Commun. Math. Phys. 170, 417 — 443 (1995) Communications in

© Springer-Verlag 1995

Entropic Repulsion of the Lattice Free Field

Erwin Bolthausen, Jean-Dominique Deuschel, Ofer Zeitouni
Universitét Ziirich, Technische Universitdt Berlin and Technion, D-10623 Berlin, Germany

Received: 28 June 1994/in revised form: 31 October 1994

Abstract: Consider the massless free field on the d-dimensional lattice Z9,d = 3;

that is the centered Gaussian field on RZ’ with covariances given by the Green
function of the simple random walk on Z¢. We show that the probability, that all
the spins are positive in a box of volume N? decays exponentially at a rate of
order N92 logN and compute explicitly the corresponding constant in terms of
the capacity of the unit cube. The result is extended to a class of transient random
walks with transition functions in the domain of the normal and a-stable law.

1. Introduction and Result

Let Q = {Q(k, ), k,j € Z%} be the transition matrix of a symmetric transient ran-
dom walk on the d-dimensional lattice Z?. More specifically we will be interested
in two types of situations:

(a) d = 3, Q is the transition function of the simple random walk:

Loifli—kl =
Q(i,k):{:’-d ifli—kl=1,

0  otherwise.

(b) d = 1,q, is the density of the symmetric isotropic a-stable law on R¢ for some
0 <a<2Ad, see (A1),

0, k) = [ qu(x+ (i —k)")dx,
V

where V = [—3,51% () = (Uil jals- - liaD)-
Let G = Z:io Q" be the corresponding Green function. Then it is well known
that .
GUK)
k=) =00 galj — k)

E)
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where g,(x) = wa,d|x|“d+“ is the Riesz kernel, w,, is a normalizing constant,
cf. [0] and Lemma A.2, below. (In case (a), we set o = 2.)
The object of this paper will be the stationary centered Gaussian field {X ()} jezd

of law P on © = RZ" with covariances G. The relation between the transition
matrix Q and the Gaussian field P is best explained by the following Gibbsian
description of P: let Py( - |F {k}C) be the conditional distribution of X (k) given

ﬁ{k}c = a(X(j):j=*k), then

M-Wmoaﬂﬁmn\mlﬂm=§qmwm,

where ./"(a;6?) denotes the normal distribution with mean a and variance a2, cf.
pages 262-263 of [8]. In particular, case (a) corresponds to a Markovian ﬁeld
known in the literature as the (discrete) massless free field. Let Vy = {k € Z?: k
V'}; the aim of this paper is to prove the following.

Theorem 1.1. Let G = G(0,0) and C = cap, (V') be the capacity associated with

o capa(V) =sup{2u(V) — [, [, 9u(x — y)u(dx)u(dy): u positive Radon measure
on V}, then

. 1
A}Lmoo mlogP(X(k) =20 forkeVy)=—-aGC.

Theorem 1.1 answers a question raised for the case (a) by Lebowitz and Maes
on page 47 of [11], where they prove a decay of the order exp(—o(N?)) and
suggest the order exp(—O(N¢~?)) (see also [6] for related questions dealing with
quasi-locality of the field {a(k) = sign(X(k)): k € Z¢}).

Actually we will prove a slightly more general result: let {by:N € N} C R be
such that

li =b e (—V20G, ), (1.2)
N—oo log
then
1
lim s 10g P(X (k) Z by for k € Vy) = —(V2aG —|—b)2—— )

N=oo N9— azl
Also, (a) and (b) can be generalized to

@ = 3, O(i,k)=Q(k,i)= Q@G —k,0) = 0 is irreducible and of finite range

R

HV ~

1
Q0G,k)=0, |i—k|l>R.
®Yd =1, 0(G,k) = O(k,i) = Q(i — k,0) = 0 is strongly aperiodic and satisfies

lim |k —j|"*Q(k,j) = cx > 0.
lk—jl—o00

Of course, in case (a’), g, and cap, have to be adapted to the corresponding kernel
and capacity, cf. (0.6) and (0.9) of [0].

The presence of the logN factor in the exponent of Theorem 1.1 is best
explained by the fact, that, under the condition

Qv ={X(k) =0 for k€ Vy},
most of the X(k),k € Vy, will be at the level /200G log N (see also [1]).
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Proposition 1.3. Let a < 20G, b > 20G and ¢ > 0, then

Nlim sup P(X(k) < /alogN|Qy)=0, (1.4)
_)OOkeVN,s
and
lxm sup P(X(k) = /blogN|Qy)=0, (L.5)
_'OOkEVNe

where Vy,. = {k € Vy: dist(k, VN) > eN}

Proposition 1.3 suggests that, under the conditioning Qy, the field P converges
weakly to Py, the stationary Gaussian field with mean /2a Glog N, that is

— \/20GlogN|X(k) =0 forkeVy)=P(-). (1.6)

This is connected with the so-called entropic repulsion. The long range correlations
make the field relatively stiff, but the local fluctuations push the random “surface”
to infinity in the presence of a hard wall, i.e. the conditioning that the fields stays
positive on Vy.

Theorem 1.1 is closely related to the theory of large deviations. More precisely,
let .#;(R) be the set of probability distributions on IR endowed with the weak
topology and set .o/ = {v € 4 ;(R): v([0,00)) = 1}. o/ is a closed set with empty

interior. Next let :
v =157 2. Oxky € H1(R)
I VN’ kevy

be the empirical distribution of the box ¥y, then
Qy = {LVN S sz} .

Using the N9~2 large deviation principle derived for Po(Ly,)"" in case (a’),
Theorem 0.10 of [0], one sees that

lim sup ——

1
510gP(Qy) = 11m sup s1logP(Lyy, € o) < —00,
N—oo N Nd=

since the corresponding rate function is infinite on /. Unlike the weakly depen-
dent case (see below), Theorem 1.1 cannot be proved by standard large deviation
techniques.

The proof of Theorem 1.1 is divided into two parts. The lower bound based
on a conditioning and entropy argument is given in Sect. 2, the upper bound in
Sect. 3. Here we follow a conditioning argument as in the proof of the upper bound
in [0]. Proposition 1.3 is proved in Sect. 4.

We conclude this section with a quick survey of the weakly dependent situation
with fast decaying covariances. More precisely, let 0 < ¢ < 1 and consider the
Green function G° of the random walk with constant killing probability &:

- ij}(l —eyQ"

Next, let P® be the centered Gaussian field with covariance G*, (in case (a)
the so-called discrete free field with positive mass ¢). P? is hypercontractive and
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Pfo(Ly,)”" satisfies a volume order large deviation principle with the good rate
function h( - |P?), the specific entropy, cf. [0]. Let /lS(Q) be the set of stationary
probability measures on 2 and denote by II: /ZS(Q) — M 1(R) the projection to
the one dimensional coordinate.

Proposition 1.7. Assume (a’). There exists a unique Q* € M5(Q) with I1(Q*) € o
such that
h(Q*|P*) = inf {h(Q|P°): Q € M(Q), 11(Q) € #/} € RY

and

Jim o log PY(Qy) = —h(Q"|P*) .

im
IV |
Moreover, P( - |Qy) converges weakly to Q* as N — oo.

The proof of Proposition 1.7 together with the Gibbsian characterization of O*
is given at the end of Sect. 3.

2. Proof of the Lower Bound

The aim of this section is to prove the following lower bound:

Proposition 2.1. Let {by:N € N} satisfy (1.2) and set Qy = {X(k) = by for
k € Vy}. Then, under (a') or (b'),

1 ~ C
- > —(v/ 2=
lﬂlogf N7 TogN logP(Qy) = —(V20G + b) 5 (2.2)

We will always be working under (a’) or (b’). As a warming up we start with a
simpler result which misses the correct constant but illustrates quite well the essence
of the argument

Lemma 2.3.

1

Proof. For any a > 2dG let Py be the Gaussian field on Q with mean /alog N
and covariance G. Let #y, = o(X(k):k € Vy) and set Fy = %ﬁilgm. Then

alogN _
£ (1ny, Gy iy

HN(PNIP) = flOgFNFNdP =
Q

where (-, - )y, is the L?(Vy)-scalar product, Gy is the covariance matrix re-
stricted to Vy and Gy ! is the inverse of Gy (beware that (G_')N'*GEI!) Note

that capy (Vv ) = (1y,,Gy ! lyy )y is the capacity of Vy with respect to the random
walk generated by Q, cf. Sect. 25 of [13]. We have

1
llm 1 Nax - capy(Vy) = cap (V) = (2.5)
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In case (a’), this is proved in Lemmas 2.1 and 2.2 of [0]. We give a proof of (2.5)
for 0 < o < 2 Ad in Proposition A.11 below. Thus

1 aC
I\}Loo WHN(PNU)) = —2‘ . (2.6)

Also we have

Py(Qy) =Py ( U {Xk) < 0}) < [Vn[Py(X (k) < 0)

keVy

= NYP(X(k) < —\/alogN) = N¢p(—/alog N/G),

where ¢(x) = (2n)" 12 ffooe"z/zdt < %e"‘z/z for x < 0. Thus

1 a
Py(Q9) £ EN”’“ﬁ —0
as N — oo and therefore

lim Py(Qy)=1. 2.7)
N—oo

Now (2.4) follows from (2.6) and (2.7) by the usual change of measure argument:
since x — log x is concave, we have by Jensen’s inequality

P(Qy) 4P
25 gy~ f By pvom 2 J ‘°gFNP(s2N)

1 1
= log FyFydP > —
PN(QN)f N T N)

(flOgFNFNdP‘I"e )

— _ 1 -1
- PN(QN) (HN(PNIP)+6 ) )

where in the last inequality we have used the fact that x — x logx = —e™!. Taking
the lim inf on both sides, we get (2.4) by (2.6) and (2.7). O

The major obstacle in getting the correct constant for the lower bound with
the above method, is the rather poor estimate of Py(Q$) which forces a > 2dG.
In order to overcome this difficulty and prove Proposition 2.1, let us consider the
auxiliary centered Gaussian field {X(i,a):i € Z%a € {1,...,L}} with covariances

N - i+
EXGOXUI= gy (28)
+ i=j.

Remark that the covariance matrix is also the Green function of a random walk
{&o,&),...} with transition probabilities

Q(l J)

(G, a),(J,b)) =
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We denote by IP(; ,) the law of this random walk with start &, at (i,a). Let
Y@i) = X(i,a) ZG)=X(1),
\/— Z

and set 7 = o(Z(i),i € Z¢). Note that E[Y(i)Y ()] = G(i, ), thus
L{Y(D}icze) = LUX (D} ieza) -

We calculate the conditional law of ¥ given % ; following the technique of the
Appendix of [0]: Let t = inf{n = 0:¢, € Z¢ x {1}} and

qL((isa)’j) = IP(i,a)(fT = (j’ 1)) .

Obviously ¢%((i,1),j) = 6;,, and, for a = 2, q"((i, ), j) does not depend on a. We
denote its value by G*(i, ). By the random walk representation

EX(,a)Z 2] = X ¢"((G,a))Z()) -
jezd

Next, let #(i) = E[Y(i)|% 2], then

N — L NN
n(@) = \/Z > Zfl((l a)J)Z(J)— \/— Z @HZG) + \/ZZ(I)'

jezda

The covariances of Z are given by
G(i . .
.. A i+
Gz(i,j) = { L G(00) ].
We can represent the Z-field as

Z()—(f/%) Ve,

where Z(U( - ))= L(Y(-)) and the {V(i)} are i.i.d. A4°(0;1), independent of
{U(@)}. Thus

n(i)=< - Z) > ¢ GNHUG)
jezd
(L_ 1)3/2

i > qGHV) +— VE=1yy.

1
+-U@y+ ———
L jezd

Lemma 2.9. ¢? = var(5(i)) — 0 as L — oo.

Proof. The only problem is the first and third summation in the previous expression
for y(i):

ar (Z qL(i,f)U(j)> = XgéL(i,j)G(j,k)éL(k,i) —0 asL—oo, (210)
J Js
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and

r <L1/2 2 qL(i,j)V(j)) =L Y (@)Y =0 asL—oo. (21D

jerd jezd

Note that, starting at any a = 2,¢, is a random walk until the first (geometrically
distributed, independent) time in which a =1 is hit. Let {{,} and {{}} be inde-
pendent random walks on Z? generated by Q, and let 7,7 be independent random
variables, independent of {(,}, {{},}, with geometric distribution of parameter 1. Let
Py denote the joint law of 7,7',{(,},{{,}. Then

G'(i,j) = Piay(& = (s 1) = Po(le = j — i)

and

> @G GH = X Po(l = HP(C = j)

jezd jezd
=Po({; = (i) = Po({esrr = 0)
Z Po(Lapn = 0)Po(t =n)Po(r =n') .

nn—-

Further we have Po((,;,» = 0) < c(n + n')~9/*, for some ¢ > 0 (this follows from
local central limit theorem, cf. [13], Sect. 26 in case (a’), and Lemma A.1 below
in case (b')), and Py(t =n) < %e“"/L for some K > 0. This yields

o ’ o0
Po(loyr =0) S K?c S (n+n/)y el L2 < |/ S p=dlrtlgnll =2

n,n'=1 n=1

for some k&’ > 0. The later is of order L=2 for 0 < a < d/2, L™2 log L for o = d/2,
and L% for 2Ad = o > d/2. This proves (2.11). As for (2.10), note that

ZqL(l ])G(]’k)qL(k l) - Z ZIP (C‘L‘ “‘]’ C1+m - k Cr+m+r’ - l)

m=0 j k

= Z ]Pi(Ct-!»m+r’ =i)= Z IPO(&:n+m+n’ =0)

m=0 n,n’,m
x Po(t = n)Py(t = n’)
< K2c S (n+n/+m)—d/oze—n/Le—n'/LL~2

n,n’,m

é K/ 5.3 n—d/oz+26—n/LL—2

n=1

for some K’ > 0. This is of order L2 for 0 < o < d/3, L2 logL for o = d/3
and L= for 2Ad = o > d/3. This shows (2.10). O

Lemma 2.12. Let x > 0, then

1
hm inf lim 1nf——— log P(n(i) = v/xlogN,i € Vy) = _)£
L—>co N-—oo N4— “1 2
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Proof. We follow the proof of Lemma 2.3: Choose x" > x, let P denote the law of
(U@@), V(i));cze, and let Py be the law of (U(i), V(i));czd, where U(i) has mean
v/x'logN and V(i) is unchanged. Then

1 A A
W Nlogn VNP =

Also Ep [n(i)] = y/*'logN, and

Py(n(i) 2 /xlogN,i € V) = P(n(i) 2 /logN(v/x — V¥'),i € V)
1= [VwlP(n(i) < —y/logN(V¥' - V%))
1 [Vuld (—W(ﬁ_ﬁ)> .

l\va

I

oL

If L is so large that (X =y CEV 2d, we have limy o0 |[Vn |p(————— o x/—ﬁ)) =0,
2 oy
M

cf. (2.7), and therefore

Jim Py(n(i) = /xlogN,ie€ Vy)=1.

We proceed from here as in the proof of Lemma 2.3. O

Conditionally on % z,(Y(i));cz« is Gaussian with mean #(i). We need some
information about the conditional covariances:

Lemma 2.13. Let
GL(i,j) = E[(Y (i) — n())Y (j) — G F 2],
then
G5(i,j) 2 0 (2.14)

and
G = G4(0,0) - G(0,0) =G as L — o . (2.15)

Proof. By the random walk representation

T—1
cov(X(i,a),X(j,b)|F z) = E(q [}% 15,,:(/,1;)] ,

cf. Lemma A.6 of [0], which does not depend on the Z-field. Equation (2.14) is
immediate. Next note that

G5 (i, j) = G(i, j) — cov(n(i), n(})) »
this implies (2.15) by Lemma 2.9. O

Proof of Proposition 2.1. For each § > 0, let Ny be such that
No. Choose x > (120G + b + )%, then

P(Y(i) = by,i € Vy) = E[P(Y(Q) = bn,i € Vy|F2);n(i) = /xlogN,i € Vy].

<b+46,N =

Toew
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On {n(i) = /xlogN,i € Vy},
P(Y(Q) = by,i € VN|F2) = P(Y(i) — n(i) = —+/xlogN + by,i € Vy|F2) .
Next, by (2.14), using Slepian’s inequality,

P(Y() ~ (i) 2 ~/XTogN + by,i € Val#7) =TT P(Y(G) — (i)
i€Vy
—+/xlog N + by|F 2)
Nd
- (1 ~ ¢(~(y/xTogN —bN)/JG_‘i)> .

2
Since GY% < G,M";GIZL——‘»— 2 200+ 2¢ for some ¢ > 0 independent of L. Thus for
large N = Ny, ‘

P(Y(i) —n(i) 2 —/xlogN +by,i € Vy|F7z)

d
1 (Vx—b—8)PlogN\\"
(l — zexp <— 2GIZ‘ ))

v

I\

> e INITEE
In view of the above this shows
P(Y(i) 2 byi € V) 2 e ¥ 7' P(ii) 2 /xlogN,i € V), N 2 Ny.

Using Lemma 2.12 and the fact that x > (v/2aG + b + §)*> and § > 0 were arbitrary
gives the claim. [J

3. The Upper Bound

In this section we give a proof of

Proposition 3.1. Let {by:N € N} satisfy (12) and set Qy = {X(k) = by for
k € Vy}. Assume (a') or (b'), then
2C

1 ~
. - - _ C
h]fznj;p Ni—log N logP(Qy) = (v 20G + b) 7

The major tool in the derivation of the upper bound, will be a conditioning
argument on the lattice LZ?. Let L € 2N be fixed and set
A=(L)2,...,L/2)+LZ%  Ay=ANVy.
Next let #; = o(X(i):i € LZ?),

X()=EX@G)|F.]= quL(i,j)X(j) G (i,j) = cov(X (D), X(J)| 7 L) -
JELT

By the random walk representation, we have

7—1
qL(l’.]) = ]Pi(ét = ])’ GL(lsJ) = IEi I:;) lfnzj:| s
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where {&,:n € N} is a random walk generated by Q and t = inf{n = 0:¢, € LZ?}.
In contrast to the original covariance G, G* is fast decaying. More precisely, in case
(a’) we have an exponential decay:

G (i,j) < crexp(—cali — jIL™?), (32)

for some c,c; > 0, cf. Lemma A.7 of [0], whereas in case (b’), we have a fast
algebraic decay:

GL(i,j) £ esL(logli — jI) 4= |i — jI=47%, Ji—j| > 1, (3.3)

for some c3,c4 > 0, cf. Proposition A.10 in the Appendix. Also in both cases, if
G = G%(i,i), i € A, then

lim G* =G . (3.4)
L—oo
Our first step is the following hypercontractive estimate

Lemma 3.5. There exists K; > 0 such that

PX(i) = by,i € Ay|F ) £ ] P(X() 2 by|F L)X .
iedAy :

Proof. The proof follows from Proposition A.18 below applied to the % condi-
tioned field by using the function f( - )=1{. 54,}. O

For fixed 4 € N consider a partition of ¥y into boxes {Vy:i € ¥4} of side
[N/A): Vi, = Vinyay + i[N/4] and let A\, = AN Vi€ Vs

Proof of Proposition 3.1. First note that, by Lemma 3.5,

P(X(j) = by,j € V)
< E[P(X (k) = by, k € Ay|FL);X(j) Z by,j € Vy NLZ]

= E{ [T PX(k) 2 by|FL)¥t;X(j) 2 by, j € Vi NLE?
keAy

-t LH (1= B-CRU) ~ VGH) ™ X () 2 bunj € P mde] .
EAy
For a > 0, let

Iy =1{jeAy:X(j) < JalogN +by}, i€V,

and, for each 0 < 0 < 1, define

Fi = {|Ty| 2 8|45} .
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Note that ¢(x) = [L _xz/z, for some k > 0 and x < —1. Then, on UieVA Fi,
i K = oKl |
I (1= 6Rm —bnV6h) ™ < (1 ~ ¢~/ alog N/G ))
EVy
Sk NAL=d 44
< {1- —-—k———exp (—alogN/ZGL>

\/alogN/G"
ky d—apG"®
exp | ————=N ,
p( \/logN

where ky = k(5,L,4) =

k —d g—d
ﬁ(ﬁKLL 474,

Choose now a < 2ocGL, then

E |: H (1 - d)("(X(k)*bN)/\/E))KL; ﬂ FZ’;, < kzexp <—k1Nd-“+5/> ,
keVy

i€Vy

for some k;,0’ > 0, and can therefore be neglected.

Once we know that, on Qy, most of the X (), j € Ay, are at the level V ZocGL,
we can estimate the upper bound with computations related to averages on Aj. This
is particularly simple since we are dealing with a Gaussian field. Thus, let

N jeAy, N jea,

\C
Then, on (U,.EVA F,’\,) N{X(j) = by,j € Vy ﬂLZ"}, for each i € Vy,

1
Sy = — X X
Ly IJE(XI;)C )+ (ANl,g ()

,A—ll S It Y T dGxG)

jeuie 14 N‘ JELL, keLZANVy

T S A

IAN] JEL, keLZ\Vy

> (1 —68)/alogN +by)+ 8(by NO)+ Zi ,
where

X X qURXK).

‘AN‘ JEL, keLZd\Vy

In Lemma 3.7 below we show that, for each k > 0,

. 1 ,. —
hNnLS:op mg_NlogP (igA{ZNlui,wdmm} =z KlogN}) -
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This together with the above yields

lim sup

1
—————log P(X (i) 2 € V)
m Sup 0B POX(D) Z by € Vi)

N—o00 i€V,

1 si
< lim sup mlogF < N {Sy = (1 —8)(+/alogN + by) + 5(bn /\0)})

forany 0 < 6 < 1and a < 20GY. Set ay = (1 = 0)(+/alogN + by) + 3(by N 0),
then

=(1—=0)Va+b)+dbA0). (3.6)

lim —2
N—co | /logN

Since {Sy:i € V4} is centered Gaussian, for each {f;,i € ¥4} non-negative

P(O{SJCZGN}) gP(Ef,-S,Gzasz,-)

i€V, i€V, i€V

2
B ay (ZiEVA fi)
2var (ZieVA f,S';:/)

IIA

'2~ €Xp

Next, by the linearity of the conditional expectation and Jensen’s inequality,

var (Z f,~S';,> §var(z ﬁS}'\,) .
i€V, i€y

Define now

hx)= Y fil julx) with 7y =i/d+V(1/4)CV,
i€V 4

where V(1/4) = [~ 35, 5], then

> S8y = T ORGNXG). X fi= A [ h(dx
JEAN Vv

i€V, i€V,
and therefore
) A2d
var | > fiSy | = 2 hG/N)R(/N)GG,]) -
i€Vy |ANI iLjEAN

Thus by Lemma 2.2 of [0] in case (a’), respectively Lemma A.8 below in case (b),

2
lim — (e fi) - (Jy Ho)dx)” = C(h)
N—oo NI=2 (Zi% 1 S;-/) Iy Jy hGOR(y)gu(x — y)dxdy — '
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As a consequence we get, by (3.6) with a = 20GE,

lim sup

b N> .
im sy Nd““logNlogP(X(l) = by,i € V)

—((1-6) (\/2<x +b) + 8(b A 0)) == C(h)

IA

Taking first § — 0, then L — oo and 4 — oo yields the constant (v2aG + b)*<,
cf. (3.4), where

C’' = sup {C(h): h piecewise constant on a uniform grid} = cap, (V)

by Lemma A.7 in case (b), respectively, Lemma 2.1 of [0] and (A.4), in
case (a). O

Lemma 3.7. For each k > 0

N—oo

. 1 [
lim sup mlogP (iGLIJ/A{ZNl{V—MQMM} > \/rclogN}> = —

Proof. Throughout this proof, ¢ will denote a constant, which depends on L, x but
not on N, whose value may change from line to line. Let

P = P(Z,';,l{l,-;vlééw} 2 \/klogN).

Note first that since |V4| is bounded independently of N, it is enough to show that
for each i,

lim sup

— _log®P = —
Nooo N9—%logN 8 *

We will show that there exists ¢ > 0 such that

lim N~ "log@ = -0

N—oo

To this end, let /g denote a set of |f| < |4} | indices in A}. Note that the number
of admissible f8 is bounded by 214¥!. Let

Zg=|M4"" Y X qHGLRXG).

JElg keLzd\ vy

For fixed /g, Zg is Gaussian, then

: 1 klogN
P; < 2% max P(Zy > \/xlogN) < 21 S o S B
= max P(Zp rlogh) = 2P 2max4E[Z}]

The lemma thus follows if we can show that there exists an ¢ > 0 such that

max E[Zj] £ N7, (3.8)
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We show (3.8) in case (b'), the proof in case (a’) is similar. To see (3.8), note
that, by (A.13) below, for all &/ < a,

EZI< N S S ¢ ke KGR K

JoJ' €lg k k' LT\ Vy
SN Y Y AT = R e — |
JoJ' €AN k k! ELZINVy k+k!
/ 1/
, ; k - j/ 1% —d—u
— N9+ Z Z J K
JiJ' EAN k! ELZE\Vy k+ k! N N N
k k/ —d+a 1
v T~ s 3.9)
N N [An|
By Riemannn integration
. —d—d | . —d—do
k 4 kK 1
D N . e | L e Ry v
N=09; iic Ay k! €L\ Yy k k! N N N N N N [4n]|

= [ [ [ =xa] % ey — x3| 79 x3 — x4~ dxydxydxadxg < oo .
v ycycy

In order to verify that the last integral is finite, we may replace ¥ = [1/2,1/2])¢ by
the unit ball B = {x € R? : |x| < 1} and use the inequality

. /
flxl —xzf"d"“ldxl = €llea] =1 BERLCEE
B e 3=l <o,

Choosing now o — o’ small enough and using (3.9), the lemma follows. [J
We conclude this section with the proof of Proposition 1.7:

Proof of Proposition 1.7. We begin with a Gibbsian description of P*: Let
Pi(-\|F {k}C) be the conditional law of X (k) given by & (kyC- Then

Pi( - |F gg0) = M ((1 = )X (k) 1),

where X (k) = Zj 44 Ok, j)X(j). We can view P* as the unique Gibbs state to the
interaction potential % = {Ur:0+F CC Z%}

By F = {k}

Ur(X) =4 —(1 — &)k, )X (k)X (j) F ={k,j}
0 F| > 2,
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with reference measure the Lebesgue measure dx on IR. Consider now the new
interaction potential #* = {U; : 0+F ccC Z9}

&(5—)2 + 00l x () <0} F = {k}
UF(X) = —(1 - &)Q(k HX (k)X (j) F ={k,j}
0 |F| > 2.

Let 9o(%™) be the associated set of translation invariant tempered Gibbs states on
Q= (R* )Zd. Go(Ut)=+0 since %" is superregular and superstable, cf. Definition
1.7 and Example 1.12 of [9]. We claim that %, (% ") consists of a unique point
{QO*}. This follows from Dobrushin’s uniqueness criterion: let
exp(—x%/2 + (1 — &)X (k)x)

o0 2 - I{X Z
Jo exp(=y?/2+ (1 — )X (k)y)dy
be the conditional law of X (k) given & e for any Gibbs’ state in %o(%"). Next

let W 4 (R) x M1 (R) — [0,00] be the Wasserstein metric with respect to the
Euclidean norm | - | on R, that is

W(v,u) =sup{ [ f(x)v(dx)— [ f(x)u(dx): f € C(RT),
R+ R+

P;’+(dx|9?{k}c) = V+(dx‘)?(k)) =

O}dx

fo - 1ol

o(f) =sup <1}.

xFy IX - y,
Set
WO 1 X(k),vH( - [Y(k)))
X () = Y())

Then, if v*(f|y) = [g+ f(2)V"(dz]y), respectively v (x|y) = [p+2vT(dz|y), we
get by the Cauchy Schwarz inequality

D(k, j) = sup{

(XY € QF with X(i) = Y(i),i+/} .

d
Ia—yv+(f|y)| =(1 =) [ (f@) =V (fIy)z — v (x][y)V'(dz]y)|
R+
1/2
=(l—¢) (f (f(2) = V+(f|y))zv+(d21y))
R+

1/2
X ( J - V*(XIJ’))z\’*(ley))

Rt

S(1=e)d(fvar(v( - |)).
This yields
D(k,j) = (1 = &)Q(k,]) sup var(v'( - [)),
yz

with

% 2, —(x—yY 2 o 2 —(x—y)*/2
var(v'( - |y)) =inf Jo (x —bye 0 Pdx < Jo (x— yYe” 7" Pax
b20 fgoe_(x‘)’)z/zdx = fgoe-(x~y)2/2dx



432 E. Bolthausen, J.-D. Deuschel, O. Zeitouni

Thus

sup y . D(k,j)=(1-¢) <1,
kezd j*k

and we have uniqueness by Dobrushin’s criterion, cf. Theorem 4 in [5]. Using
the standard variational principle, one then verifies that 0* minimizes the specific
entropy h( - |P?) under the constraint [J(Q) € , cf. [9]. Also the upper bound
large deviations yields

1
limsup — log P4(Qy) < — inf h(Q|P%) = —h(Q*|P?).
imsup 7 log (Qy) i (Q1P%) (Q*|P°)

Hypercontractivity shows that h(Q|P?) = cH([](Q)|TI(P?)) for some constant
¢ > 0, cf. Sect. 5.4 [3], and hence h(Q*|P?) > 0. We cannot apply directly the
large deviation principle for the lower bound, since .« has a void interior. However
0*(Q2y) =1 and this implies

1
.. e > _ *| pé

cf. Proof of Lemma 2.3. Finally, the convergence of P( - |Q2y) follows along the
same pattern as the proof of Theorem 3.5 in [4]. OO

4. Entropic Repulsion

In this section we give a proof of Proposition 1.3. Our main technique is the
monotonicity or FKG property of the measure P. Our starting point is Propo-
sition 4.1 below. Note that only (4.2) will be actually needed in the proof of
Proposition 1.3.

Proposition 4.1. Let a < 20G,b > 2aG and 6 € (0,1), then

Nlim P(Ly,[0,+/alogN] = 6|Q2y) =0, 4.2)
and
Nlim P(Lyy[\/blogN,00) 2 6|Qy)=0. 4.3)
—00

For fixed L € 2N*, define %1, Ay, X(i),G(i,),i,j € Ay as in Sect. 3 and set

1
v T,

The crucial step in the proof of (4.2) is the following.
Lemma 4.4. Let a < 20G", then for each 6 > 0,

Nlim P(Ly,[0,4/alogN] = 6|2n)=0.
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Proof. Set
Iv(a)={j € Ay : X(j) £ ValogN},
In(a) = {j € Ay : X(j) £ ValogN}, Iy(a)¢ = {j € Ay : X(j) > /alogN} .

Following the argument of the proof of Proposition 3.1, we know that for each
§>d >0anda <d < 20G"

P(|In(a")| Z &) An|; Qn) S exp(—cN/™**)
for some ¢,e > 0. By (2.2), this implies
Jim P([Ty(a")| = &|Ay| Q) =0.
Since
{L4y[0,+/alogN] = 6} = {|In(a)| 2 | An}
= {IIv(a)| Z 8|An], [In(a")] < &'|An|} U {|In(a)|
2 9| Ayl, [In(d)| 2 &'| Ay}
C {lIv(@) NIx(d)C| 2 (6 — &) An|} U {IIn(d)|
2 d'|Anl},

all we have to show is
Jim P(lv(a) NIy(a)C] 2 (6= )| An|1Qv) =0. (45)

Let k € Iy(a) ﬂI_N(a')C then
X(k)—X(k) = (Va' — v/a)\/logN .
Thus on {|Iy(a) N Iy(a’)¢| = (6 — &')|An]|}, we have

1 -
= 2 X(k) - X(k)| 2 (6 - ')V —Va)\/logN .

[An| kédy
Note that Gi(k,j) = cov(X(k),X(j)|F1) = E[(X (k) — X(k))X(j) - X)) s
rapidly decaying, cf. (3.2), but this implies
. 1 1 -
llmsupm logP(l—A—N—l kz |X (k) — X (k)|

N —oo €Ay
> (0-0)Vd - \/c_z)\/logN> < —c

for some ¢ > 0 depending on L,§ — &' and V@' — \/a. This together with (2.2)
proves (4.5) and concludes the proof. [

Proof of (4.2). For ¢ € Vy, define F({) = o(X(k + ),k € LZ¢), A(¢) = (L]2 +
oo S L2+ 0+ L2 AN(4) = A() N Py and

In(a,t) ={j € AN(¢):X(j) = ValogN} .
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Using the argument of the preceding lemma, one shows that for each £ € V;, a <
20G" and 6 > 0

NleooP(IIN(a,f)l Z AN |Qv) = 0.
Also
{Liy[0,\/alogN] Z 8} = {[{k € Vy:0 < X(k) < \/alogN}| = d|Vul}

< U Alina)] 2 64n(2)} -
leVL

This implies (4.2) for each a < 2aG", and the result follows with L — co by
34). O

Proof of (1.4). Let us recall (1.4):

lim sup P(X(k) < \/alogN |Qy)=0. (1.4)

N—oo k€VN’ .

Consider a small cube, Vy(k) centered at k£ with side length < (¢/3)N. Let Wy (¢)
be a cube centered at / with size length (2¢/3)N. Then, for k£ € Vy ,,

k)< (N Wa(0), U W) C W,
(V) [V k)

and by the FKG property, for each / € Vy(k):
P(X(k) < \/alogN|Qy) < P(X(k) = \/alogN|X(j) 2 0,j € Wy(k))
= P(X(k + ¢) < \/alog N|X(j) 2 0,j € Wy(k +£))

< P(X(k +¢) £ \/alog NIX(j) 2 0,/ € Vu(k)).
Thus, for any 6 > 0,

POX(K) < v/alogNIX(j) 2 0/ € Vi) £ ——— Y POX(k +¢)
V()| revmn)

< ValogNIX(j) 2 0,) € Vu(k))
= E[Lyyw[0,v/alog N1IX(j) Z 0.,/ € Vy(k)]
< 8+ P(Lyyw)[0,v/alog N1 > 8|X(j) 2 0.,j € Vn(k)).
Using (4.2), we have
Jim P(Lyy [0, \/alog N] > 6|X(j) 2 0, € Vn(k))

= fim P(Ly,,,[0,/alogN] > 01X (j) 2 0, j € Viesw)
= Jim_P(Ly, [0, /aTog (GON)] > 5|Qv) = 0.

Since 6 > 0 is arbitrary, we have the result. [
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Remark. 4.6. One could wonder, what may happen with k closer to the boundary
of V. For 1 >¢ >0, let 0,V = szl{x =(x1,...,x7) € R¥: x| = 1/2, x| =
(1 —&)/2,k+} and set Vy, . = {i € Z : i/N € 8,V'}, the “interior” of the bound-
ary of Vy. An adaptation of the above argument shows, for any 1 < o <
2Ad and a < 2(a — 1)G,

lim sup P(X(k) < \/alogN |Qy)=0.

N—=oogeavy .

Next, we are going to show first (1.5), and then (4.3). Our first step in the
proof of (1.5) is the following.

Lemma 4.7.

lim sup sup w < V2uG. (4.8)
N—oo keVy log N

Proof. Again, we use FKG: for fixed m € N, and any £ € V,n, k € Vy,
E[X(K)|Qnv] =EX(k+OX(+7¢) 2 0,j € Vy]
< E[X(k+O)|Qmriv]

since Vim+1yw = U/eV,,,N(VN +7¢) and Vv +k C Viyq1yv. Next for any 2 = 0 with
support in V,y and f > 0, we have

By, by, EIX(K)|QN] < ﬁ/ > WOEX(k + )| Qmiin] = E[FN|Qumiin]
eVmN

where Fy =), eVun W)X (k + ¢). Using the entropy bound

E[FN|Qums1n] £ Hpniyw(P( + [Qemr1yw)|P) + log E[exp(Fy )]
2

= —log P(Q(m+1v) + ‘l—;—(h, Gh)y,y

we get, by taking the best f3,

h,Gh
E[X(k)|Qy] = \/TZIOgP(Q(m+1)N)<<—1—h%AL .
’ VmN

Further, note that

<1VmN’h>%/m -1
Sup W—M = <1 VN 2 GVmN’ ]VmN > VN = CapmN(VmN)

hz0 mN
= m' N cap, (V) + o(1))
and by Theorem 1.1
—log P(Quus1w) = (m + 1) *N"* log N(aGeap, (V') + o(1)) ,

and therefore

N—oo kevVy +/logN

Now (4.8) follows with m — co. [

< V2uG(1 + 1/m)yi—=.
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Proof of (1.5). We want to show that

limsup sup P(X(k) = /blogN|Qy) =0 (1.5)

N—oo kEVN,G

for all b > 2aG. Choose 0 < 0 < v20G and set y = /204G — §, then, writing
X(k) = \/J—l—%;;—ﬁ’ we have

E[X(K)|Qn] Z vP(y < X(k) < VB|Qy) + VBP(X (k) = Vb|Qw)
=y(1 - P(X(k) 2 Vb|Qy) — P(X(k) < 7|Qv))

+ VBP(X (k) Z BlQy) -

Thus R N
E[X(k)|Qn] — v+ yP(X (k) = y|Qn) .

Vb—y

P(X(k) z VblQy) <

Since, by (4.8),
lim sup sup E[X(k)|Qy] £ V20G

N—oo keVy

and, by (1.4), .
lim sup POR(K) < 71@y) =0,
N—>ook€VN’€

we get

0
limsup sup P(X(k) = /blogN|Q —_—
N—-voopkeV[Izs ( ()_ 2 ' N) \/B—\/E(Z—G

which yields the result with 6 \, 0. O

IIA

Proof of (4.3). Let b > v/2aG and 0 < § < 1, then for any ¢ > 0,

5P(Lyy [\/BTogN,00) = 3]Qy) < ElLy,[/BTog N, 00)|Q]
~ 5 & P 2 VETogNI9x)

EVy

< sup P(X(k) = \/blogN|Qy) + cqe®

kEVN, ¢

for some constant ¢; > 0. Thus by (1.5)

d
lim sup P(Ly, [/ log N, 00) = 8|Qy) < %
N—o0

and (4.3) follows with ¢\, 0. O

Appendix

In this appendix we show the convergence of the capacity and derive the estimates
of the conditional covariances for the a-stable case.
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Let o € (0,d A2) and let g, be the density of the isotropic symmetric a-stable
law on IR? with characteristic function given by

[ e g xydx =" e R?, (A1)
R4

for some p > 0. Define Q as in the introduction and let Q" be the n™ product

of Q0.

Lemma A.2. Assume (b) or (b'), then

Jim k| O(k, 0) = ¢4 (A3)
and

sup Q"(j,k) < en™* (A4)

Jj, kezd

for some c,c, > 0. Also

f]Rd w(x)lxl"“dx
@n)le, fga(1 = Y(x))lx|~!—2dx ’

|k1|im k| *G(k,0) = w, 4 = (A.5)

with Y(x) = %Z‘f:l cOS X;.

Proof. The first equality, (A.3), follows from the definition of Q and (A.1). As for
the proof of (A.4) and (A.5), we use harmonic analysis as in Sect. 7, Sect. 8 of
[13], cf. in particular the proof of P6, see also [12], Propositions 2.3, 2.4 and 5.2:

Let
0O)= X 00.k)e* ", 0e(-nal,
kezd
be the Fourier transform of Q, then

tim 0]7*(1 — Q(0)) = 1a.a = ¢x [ (1 = Y(x))lx| ™' dx ,
|0]—0 Rd

cf. Example 2 Sect. 8 of [13]. Note that ¥(0) = IQA(t‘))I2 is the Fourier transform
of Q?. Since Q is strongly aperiodic by assumption, ¥(0) = 1 if and only if 0 €
(27)Z¢, cf. P8 of Sect. 7 of [13]. Also the above shows

dim, 16]7(1 — #(6)) = lim 16]7(1 - 001+ 0(6)) = 2744 -
Thus there exists 4 > 0, such that
0 PO <10 e be(=nn).
But
@rYo¥ik)= [ e U™@0)d0 < [ e M1 ah < en~ U,

(—m, )4 (—m, n}d
and the same bound holds if Q%'(j,k) is replaced by Q*"+!(j, k). This proves (A.4).

Next note that, if G denotes the Fourier transform of G, then G(0) = (1 — O(6))!
with

a1
(gl_rglf)lG(@)—y

o, d
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and
1

[ G(@)e™ag .

(—71, "]d

This yields

[ Y)|x|%dx = wy 4 - O

lim |k|“*G(k,0) = ———
o, Kok 0) = s

Let g,(x) = w, 4lx|4** be the Riesz kernel and define the integral operators K
and Ky on L*(R?) and L*(V),

K(x) = fdga(x - nP(y)dy, Kyd(x) = gg«(x - »o(y)dy .
R

Ky is a positive definite, compact self-adjoint operator with (L?(¥ )-normalized)
eigenfunctions {e,} and eigenvalues {1;(V) > Ay(V) = ---}. For ¢ € C3(R?)N
L*(IR?) let

Ko@) = [(¢(r) = ¢(x))g; ' (x — y)dy,
R4

where
g7 (x) = colx| 77

Finally consider the Dirichlet forms & and &y on L*(R%) and L*(V):

1

£9.9)= 3

| [(60) = d0)Per' (- yydxdy, Ev(d.d) =3 ~(dren .
A

R4 R4 n

Let 4,%y be the extended domains of & and &y. Both Dirichlet forms are regular,
cf. Example 1.5.1 of [7]. & is the Dirichlet form associated with the symmet-
ric a-stable process on IR?, whereas &y is the Dirichlet form of the symmetric
a-stable process imbedded in the unit cube V. Using the positivity and continuity
of Ky on L*(V), we have, for each dense subset 2(V) of L2(V),

éﬂV(qsa ¢) = Sup{2<¢7f>V - (f’KVf>V:f € @(V)}

_ () }
—sup{<f,KVf>V.f€ a0)} . (A6)

Lemma A.7.
Ey(ly,1y) = inf{&(h,h): h € CYR)YNLA(RY),h = 0,h =1 on V} =cap,(V).
(A8)

Proof. By Lemma 3.1.1, Problem 3.3.2 and Example 3.3.1 of [7], (see also [10],
Theorem 2.3, page 138)

cap, (V) = inf{&(h,h): he 9 h 20,h=1o0n V}
= inf{&(h,h): h € CY(RY)NL*(RY), h =20, h=1onV}.
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Also
cap, (V) = sup{2u(V) — {;{ga(x — yu(dx)u(dy) :
u positive Radon measure on ¥ with finite energy} .
For each y with finite energy, we can find a sequence {f,} C L?*(V), such that
Jim 201y, fa)y = Ky fo)y =200 = [ [ galo = uldu(@dy), - (A9)

cf. Example 3.2.1 of [7]. Thus, by (A.6)
cap,(V) = sup{2(ly, f)v = (fiKv f)v : f € LX(N)} = Ev(ly,1y) . O

Lemma A.10. Let f be Riemann integrable on V and let h € C'(R?) N L*>(IRY).
Set fn(k)= f(k/N), hy(k) = h(k/N), then

NlijnooN—d‘%fN,GNfN)VN =(f,.Kv f)v,

lim N™(hy, G hy)ga = E(h,h) .

N—oo
Proof. This follows from Lemma A.2 and Riemann integration:
. —d—
Jim N SN GN Ny

= lim lim z SfKININT™*G(k — j)f(j/N)N~*
M—00 N=00y sepy [i—k|>M

= lim Y f(k/N)g(j/N — k/N)F(GININ> = (f.Ky f)y ,

N=0o} jcvy, j+k
and

lim N~ (hy, G hy)ga

N—oo

1
= - lim lim > (h(k/N) — h(j/IN )N Q(k — jIN
2 M=0oN=00, weqd 7 k(> m

~Liim S N = RGN a7 GIN — NN
kJEZY, j*k

= &hh)y. O
Proposition A.11. Let f € CY (V). Set fn(k) = f(k/N), then
Jim NS Gy v = Ev (5 f) -
In particular if f = 1y, then fy = 1y, and

Jim N= 1y Gy )y, = Nli_)ngoN—d_‘—acapN(VN) = cap, (V).

Proof. First note that for any ¢ € C(V),
N=Tfu Gy )y 2 N2 dn)vy = N™7%(gn. G dn )y -
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Thus in view of Lemma A.10 and (A.6),
= sup {2(f. )y — ($.Kvop)r} = Ev(f.[).
PeC(V)

lim inf N~ fiy, Gy ' fw)y =
N—oo

Next for each # € CY(RY)N L2(RY), with h= f on V
{2(hn, ) vy — (dn> Grgn)vy }

(fn: Gy fw)vy = sup
PNELZ(Vy)
= sup {2<hN,¢>zd — (o, G¢>zd}
peL?(z4)
1
= (.G 'hy)ga = 5 >0 (h(jIN) = h(k/N)YQ(j ~ k) .
j, kezd

Using Lemmas A.7 and A.10, we see that
limsup N~ (fy, Gy fa)yy < inf{&(hh):he C'(R)YNL*(RY),h=f on V}

N—oo
=&y(f.f). O
Finally, let {{, =Y, +...+Y,} be a random walk generated by Q and =
inf{n 2 0:¢, € Lz¢ }. Remember that, by the random walk representation, we have

7—1
G, =Pu& =j), G i j)=E; [;)lénzj] :

Proposition A.12. Assume (b'), then there exists c; > 0, such that, for |i — j| > 1,

G (i, j) < esL(logli — j))* i — j| =07,
(A.13)

q"(i,j) < esL(logli — j )i — jI74*,

with ¢4 = (d + a)(d + 2 + a). Also, for each i € A,
Jim G (i, i) = G(i,i) . (A.14)

Proof. First remark that, for i € A,

= ¥ ¢"G,/)G(,j) <

G(ii) — GHi,i) = T {Z 1{i}(5n)} max  G(i,j) — 0,
n=t jeLzd JeLz?

i€A, Je

as L — oc.
Next let 7; =inf{n = 0: &, = j}, then, referring to the proof of Lemma A.7

in [1],
G(i,j) £ G(0,0)(P(t; £ T)+Pi(x > T)),
Pl =j) S Pt 1) S Pi(r; ET)+Py(x >T7)
for any 7 = 1. We claim that
P(r>T)< et

]Pi(TJ < T) é szd+2+ct|j _ il~d—1 ,

(A.15)
(A.16)
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for some k,k; > 0. Equation (A.13) follows from these estimates by choosing
T = L2 d+oglj —i] .
1
Proof of (A.15). Simply note that
Pt > T)=P(& ¢ LZ%,....ér ¢ LZY) < (1—pL) |
where
pr = minP,(¢ € LZ?) = min 0(3,0) = kL™97*,
iezd IEVL/Z

for some k > 0.

Proof of (A.16). The crucial step is to show that, for each |j| > 1,
Po(&n = /) < ksn®H 2|4 (A17)
Once (A.17) is shown, (A.16) follows from
T
Pt £ T) £ Y Po(&y =) — i) £ kT — j| =07
n=1
In order to prove (A.17), note that,

Po(Sn = /) = Po(&n = J; Q{IK! > %}) < nPy(&, = j;|Y| 2 ‘jl—')

=n Y. Py(Y, =7V, = M)IPO(C,H =j=7),
cezd n

and use the fact that, for £ > ul

n?
Po(Y, =) < kslj| ™ *n?* . O
We conclude this Appendix with a proof of the hypercontractive estimate:

Proposition A.18. Let {;},.4a be a Gaussian field of zero mean and summable
covariance R(i,j) = R(|i — j|). Assume that

R(ji —j|) £ Cli—jI°, (A.19)

Jor some 6,C > 0. Then there exists a constant Cp = 1, independent of N, such
that for any bounded measurable function f(-),

i€y

E { 1 f(é,)J <| s IEN,

where || f lcy= (ET|/(£0)| 1)/ x.

Proof. Let I),I, be two disjoint sets of indices in Vy. For any two vectors
{o:}iery, {Bitiery, let (o, B) = zi,jEVN o, BR(i,]), with the obvious definition of
[l o]l . Following [2] (see p. 648, last line, and work in the time domain instead of
in the frequency domain), let

e = sup{(o B): [l o |1 =]| Bll= 1, o = OVi & I, B = OVi ¢ b} .
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By an adaptation of Nelson’s hypercontractive estimates similar to [2], lemma,
p. 645, for any two bounded functions f), f, measurable respectively on #; =
ollirieh),F, =0 :jeDh),

E[lfl(é)f2(f)“ —§“ S H 1y 12” f2 “

Iy,
l+r 172

1+r
Note that

(wB) =1 >, wBRG))| = Z(a + BHIR(i = jDI

iely, jeh

<[l 813 (Sup 2 [R(li = jDI + sup 3 |R(ji —J|)|>

i€l jeh JEL i€l

with || o |2 denoting the ¢, norm of & On the other hand,

[ol>=1lal3 RO)+ > woR(li - ),
i, JEL

where R(x) = R(x) if x+0 and R(0) = 0. Hence,

o> o |3 (1 —2sup 3= [R(Ji — DI

i€l jeh

with an analogous expression for || § || . It follows that

I (Supiell ZjEIZ IR(Il _.]l)l + SupjeIZZiell lR(ll —Jl)‘)
(P T P(li _ 7 )
¢ (1= 25up;e;, 3, (R = TN = 25upiep, ey IR = 1))

Let now Vy (V) denote the odd (respectively, even) points in Vy. Then, using
the above,

11 f(éz:l < II f(é:)“ e I 11 FE VI?,V,f, : (A20)

i€Vy ’GN zGN

One may now iterate this inequality, partitioning in each stage the “odd” and the
“even” parts again to two subsets. To keep track of the partitioning, we use the
multi-index £ € {0,1}* to denote the partition history of each of the 2* sets in the

k™ interation, denoted Vls"’k, with O representing “odd” and 1 representing “even.”
Note that

ieV;k-kjey;k’k l1z2[k/d]

Let /f~' denote the truncation of the last coordinate in /4. Using the above, it

holds that for all k > ko (with k; depending on R only), and all ¢;,/; satisfying
—k—1
H =17,
ylkok Vik,k _
Y o=4 0 Y RUD-
je@lkd]yyy
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Let 1, = 42,.62( L)) R(|j]). Iterating the basic inequality (A.20) yields now

(1+7g)

E [ 1 f(éi)} <IN gy

i€Vy

<| £ (o) ! =l e

ki 0o .
2 0+ﬂk=k0(l+lk

where Cy = 2%0 + Mgk, (1 +74) < oo and the last inequality follows from the fact
that Z,‘:_o__ko 7, < oo due to (A.19). O
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