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Abstract: We compute the quantum cohomology rings of the partial flag manifolds
Fnr nk — U(n)/(U(n\) x x U(nk}). The inductive computation uses the idea of
Givental and Kim [1]. Also we define a notion of the vertical quantum cohomology
ring of the algebraic bundle. For the flag bundle Fnr..nk(E) associated with the
vector bundle E this ring is found.

1. Introduction and Summary

The quantum cohomology rings are only known for some classes of varieties. For
Calabi-Yau manifolds one [2] can transform the problem to the "mirror dual" one
which deals with variations of the Hodge Structure. The latter is "in principle"
solvable, although the real computations in terms of Picard-Fuchs equations may
be pretty hard. All known examples describe one- or two-parametric deformations
of the classical cohomology rings (see for example [3-5]).

The ring QH*(Pn) — C[x]/(xn+l — q) for the projective spaces has been known
since long ago in physics [6] and mathematics (symplectic Floer theory [7]). More
generally, one can construct the moduli spaces of rational curves for the toric
varieties [8]. Recently Batyrev [9] has conjectured a general formula for the
quantum ring in that case. From the physical point of view Batyrev's result can
be obtained using the Hamiltonian reduction of the linear σ-model by the real torus
[10].

Another example where the hamiltonian reduction of the linear σ-model (by
[/(«)) does work [11,10] is the Grassmannian Gr(n, m) = U(n)/(U(n - m) x
U(m)\ because this manifold can be presented as Gr(n, m) — Cnm//U(m). The
relations in QH*(Gr(n, m)) were discussed in many physical papers [12-17]. They
are proven mathematically [18] for the Grassmannians of 2-planes.

Recently Givental and Kim [1] have computed the quantum cohomology ring
of the complete flag manifold Fn = U(n)/(U(\))Xn. The main idea of their paper
was to use the functoriality properties of the equivariant quantum cohomology.
Here we extend the arguments of [1] to cover all partial flag manifolds Fn}...nk =
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U(n)/(U(n\} x x U(nk)} "interpolating" between Grassmannians and complete
flag manifolds.

In general, the quantum cohomology is rather difficult to compute. An obstacle
for developing any efficient computational technique is our lack of understanding
of its functoriality properties. In the classical Algebraic Topology, whenever there
is a map / : X —-> Y between two manifolds, there is a pullback morphism Γ of
their cohomology rings such that Γ//*(T) - a pullback of cohomology of Y - is a
subring in H*(X).

For the quantum cohomology rings, we know no analogs of the pullback mor-

phism. As an illustration, let us consider a simple example. Take a map / : P1 —> P2

of degree one, then cohomology of P1 is generated by the pullback x — i*y of the

Kahler class y of P2; this is a particular case of functoriality with respect to the
maps between manifolds. Now if we go to the quantum cohomology rings, we see

there is a relation x2 = 1 in QH*(Pl) and another one y3 = 1 in //*(P2). There are
no non-trivial morphisms between such rings. Here, as in general, it is impossible
to define a meaningful pullback for the quantum cohomology.

There is a natural object defined for the algebraic bundles π : X —» B with fiber F
a Kahler manifold. We call it the vertical quantum cohomology ring QHγ(X, B, F).
Its classical limit coincides with the cohomology ring H*(X) of the total space.
The quantum multiplication in QHy(X, B, F) is a deformation of multiplication in
H*(X) by means of the vertical rational curves Σ in X, i.e. such that π(Γ) = {pt}.
The ring QHγ(X, B, F) contains H*(B) as a subring and can be considered as
a //*(#)-algebra. The vertical cohomology is functorial with respect to the base
change morphisms B -* Br.

The paper has the following structure:
The second section both introduces the basic notions and outlines the main

results of the whole paper. In particular, the ring QH*(Fnι...nk) is described in
Sect. 2.3. The section is written using physical language and is primarily intended
for a physicist reader.

The third section discusses essentially the same topics as the first one. More
mathematically oriented readers will find there the formal definitions and properties
of the objects used in course of subsequent computations.

In the fourth section we discuss the equivariant quantum cohomology, first de-
fined in [1]. In Sect. 4 we give another definition, of more algebraic nature.

The fifth section deals with the computation of the ring QH*(Fnι...nk). This
inductive computation is based on the ideas of [1]. The base of induction is
provided by the known answer for the quantum cohomology of Grassmannians
U(n)/(U(n\) x ί/(w2)) The latter is discussed in many papers [12-17] which we
summarize in Sect. 5.2. A step of induction uses the functoriality properties of the
equivariant quantum cohomology discussed in Sect. 4.

2. A Physical Introduction to Vertical Quantum Cohomology

2.7. Quantum Cohomology. Quantum cohomology rings are interesting from both
the physical and the mathematical points of view. A physicist would say they com-
pute the topological correlation functions in a 2-d N — 2 supersymmetric σ-model
with a Kahler manifold X as a target space.



Quantum Cohomology of Partial Flag Manifolds 505

The (one-loop) beta- function of the σ-model is proportional to the Ricci tensor
Rtj\ its cohomological class represents the first Chern class c\(X) of the tangent
bundle T*X. If c\(X) > 0, the renormalization group flow has a stable UV fixed
point (large volume limit) [19] where the metrics Gtj becomes (cohomologically)
the infinite volume Kahler-Einstein metrics and the σ-model becomes (asymptoti-
cally) free; here the positivity of the first Chern class means that c\(X) belongs to
the Kάhler cone in H2(X).

An important class of observables in N — 2 σ-models consists of chiral opera-
tors [20], which are in one-to-one correspondence with the de Rham cohomology
classes of the target space X. These operators form a closed subtheory; the cor-
relation functions in this subtheory are called topological correlation functions. In
the large volume limit the topological correlation functions are given by the inter-
section numbers in the cohomology ring H*(X). The nonrenormalization theorems
on N = 2 supersymmetric theories imply that away from the UV fixed point the
only possible corrections to these correlation functions are instanton (semi-classical)
corrections.

The instantons are simply the holomorphic maps from the world sheet into
the target space; the usual fermionic number anomaly argument shows that in the
generic situation only isolated maps are to be counted. The instanton sum goes over
all possible homological types of these maps. Every summand of a given homolog-
ical type has an exponential factor (—A), where A is an area of the worldsheet in
the pullback metrics1, and a pre-exponential factor proportional to the number of
the isolated instantons.

The topological correlation functions can be exactly computed in terms of the
topological σ-model [21-23], related to the original N = 2 σ-model by what is
called in [22] a topological A -twist. The fundamental fields of the model are

Bosons : world sheet scalars X1 - coordinates in the target space ,

world sheet 1 - form Fl - target space vector ,
(2.1)

Fermions : world sheet scalar χl - target space vector ,

world sheet 1 - form pz

α - target space vector .

The field Fl

a is what is called the auxiliary field. Both pl

x and F1

Λ satisfy a self-duality
constraint

F'a = εζj FJ, . (2.2)

The only physical operators in the topological model are the chiral operators of
the N — 2 model. They represent the nontrivial cohomology classes of the BRST
operator Q which acts on the multiplet (2.1) as follows2

[Q, X1} = iχ' ,

{Q, ύ} = 8XX' + εtydβXJ - iΓjkjlp\ . (2.3)

1 This area depends only on the homological type of the holomorphic map.
2 We impose a mass shell condition F1

Λ = 0 on the auxiliary field.
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The physical operators are in one-to-one correspondence with the de Rham co-
homology classes of X: given that a differential form ω = ωil...ik(X)dX11 ...dXik

represents a class [ω] G Hk(X) of de Rham cohomology, an operator

Φω = ωI 1...ί,(Jr(z,z))χIKz,z)...χ/*(z,z) (2.4)

represents a class of BRST cohomology.
Often it is more convenient to consider the operator product algebra of the

chiral states, a chiral ring or a quantum cohomology ring, instead of the correlation
functions. If {x/} is a basis of chiral states, then the ring structure can be written
in terms of the three-point correlation functions on the sphere as follows:

a b= (abyf)xi, (2.5)

where {jcz } is a dual basis with respect to the two-point functions:

(Xix
J) = δ{ . (2.6)

The associativity of the multiplication (2.5) follows from the duality3 of the four-
point correlation functions. For a more profound review of the physics of the σ-
models on the Kahler manifolds we refer our reader to [22] and references therein.

2.2. Vertical Quantum Cohomology. In this paper we discuss the functoriality prop-
erties of what we call the vertical quantum cohomology. This object will be rig-
orously defined in the subsequent section; here we introduce it in one particular
setup using the language of the topological σ-model. Loosely speaking, the vertical
quantum cohomology appear in a situation when there is an algebraic bundle or
more generally, a family of deformations with a "quantum" fiber and a "classical"
base. The classical limit (large radius limit for the fiber) of the vertical quantum
cohomology ring is just the ordinary de Rham cohomology ring of the total space.

Let X be a simply connected compact Kahler manifold with a structure of a
locally trivial algebraic bundle over a simply connected compact Kahler manifolds
B (the base) with fiber F and with a projection of the total space π : X —> B. In
this setup, according to Deligne [24,25], the Leray spectral sequence for the bundle
π : X — > B degenerates in the second term. This means that H*(B) is a subring in
the cohomology ring H*(X) of the total space and that as a 7/*(5)-algebra H*(X)
is generated by some elements X\,...,XN G H*(X) such that when restricted to a
fiber they generate the whole ring H*(F).

We assume also that the first Chern classes c\(F) and c\(X) are non-negative.
The result of multiplication of two elements in the quantum cohomology ring
QH*(X) is represented by a power series in quantum deformation parameters
q\,...9qn+m From the point of view of the topological σ-model a parameter ql9

corresponding to a certain homological class [Z]/ of algebraic curves in X, is an
exponential function

-/*)qt = exp -ft (2.7)

This duality has nothing to do with (2.6).
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of the minus area of the curve in that class. A semi-group4 ring C[H\ι(X)] is
canonically imbedded into the ring of power series generated by the deformation
parameters K = C[[qι,...9qn+m]]. It is convenient to think of the ring QH*(X) as
a K-algebra.

Now we wish to utilize a structure of X as a bundle over B in a simple way: we
take a "partial classical limit" of the ring QH*(X) "along the base." To define this
limit let us take a form kh G Hll(B) C Hll(X) in the interior of the Kahler cone
of X and let us consider a one-parametric family of the Kahler classes represented
by k(λ) = k -f λkh, λ ^ 0. Then the "partial classical limit" corresponds to

λ -> oo . (2.8)

A semi-group H\\(X) has a sub-semi-group i^ generated5 by the homological
classes of curves taking zero values on kh. These are vertical curves: the projection
π : X -+ B send them to points on the base. There is an ideal / in the semi-group
ring of H\\(X) generated by the set-theoretical complement to 1^ in H\\(X):

I = C[Hn(X)\n. (2.9)

It consists exactly of those polynomials in q\,.. .,qn+m that tend to zero in the limit
(2.8) if we substitute the expressions (2.7) for {#/•}.

We can define a quotient ring

K = C[[qι,...,qn+m]]/I = C[[qn+l,...,qn+mK (2.10)

which is related to the semi-group ring C[H\\(F)] as K is related to C[H\\(X)].
The quotient

QH}(X,B9F) = QH*(X)II (2.ll)

is a K-algebra. This is what we mean by the limit (2.8) of the ring QH*(X).
We call a ring QHγ(X,B,F) the vertical quantum cohomology ring of the bundle
π : X -> B.

To investigate the limit (2.8) in more detail we can consider a topological (type
A) model with a world sheet Σ and a target space X. The m-point correlation
functions there are given by the path integral

(0*1 &oj = ί^X^Qpf^F^ ... &u]meA[Wl, (2.12)

where the operators Θωι are given by (2.4). The action functional A is a sum of
two pieces:

A = fφ*k + t{Q, fig^Gijp^XJ - I/φ} . (2.13)

The first term depends only on the homological type of the map φ : Σ —> X and
on the cohomology class of the Kahler form k of X. The second term does not
contribute to the correlation functions, since it is BRST-trivial. Therefore, it suf-
fices to compute the integral (2.12) in the limit t —> oo. In this limit the measure

is localized to the holomorphic maps6 φ : Σ -+X.

4 A semi-group H\\(X) is generated by the homological classes of algebraic curves in X taken with
nonnegative integer coefficients. To a group operation in H\\(X) there corresponds a multiplication
in the semi-group ring.
5 In fact y = Hn(F).
6 Note then that the first term in (2.13) computes the area of the world sheet in the pullback
metrics φ*G,.
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The correlation function (2.12) depends on λ via the exponential term
exp (—λJΣφ*kh). In the limit λ — > oc the contributions to (2.12) from all except

the vertical maps φv : Σ -* X are suppressed by the factor e~λ. Here the vertical
maps are defined by the homological property to annihilate (any) horizontal Kahler
form. (This is equivalent to a condition that the composition π o φv : Σ — » B maps
the whole curve Σ to a point: Im(π o φ κ ) = {•}).

We see that in the limit (2.8) the integration in (2.12) reduces to the integra-
tion over zero modes of the "horizontal" fields plus integration over the vertical
holomorphic maps:

~ωΆk Jr-Ji (^X(z)^xjl^^x^χj^z9z)...χj^(z9z). (2.14)
j i J K tn i ifn

In this formula the coordinates along the base are denoted by xl and the coordinates
along the fiber by Xl

x. The latter are only defined over each single point of the base
which we stressed by putting a subscript x.

The space of the vertical holomorphic maps is fibered over B with a space of
holomorphic maps Mp — {Σ —> F} as a fiber. The second integration in (2.14) is
performed with x fixed; it goes over the fiber Jίπ-\^. Thus its result is a correlation
function in the topological σ-model with the fiber F as a target space.

The integral JL, is an ordinary integral over the base of the differential form on

B which we call the vertical correlation function and denote by (0ω(i) . ..0ω(w))(ι?)>
so finally

[B]

The ra-point vertical correlation functions are defined for all m-tuples
0ω(i> ...®ω(m) of operators in the limit λ — > oo of the topological σ-model by the
second integral in (2.14). From the definition it is clear that they satisfy

{...0ω)(!,) = {" •>(!>) Λ ω (2.16)

for any ω G H*(B) C H*(X). This means that the operator algebra of the topolog-
ical σ-model in the limit (2.8) has a subalgebra isomorphic to the classical coho-
mology ring of the base H*(B). It shows that the vertical quantum cohomology
ring QH£(X,B,F) is actually an H*(B)-algebra.

What makes the ring QHy(X,B,F) a rather interesting object is that it behaves
nicely with respect to the change of the base operation. Let X ' be a fiber prod-
uct of B' and F induced from X by a morphism / : B1 — > B of the bases.7 Then
there are pullback morphisms Γ : H*(B) -> //*(£') and J* : H*(X) -^ H*(X'}. By
definition, QH^(X,B,F) is an algebra over H*(B) and QH£(X',B'9F) is an alge-
bra over H*(B'). A pullback 7* induces a pullback morphism 7* : QHγ(X,B,F) —*
QHγ(X'9B'9F) of vector spaces. We claim that in fact 7* is a morphism of
rings.

In other words, X' is defined as X
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Base Change for the Vertical Quantum Cohomology. As an H*(B'}-algebra,

jq(QH£(X,B,F))®H*(B)H*(B') is a subalgebra in QHy(X'9B'9F).

Example. The following (trivial) example demonstrates one standard application
of the base change property. Consider an imbedding {pt} -* B inducing a trivial
bundle (F,{pt},F) with vertical quantum cohomology QHy(F,{pt},F) = QH*(F)
given by the usual quantum cohomology of the fiber F. The base change prop-
erty gives QH£(F,{pt},F) = QH£(X9B,F)/L9 where L is an ideal in H*(B) C
QHy(X9B,F) generated by Θ/>o#'0&). Thus we have the identity

QH*(F) = QH;(X,B,F)iL , (2.17)

which relates a partial classical limit of quantum cohomology of the total space X
and the quantum cohomology of the fiber F.

Remark. Actually for the definition of the vertical quantum cohomology it is not
necessary that the base B be Kahler or compact. For any algebraic B, it is possible
to define this ring and it still has a structure of//*(£)-algebra. For a physicist, the
most natural example would be a family of Calabi-Yau manifolds considered over
some open set in the moduli space of their complex structures. But in this paper
we discuss another example based on geometry of the algebraic vector bundles.

2.3. Equiυarίant Quantum Cohomology and Quantum Cohomology of the Partial
Flag Manifolds. An interesting application of the base change property appears in
a situation when X is a bundle of partial flag manifolds Fn]...llk(E) associated with
a complex holomorphic rank n vector bundle E on B\ the partial flag manifold is
defined as the quotient Fnr..nk = U(n)/(<&k

l=λ £/(«/)). In particular, this may be a pro-
jectivization P(E). There is a classical theory of cohomology of such bundles [26]
which effectively reduces to the following statement. Consider a map / : B —* BU(n)
of the base B of E to the classifying space BU(n); then the ring H * ( F Π l . . . Π k ( E ) )
as a H*(B)-algebra is obtained as a pullback /* of the cohomology ring of the
universal FΠ] .,?λ flag bundle on BU(n). This latter ring is what is called the U(n)-
equiυariant cohomology H^(n}(Fnv..nk] of the flag variety. The ring //* (/0(F,?1.../?A)

is an algebra over H*(BU(n)) = G[CI, . . . , cn] which is a graded polynomial algebra
generated by the Chern classes c\,...,cn of the vector bundle, associated to the uni-
versal bundle EU(n) -> BU(n). The pullback moiphism Γ : H*(BU(n)) -> H*(B)
maps the generators c, —» c,(E) to the Chern classes of the bundle E.

For example, for the project!ve space P""1 the equivariant cohomology ring is
given by

#5(,,)(P"~l) = H*(BU(n))[x\l(^ + cut"-1 + + cn). (2.18)

Taking the pullback Γ, we get the cohomology ring of the projectivization P(E):

H*(P(E)) = H*(B)[x]/(x" + c}(E)x"-1 + - - - + cn(E)), (2.19)

where c,(E) is the iίh Chern class of E.
The base change property of the vertical quantum cohomology ensures the same

holds true in quantum case, if one uses quantum equivariant cohomology instead of
equivariant ones, it is the equivariant cohomology of the complete flag manifolds
Fn that was computed in [1]. We can formulate the definition of [1] in terms
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of vertical quantum cohomology as follows: for any G-manifold F the quantum
equivariant cohomology ring is defined as

The ring QHy^(Fnι...n.) will be computed in Sect. 5. To describe it, let us

introduce the generators x\ \...,Xn\\...,xf\...9x^ of degrees deg x^ = 2i and
the quantum deformation parameters q\,...,qk-\ of degrees deg qt = HΪ 4- nl+\. The
ring QH^n^(Fnι " nk) is a quotient by a homogenous ideal QI of the graded poly-

nomial algebra generated over H*(BU(n)) by {x\J,<?/}:

QHu(n)(FnΓ nk) = H*(BU(n))[x,q]/QI. (2.21)

The ideal QI is generated by the coefficients of the polynomial

detμi +A\ -λn-cλλ
n~l cn, (2.22)

where the n x n matrix A is defined as

-i
;> o . . . -(-ιγ*gι
) o ... o

1 x(2) x( 2)
2

0
0
0

0 \
0

V o

o o

0 0 0 0

x(k}
Xnk-\

0

-1 o )

The entries of A are graded according to the number of the diagonal they belong
to: those on the diagonal just below the main diagonal have degree 0, those on the
main diagonal have degree 2, etc. All the entries on the diagonal just below the
main one equal (—1) and yet below everything equal 0. There are non-zero entries
on the main diagonal and above in the lst,«ιth, n\ -f «2th, >«ι + 1- «£-ιth rows:

At Λ =-ΓL(n\Λ r - W j _ j , w j H r-Λj_ι+y)

-1,

.0,

if 0 g j ^ nt

if j = HI 4- rii+\
otherwise .

(2.23)

Taking the pullback /*, we obtain the vertical quantum cohomology of the
bundle Fnι...nk(E) as an algebra generated over H*(B) by the same generators

x\ \...9Xnk and quantum deformation parameters ^ι,...,^-ι a§ above with re-
lations given by the coefficients of polynomial

cn(E). (2.24)
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Setting in (2.24)cι(£) = Q,...,cn(E) = 0 (cf. (2.17)), one gets the relations in the
quantum cohomology ring QH*(Fnr..nk) of the partial flag manifold Fnι...nk.

Remark. It should be noted that the situation with the ring QH*(Fnι...nk(E)) is
much less clear. We discuss this in Appendix A.

3. A Math Introduction to Vertical Quantum Cohomology

3.L Quantum Cohomology. Let X be a smooth complex projective variety, c the
first Chern class of the tangent bundle of X ' . Now and for all we assume that c
is non-negative. Let us choose some basis ωι,ω2,...,ω£ in H2(X, Z)Π//1'1(JΓ, C)
such that the homology class of a complex curve 5 is given by a string d =
(d\,...,dk) of its coordinates with respect to a)\,a>2,...,cok, with d\,...,dk ^ 0.
Let L be a sublattice in Hι(X, Z) Γ\U2(X9 C) generated by the homology classes of
complex curves (CP1). We use the notation qd for the elements of the group ring of
the lattice L. Since we have already chosen some basis in H2(X, Z)Γ\Hl'l(X, C),

we can identify the element qd with the monomial qd

λ

l ...qd

k

k. We denote by K the
ring C [ [ q \ , . . . , q k ] ] (but see Appendix C ).

Let d be an element of L. We denote by Md the moduli space of degree d
algebraic maps CP1 — » X with fixed three points (0, 1, oo). In our case Md is
a well-defined quasiprojective algebraic variety (see Appendix D). The Riemann-
Roch formula tells us that dim Jίd ^ c(d) H- dim X ' . We assume in this paper that
for X the equality holds, i.e. dim Jίd — c(d) + dim X.

Let pi, p2> . . . , PS be closed differential forms on X of degree r\,...,rs respec-
tively. We want to define the correlation function (pι\p2\ \ps} now. For that
purpose let us choose 5- (different) generic points x\,...,xs on CP1 . For each del,
we have a map φ : Md — » Xs- It is given by

\l/:φt-+ (φ(xι ), φ(x2 ),..., φ(xs)) € Xs , where φ^J{d.

Note that this is an algebraic map. We have s canonical projections π/(z — l,...,s)
from Xs to X. So we have the differential form P = π\* p\ Λ τi2* PΊ A . . . Λ ns* ps

on Xs.

Definition. The correlation function ( p ι \ p 2 \ - - \ P s ) is defined by

First of all, we must show that this definition is correct. In order to do that we
must show that the integral J^ ψ*P is well-defined. But this is easy to do. Indeed,

we are integrating a differential form of the highest degree, so we can integrate it
over any affine sub variety U of Jtd such that dim (Jίd — U) < dim^j. Second,
let us distinguish two cases:

1) the dimension of the closure of ψ(Λ?d) is less than the dimension of Jt
2) the dimension of the closure of i//(^d) is me same as the dimension of

In the first case it is quite obvious that the integral is equal to 0. In the
second case we can find such affine subvariety U of Jίd satisfying the above
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condition that the restriction of \j/ to U gives a covering of the image ψ(U). So we
have

fιl/*P = lΨ*P = te&M f P
Jϊd U

The last integral is well-defined (since ψ(U) is a constructible set).
Second, we must show that the definition (3.1) does not depend on the choice8

of x\,...,xs on CP1 . A reader may find the proof in [27].

Properties of Correlation Functions:
1. They are multi-linear and skew-symmetric.
2 ( p \ \ P 2 \ ' " \ P s \ ^ } — (p\\P2 - \Ps) (where 1 is considered as a zero degree

differential form).

3. (pι\p2\...\Ps)\q=Q = ( / > ! > . . . , A) where (Pι> >Ps) = fxP\ A p2 Λ . . . Λ ps.

4. (p) = (p) = SXP
5. (p\\p2) — (pi 9 Pi) is me usual Poincare pairing.

All properties follow obviously from the definition except the last one. Let us
explain why the last property is true. We choose two points x\ and X2 of CP1.
The group C* is the group of automorphisms of CP1 with two fixed points x\
and JC2. It acts on the variety Jίd, and the map ψ from the definition is constant
on the C* -orbits. The unique non-empty variety Jί^ on which C* acts trivially is
M§ — X. On the other moduli spaces the action is "free almost everywhere." So
the dimension of the closure of the image of if/ is less than that of Jί^ if d φ 0. So
we get the ordinary Poincare pairing.

Now we define quantum cohomology. The Poincare pairing gives us an isomor-
phism of H*(X,C)®K with its dual as K-modules. So the triple pairing gives a
product:

(H*(X, C) <8) K) (g) (H*(X9 C) 0 K) -> H*(X, C) <8> K . (3.2)
K

It is obvious that the product (3.2) is skew-commutative. We are not going to
prove that this product is associative (as it is highly non-trivial. See [27]), but we
assume that it is true. The product (3.2) gives us what we call quantum cohomology
ring QH*(X91ί) of X. As K-module, the quantum cohomology is isomorphic to
H*(X,C) ® K, but the products in these two rings are different.

Properties9:
1) the product (3.2) is a ^-deformation of the classical product,
2) the product (3.2) respects the usual grading in the cohomology H*(X, C) ® K

(remember that K is a graded ring).

3.2. Vertical Quantum Cohomology. Let us suppose10 that we have a locally trivial
algebraic fiber bundle X with a base B and a fiber F '. We assume that all X,B and
F satisfy all the conditions imposed on the varieties for which we have defined
the quantum cohomology. Deligne's theorem (see [24]) tells that the corresponding

8 We can integrate over the set of all possible choices of points (i.e. over CP5), so the definition
does not depend on the choice of points
9 See [1].
10 In fact, vertical quantum cohomology can be defined in more general situation. But we need it
only in this case and it is easier to describe it (really the ring K) in this particular situation.
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Leray spectral sequence degenerates in £2- So the map from H2(X, C) to H2(F, C)
is surjective. Denote the projection from X to B by π and an inclusion of F into
X by /.

Let ώ\9...9ώk be our chosen basis in H2(F, Z) Π Hl'l(F, C) for F, ώ^+i, . . . , ώ/
basis for 5. We can find a basis ωi, . . . , ω*, ω^+i, . . . , ω/ for Jί such that ω/ = π*(ώ/)
for / > A: and ώ/ = ι*(ω/) for z ^ k 4- 1. Certainly the choice is not unique but
nothing essential would depend on it. We want to deform the usual multiplication
using only the maps from CP1 to X which project onto points in B. We call such
maps vertical. The homology class of such a map can be parametrized by a string
d = ( d\ , . . . , dk ), the evaluation of ω\,...,a>k on the image. So the deformation will
be defined over the ring K = C [ [ q \ , . . . , q k ] ] .

We denote the moduli space of the vertical maps of degree d by Jί^ . One can

see that Jt^ projects onto B and the fiber is Jί(F)d Let us denote this projection
by τ.

Now we can define vertical correlation functions in the same way we did before
to define (3.1). We choose s generic points x\,...,xs on CP1. This gives us a

map from M^ to Xs. Denote it by μ. Let p\,p2,...,ps be closed differential
forms on X of degree r\,...,rs respectively. Denote by P the differential form

Definition. The vertical correlation function (p\\p2\ \ps}(Ό) is given by

(Pι\P2 ...\ps} = E^(μ*P), (3.3)

where τ\ means the integration over fibers. It takes values in the cohomology of

B, i.e. in H*(B,K).

In the same way as for the definition (3.1) of the ordinary correlation functions,
one can prove correctness of this definition.

Properties of the Vertical Correlation Functions:
1. They are multi-linear and skew-symmetric.
2 (p\\p2\ -\Ps\V)(Ό) = (p\\P2\' \ps)(v) (where 1 is considered as a zero de-

gree differential form).

4.

5 (pι\P2)(υ) = π \ ( p \ Λ p 2 ) . f

6. Let p be any differential form on B. Then (π*/7 Λ p\\p2\ ••• \Ps)(υ) —

All properties except the last one can be proved in the same way as in the
ordinary case. The last property is quite obvious and follows from the functoriality
and the properties of the functors τ\,π\ and π*.

We can define the vertical quantum cohomology now. The Poincare pairing on
X gives us an isomorphism of H*(X9C) 0 K with its dual as K-modules. In order
to define the product we must have a triple pairing with values in K. We already
have a triple pairing (3.3) with values in //*(#, K). So we can define the auxiliary
triple pairing by means of integration of (3.3) over the fundamental cycle B:

(pι\P2\p3)mxύ[ary = f (PI\P2\P3)(Ό) (3.4)
B
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This gives us a product. Certainly this product is skew-commutative. It is not obvi-
ous at all that this product is associative, but we will prove it below. Let us denote
this product by * and the algebra of vertical quantum cohomology by QHy(X,K)

(or sometimes by QHy(X;B,K), in order to avoid confusion).
First of all, let us notice the following property of the multiplication * which

shows that it is compatible with the vertical correlation functions (3.3):

(PI\P2\P3)(V) = (Pi * P2\Pl)(υ) -

This follows directly from the definition.
The proof of the associativity is based on the relation between the quantum

cohomology of X and the vertical quantum cohomology. One can get the following
formula from the definitions:

(P\\P2 '"\PS)\qM=0^qι=0= (Pl\P2 ...\Ps)(υ)

This shows that the vertical quantum product is equal to the usual quantum prod-
uct on X when we set ^+ι = 0,...,#/ = 0. Since the usual quantum product is
associative, this ends the proof of associativity. This relation between the vertical
quantum cohomology and the usual quantum cohomology is a particular case of a
certain property of the vertical quantum cohomology, the so-called induction, which
we will discuss a bit later.

3.3. Properties of the Vertical Quantum Cohomology

1. Product. Suppose that we have two locally trivial algebraic fiber bundles
(X\9B\9Fι) and (X29B29F2) for which the vertical quantum cohomology is defined.
The product (X9B9F) = (X\ x X29B{ x B29Fι x F2) of these bundles is also a lo-
cally trivial algebraic fiber bundle. Then for the vertical quantum cohomology of
the product11 we have a formula

This statement is trivial; it follows immediately from the fact that the moduli spaces
of vertical maps of CP1 to X are the products of the moduli spaces for X\ and
X2 (and that the Pioncare pairing on the cohomology of X is the product of the
Poincare pairings on X\ and X2).

2. Restriction. Consider a locally trivial algebraic bundle (X9B9F) and an alge-
braic map from B to B. Take the Cartesian product of X and B over B. Denote
this product by 7 and the natural map from 7 to X by v. Then 7 is a locally
trivial algebraic fiber bundle over B with the fiber F. The cohomology H*(Y9C)
is generated by the cohomology of B and the image of H*(X9C) (this is true
since the spectral sequence for 7 —> B degenerates in E2 (Deligne's theorem see
[24, 25])). We have the part ωι,...,ω* of a basis in H2(X9Z*)Γ(Hl>l(X9C). We
can choose ώi = v*(ω\)9...9ώk = v*(ω/0 as the corresponding part of a basis in

//2(7,Z) Π//1'2(7,C). Then we get an isomorphism of the rings K = K. Now we
can say that we have a map:

One can see that the vertical quantum cohomology of X is a module over KI
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This map is just v* (since we have a natural isomorphism of K-modules QHy(X,K)

and H*(X9 K)). Moreover, if we know the vertical cohomology of X9 then we can
compute the vertical cohomology of 7.

Certainly, we have a map between the vertical quantum cohomology as K-
modules. We must show that it respects the multiplication. But this is easy to see,

is equal to the Cartesian product of jέ^ and B over B. So we get:

Now we will use the fact that the vertical quantum product is uniquely de-
fined by (p\ * P2\pι)(v) — (p\\P2\Pι)(v) for any p^. It is easy to check that
(v*(/?ι * P2)\p}(υ) = (v* p\\v* P2\p)(υ) for any p (here we use the fact that the usual

cohomology is generated by the cohomology of B and the image of H*(X,lL)).

3. Induction. Suppose that we have locally trivial algebraic bundles (X9 7, F\ ) and
(7,#,F2). Assume that the algebraic bundle X — > B with the fiber F is locally trivial.
We choose a basis in H2(X, Z) Π Hltl(X9 C) in the following way: first, we choose a
basis ώi , . . . , ώm for F\ second, we choose a basis ώ\+m9 . . . , ώk+m> ΰ>k+m+ι > > ΰ>ι+m
for 7 as before (when we were defining the vertical correlation functions). If we
denote now by / an inclusion of F\ into X and by π the projection from X onto
7, then we can choose a basis ωι,...,ω/+ m in H2(X9Z)Γ\Hl>l(X,C) such that
i*(o)j) = ώj for 1 ^ j ^ m and ω7 = π*(ώy) for 7 > m. Then denote by K the

ring C[[qι,...,qk+m]] and by K the ring C[[qι,...,qm]].
In this situation the following relation between the rings QHy(X'9B9K) and

QH£(X'9Y9K) holds:

where (qm+\,...,qm+k) is an ideal in K generated by qm+\9...,qm+k.
This fact follows from two simple observations. First (we have already used this

many times), the product * is defined uniquely by the correlation functions (;?ι*

P2\P3)(υ) = (pι\P2\P3)(υ) Second, the moduli space ^(^,^)( l̂v..5ί/wA...,θ) coincides
with the moduli space Jί(X9Y)^ dmy So we see that

(P\\P2\ - - - \ps\Ό) (X,B)\qm+^,.,qm+k^ = (Pι\P2 - - - 1 p

This completes the sketch of the proof of induction.

Ό}

Remark. If we look at the definition (3.3) of the vertical correlation functions, we
will see that one can define them in the following situation. Let G be a group acting
on an algebraic variety F, P a principal G bundle over B (we are not assuming here
that P is algebraic), and P X G F our fiber bundle. Then we can say that the moduli
space of the vertical maps of degree d is P XG ̂ (F)d (To make this statement
precise we need to show that all the integrals converge; nevertheless it is useful to
have this picture in mind.) We will define equivariant quantum cohomology in the
next section. One can think about them as a vertical quantum cohomology where
P is EG and B is BG of the Lie group G. This picture and the properties of
the vertical quantum cohomology explain the properties of the equivariant quantum
cohomology.
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4. Equivariant Quantum Cohomology

Equi variant quantum cohomology were defined first in the paper [1]. Our approach
is based on another, certainly equivalent, definition.

We use the setup of the previous chapter; X is our algebraic variety. Suppose
that we have an algebraic group G acting on F. Denote by g the Lie algebra of
this group. As before, we denote by Jίj the moduli space of degree d maps from
CP1 to F. Then the group G acts on Jίd.

Recall that the usual equivariant cohomology is defined as the cohomology of
the following complex:

Ωf(F)
\i+2j=k )

with the differential:

(dg(QL))(h) = rf(α(A)) - ί(A)(α(A)) h G g .

The integration over the fundamental cycle of F gives a map / from the equivariant
cohomology of X to the equivariant cohomology of the point (H£(pt.,C)). This
map sends Ck to (S*-dίm/Γ(0)*)ί?. We denote by the symbol /^ the map from the

equivariant cohomology of Jίd to the equivariant cohomology of the point.
This shows how we should define the equivariant correlation functions. Let us

choose 5- generic points x\,...,xs on CP1. This gives us a map ψ from Jtd to
Fs. For s equivariant closed differential forms pι,p2, ,Ps (i e elements of our
complex C*) we denote by P a product P = π\* p\ Λ π2* P2 Λ . . . Λ πs* ps.

Definition. The equivariant correlation function (pι\p2\- PS)G is defined by

By the same argument as in the case of the usual quantum cohomology, one
can see that this definition is correct. The properties of the equivariant correlation
functions are similar to those of the vertical correlation functions. Nevertheless we
formulate them below.

Properties of the Equivariant Correlation Functions:
1. They are multi-linear and skew-symmetric.
2 (P\\P2\ |#S|I)G = (p\\P2\ - - \PS)G (where 1 is considered as a zero degree

equivariant differential form).
3 (Pl\P2\ .\Ps)G\q=0 = f(p\ Λ . . . Λ ^ ) .

4. (p)G = f ( p ) .
5 (p\\P2)(υ) = f(Pl Λ / ? 2 ) .

6. Let p be any element of (S*(g)*)G. If we multiply p by 1-a zero degree
G-invariant differential form on F— we can consider it as an element of the
complex C*. Then (p Λ p\\p2\ ... \ps)c = p(p\\Ps -. \PS}G.

Let us explain a relation between the vertical correlation functions and the equiv-
ariant correlation functions. Suppose that we have an algebraic principal G-bundle
P over B. Assume that P and B are so nice that the vertical correlation functions
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are defined for X — P x $ F (that is, X is a locally trivial algebraic bundle with
the fiber F over B). Let us choose a connection on P represented by a 1-form
ω G (Ω(P,g))G. In this situation we have the following homomorphisms of differ-
ential graded algebras (see Theorem 7.42 in [28])

φ ω ( X ) : ( C * , d g ) - > ( Ω ( X ) , d ) ,

φω

These homomorphisms respect everything in the sense that if we take s equivariant
closed differential forms p\,pι,...,ps on F, then the relation we are talking about
is

0w((/>i|/>2|...|/^)H0^^ (4-2)

One can check this property using functoriality of the homomorphisms φω(X\φω

(Jίd\Φω an<i others (see paragraph 7.6 in [28]).
Now we can define equivariant quantum cohomology. We have a spectral se-

quence E™ = Hp(BG,Hq(F,K) converging to the equivariant cohomology of F.
Note that it degenerates in the term £2 (see [24]). So //2(F,K) is a free module
over H*(BG9K) = (£*(#)* )G ®c K. The usual pairing f(p{ Λ p2) with values in
H*(BG,K) is non-degenerate (since it respects the spectral sequence in a natural
way see [29]). We want to define a multiplication satisfying the following property:

(Pi * P2\P3)G = (pl\P2\Pl}G -

Since (p\\p2)G — f ( p \ ^ Pi) we see that if the quantum multiplication exists, then
it is unique. We can think of the triple G-equivariant pairing as a morphism of
//*(£G,K)-modules:

#*(F,K) Θ//*(*σ,κ) H£(F9K) Θ^GJK) H£(F9K) -+ H*(BG,K) . (4.3)

Together with the non-degenerate Poincare pairing, the triple pairing (4.3) defines
a product

//*(F,K) ®H*(BGn H£(F,K) -+ H£(F,K) . (4.4)

We denote by QH^(F,K) the algebra defined by this product.
One can check that this definition is correct and that the product (4.4) is asso-

ciative. For example, associativity of the product can be proved by comparing (4.4)
with the vertical quantum product (using (4.2)). One only needs to notice that there
exists a map from QH^(F,K) to QHγ(P XG F,K) which respects the multiplication.

So we have the equivariant quantum cohomology ring QH£(F,K). Moreover,
QH£(F,K) is an algebra over //*(#(/, K). The following commutative diagram de-
scribes the relation between the equivariant and the vertical quantum cohomology:

(4.5)

H*(B,K)

Now we discuss some properties of the equivariant quantum cohomology (see

[1]).
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Product. Let F' and F" be G'- and G"-spaces respectively (G> ', G" are affine al-
gebraic groups, etc.). We have the cohomology groups QH*,(F',Kf) and QH*,f

(F",K"). Now take the product F' x F1' and consider it as a G' x G"-space. Con-
sider the ring QH*,χG,,(Ff x F",K ®c K"). We can ask what is the relation be-

tween the equivariant quantum cohomology of F',F" and that of F1 x F" . This
answer is given by the formula:

xG'W x F">κ/ ®c K") - g#*,(F',K') 0C β/f£,(F",K") . (4.6)

This formula follows immediately from the definitions.

Restriction. Let F be a G-space and suppose that we have an affine algebraic
subgroup G of G. Note that the Leray spectral sequence E^q = H^(pt,Hq(F^})

(EP

2

q = H?(pt,Hq(F,K))) degenerates in the term E2 (respectively E2). We have
a natural morphism of the rings / : //£(F,K) — > 7/ΐ(F,K) which comes from a
map

induced by the inclusion g ̂  g. Let us make the following remark: //ΐ(F,K)
is generated by //£(/% K) as a //^(/>/,K)-module. Denote the natural map from
HG(pt,K) to H^(pt,K) by (5. If we look now at the definition of the equivariant
correlation functions, we can easily see from functoriality (paragraph 7.6 of [28])
that

Since the equivariant quantum product is uniquely defined by the correlation func-
tions and because of the fact that 7/ΐ(F,K) is generated by H£(F,K) as a H£(pt,K)-
module, the map / respects the equivariant quantum product. So we have a mor-
phism of rings:

Using the fact that the spectral sequence E* degenerates in £2, we see that
F,K) is completely defined by QH£(F,K),H£(F,K) and the morphism /. If

QHG(F,K) is equal to a quotient of an //(5(pί,K)-algebra A modulo an ideal /, then
QH^(F,K) should be equal to the quotient of A ^H^(pt,K) modulo the image
of/.

Now we are going to discuss two particular cases of restriction.

1. Let G be the trivial group. Then

So we see that the quantum cohomology of F is equal to the quotient
of the equivariant quantum cohomology modulo an ideal generated by the
equivariant cohomology of the point. That is

β/Γ(F,K) - QHZ(F,K)/(HZ(pt,K)) . (4.7)
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2. Let H be any affine algebraic group, K its maximal compact subgroup,
and G the corresponding reductive algebraic subgroup. Let F be a H-
space. Then F naturally becomes a G-space. We claim that the following
isomorphism takes place:

F,K). (4.8)

Really, we have H^(F,K) — //^(F,K) (since F is a protective variety) and
HH
(/?£,*) = Hc(pt,*). From the restriction property we get

as Hχ(pt, *) = H£(pt9 *)-algebras.

2.1. Let G be a parabolic subgroup of some semisimple group and G be its
Levi subgroup. There is a natural projection from G onto G. Let F be a
G-space. Then F naturally becomes a G-space. So we get (see (4.8))

). (4.9)

Induction. Let G be an affine algebraic subgroup of G with a simply-connected
compact Kahler quotient G/G. Let F be a G-space and a simply-connected com-
pact Kahler variety X = G x^F. One can wonder about the relations between

ρ#ϊ(F,K) and QH£(X9K). This answer is as follows.

First, the space X is fibered over G/G with a fiber F. We have a basis ώ\,...,ώk
in H2(F, Z) nHl*l(F, C). We can choose a basis α > ι , . . . , ω / as we did in Sect. 3
when we described the vertical quantum cohomology. There exists a natural map

from ((S*(0)* 0 Ω(X))G,dg) to ((£*(£)* 0 Ω(F))ό,dg) which induces an isomor-
phism of the equivariant cohomology.

Let us describe this map. We can treat (S*(0)* 0 Ω(X))G as HomG (£*(#),&
(A")). Indeed, if given a map T then for any υ G S*(g) we have T(v) G Ω(X). There
is a canonical inclusion of F into X as a fiber over 1 G (G/G). So we can restrict
the section T(υ) to F:

ΠtOI/Γ G Ω(X)\F = Λ*(g/g)*

To an elements T G Hom(}(S*(g), Ω(X)) we can associate an element

f G

Thus we get a map from (S*(g)* ® Ω(X))U to (S*(0)* <8>c Λ*(g)*/g) Oc J
There is a natural map from S*(g)* ®c Λ*(g/g)* to £*(£?)* induced by inclusion
of 5*(<?) into 5*(gf) 0c A*(g/g). The composition of these two maps gives us the
desired one. One can check that it respects the differential.

Using these natural maps, one can see that

(P\\P2 - \PS)G = ( P ι \ P 2 \ ' \Ps)G\<ik+\=o> '4i=o
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Finally, there is a natural isomorphism H^(F, *) — HQ(X, *), we obtain

QH*6(F, K) = QHZ(X, K)|ft+1=0,.,?/=o . (4.10)

This is an isomorphim of the rings, but there are additional structures. The left-hand

side is an H^(pt, K)~algebra and the right-hand side is an H£(pt,K)-a\gebra (since

K = K/(#£+ι,... ,#/)). Let us describe the relation between these structures. One can

see that there is a natural morphism of the rings H£(pt,K) —> /Π(/tf,K). Thus the

left-hand side is also an Hς(pt,K)-algebra. One can see that isomorphism (4.10)

is the isomorphism of //2(;?ί,K)-algebras relation. We want to make a remark that
this property of the equivariant quantum cohomology is an analog of the induction
for the vertical quantum cohomology. One can prove this property reducing it to
the same property of the vertical quantum cohomology.

Remark. The equivariant quantum cohomology gives us a simple way to compute
the vertical quantum cohomology. If we had a principal G-bundle P and a G-space
F then in order to compute the vertical quantum cohomology of P x Q F it would
be sufficient to know the equivariant quantum cohomology of F.

5. Computation of the Equivariant Quantum Cohomology
of Partial Flag Manifolds

5.1. Classical Cohomology Ring. Let us consider a partial flag maniflod Fnr..nk.
There are k canonical vector bundles ξ\9...,ξk on this variety. To describe them
we introduce k auxiliary vector bundles η\,...,ηk A fiber of ηt over a flag {0 C
V1 C - - - C Vk} G Fnι...nk is a vector space V1. In particular, η^ is a trivial bundle.
The canonical bundles {£/} are defined by

ηι, if / = 1.

We denote by x^ the /h Chern class of £/.

The cohomology ring of the flag manifold is a quotient of the polynimial ring

C[x\ \ . . . , x n f c ] modulo the ideal generated by the coefficients of the polynomial

P(λ) = λn- fl(λ"' + λn'-λx(? + •+*<?). (5.2)
z=l

We choose the basis ωi = c ι ( f f ι ) , . . . , ω*_ι = c\(ηk-λ) in H2(X,Z)ΠHl>l(X,C).
Our partial flag manifold is a quotient GL(n,C)/P, where /Ms a correspond-

ing parabolic subgroup. Let αι, . . . ,α Λ be the simple positive roots of sl(n,C).
To each α/ we can canonically associate a subgroup 5L(/)(2,C) C GL(n,C). If
iή=n\, iΦ«ι -f «2? j / φ w i + -f nk-i then 5Z(/)(2,C) lies in the parabolic sub-
group P. On the other hand, if i = n\ H -f HJ-\ then SZ,(/)(2,C) intersects P
along the maximal torus C* C iSX(/)(2,C). So we get k — I canonical embeddings

of CP('0 - SL(i)(2,C)/Γ into Faι...nt.
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The homological type of curve Σ C Fnι...nk is given by the string of its coordi-"k
nates

In particular, the homological type of CP^1

 + ...+Wj) corresponding to the simple root

°ί«1+ •••+«, ls

ί— 1 n—i

(δΓ^ι,C^δ). (53)
The group GL(n,C) acts on the manifold Fn}...nk. Let us describe the equivariant

cohomology HςL(n}(Fnι...nk,K). As an algebra over H^L(n}(pt, K) = K[CI,. . . ,C Λ ] it

is generated by the elements {y^}. The map H£L(n}(Fnι...nk,K) -» H*(Fnι...nk,K)

sends {y^} — » ί*/^}- The relations are given now by the coefficients of the poly-
nomial

+ λni'lX^ + - - +4?) - (5.4)

5.2. 77/e Equivariant Quantum Cohomology of Grassmannians. The equivari-
ant quantum cohomology ring12 QH^,(Gr(n,m],K) of Grassmannian Gr(n,m) =

U(n)l(U(n — m)x U(m)) as a algebra over H£L^(pt,K) is generated by y(l\

- <>ym\y\ \ ">yn-m By Lemma B2 (see Appendix B), the relations in QHcL(n)
(Gr(w,m)) are the deformations of the classical relations (5.4). In order to com-
pute them we need to know the quantum cohomology ring QH*(Gr(n,m\K). It
was discussed in many papers [12-17]. In the last reference it is shown that this

ring is generated by x^l\ . . . ,jtίp, xf\ . . . ,x%lm and the relations are the coefficients
of the following polynomial equation:

(λm + λm~lx + . . .
(5.5)

From Lemma Bl (see Appendix B) or [30] it follows that the whole ideal of
relations in QH*(Gr(n,m),K) is generated by (5.5).

Now we can find the relations in QH^L^(Gr(n,m)) we are after. Note that the
degree of q is equal to 2n. Therefore only the highest (2ri) degree relation in (5.4)
is deformed:

Wy™a = c« + «q, (5-6)
where α is some constant. This constant is determined using the restriction property
(see Sect. 4). One can see it equals the corresponding constant (—\)n~m in 5.5. Note
that this answer is consistent with the general formula (2.22) for the equivariant
quantum cohomology of the partial flag manifolds.

5.3. The Key Lemma. According to Lemma B2,

For the Grassmannian the ring of coefficients is generated by a single parameter q : K =
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where the ideal QIcL(n) is generated by some deformations of the classical relations
(5.4). The following lemma is a trivial generalization of the Lemma 4.2.1 [1].

Lemma . For k > 2, suppose that a quasi-homogeneous relation of the form

λn + Clλ"-1 + - -

is satisfied in the equivariant quantum cohomology algebra of the partial flag man-
ifold Fnr..nk modulo qt for each i — ! , . . .,& — 1. Then the relation holds identically
(i.e. for all q).

Sketch of the Proof. Indeed, since the LHS of the relation in question is homoge-
neous of degree 2n (we choose deg λ — 2), the hypothesis of Lemma 1 means that
the difference LHS — RHS is divisible by q\ . ..##-!• But deg q\ — «/ -f n^\ and

deggi . . .<7f r_ ι — 2n — n\ — nk > n for k > 2 . Q.E.D

5.4. Relations in QHQL,n^(Fnr..nk,K). We are going to prove that the relations

(2.22) generate the ideal QIcL(n) We will do this by induction on k.
1) (A base of induction.) When k = 2, the partial flag manifold FH} H2 is called

the Grassmannian Gr(n\ λ-n^n-i). We have already proven (2.22) in that
case.

2) (A step of induction.) Suppose that our assumption is true for all k < k$.
Let us prove it for k — k$. According to the key lemma, it suffices to prove
these relations modulo q\ for all i— 1 , . . . , k — 1 .
Let us notice that13

Fnr..nk = GL(n,C) xPj (Fnr..nj x Fnj+Γ..nk) , (5.7)

where Pj C GL(n,C} is a corresponding parabolic subgroup. Using the in-
duction property (4.10) we get

(n,C}(FnΓ nk^)\qj=Q = QHp.(Fnr..nj X FΛy+1...Λfc,K) , (5.8)

where K = K/((^7)). From the restriction property (4.9) it follows that

QHp.(Fnr..nj X Fnj+l...nk,K) = Qf^GL(Nl,C)xGL(N2,C)(^nl nJ X FnJ+Γ-nk^} ,

(5.9)

where N\ — n\ H ----- h «7 and N2 = nj+\ H ----- \ n^. Finally, from the prod-
uct (4.6) we have

1 -nk, K2) , (5.10)

A symbol Fn which may appear in this formula stands for a point {pt}.
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and K = KI ®K2. Taking (5.8)-(5.10) together we obtain the natural iso-
morphism

^̂We want to stress that (5.11) is an isomorphism of

algebras. This isomorphism together with assumption 2 shows that for k — &o
the relations (2.22) hold modulo 0y. Since it is true for all j = 1, . . . , k - 1,
the step of induction is complete. QED

Remark. Using the restriction property (4.7) we find that the quantum cohomology

ring QH*(Fnι...nk,1ί) is generated by x(^\...9x^ of degrees deg x^ = 2i with the
relations given by the coefficients of the polynomial

, (5.12)

where the n x n matrix A is defined in the Sect. 2 just below the formula (2.22).

6. Appendix A

6.1. Remarks on the Quantum Cohomology QH*(P(E)). Whereas the vertical
quantum cohomology of Fnι...nk(E) are described by (2.24), we do not know if
it is possible to compute the quantum cohomology ring of the flag bundle in gen-
eral. It seems to be quite a nontrivial problem, as two examples below show.

Example 1. Take a projective space Pm as a base, a vector bundle E = Θ^L0$(r/),
^o ^ ^ rn on it and let X = P(E). A Kahler cone of P(£) is two-dimensional
and is generated by its two edges y e //n(Pm) C Hn(P(E)) and z = c + rΌy,
where x£Hn(P(E)) is a generator as in (2.19) and ΓQ — max{r/}. The coho-
mology ring H*(P(E)) is generated by x and z with the relations

y+1 = o ,

0. (6.1)

The first Chern class c\(P(E)) — nz -\- (m — Σ(ro ~ rt))y *s positive iff k = m —
ΣXΠ) — π) > 0. The Novikov ring K is generated by two elements (quantum de-
formation parameters) qv ("vertical") and q^ ("horizontal") of degrees 2(n +1) and
2k respectively.

The relations in the quantum cohomology ring QH*(P(E)) in this example
can be obtained using the fact P(E) is a toric variety [9]. Equivalently, one finds
the relations from the symplectic reduction of a linear σ-model on the n + m -f-
2-dimensional vector space by the action of t/(l) x £7(1) [10]. The quantum rela-
tions are:

(6.2)
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Example 2. The quantum cohomology of the flag manifold F3 =
£7(1) x £/(!)) are computed in [31, 1]. They are generated by two elements x and
y of degree two. The edges of two-dimensional Kahler cone of F3 are y and x -f- y.
The quantum relations are:

x2 + xy -f- y2 = qv + 0A ,

/=^(2j + x) . (6.3)

A space F3 can be realized as a projectivization P(E) of a rank 2 irreducible vector

bundle on P2, then y is a generator of the ring //*(P2) and x is a generator14 as
in (2.19). The first Chern class of F3 is c\(F^) = 2(x + 2y) so the degrees of both
qv and q^ are 4.

In both examples we see that QH*(P(E)) is not a £>#*(£ )-algebra. For qhή=0
the relations for y in (6.2), (6.3) differ from the relation in the quantum coho-
mology of project! ve space. This is a general situation in quantum cohomology;
only in the classical limit "on the base" (q^ — 0 in our examples) does the "uni-
versality," like in (2.19), get restored and the ring QH*(P(E)) becomes an algebra
over β//*C#)|ciass — H*(B). But then it just coincides with the vertical quantum
cohomology QHγ(P(E\Pn,B) as defined above.

It can happen sometime, like it happens in (6.2), that "vertical" relation for c is
the same in both rings QHy(P(E),Pn,B) and QH*(P(E)). But the second example
shows that in general this is not the case and in QH*(P(E)) the "vertical" relations
QHy(P(E)9P

n

9B) get deformed by q^ as well the "horizontal" relation do.

7. Appendix B

We use the following setup. We have a compact Kahler algebraic variety X\ c is
the first Chern class of the tangent bundle to X. We denote by qd an element of the
group ring of the sublattice L in H2(X,Z)Γ\H2(X,C) generated by the homology

classes of rational complex curves (CP1). Let us choose some basis ω\9...9a)k in
H2(X, Z) Π Hl'l(X9 C) such that the homology class of a curve S is given by a string
d = (d\9...9dk) of its coordinates with respect to ω\,...,ωk with d\9...9dk ^ 0.

Then the element qd can be identified with the monomial q{

1 ...#£*.
Let us define a ring of coeίfcients K = C [ [ q i 9 q 2 , . . . 9 q k ] ] - This is a local ring;

let / be its maximal ideal. The quantum cohomology is an algebra over the ring
K. Moreover, by definition it is a free module over K. The K is graded so that
degqd = c(d) (here we consider d as an element of H2(X,C)).

Let p\9...9pι be some cocycles of degree r ι , . . . , r/ respectively. Then a cor-
relation function (p\\p2 - \Pι) with values in K is defined. We assume that
(p\ \Pι\ - - \Pι) is always homogeneous of degree r\ + Γ2 -f 4- r\ — άim(X). No-
tice that the pairing (p\\p2) is ordinary Poincare pairing.

Let x\9...9xr be homogeneous generators of the ring H*(X9C). Let f\9...9fs

be generators of the ideal of relations in H*(X9C) that is, f\9...9fs are homo-
geneous polynomials in x\9...9xr and H*(X9C) = SΛ[xι9...9xr]/(f\9...9fs). Then
the following lemma holds.

14 The Chern classes of E are c\(E) = y and cι(E) = y2.
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Lemma 1. There exist polynomials gt(x\ 9...9xr9q\9...9qk) for i — 1 , . . . , s such that
0/(xι,..., jt r,0,...,0) = 0 i= 1,...,5 with the following relations in QH*(X,K):

In this situation the quantum cohomology ring equals

X9K) = SΛκ[xl9...9xr]/(fl-gl9...9fs-gs).

Proof. Let us choose some homogeneous basis y\9...9yu in the vector space
H*(X9C). Let z\9...9zu be the dual basis with respect to Poincare duality. Let

fi(x\9...9xr) = Σj j r a j \ , ,jf

 χJ\ •••*'•' and let TV be such a positive integer that
a j ι , . . j f = 0 for jΊ H ----- \-jr > N. Using the fact that15 (p\ pi ... \p\) = (p\ * p2 *
• * pι-\\pι) we can write

71

= ( f i ( x \ 9 . . . 9xr)9

where hjj(q\ , . . . , qk) is polynomial in q\9...9qk and Az,y(0, . . . , 0) = 0.

So we see that in QH*(X9K)

u

//(*!,. . . ,xr) = Σ hitj(qi9. . .,qk)zj .

Certainly we have a map from £d[xi,...,jc,.] to g//*(Jί,K) (as K-modules).
Moreover it is surjective since this map respects grading, the map from SΛ[x\9. ..9xr]
1(1) to QH*(X9K)/(I) is surjective and we can use Nakayama's lemma. So we can
express Zj G QH*(X9K) as a polynomial of x\9...9xr with coefficients in K. This
proves the first part of the lemma.

We have a map from SΛ[xι , . . . 9 x r ] / ( f \ - g\ , . . . , Λ - gs) to β//*(^, K). These
two K-modules both are finitely generated and the isomorphism

holds. It follows now from Nakayama's lemma that these modules are isomorphic:

S Λ [ x l 9 . . . , x r ] / ( f } -gι,...9fs-gs) = QH*(X9K). Q.E.D

This lemma shows that if we know the deformed relations /, = gι then the quantum
cohomology ring is QH*(X9K) = ̂ K^I, - . ,xr]/(f\ - g\, - . ,fs - &).

Let us state the similar lemma for the equivariant quantum cohomology. We
will not prove it since the proof is a simple adaptation of the proof of Lemma 1 .

Let G be an affine algebraic group acting on X. Let y\9...9yr be homoge-
neous generators of algebra H£(X9C) over the ring H^(pt,C). Let c\9...9cn be

15 We can avoid using this fact since the quantum multiplication is a deformation of the ordinary

one. We know that xj

{

] * ••• *x/' = xj

{

] ...jc/' (mod /). So, instead of writing correlation func-

tions, we can notice that (x\l *•••*#/' \yj) = (x{1 .. .xf' \yf) (mod /). As follows from the proof,

knowing this we can avoid the formula (p\ \P2\ \Pι) = (p\ * Pi * * Pι-\\Pι}
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some homogeneous generators of the ring H^(pt,C). Let /1?...,/5 be gener-

ators of the ideal of relations between yt. That is, /1,...,/ί are homogeneous
polynomials in y\,...,yr and c\ , . . . , cn and

Lemma 2. There exist polynomials gt(y\ ,..., >v, ei ,..., cn, #ι , . . . ,#&) for i — 1, . . . , s
such that gt(yi9. . . , yr, c\9 . . . , cn, 0, . . . , 0) = 0 for i — 1, . . . ,s and the following re-
lations in QH£(X,K) hold

In this case the equiυariant quantum cohomology ring

G " '

as H£(pt,K) algebra.

8. Appendix C

We keep here the setup of Appendix B. Let us notice that the ring K (the ring
of "coefficients") depends on the choice of the basis in H2(X,Z)ΠHl>l(X,C). The
reason is that the natural ring of "coefficients" R is embedded into the ring K (the
ring K is bigger than the natural one). We use the ring K to simply the explanations.
Now we are going to describe the ring R.

Let H be a semigroup in H2(X9 Z ) Γ ) H 2 ( X , C ) generated by the homology classes
of the rational complex curves (CP1). Denote by R = C[H] the semigroup ring of
H. There is a natural homomorphism form R to C which sends 0 £ H to 1 and
all other elements of H to zero. We denote the kernel of this map by J J is a
maximal ideal. The ring R is a completion of the ring R with respect to the ideal J:

The quantum cohomology of X(QH*(X,R)) is an algebra over R. One can see
that there is a natural embedding of the ring R into the K and that QH*(X,K) =
QH*(X,R) ®Λ K. All the statements in this paper are true over the ring R although
they are formulated over the ring K.

Moreover, if c is positive then all our statements are true over the ring R but
we are not going to discuss that.

9. Appendix D

We are going to show that the moduli space of algebraic maps of CP1 (with three
marked points) to the projective variety X exist.

1. For X = CPN this fact is obvious.
2. This statement is also trivial for X = PN{ x x PNs, since the moduli space

of the product is the product of the moduli spaces.
3. For general X let us choose an integral basis ω\9...,ωs of Hl'l(X) such

that ω/ belongs to the Kahler cone of X for i= l,...,s. Let ^fi,...,^/ be the



Quantum Cohomology of Partial Flag Manifolds 527

corresponding invertible sheaves. There exists M E N such that all the sheaves
«#Y, . . . , <&¥ are very ample. Let us take the corresponding embeddings σ\,...,σs of

X into P^1,...,!^. Then the embedding Σ = σ\ x - x σs :X^ Z = PN] x - - x
PNs has the following property: for any two algebraic curves S\ and £2 in X such
that [SΊ]Φ[S2] ([S\],[S2]€H2(X,C)) the pushforwards Σ*[Sι]*Σ+[S2] (Σ*[Sι],
£*[S2] 6 H2(Z,C)). Let </ G H2(X,C) ΠH2(X,Z). Denote by JΪΣ*d(Z) the moduili

space of the algebraic maps CP — »• Z. An algebraic map CP1 — » Jf gives a point
in <JΪΣ*d(Z). Thus we can identify the space of algebraic maps CP1 — > Z as a

subspace in JίΣ^d(Z). One can see that the condition that the map φ : CP1 — > Z

factors through a map φ : CP •— >• Jf so that φ = Σ o φ is an algebraic condition.

So the space JίΣ^(X) of algebraic maps CP1 — > Jf is an algebraic subvairety in
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