The theorem is proven.
In the compact case, the nonexistence result at ε = 0 may also be established

quickly by a similar method. In fact, from the second equation in (1), we have as
before Δg\φ\2 ^ \φ\4. Thus the maximum principle implies that φ = 0 everywhere.
Inserting this fact into the last equation in (5), we find Fβ = 0. Thus $ — 0 and
Kg — 0, which imply that M is a 2-torus and the solution triplet (φ,A,{gjk}) is
trivial.

Remark. Taking G = 1 and ε > 0 sufficiently small, there are some earlier numeri-
cal studies of cosmic strings as static solutions of the coupled Einstein and Abelian
Higgs equations. For example, we may cite [LM] in which numerical solutions are
obtained for ε lying in the range 10~2 ~ 10"1 and N = 1. It is seen that these
solutions are consistent with our obstruction (21). Moreover, (21) also allows us to
point out that, whenever ε ^ l/\/π (with λ — 1 and G = 1), finite-energy solutions
will fail to exist. It seems to be a reasonable conjecture that similar obstructions
are present even when the coupling parameter Λ.Φ1.

2.2. An Existence Theorem for Multi-String Solutions. In Theorem 1.2, it is seen
that we can construct multi-string solutions for (1) on a compact Riemann surface.
The sufficiency condition stated in Theorem 1.2 imposes some restrictions to the
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local winding numbers w / ' s of the strings. Such a barrier comes from the topological
type of the base space and from our method in the existence proof (see Sect. 4).
When (M,g) is conformally flat, the constraint from the topology disappears and we
are able to get solutions which realize an arbitrarily prescribed string distribution and
the respectively designated local winding numbers w/ 's . The condition for existence
is only stated for the total charge N.

Here is our main existence result for the noncompact case.

Theorem 2.3. Consider the coupled Einstein and Abelian Higgs equations (1) over
an open Riemann surface (M, g). For any p\9...,pm G M and n\,...,nm G N, the
system (1) has a finite-energy solution so that M = R2, g is conformal to the
standard metric 0/R2: #/& — eηδjk, the zeros of φ we exactly p\,...,pm with the
corresponding multiplicities n\,...,nm, the conformal factor eη verifies the sharp
decay estimate

as x oo

and there hold the following quantized values of the total gravitational curvature,
the magnetic flux, and the energy of the matter-gauge sector

fKge
ηdx = 4π2ε2GN, fFl2dx = 2πN, f£eηdx = πε2N ,

R2 R2 R2

provided that the total string number N = n\ -h 4- nm satisfies the bound

1
N <

2πε2G '

Besides, the Gauss curvature Kg, and the physical energy terms F2

k, \Djφ\2,

(\φ\2 — ε2)2 obey the sharp decay estimates

Kg, F2

k, \Djφ\2, 0 < ε2 - \φ\2 = 0(\x\~b) as \x -+ oo

for any b>OifN< l/2πε2G. When N — l/2πε2G but m ϊϊ 2, there hold instead
the asymptotic decay rates at r = \x\ = oo:

\Djφ\2 = 0(r-}), 0 < ε2 - \φ\2 = O(r~2) .

While, when N — l/2πε2G and m — 1, the radially symmetric solution satisfies

\Dfφ\ = 0(r-(l+2^\ 0 < ε2 - \φ\2 = O(

Furthermore, in the same category of solutions, the obtained surface (R2,^^)
is geodesically complete if and only if the integer N fulfills the above condition,
N ^ l/2πε2G. When N > l/2πε2G, although there is an N-string solution and
the corresponding Gauss curvature is the curvature function for some conformal
metric which is complete, the obtained gravitational metric itself in the solution
is not complete.
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Remarks, (a) We see that the condition N rg l/2πε2G for existence of multi-string
solutions is fairly general because N > \/2πs2G already leads to metric incom-
pleteness. It is not clear whether there are finite-energy multi-string solutions in the
range l/2πc2G < N < l/πε2G, but it seems clear that metric incompleteness is an
early signal for energy blow-ups because we know that such a scenario is true in
the context of radially symmetric solutions for which the strings are superimposed
at one point [CHMcY]. Indeed it is not clear as to whether, after all, a similar ob-
struction as (21) is present for nonradial solutions of finite energies. Our analysis in
Sect. 5 seems to indicate the existence of an obstruction. However, we were unable
to establish it rigorously.

(b) The solutions stated in Theorem 2.3 are most interesting because they belong
to the category that the Higgs field tends to the asymmetric vacuum at infinity in
spite of the decay of the gravitational metric and are crucial in the Higgs mechanism.
In the radially symmetric case, we have found that there are exactly two distinct
families of solutions: those who go to the asymmetric vacuum (characterized by
\φ\ = 1) and those who go to the symmetric vacuum (characterized by φ = 0) at
infinity. See [CHMcY] for details. There the first family of solutions was rather
elusive to catch from the shooting data. In Sect. 6, we will show that the metrics
arising from the second family of solutions are all incomplete. Thus Theorem 2.3
says that another interesting aspect of the solutions in the first family is that some
of them (namely those in the range N ^ l/2πε2G) can provide complete metrics.

In Sect. 5, we prove the existence of multi-strings for a given string distribution
and obtain some preliminary properties of the solutions which will be useful in de-
riving the desired asymptotic estimates. In Sect. 6, we establish the decay estimates
and identify in terms of the total string number N the criterion for completeness of
the gravitational metric.

3. The Role of Defects

When the gravitational sector is ignored and the Abelian Higgs model is considered
in a two-dimensional framework, the equations govern the electromagnetic prop-
erties of a planar superconductor so that the Higgs field φ appears as an order
parameter. At the places where φ vanishes, superconductivity is destroyed and the
magnetic field penetrates the sample in the form of vortex-lines. Thus the zeros
of φ are also called defects which are indicators of spots of partial restoration of
the symmetric normal phase. It is already well-known in the Abelian Higgs model
that the appearance of these defects is equivalent to the existence of mixed states
characterized by \φ\ φ 1, F^ φ O [Ab, JT]. Here we would like to know whether
the same statement holds in the presence of gravity, i.e., whether the existence of
strings or defects is crucial to producing gravity or a nonflat spacetime. For techni-
cal reasons, we will mostly concentrate on the compact case. The general situation
when the Higgs potential takes the form f( |</>| 2 — I)2 and λ > 0 is arbitrary will
be studied.

The basic result in this section says that the absence of string defects implies
the absence of gravity. Such a fact may be seen intuitively as follows. When there
are no string defects, the state is purely superconducting and the energy vacuum
is attained. Thus the energy distribution of the matter-gauge sector is everywhere
zero. However, the Einstein equations (i.e., the first equation in (1)) imply that the
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space curvature vanishes identically. As a consequence, we arrive at a flat space
with trivial topology and there is no gravity.

With the notation in Sect. 1, the Einstein and Abelian Higgs equations become

Kg — 4ττG (̂ , Tjk — 0 ,

- ε2)φ, x€

- tt' ) = ~gJt(φ[Dkφ]* - Φ*[Dkφ]) , (26)

Suppose that there are no defects, i.e., </>(x)Φθ, Vx G M. Then the line bundle
L over M defined by the solution of (26) is trivial: L = M x C. We may view φ as
a complex-valued function on M. Thus there is a real- valued function / G C°°(M)
so that φ = φe1^ where φ — \φ\ > 0. Perform the gauge transformation

φ ι-> φe~ll , y47 i— » Λ(7 — djf

in (26). We see that the last two equations in (26) take the form

Agφ = (gjkAjAk)φ + -(φ2 - ε2)<p ,

k In φ ,

V2 - (27)
V#

From the third equation in (27), we obtain

4= W*' vW%FW]) + \9f* g^FjfFw = -gjkAjAkφ
2 . (28)

v^ z

However, the first term on the left-hand side of (28) is a total divergence, thus an
integration of (28) leads to

M
\βjf 9* FfiFfv + gjkAjAkφ

2} άΩg = 0 .
2 J

The two terms in the integrand are both positive-definite. As a consequence, we
obtain A} — 0, y = 1, 2. Inserting this information into the first equation in (27),
we have

Δg(φ - ε) = -φ(<p + ε)(φ - ε), * e M . (29)

Using φ > 0 and the maximum principle in (29), we find φ = ε. Consequently,
<f = 0 everywhere. In view of the first equation in (26), we arrive at Kg = 0, which
indicates that M is a flat torus, gravity is absent, and the solution is trivial.

We summarize the above discussion as follows.

Theorem 3.1. For a solution triplet (φ,A, {#/&}) of the general Einstein and
Abelian Higgs equations (24) with λ > 0 and M being a compact 2 -surf ace, the
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absence of string-like topological defects, i.e., φφO on M, implies that the solu-
tion is gauge-equivalent to a trivial solution so that M must be a flat torus, which
is characterized by Kg = 0, φ = ε, A — 0.

A similar study may be carried out for the noncompact case as far as the field
configurations decay fast enough at infinity so that the boundary terms resulting
from integrating the first term on the left-hand side of (28) drop off Thus, if such
a property holds, the statement of Theorem 3.1 is also valid in general.

4. Proof of Theorem 1.2

Suppose that we can solve the coupled system (13)- (14) for the unknown metric
g and function u. Using u and applying the methods in [N1,N2, Br, Ga], we can
construct a suitable line bundle L over (M, g) equipped with a Hermitian metric
so that c\(L) —N and a solution pair (φ, A) of the last two equations in (5) is
obtained. The validity of the first equation in (5) follows directly from (14). Thus
we may only concentrate on the solvability of(13)-(14).

Our main strategy is as follows. We first combine the two equations, (13) and
(14), into a single equation with a peculiar-looking nonlinearity. Then we perturb the
resulting equation by a positive parameter so that a supersolution may be constructed
in such a way that a monotone iterative scheme can be used to find a classical
solution. Finally we take the zero parameter limit to recover a solution of the
original equation.

4.1. Reduction to an Elliptic Equation. We shall use the following standard device
to get rid of the unknown gravitational background metric g on M.

Assume that g is conformal to a known metric gG:

9 = eηgo ,

where η is an unknown conformal exponent, and that K9o is the Gauss curvature of
(M, 0o )• Then η, Kg, Kgΰ are related through the equation

Besides, we have Δg = e~ηΔ9o. Hence Eqs. (13)-(14) become

m

, (30)
1=1

Ago(-η - 2πGeu) = -2K% - 2πGε2e\eu - ε2) , (31)

where now δp is the Dirac distribution at p on (M, #o)
Let v = u - UQ where UQ is a solution of

4nN m

Aβ°u° = -^Γ + 4«Σ«/^, - (32)
Win /=ι

Then (30)-(31) take the form

Δaϋv = e\eu»+<>-£2)+-, (33)
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Aΰo(-η - 2πGe«o+» + 2πGε2v) = -2Kgo + . (34)

' '00

Using (2) and thQ Gauss-Bonnet theorem, we see that the right-hand side of (34)
has zero integral. Consequently, there is a smooth function VQ on M so that

η + 2πGeUQ+v - 2πGs2v = VQ + c , (35)

where c is an arbitrary constant to be adjusted later.
We now insert (35) into (33). Use the notation a = 2πG. Then we arrive at the

following equation,

onM
ι
' '00

Note that λ = ec is an adjustable parameter which should not be confused with
the coupling parameter λ in the previous sections. We shall find in the rest of this
section a solution of (36) which is obviously equivalent to (30)-(31) or (33)-(34).

4.2. The Perturbed Problem. Let (£//, Or7')) be an isothermal coordinate chart near
pi G M for the surface (M, g$) so that x *(pι) — 0 (y — 1, 2). According to [A],
when £// is small the function UQ (see (32)) has the property

ι<o(*) = / f / l n | * | 2 + w/(*) in (f//, (*'')), (37)

where w/ is a smooth function on C//.
We can use (37) to define a regular perturbation of UQ as follows.
For any σ > 0 so that p G £// whenever |^(/?)| < 3σ, choose a function

p G C°°(M) satisfying

0 ^ p ^ 1, p(p) - 1 for \χ(p)\ < σ, p(p) = 0 for jc(/?)| > 2σ .

Take σ sufficiently small so that

uδ

0(x) = nι ln(|jc 2 -f δp(x)) + wι(x) in (l//5 (jc7')), / = .1, . . . , m (38)

((5 > 0) naturally extends to a smooth function on the full M and

m

UQ = UQ in M - Q C//; ^o ^ WQ in M .
/=ι

It is more transparent to rewrite (36) in the form

The function e~aε UQ is a singular factor. We overcome this difficulty by introducing
the perturbed equation

o n M . (40)
' 'έ/0

From now on, we assume 0 < δ < 1 (say).
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4.3. The Sub I Super solution

Lemma 4.1. There is a smooth function w on M independent of S so that

' '00

for some suitable λ. Namely w is a subsolutίon of (40) for all δ.

Proof. As before, let (£//, (V)) be a coordinate chart near pi G M. Suppose that
σ > 0 is a small number so that

{ c G R2 | jc| < 3σ} C {x G R2|;c = x(p) for some /? G C//} , / = 1,. . . , τ w .

Define a function /σ G C°°(M) so that

O ^ Λ ^ l , Λ ( / ? ) = l for x(^)| ^ σ and j9 G £//, / = l , . . . , m ,

/σ(^) = 0 for |jc(/?)| ^ 2σ and /? G C//, / = l , . . . , / w , or/? G M - U^ί//.

Then the equation

^°w = Sr/σ " c(σ) (42)

' 'SO

has a solution if C(σ) satisfies

C(σ)=IfσdΩao. (43)

The solution is unique up to an additive constant.
By (43) and the definition of /σ, we see that C(σ) — » 0 as σ — > 0. Thus we can

choose suitable σ > 0 to make

- C(σ) > . (44)

K
Define

U? = {p

Hence, in view of (42) and (44), we have

4πN

Of course, we can choose w such that eu°+w — ε2 < 0 on M. Consequently the
inequality (41) holds in U^Ljί// for any λ, δ.

Recall that w is independent of δ. Besides, by the definition of WQ, we have

U ^ M Thus

^ Co > 0 i n M - U ί/f. (45)
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Of course,
sup(eUQ+w - ε2) = -Ci, Ci > 0 . (46)

M

The constants Co, C\ are independent of 0. From (45) -(46), we see that when λ
is large enough, the inequality (41) holds in M - U™=1U° as well.

In summary, w satisfies (41) for all δ.

Lemma 4.2. Define v\ — — MO -f In ε2. Then v\ > w on M.

Proof Use the notation of Lemma 4. 1 . Suppose σ > 0 is small so that Uf Π Ufi — 0
for /=)=/ ' . Of course, _

w < v\ in Uι, / = l , . . . ,m

when σ is sufficiently small. Using (32), we can rewrite (41) in the form

in M - (J ί/f . (47)
/=ι

On dUf(l = l, . . .,m), we already have MO + w — Inε2 < 0. If there is a point /?
so that (MO + w — Inε2)(/?) ^ 0, then the function MO -f w — Inε2 has a nonnegative
interior maximum in M — Uf=lU° which is false due to (47) and the maximum
principle. The lemma is proven.

4.4. Solution of the Perturbed Equation. We shall use v\ as a supersolution to find
a solution of (40). Note that v\ is singular at the points p\,...,pm. Nevertheless,
we can apply the following iterative scheme. We define

(Ago - Cδ)vn

-Cδυn_, + ̂ - onM, * = 2,3,.. ., (48)
\M\90

where C^ > 0 is a constant to be determined as follows.
Consider the function

-β2). (49)

It is direct to see that the derivative f ' ( t ) is bounded for t G R.
Set

Q = 1 + λ sup^^-^oW} . sup{/'(ί)}
x GM ίER

in (48). We have

Lemma 4.3. There holds on M the inequality

υ\ > V2 > - > vn > - > w . (50)

Proof. We have already seen in Lemma 4.2 that v\ > w. Using (48), we obtain

4πN
—
' \9

o n M . (51)
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Thus (A9Q — C$)(v2 - v\) = 0 in M — {p\9...9pm}. Since v\ G LP(M) for any

p > 1, we have v2 G W2'P(M) and t;2 G C !'α(M) for any 0 < α < 1. In partic-
ular v2 is bounded. Using the maximum principle, we get υ\ > v2.

Besides, using the notation (49), the inequality (41), i.e.,

2 ό 4nN
,

' '00

Lemma 4.2, and (51), we find

(A9Q - Cδ)(w - v2) > λev*-a^(f(uQ + w) - /(i/o + ι>ι)) -

> 0 (w < ξ < ϋ i ) .

Thus the maximum principle implies that w < v2.
Suppose Vk-\ > Vk > w with k ^ 2. Then (48) says that

( 0̂ - Cδ)(υk+ι - vk) = λe^-aί?<(f(uQ + ι;Λ) - /(MO + ^_ι)) - Cδ(vk - ^_ι)

= α^-*Λo/'(Wo + ̂ ) - cδ)(vk - ^_o > o ,
where ^ is between v^-\ and ̂ . Hence ^+} < Vk.

Moreover, we have

(Aβo - Cβ)(w - %+, ) > ̂ "-^(/(MO + W) - /(MO + t*)) - Q(w - ι*)

= (λe^-ae2^f'(u0 + ξk) - Q)(w - ϋt) > 0 .

Consequently w < Vk+\. The proof of the lemma is finished.
Taking the limit

lim vn = vd

n—*oo

in (48) and using (50), we see that vδ is a solution of Eq. (40) satisfying

vι > vδ ^ w on M . (52)

In order to find a solution of the original equation (39) or (35), we need to
consider the δ — > 0 limit in the following subsection.

4.5. Passage to the Limit <5 — » 0. First, observe that (52) implies that, for any
p > 1, there is a constant C > 0 independent of δ so that

\\A\U>(M) ^ C (53)

Next, it is easy to see that the one -parameter function /(MO + ^X*) is uniformly
bounded.

Besides, since e~a£ "o ^ e~
aε UQ and in the local isothermal coordinates (£//, (xj'))
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around p\ we have

e-aε2uQ(x) _ e-aε2wι(x)\χ -2«ε2«/

due to (37), we see that there is a constant C > 0 independent of δ so that

IK ÎU*) ̂  c' <54>
provided that

2aε2nιp<2. (55)

From the condition (2) and χ(M) = 2, we have

0ε27V - 2 . (56)

Combining (55)-(56), we arrive at the condition

nlP<
l-N, I=l9...,m. (57)

Suppose that H/ 'S satisfy the restriction (19). Then there is a /? > 1 so that
(57) is valid. Using (53)-(54) in (40), we see that there is a constant C > 0
independent of δ to confine the W2'p-norm of vδ:

\\v*\\W2,P(M) ^ C, V O « 5 < 1 . (58)

From the embedding Wk>p(M) -+ Cm(M) for 0 ^ m < k - 2/p with k = 2 and
p > 1, we infer in view of (58) that

kV) ^ c

for any δ, where C > 0 is a (5-independent constant.
It is now useful to rewrite (40) with v — vδ in the form

Δgov
δ = ;^W(«o-«φ+««V-ββ"

0+V0+y* - ε2) + - . (60)

' 'fiΌ

By the definition of uδ

Q, we know that the factor e

αε2(w°~Mo) is bounded. Using (59),
we see in particular that the right-hand side of (60) has uniformly bounded Lp-
norm for any p > 1. Thus (58) holds for any p > 1. As a consequence, {vδ} is

bounded in C 1 > α for any 0 < α < 1. Applying this fact in (60), we conclude that
{vδ} is bounded in C2'α(M). However, the compact embedding C2'α(M) -* C2(M)

enables us to get a convergent subsequence {vδn} (δn —> 0 as /? —> oo) so that

ιA —> some element v in C2(M). (61)

Inserting (61) into (60), we find that υ is a solution of (36).
The proof of Theorem 1.2 is complete.

5. Proof of Theorem 2.3: Existence Part

We now study the Einstein-BogomoΓnyi system (24) on the full plane. We shall
look for a solution of the system so that it is such that the Higgs field φ vanishes
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precisely at the given points p\, . . . , pm e R2 at the respective orders n\, . . . ,«m. We
can use the same device to reduce this problem to a system of nonlinear elliptic
equations of the form (30)-(31). Comparing (5) and (24), it is easy to see that
the new system may be obtained by a rescaling of the parameters in (30)-(31):

β ι-» 1, 2πG ι-> 2πGε2 .

This simplification is convenient for our discussion to follow.

5.1. The Elliptic Equation and its Perturbation. Set a = 2πGε2 as in Sect. 4.
Choose go to be the standard flat metric. Hence A9o = A, Kgo = 0, and we end

up with the following equations on R2:

Δu = eη(eu - 1 ) + 4πf>/<5/,/ , (62)
ι=\

(63)

Define the background functions

"o =

\x- pι\ ).
/=!

Then it is seen that UQ < 0, WQ ^ 0, and

m

/I MO =
/=!

/=ι

where, in this section and part of the next section,

which should not be confused with our notation for the Riemannian metric

9 = {0jk}
Let M = UQ + ι>. Then (62) becomes

zb - eVWo+y - l) + 0. (64)

By (63)-(64), we easily infer that

h = - + eu*+ΰ -v + wo
a

is an entire harmonic function, which clearly defines a background for the gravi-
tational metric. The choice of h is often crucial in establishing existence in some
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situations. In the radially symmetric case, h is a constant. We now take the point
of view that, far away from local regions, the solutions look radially symmetric,
thus, multi-string solutions and radially symmetric string solutions should reside in
the same metric background. Therefore we are led to assuming that h = c — const.
Of course, such a choice may restrict the range of non-symmetric solutions we are
searching for, and hence, is only a technical convenience. In this section, we again
use the notation λ = eac as in the compact case, which should not be confused
with the coupling parameter λ considered in Sects. 0-3. Note that this parameter is
adjustable as in the compact case. Finally, inserting the above expression into (64),
we find the resulting equation

Δv = λe-aw»+a(v-elt°+V\eUQ+v - 1) + g in R2 . (65)

As in the last section, Eq. (65) is not convenient to work with. We can avoid
the difficulty by introducing the following <5-regularization of (65):

e\eu»+v -l) + g in R , (66)

where

Note that

5.2. The Solution of the Perturbed Equation via Subl Super solutions. We first find
a supersolution of (66).

Lemma 5.1. The function υ\ — —u\ (0 < δ < 1) is a supersolution of (66).

Proof. By virtue of (67),

Thus v\ is a supersolution as expected.
We now turn to the recognition of a suitable subsolution.

Lemma 5.2. There is a λ$ independent ofQ<δ< 1/2 (say) so that for aN ^ 1,
there holds

Γ\ ^^ 1 n—flvvπ—Q.C u / • UK ι \ [ "|j2 /Άδ^

whenever λ > λo. In other words, v — 0 is a subsolution of (66) for all δ.

Proof. We rewrite UQ as
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and

Note that, since uδ

Q < 0,

uo

Besides, by (69), we know, for 0 < δ < \, that u\ -» 0 uniformly as r = x\ —> oo.

Thus e^wo)Mo —> 1 uniformly as r —+ oo. Hence

«Λ δ 5^-αwo-αe 0 , „ _ 1 \ < .-αw0-α/^0 _ i \

(by (69)) =
δ+\x- Pι\2

where

~ withO

By virtue of the assumption aN ^ 1 or 2aN + 2 ^ 4, we obtain

r4h$(x) — > ex) (if aN < 1) as r = \x\ — > CXD

uniformly with respect to 0 < δ < 1/2 or

r4h$(x) — > some number Q > 0 (if αTV = 1) as r = |;c — > CXD .

Using the definition of h$, it is easily seen that there is a suitable CQ so that c§ ^ c0

for all 0 < δ < ±.
The above observation enables us to conclude that there is an r0 > 0 and λ\ > 0

so that

λe-aw«-aeU\eu* - 1) -f g ^ -\(λr4hδ - r4g) < 0 (70)
r4

whenever r = \x\ ̂  r0 and λ > λ\ because r4g — O(l) at infinity.

On the other hand, we see by the definition of UQ that UQ ^ u\ (δ ^ ^ ). Thus

e-aWQ-ae"^eu
ό

Q _ !) ^ ^-^o-^^2 _ j ) (?1)

By (71), we can find A0 ^ λ\ so that (68) holds in { c G R2 | |jc| < r0} for all
0 < δ < 1/2 whenever λ > Λ0
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The lemma is proven.

5.3. Solution of the Original Equation - the Nonradial Case. Since v\ > 0 is a
supersolution, v — 0 is a subsolution, and all involved are regular, so by [Ni2], we
see that (66) has a smooth solution vδ in R2 satisfying

-uδ

0 = υ\ ^ υδ ^ 0 in R2 . (72)

We now study the passage δ —» 0 of the family {vδ}.

For δι < δ2, we have uQ

l < uQ

2. Hence υ{

1 > υ2. In particular, VQ = —UQ =

v® > v\ for all δ > 0. Thus a weaker form of (72) is

VQ > vδ ^ 0 in R 2 . (73)

Let us consider the right-hand side of (66). It is clear that

is a bounded function with an upper bound independent of δ. Besides, we have in
view of (73) the bound

Pi\~2ani =f (74)
/=ι

for the other factor on the right-hand side of (66). So the ^-independent upper bound
function / has singularities at x — pi, I — l , . . . ,m. We hope to apply Z,̂  -estimates
to control the sequence {V}. For this purpose, we require

/ € LL(R2Ϊ for some /» 1 (75)

By (74) and «/ ^ N, we see that (75) is ensured provided that aN < 1. When
aN = 1 , we only consider the nonradial case where m ^ 2 (there are more than two
centers of strings). Thus «/ < TV for / = 1, . . . , w, and (75) is still ensured. Roughly
speaking, the condition aN ^ 1 is sufficient to give us (75). It is interesting to
note that this local regularity condition is the same as the condition stated in
Lemma 5.2 where we need to control the behavior of the nonlinearity at infinity in
order to obtain a subsolution.

As a consequence, we conclude that the right-hand side of (66) has uniform

Lp bound on any given compact domain in R2. In other words, for any bounded

domain Θ C R2, there is a constant C(p,(9) > 0 independent of δ, so that

^ C(p,0). (76)

Applying the interior L^-estimates [ADN, BJS] and using (73) and (76), we see
that

g C(p,0) (77)
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for some (^-independent constant C(p,(9) > 0. Using the continuous embedding

Wk*(Θ) -> Cm(Θ) for 0 ̂  m < k - - (78)
P

with k = 2, we see that {vδ} is bounded in C((9). From this fact and (73), we

conclude that {υδ} is uniformly bounded over the full R2.
In view of (66), the boundedness of {vδ} implies that {Avδ} is also bounded

in R2. Thus the interior L^ -estimates say that (77) holds for any p > 1 and any
given bounded domain &. Take p > 2. The embedding (78) gives us the bound

), \/δ>0. (79)

Using the properties of the right-hand side of (66), we see in view of (79) that
M^lckf f ) — ̂ (A^) f°r any ^ Since & is arbitrary, the above results and the
interior Schauder estimates enable us to conclude that for each α G (0, 1 ) there is a
constant C(a,p,(9) independent of δ > 0 so that

l^C2,α(?) ^ C(α, />,#). (80)

We are now ready to use a standard diagonal subsequence argument to obtain
a solution of (65) on R2 in the limit δ — > 0.

Let r\ < r2 < < n < - - ,rz — » oc (as / — > oo) be a sequence of positive
numbers and

Applying the estimate (80) on {υδ} with Φ—E^ z = 1,2,..., and the compact
embedding C2'α(#2) — > C2(#/), we can extract on each #z a convergent subsequence
of {t/} in C2(5,). We start from B\. Choose δl

n,δ
l

n -> 0 as w -* ex) and i i e C2(57)

so that i;5" — > i j in C2(^ι) as n — > <x>. Then there is a subsequence {^^} (say) of

{δl

n} and an element v2 € C2(B2) satisfying δ2

n — > oo and i;̂  — > ̂  in C2(B2) as
n ̂  oo. Of course, ϋi = ϋ2 in 5ι. We can repeat this procedure to get sequences
{<%}, / = 1,2,..., so that

(i) R}c{^-1},/-2,3,...;
(ii) for each fixed / = 1, 2, . . . , δ{, — » 0 as « — > CXD;

(iii) for each fixed / = 1,2,..., there is an element vl G C2(Bt) satisfying υδ" —*
Vj as n — -> CXD;

(iv) there holds vl — ι;/_ι on ^_i,/ = 2,3,... .

Set ι (jt) = U/(Λ:) for x G 5/ and i — 1,2,.... The property (iv) above says that v
is a well-defined C2-function on R2. By virtue of (i) and (iii), we see that vδ" — > v
as n — » cxo in C2($)-norm for any given bounded domain (9 in R2. Take 5 = <5" in
(66). Letting n — » cχo and using (i) above, we find that i; is a smooth solution of
(65). Moreover, the inequality (73) implies that υ verifies the same bounds

0 ^ υ g -UQ in R 2 . (81)

In particular, v vanishes at infinity.
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5.4. Solution of the Radial Case. We now deal with the case aN — 1 and m — 1
(clustered strings) individually. Without loss of generality, we assume that the single
center of the TV strings is at the origin. It suffices to find a radially symmetric solu-
tion. For this purpose, we use the reduction in [CHMcY] with UQ = 2ΛΠnr (r = |jc|).
Then Eqs. (62)-(63) give us

-η + eu — u + 2N\nr = c — constant .
a

Thus, we come up with a single equation, replacing (65) with λ = eac as before,

urr + -ur = λr~2aN ea(u~eU\eu - 1 ) , r > 0 ,
r

lim rur(r) = 27V, lim u(r) = 0 . (82)
r— »Ό r— +00

The boundary condition at r = 0 is important when we use the radial solution de-
fined in the punctured plane r > 0 to get a classical solution of the original problem
over the entire R2. For a full discussion of this simple "removable singularity" prop-
erty, see [SY] for a similar problem.

We now introduce the new variables

ί = lnr, £/(0 = M(e')

Then the system (82) becomes

U" = λea(u~eU\eu - 1) , -oo < t < oo ,

lim U'(t) = 27V, lim U(t) = 0 . (83)
t— + — oo /— >oo

In [CHMcY], we showed that Eq. (83) has a negative solution in the neighbor-
hood of t = —oo and Iimί_>_00ί7(0 = — oo. Besides, note that the right-hand side
of the equation, g(U), can be written in the form

g(U) =

Therefore, multiplying Eq. (83) by Ur and integrating over (— oo,f)» we find the
reduced equation

Ul2(t) = 47V2 - —e«u-eU) = F(U) . (84)
a

It will be useful to study the critical points of this equation first. Suppose U is a
number that F(U) = 0.ln order to ensure the uniqueness property at the equilibrium
U = U for (84), we need to require that

F'(D) = 2λ(eπ - \)ea(ϋ~e} = 0 .

The only choice is U = 0. Inserting this result into F(U) — 0, we find that

λ = 2aN2ea = 2Ne* , (85)
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where we have used the condition aN — 1. In the sequel, we will always assume
(85). Hence, for t in a neighborhood of / = —oc, we can rewrite (84) in the fol-
lowing form so that the derivative is explicit:

U'(t) = 2N\J\ - (86)

where we have chosen the positive radical root because, according to the boundary
condition at t = -oo in (83), U1 >_ 0 initially. Since, in (86), Uf > 0 and the
uniqueness holds at the equilibrium U = 0, we can use the fact that F(U) decreases
in U < 0 to conclude that U = U(t) (the local solution of (82)_near t = -oo)
solves (86) in the entire interval -oo < t < oo and U(t) < 0 = U for all t.

Besides, (86) can be rewritten in the integral form

ί/(θ)

Consequently, we must have U(t) —> U = 0 as t — > oo. In fact, since

F"(0) - 2λe~a = 4N ,

we can derive from (87) the sharp estimate

\U\ =O(e~V^Jt) as ί-^oc. (88)

Returning to the original variable r — e*9 u(r) = ί/(lnr), it is seen that a desired
solution of (62)-(63) is obtained. However, we do not have a bound like (81).
Instead, from (88), we have

U(r)\ =

Note also that (86) implies U'(t)/\U(t)\

\ur(r)\ - O(r-(1+v^}) a s r - > o o . (90)

In order to see that the solutions just obtained carry finite energies, we need to
study the asymptotic behavior of v in (81) or u itself.

6. Proof of Theorem 2.3: Asymptotic Decay Estimates

In this section, we complete the proof of Theorem 2.3 by obtaining the asymptotic
properties of the solutions and the condition that is crucial for the gravitational
metric to be complete. We split out discussion into the following two subsections.

6.1. Decay Estimates. Let v be a solution of (65) satisfying (81). Then u — UQ + v
fulfills Eq. (62) with the function η given by the expression

η = -awQ + a(v - eUQ+v) + c. (91 )



572 Y. Yang

Hence, by the definition of w0, we have

Choose r0 > 0 sufficiently large so that

{/>!,- . . , An} CB(rQ) = {xeR 2 | \x\

Then (62) becomes
Δu = e\eu-\) inR2-£(^). (93)

The decay property (92) implies the following.

Lemma 6.1. Suppose that aN < 1. 77ze« f/ze solution u of (93) /z<zs fAe bounds

-Cb\x\-b < u(x) < 0, |x| > r0 (94)

/or α/rμ 6 > 0. //ere Q, > 0 w a constant depending on b. If aN — 1 and m ^ 2
(ί/zere are αί feίz^ί ίwo s/r/rcg centers), (94) holds for b = 2. If aN = I but m = 1
(superimposed strings), then the radial solution satisfies (94) with b = V2N.

Proof. Assume aN < 1 first. Introduce the comparison function

w(jO = C|jc-*. (95)

Then
Aw = b2r~2w, \x\=r>rQ. (96)

Choose ξ G [0, 1] so that eu - 1 = eξuu. Thus, by (93), (96), and setting σ = eη+ξu,
we have for r0 > 0 sufficiently large,

A(u -f w) = σu + b2r~2w

< b2r~2(u + w) , |*| = r > r0 , (97)

since e^ satisfies (92) and 2aN < 2. For such fixed r0, we can take the constant C
in (95) large to make

(u(x) + w(x))x=r > 0.

Applying the maximum principle in (97), we obtain u + w > 0 in R — B(r$) as
expected.

If aN — 1 but m ^ 2, the estimate comes from (81) and the definition of UQ
(see the proof of Lemma 6.2 below). If aN = 1 and m — 1, the estimate follows
from (89).

We next show that djU satisfies similar decay properties as u stated in (94). For
this purpose, we first prove

Lemma 6.2. Suppose aN < 1 or aN = 1 but m §: 2. There holds djV = 0 at
infinity, j — 1,2.

Proof. By (81) and

/
-UQ(X) = Σw/ In 1 +

/=ι V
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as x\ = r — > oo, we see that v G L2(R2). Besides, using

0 ^ 1 - eu°+v ^ l-eu°

and
w 1

e~aw° = Π - - n - = 0(r"2αΛί) (98)
l\(l + \X-P/\

2Γ>

(at x| = r = oo), we conclude that the right-hand side of (65) lies in Z2(R2) as

well. Hence the Z,2-estimates for (65) enable us to get v ε W2'2(R2).
Furthermore, differentiating (65) gives us

- '̂o ) + (d.g) . (99)

Of course, d,g e I2(R2). Using

and (98), we find

e-aWQ(djeUQ) = O(r~(2fl;v+1)) 6 I2(R2) .

Differentiating (98) gives us

Inserting the above information into (99), we see that the right-hand side of (99) lies

in L2(R2). Thus the elliptic Z2-estimates lead us to the conclusion dj v G £F2'2(R2).
Consequently dj v — > 0 as \x — > co.

We are now ready to derive the decay estimates for |Vw| .

Lemma 6.3. For the solution u of (93), we have

|V«|2 ^ Cb\x\-b , \x\>r0, (100)

where b > 0 is again arbitrary for aN < 1 and Cb > 0 is a constant, while, for
aN = 1 but m ^ 2, the solution of (93) can be so obtained that (100) holds for
b = 3.

Proof From Lemma 6.2 and the definition of MO, we see that ] Vw | — » 0 as |j| -̂  oo.
Differentiating (93), we obtain

A(djU) = (dfη)e*(eu - 1) + β/?+w(δ;^)

- /y + (eη+u - ae\eu - \)2)(djU) . (101)
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In view of (91) and Lemma 6.1, we see that, at infinity,

ί O(r~6ι ) , Vδi > 0 , when aN < I ,
// = < (102)

[O(r~5), when aN = l,m ^ 2.

Set h — |Vw| 2. Thus, as a consequence of (101), there holds

Ah ^ 2^+MA 4- 2(Vw - Vη)eη(eu - 1)

^+"/z + <7(jc), j c | > r 0 , (103)

where #(*) satisfies the same decay estimate as /7 in (102).
Suppose that w is given by (95). From (96) and (103), we have

A(h - w) ;> eη+uh - b2r~2w + #(*) , |jc| = r > r0 . (104)

Assume that b\ > 2 + b when aN < 1 or 5 ^ 2 + 6 when aN — 1 but m g: 2.
Then there is some C > 0 in (95) so that

q(x) > -b2r~2w(x) for x\ = r > r0 . (105)

By (92), if aN < 1, we may also assume that

eη+u > 2b2r'2 for |jc| - r > r0 (106)

while, if aN = 1 but m ^ 2, by the uniform bound (81) and the arbitrariness of
the constant c in (91) or (92) so that (eη^) \\x\=ro

 maY be made sufficiently large,
we still have the validity of (106).

Inserting (105)-(106) into (104), we find the inequality

Δ(h - w) ̂  eη+uh - 2b2r~2w

^2b2r~2(h-w), X\=r>r0. (107)

Of course, we can adjust the constant C in (95) to make

(AW-w(jc)) |w = r o ^ 0 . (108)

Using the boundary conditions (108) and h — w — » 0 (as |jc| — •>• CXD) in (107), we
arrive at h ^ w for \x > r0 as desired.

Let u — UQ -h υ and η be defined in (91). Then g^ — eηδβ and (φ,A) give rise
to a solution triplet of the coupled Einstein and Abelian Higgs equations (1) or (5)

on the conformally flat surface (R2, {#,#}), where

φ(x) = exp -u(x) -I- iΣ fl/arg(* - /?/)
V 2 ι=ι

Aι(x) = -Re{2iδ*ln φ}, A2(x) = -Im{2ia*ln φ} . (109)
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In general, if φ has the local representation φ — eσ+ιω where σ and ω are
real functions, by d\ — d -f- d*,d2 = i(d - d*) and the second line in (109), we
have

A φ = (d + 3* )Φ - i -i +i φ = 2φdσ ,

D2φ = i(d - δ*)φ

Using these formulas and (109), we have the relation \D\φ\2 + |£>2Φ|2 = \eu\Vu
Let 6 be the exponent described in Lemma 6.1. Then by the third equation in

(24) and (92), we have

1 - \φ\2 = 0(r-*)

for r = \x\ large. By Lemma 6.3, we have

{ O(r~b)9 Vb > 0, where aN < 1 ,

O(r~3), where aN = l,m ^ 2, (110)

O(r-2(i+V2Λθ)? where α7V = l j W | = i

These estimates imply immediately that

fFuώc = 2πN .
R2

Consequently, by the first equation in (24) and (92), we find that the Gauss curva-
ture satisfies

O(r~b\ Mb > 0, where aN < 1 ,

g = { O(r~l\ where aN = l,m ^ 2 ,

/2Λ^)? where αtf = l,m = 1 .

Thus the decay estimates stated in Theorem 2.3 are obtained.
Furthermore, since we can rewrite the energy density of the matter-gauge sector

in the form

\D2φ\2) + l-(\φ\2 - I)2

O

1)

- 1)+

φ*(A0)} , (111)

hence (1 10)-(1 1 1 ) lead us to the following total energy of the matter-gauge coupling

R2

and the energy of the gravitational sector which is realized by the total Gauss
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curvature

R2

where we have used the first equation in (24) to relate the total curvature to the
matter-gauge energy. Returning to the original system with the symmetry-breaking
parameter ε > 0, we see that the decay estimates and the quantization identities are
established.

6.2. The Completeness of the Metric. Let p,q be two arbitrarily given points in

the conformally flat surface (R ,eηδjk\ where the conformal exponent η is de-
termined by the expression (91). Suppose that <& is the set of piecewise differ-

entiable curves of the form x = x(t) G R2, 0 rg / ^ T connecting p,q. Namely,

x(0) = p, x(T) = q. The geodesic metric d on (ΊR2,eηδβ) is defined by

d(p,q) = inf /ei*w/))|x(0|d/, p,q E R2 . (112)
χe% 0

Recall that (R2,eηδjk) is called complete if it is a complete metric space with
respect to the metric d and, by the Hopf-Rinow-de Rham theorem, this latter

property is equivalent to the statement that each geodesic on (R2,eηδjk) can be
extended to a global geodesic defined on the entire real line R. See e.g. [S]. In this
case, the infimum in (112) may always be attained by minimizing geodesies, which
is obviously an important feature.

We now proceed to show that the metric completeness for the solutions obtained
is equivalent to the restriction N ^ l/2πε2G.

In fact, for the obtained solutions, the conformal factor eη satisfies the estimates
inR 2 :

Cι( l+ r)~2aN ^ eη(x} ^ C2(l+rΓ2aN, r = \x\ , (113)

where C\,C^ > 0 are constants. By (113), it suffices to consider the radially sym-
metric metric go = (1 -f r)~2aN δβ.

Considering rays starting from the origin as geodesies, it is straightforward to see
that the completeness of go is equivalent to the property that the geodesic distance
from the origin to infinity is infinite, namely, the integral

oo

/(I +r)~ f lΛΓdr
o

is divergent, which clearly requires that aN ^ 1 as expected.
Thus we see that the obtained gravitational metric is complete if and only if

the total string or vortex number N satisfies the upper bound N ^ l/2πε2G, which
coincides with the existence condition stated in Theorem 2.3.

The proof of Theorem 2.3 is complete.

Remarks, (a) The Gauss curvature Kg obtained in Theorem 2.3 decays fast at
infinity. Such a property already implies that Kg is the curvature of a complete

metric g' (say) because a well-known theorem [KW2] says that Kg £ C°°(R2) is

the curvature of a complete Riemannian metric on R2 if and only if

lim inf Kcl(x) < 0 .
J



Prescribing Topological Defects 577

In our case considered here, we can have gf = g when TV ̂  l/2πε2G. On the other
hand, when Kg decays fast at infinity but TV ̂  l/2πε2G is violated, the gravitational
metric g will fail to be complete. Thus, now, g φ the complete metric g' mentioned
above.

(b) In an earlier paper [CHMcY], we have constructed all finite-energy radially
symmetric TV-string solutions in the ranges 0 < TV < l/2πε2G and l/2πε2G < TV <
l/πε2G. There the conformal exponent η of the gravitational metric is expressed in
the form.

Y] — —2aN In r ~\~ a(u — &u} ~\~ c a =: 2τcε G r :z= \x x G R (114)

so that the function u satisfies the property u = 2TVlnr + O( 1) at r — 0 and η is
everywhere regular. In fact in [CHMcY] the constant c, which clearly defines a
metric "background," is set to zero for convenience. This point of view comes from
the assumption that one should recover the Minkowski metric represented by η — 0
when gravity is turned off through putting G — 0. In this way it is shown that there
is energy blow-up at TV = I/a = l/2πε2G too. In the present paper we have proven
that when c is suitably chosen, there are finite-energy solutions in the full range
TV ^ I/a = l/2πε2G. It is straightforward to examine that the conclusions arrived
in [CHMcY] in the ranges 0 < TV < I/a = l/2πε2G and l/2πε2G < TV < l/πε2G
as well as in TV ̂  l/πε2G are independent of the value of c. Thus we are led to
the obstruction result stated in Theorem 2.1. The equation TV = l/2πε2, however,
may be read as an obstruction to an arbitrary choice of the metric background. This
is a peculiar and unique situation for radially symmetric solutions.

When aN < 1, the solutions with u —» 0 as r —» oo correspond to the solutions
of the coupled Einstein and Abelian Higgs equations (1) for which the Higgs field
go to the asymmetric vacuum. Such solutions are contained in those already dis-
cussed in the present paper. The other family of solutions are those which have the
asymptotic behavior

lim rur = — /?, β > . (115)
r—>oo d

Thus, by (114)-(115), we obtain the sharp decay estimate for the conformal factor
eη as follows:

eη = O(r~α) as r -̂  oo, where α > 2aN + 2(2 - aN) = 4 .

Combining the above with the discussion in this section, we see that (R2,eηδjk) is
not a complete surface.

When aN > 1 but aN < 2, there are still radially symmetric finite-energy
TV-string solutions. In this case the function u in (114) either stays bounded or
tends to — oo as r -̂  oo. Hence eη decays at least like

eη = O(r~2aNl 2aN > 2

as r —> oo. Thus, again, the metric cannot be complete no matter how u or the
Higgs field φ behaves at infinity.

In summary, in the class of radially symmetric solutions, the only finite-energy
solutions which are able to give rise to complete gravitational metrics are contained
in those stated in Theorem 2.3.

(c) One may wonder what happens if the Einstein equations are coupled with
Yang-Mills-Higgs equations with non-Abelian gauge groups. When the cosmic
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strings are sought so that the spacetime is uniform along the time axis and a vertical
direction and the line element takes the specific form defined in Sect. 1, we have
seen that the Einstein tensor has a significant reduction to a form that its only
nonvanishing component is the Gauss curvature of a 2-surface where nontrivial
geometry is coded in order to accommodate gravity. Such a property imposes a
great restriction to the form of the energy-momentum tensor Tμv via the Einstein
equations

, (116)

where A ^ 0 is the cosmological constant. In fact, the system (116) indicates that
self-dual cosmic strings such as those contained in the BogomoΓnyi equations are to
be considered to achieve consistency. This observation motivates our earlier work in
[Y2]. There we found when the gauge group is t/(l), we must have A — 0 which
is the case studied in the present paper. When the gauge group is either SU(2) or
SU(2) x £/(!), namely a simplified Georgi-Glashow model [AO1] or the standard
Weinberg-Salam model [AO2], the cosmological constant A must be positive and
the associated gravitational metric can never be complete. Here we would like to
remark that incompleteness of the metric is in fact a simple consequence of the
positivity of A. Indeed, assume A > 0. Then 00-component of Eq. (116) reads

Kg-A = 4πG£9 (117)

which is defined an unknown 2-surface (M,g) conformal to R2. Again, Kg is the
Gauss curvature of (M9g). Since δ ^ 0, Eq. (117) says that Kg ^ A > 0. By the
theorem mentioned in the above Remark (a), we are convinced that Kg is not
the curvature of any complete metric of M. Thus, it seems to indicate that com-
plete gravitational metrics may only arise from the Einstein equations coupled with
Abelian gauge and matter fields such as those provided in Theorem 2.3.

The methods here are immediately applicable to the more general problems stud-
ied in [GORS] where the gauge and Higgs sector possesses a broken SU(2)g\0\)aι x
^(l)iocai symmetry. The accurate behavior of the metric at infinity of the solutions
obtained in this paper and the solutions constructed in [CHMcY] may directly be
used to determine the corresponding asymptotic deficit angles. An easy calculation
shows that the solutions that approach the symmetric vacuum at infinity lead to
much larger deficit angles which may occupy an entire continuum.

7. Concluding Remarks

In this paper, we have derived obstructions to the existence of static and regular
cosmic string solutions of the coupled Einstein and Abelian Higgs equations. These
obstructions are of a topological nature, which may be seen clearly when the un-
derlying surface where the strings reside in compact, and are not present when the
Einstein equations or the weak gravitational coupling is ignored. We have observed
that, now, the symmetry-breaking scale, the string number, the base-space topology,
and Newton's gravitational constant all play important roles. It will be interesting
to know what happens in non-BogomoΓnyi coupling where λή=l. We suspect that
similar obstructions should occur.

The solutions constructed in this paper can indeed generate local concentrations
of energy and curvature. This fact is easily seen from the properties of the solutions



Prescribing Topological Defects 579

and the governing equations (1) or (5). The zeros of the Higgs field φ obviously
produce energy peaks on the underlying surface M. Due to the first equation in (1)
or (5), we observe that these energy peaks directly give rise to curvature peaks.
These peaks are initial seeds for matter accretion in the theory of galaxy formation
in the superconducting phase stage. Note that there are no metric singularities at
all.

The paper also leaves a number of questions which will be worthwhile to pursue.
The first question is about the existence of an TV-string solution when N = 1,2

in a compact surface M under the condition (2). Our crucial assumption (19) fails in
this case. As mentioned before, when (19) is not fulfilled, the Lp-convergence with
some p > 1 of the approximation sequence constructed in the proof of Theorem
1.2 is not ensured. Thus, we encounter a gap for existence when N = 1,2. Whether
it is only a technical problem or has a hidden geometric/topological reason is not
quite clear to us at this moment.

The second question concerns the obstruction (21). We have learned that
(21) is necessary and sufficient for the existence of a regular static finite-energy
TV-string solution with cylindrical symmetry so that the field configurations enjoy
the radial dependence as given by the standard expressions (20). It is not clear
whether such a condition or any condition like that occurs for nonradial solutions.
In our construction of nonradial solutions, we have seen that the stronger condi-
tion TV ̂  l/2πε2G plays an important part both in order to get local regularity (a
suitable Z,£c-convergence) and to get asymptotic control at space infinity in our
problem. We do not know whether that condition can be lifted. Since we have
obtained finite-energy radial solutions under (21), it seems reasonable to speculate
that there may be nonradial solutions realizing any prescribed TV-string distributions
in the regime

2πε2G πε2G

as well. Several obstacles will have to be dealt with in order to move on.
The third question is whether completeness of a gravitational metric is important

to cosmological consequences. Theorem 2.3 already identified a subclass of solutions
which lead to complete metrics. We have seen there that, if we insist on the metric
completeness, we have obtained all possible multi-string solutions for the coupled
Einstein and BogomoΓnyi equations (5) so that the matter-gauge fields approach
the broken vacua asymptotically.

The methods used in the present paper suggest ways to obtain multi-string solu-
tions numerically. A similar approach has been taken for the self-dual Abelian Higgs

and Chern-Simons models where solutions over the full R2 are approximated by
solutions constructed on a sequence of bounded domains and the truncation errors
near infinity are shown to vanish exponentially fast. It would be interesting to con-
duct a parallel study for computing multi-strings because in this situation we still
have several unknown parameter regimes to be investigated. Here we expect that
the truncation errors decay faster at infinity than any power type function of the
form r~b for TV < l/2πε2G due to Theorem 2.3. Furthermore, our discussion al-
ready provides the problem over a compact surface an implementable method to
find the solutions. It may be useful to test by the iteration scheme described in
Sect. 4 whether there are solutions with string charges TV = 1,2.

The study in this paper on the borderline case TV = l/2πε2G also reveals an
important fact that radially symmetric solutions and nonradially symmetric solutions
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may have very different features and properties. When radial symmetry is assumed
so that the strings are clustered at the origin, we have seen from (85) that there is
a unique solution which approaches the asymmetric vacuum at infinity so that the
conformal factor eη in the gravitational metric

as2 = -at2 + dz2 + eη(ώc2

{ + d cf) (118)

satisfies

eη(x} = 2Ne7fr-2e(u-eU}/N, r = x\9 x G R2 , (119)

where u = ln\φ\2 — 0 at infinity. On the other hand, for multi-string solutions
(m ^ 2) for which the radial symmetry property is not present, the metric factor is
given by

e^ = λΠ\x- pι\'2nι/N fe(u~eU}/N , jc G R2 . (120)
1=1

Here λ > 0 should not be confused with the coupling parameter in the Abelian
Higgs model. We have shown the existence of solutions for all λ sufficiently large
(see Lemma 5.2 and Subsect. 5.3). Therefore, the obstruction to an arbitrary choice
of the background conformal factor (85) for the metric (118) disappears for multi-
strings. This fact is significant because the property u — 0 at infinity in (119) and
(120) clearly indicates that these equations give rise to different metric background
at infinity. Thus we see that 'multi-strings certainly enjoy a richer spectrum of struc-
tures than radially symmetric solutions with a single string center. This interesting
phenomenon does not take place in the subcritical case N < l/2πε2G. In this latter
case we have shown in [CHMcY] that for any λ > 0 there is an N-string solution in
the asymmetric vacuum asymptotically, i.e., u = 0 at infinity, and the metric factor
assumes the form

This result indicates the indifference of system concerning the choice of the con-
formal factor λ2

Our prescribed string defect problem for the coupled Einstein and Abelian
Higgs equations considered here may be compared with a well-developed area in
differential geometry -the prescribed Gauss curvature problem on a 2-surface [A,
Av,ChY,KWl,KW2,Mc,Nil]. In our situation, the Gauss curvature is determined
by the energy distribution of the matter and gauge interactions and the latter are
strongly governed by the prescribed string defects and their associated strengths. In
turn, the Gauss curvature affects the gravitational background which immediately
influences the matter-gauge interactions as a feed-back.
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2 Again, in [CHMcY], the results are stated within the special scale λ = 1. However, the results
in the subcritical case N < l/2πε2G and supercritical case N > \/2πε2G are valid for any λ > 0.
This fact is crucial in our obstruction theorem in the noncompact case (Theorem 2.1) in this paper.
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