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Abstract: Consider the massless free field on the ^/-dimensional lattice Έd,d ^ 3;
that is the centered Gaussian field on IRZ with covariances given by the Green
function of the simple random walk on TLd. We show that the probability, that all
the spins are positive in a box of volume Nd, decays exponentially at a rate of
order Nd~2 logN and compute explicitly the corresponding constant in terms of
the capacity of the unit cube. The result is extended to a class of transient random
walks with transition functions in the domain of the normal and α-stable law.

1. Introduction and Result

Let Q — {Q(kJ),kJ G Zd} be the transition matrix of a symmetric transient ran-
dom walk on the ^/-dimensional lattice Zd. More specifically we will be interested
in two types of situations:

(a) d ^ 3, Q is the transition function of the simple random walk:

. 0 otherwise.
(b) d ^ l,#α is the density of the symmetric isotropic α-stable law on R J for some
0 < α < 2 Ad, see (A.I),

where V = [-{,{}", (j)+ = CL/i U L/2U - - -»L/rf D-

Let G = Σ ^ o Q" be the corresponding Green function. Then it is well known
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where g*(x) = (o^d\x\~d+oc is the Riesz kernel, ωα?ί/ is a normalizing constant,
cf. [0] and Lemma A.2, below. (In case (a), we set α = 2.)

The object of this paper will be the stationary centered Gaussian field {X(j)}jezd

of law P on Ω = IRZ with covariances G. The relation between the transition
matrix β and the Gaussian field P is best explained by the following Gibbsian
description of P: let Pk{ \^sk\c) be the conditional distribution of X(k) given
, F w c =σ(X(j):jΦk), then

; 1) with *(*) = Σ Q{hj)XU),
j*k

where yΓ(α;σ2) denotes the normal distribution with mean α and variance σ2, cf.
pages 262-263 of [8]. In particular, case (a) corresponds to a Markovian field,
known in the literature as the (discrete) massless free field. Let V^ — {k G 7Ld\ ̂  £
V}\ the aim of this paper is to prove the following.

Theorem 1.1. Let G = G(0,0) and C = capα(Γ) be the capacity associated with
gα: capα(F) = sup{2μ(F) — Jv Jv g^x — y)μ(dx)μ(dy): μ positive Radon measure
on F } , then

Theorem 1.1 answers a question raised for the case (a) by Lebowitz and Maes
on page 47 of [11], where they prove a decay of the order exp(—o{Nd)) and
suggest the order exρ(—O(Nd~2)) (see also [6] for related questions dealing with
quasi-locality of the field {σ(k) = ύgn(X(k)):k e Έd}).

Actually we will prove a slightly more general result: let {b^:N G N } C R be
such that

b =be (-\/2αG,oo), (1.2)
N-+00 ^/logjV

then

I ogP{X(k) ^ bN for k
N^oo Na~HogN

Also, (a) and (b) can be generalized to

(a r) d ^ 3, Q(i,k) = Q(k,i) = Q(i - *,0) ^ 0 is irreducible and of finite range
Λ ^ 1:

jβ(ί,*) = O, | ί - * | > Λ .

(b ;) d ^ 1, β(i,Jt) = β(ifc,0 = β(i - Λ,0) ^ 0 is strongly aperiodic and satisfies

l i m \k - jf+'Q&j) = ca > 0 .

Of course, in case (a'), #2 and cap2 have to be adapted to the corresponding kernel
and capacity, cf. (0.6) and (0.9) of [0].

The presence of the logN factor in the exponent of Theorem 1.1 is best
explained by the fact, that, under the condition

ΩN = {X(k) ^ 0 for k <E VN} ,

most of the X{k\k G VN, will be at the level y/2ocGlogN (see also [1]).
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Proposition 1.3. Let a < 2αG, b > 2αG and ε > 0, then

lim sup P(X(k) S Va\ogN\ΩN) = 0 , (1.4)

and
lim sup P(X(k) ^ y/blogN\ΩN) = 0 , (1.5)

where VKε = {k e ϊ^:dist(ifc, V$) ^ εN}.

Proposition 1.3 suggests that, under the conditioning ΩN, the field P converges

weakly to P^, the stationary Gaussian field with mean y/2oc G log TV, that is

P( - - y/2oίGlogN\X(k) ^ 0 for k e VN) => P( ) . (1.6)

This is connected with the so-called entropic repulsion. The long range correlations
make the field relatively stiff, but the local fluctuations push the random "surface"
to infinity in the presence of a hard wall, i.e. the conditioning that the fields stays
positive on VN.

Theorem 1.1 is closely related to the theory of large deviations. More precisely,
let y#i(IR) be the set of probability distributions on IR endowed with the weak
topology and set i = { v G Jί\(R): v([0,oo)) = 1}. si is a closed set with empty
interior. Next let

^ = πrτ Σ «*(*)£ •*!(»)

\VN\ kevN

be the empirical distribution of the box VN, then
ΩN = {LVN G ^ } .

Using the Nd~2 large deviation principle derived for P o ^ ) " 1 in case (a;),
Theorem 0.10 of [0], one sees that

lim sup —j~^\ogP(ΩN) = lim sup —r-^logP(LyN e srf) ^ -oo ,

since the corresponding rate function is infinite on si. Unlike the weakly depen-
dent case (see below), Theorem 1.1 cannot be proved by standard large deviation
techniques.

The proof of Theorem 1.1 is divided into two parts. The lower bound based
on a conditioning and entropy argument is given in Sect. 2, the upper bound in
Sect. 3. Here we follow a conditioning argument as in the proof of the upper bound
in [0]. Proposition 1.3 is proved in Sect. 4.

We conclude this section with a quick survey of the weakly dependent situation
with fast decaying covariances. More precisely, let 0 < ε < 1 and consider the
Green function Gε of the random walk with constant killing probability ε:

Λ=0

Next, let Pε be the centered Gaussian field with covariance G\ (in case (a)
the so-called discrete free field with positive mass ε). Pε is hypercontractive and
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Pεo(LyN)~ι satisfies a volume order large deviation principle with the good rate
function h( |P ε ), the specific entropy, cf. [0]. Let Jt\(Ω) be the set of stationary
probability measures on Ω and denote by U\Ji\{Q) —• Ji\{W) the projection to
the one dimensional coordinate.

Proposition 1.7. Assume (a7). There exists a unique Q* G Jί\{Ώ) with Π(Q*) e srf
such that

h(Q*\Pε) = inf {h(Q\Pε): Q e Jί\{Ω\ Π(Q) G i } e R +

and

lim A
I V

Moreover, Pε( \ΩN) converges weakly to Q* as N —> oo.

The proof of Proposition 1.7 together with the Gibbsian characterization of β*
is given at the end of Sect. 3.

2. Proof of the Lower Bound

The aim of this section is to prove the following lower bound:

Proposition 2.1. Let {bN:N e N} satisfy (1.2) and set ΩN = {X{k) ^ bN for
keVN}. Then, under (a') or (b'),

lim inf ! \ogP(ΩN) ^ -(VΪ^G + b)2^ . (2.2)

We will always be working under (a ;) or (b'). As a warming up we start with a
simpler result which misses the correct constant but illustrates quite well the essence
of the argument

Lemma 2.3.

lim inf — Γ - - — - log P(ΩN) > -dGC . (2.4)

Proof For any a > 2dG let PN be the Gaussian field on Ω with mean y/a log iV

and covariance G. Let # " ^ = σ(X(k):k £ VN) and set F/v = ^ | J ^ F Then

HN(PN\P) = J\ogFNFNdP =
2

where ( , ) ^ is the L2(F/v)-scalar product, GAΓ is the covariance matrix re-
stricted to VN and G^1 is the inverse of GN (beware that ( G " 1 V Φ G ^ 1 ! ) Note
that cwρN{VN) = (lvN,G^ι\vN)vN is the capacity of VN with respect to the random
walk generated by Q, cf. Sect. 25 of [13]. We have

lim - i ^ cap^(F^) = cap a(F) = C . (2.5)
/v —> o o 1V
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In case (a'), this is proved in Lemmas 2.1 and 2.2 of [0]. We give a proof of (2.5)
for 0 < α < 2 Λ d in Proposition A. 11 below. Thus

1 ^ ^ H N { W ) = Ύ- ( 2 6 )

Also we have

PN(Ω%) = PN I U {X{k) < 0} ) S \VN\PN(X(k) < 0)

I

= NdP(X(k) < -yJa

where φ(x) = (2π)~1/2 f^e'^^dt ^ \e-χ2/1 for x ̂  0. Thus

as N —• oo and therefore

i^moPN(ΩN) = l. (2.7)

Now (2.4) follows from (2.6) and (2.7) by the usual change of measure argument:
since x —> logx is concave, we have by Jensen's inequality

JlogFNFNdP^ -
PN(ΩN)QN

PN(ΩN)

where in the last inequality we have used the fact that x —> x logx ^ — e~ι. Taking
the lim inf on both sides, we get (2.4) by (2.6) and (2.7). D

The major obstacle in getting the correct constant for the lower bound with
the above method, is the rather poor estimate of PN(Ω^) which forces a > 2dG.
In order to overcome this difficulty and prove Proposition 2.1, let us consider the
auxiliary centered Gaussian field {X(ί,a):i G TLd,a e {!,...,/,}} with covariances

E[X(i,a)X(j,b)]=l (2.8)
I — I r oa^ i = J

Remark that the covariance matrix is also the Green function of a random walk
{£o>£i> } with transition probabilities
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We denote by lP(i,α) the law of this random walk with start ξo at (z,α). Let

and set # z ΞΞ σ(Z(i)J e TLd\ Note that E[Y(i)Y(j)] = G(iJ), thus

We calculate the conditional law of Y given tFz following the technique of the
Appendix of [0]: Let τ = inί{n ^ 0: ξn e Zd x {\}} and

Obviously qL((i, l),y) = <5, J 5 and, for a ^ 2,qL((i, a)J) does not depend on a. We
denote its value by qL(i,j). By the random walk representation

Σ qL((ί,a)J)Z(j) •

Next, let η(i) = E\Y(i)ψz\ then

Σ - Σ <ϊL

VL

The covariances of Z are given by

We can represent the Z-field as

where JSf(£/( )) - JS?(7( )) and the {F(ι)} are i.i.d. Jί(0\ 1), independent of
{[/(/)}. Thus

?̂(0 - f 1 - 7 ) Σ qL{UJ)U{j)

γU(i) 4- l . ; Σ ?{iJ

Lemma 2.9. σ | = var(η(i)) —* 0 as L —» 00.

Proof. The only problem is the first and third summation in the previous expression
for η(i):

var ( Σ?(U)Uϋ) I = Έ<ίL(UJ)GUΛ)qL(Ki) ^ 0 as I -> 00 , (2.10)
V J J M
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and

L1'2 Σ FiUWU)) =ίΣ (<f ( U ) ) 2 - 0 as L - oo . (2.11)
)

var

Note that, starting at any a ^ 2, ξn is a random walk until the first (geometrically
distributed, independent) time in which a — 1 is hit. Let {ζn} and {ζ'n} be inde-
pendent random walks on Zd generated by Q, and let τ, τ' be independent random
variables, independent of {(«},{£«}> with geometric distribution of parameter £. Let
Po denote the joint law of τ,τ\{ζn},{ζf

n}. Then

<f (z,7) - P ( l , β ) (£ τ = (/, 1)) - Po(Cτ = 7 - i)

and

Σ (<f(U))2 = Σ Po(Cτ

= Σ

Further we have Po(C«+«' = 0) ^ c(n + nf)~d^, for some c > 0 (this follows from
local central limit theorem, cf. [13], Sect. 26 in case (a7), and Lemma A.I below
in case (b')), and P 0 (τ = n) <, j-e~n/L for some K > 0. This yields

oo

2 £τ+τ' = 0) ^ K2c £ (n + n'y^e-^e-" ^LL~2 ^ k'Σ n
n,n ; =l «=1

for some &' > 0. The later is of order L~2 for 0 < α < rf/2, L~2 logL for α = d/2,
and Z~ J / α for 2 Λrf ^ α > d/2. This proves (2.11). As for (2.10), note that

oo

ΣqL(iJ)G(j,k)qL(k,i) = Σ Σ^CCτ =ΛCτ+» - Kζτ+m+τ, = i)
y,A: m=0 j,k

oo

n + m + « ' = 0)= Σ m

x Po(τ =

n,n'

oo

n+m+τ* -

= »)Po(τ

,m

0 =

= «'

+ »;

Σ

)

n=\

for some A:; > 0. This is of order L~2 for 0 < α < rf/3, Z~2 log! for α = rf/3
and L - ^ + ! for 2 Λ d ^ α > dβ. This shows (2.10). D

Lemma 2.12. Let x > 0, ^erc

1 XC
liminf l iminf-^——- logP(^(/) ^ ^xlogNJ e VN) ^ - — .

L—>oo N—>oo Γs α 1 0 g A ' 2
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Proof. We follow the proof of Lemma 2.3: Choose x' > x, let P denote the law of
(C/(i), V(i))ieZd, and let PN be the law of (£/(/), V(i))ieZd9 where U(i) has mean
y/x'logN and K(/) is unchanged. Then

Also ^ [ι?(i)] = y/x'logN, and

If I is so large that

cf. (2.7), and therefore

= 0,

We proceed from here as in the proof of Lemma 2.3. D

Conditionally on ^zΛ^(0)iezd ^s Gaussian with mean η(i). We need some
information about the conditional covariances:

GL

z(iJ) =

Lemma 2.13. Let

then

and

By the random walk representation

GL

z(iJ) ^ 0 (2.14)

(2.15)= G as L -» oo .

n=O

cf. Lemma A.6 of [0], which does not depend on the Z-field. Equation (2.14) is
immediate. Next note that

this implies (2.15) by Lemma 2.9. D

Proof of Proposition 2.1. For each δ > 0, let No be such that ^— < b + δ, N ^
I T Λ/lθgiV

No. Choose x > (V2αG + b + δ)2, then

O ^ bN,i e VN) ^ E[P(Y(i) ^ bNJ € J e VN] .
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On {η(i) ^ y/xlogN,i G VN},

P(Y(i) ^ bNJ G VNψ

Next, by (2.14), using Slepian's inequality,

P(Y(i)-η(ί) ^ -

425

J G

Π
ievN

Since G | ^ G, ^x

 L — - ^ 2α -f 2ε for some ε > 0 independent of L. Thus for

large N ^ No,

In view of the above this shows

,i eVN), N ^ NQ .

Using Lemma 2.12 and the fact that x > (\/2αG -f Z? + δ)2 and 5 > 0 were arbitrary
gives the claim. D

3. The Upper Bound

In this section we give a proof of

Proposition 3.1. Let {bN:N e N} satisfy (1.2) and set ΩN =
A: G VN}. Assume (a7) or (b7), then

The major tool in the derivation of the upper bound, will be a conditioning
argument on the lattice LΊLd. Let L G 2 N + be fixed and set

/tΞΞ(Z,/2,...,Z/2) + LZ ί/, ΛN=ΛΠVN .

Next let &L = σ(X(i): i G LLd\

X(i) = E[X(i)\&L] = Σ qL{iJ)XU) GL(iJ) =
j€LZd

By the random walk representation, we have

qL(i,j) - P, (ξt = y), GL(i,j) = Έt \Σ
U=o

B J
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where {ξn: n G N} is a random walk generated by Q and τ = inf {n ^ 0: ξn e LZd}.
In contrast to the original covariance G, GL is fast decaying. More precisely, in case
(a') we have an exponential decay:

GL(iJ) ^ cιQχp(-c2\ί -j\L~d/2) , (3.2)

for some c\,C2 > 0, cf. Lemma A.7 of [0], whereas in case (b ;), we have a fast
algebraic decay:

GL{i,j) S c3L
c«(log|i -j\)d+2+a\i -JV", \i -j\ > 1 , (3.3)

for some C3,C4 > 0, cf. Proposition A. 10 in the Appendix. Also in both cases, if
GL = GL(iJ), ί eΛ, then

lim G L = G . (3.4)
L—+ΌO

Our first step is the following hypercontractive estimate

Lemma 3.5. There exists Kι > 0 such that

^ bNJ eΛN\^L)S Π

Proof. The proof follows from Proposition A. 18 below applied to the 3FL condi-
tioned field by using the function / ( ) = 1{ >&#}• Π

For fixed J G N consider a partition of VN into boxes {Vι

N: i € V^} of side
[N/A]: Vι

N - V[N/Δ] + i[N/A] and let A!N = ΛΠ Vι

NJ e VΔ.

Proof of Proposition 3.1. First note that, by Lemma 3.5,

P(X(j)^bNjeVN)

S E[P(X(k) ^ bN,k G AN\&L);X(j) ^ bN,j G V

SE Π P(X(k) ^ bN\^L)κί;X(j) ^ bNJ G VNΠLΈd

k£ΛN

Γ / - Λ~L \^Z

For α > 0, let

and, for each 0 < <5 < 1, define
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Note that φ(x) ^ he~x ^ f° r some k > 0 and x < — 1. Then, on \Ji(~ievΔ

-φ(-JalogN/GL)

δKLN
dL~dΔ~d

ι

N\

ya\ogN/GL

^ exp - -
/logN

where kx = k(δ9L9Δ) = -jL=δKLL~dA~d.

Choose now a < 2αGL, then

- Φ(-(X(k) -

for some ^ ^ ^ > 0, and can therefore be neglected.

Once we know that, on ΩN, most of the X(j),j E Λ}y, are at the level v 2αG ,
we can estimate the upper bound with computations related to averages on Λι

N. This
is particularly simple since we are dealing with a Gaussian field. Thus, let

^ Ξ |4i Σ

Then, on (UievA Fι

N) Π {X(j) ^ bN,j G VN ΠLZd}, for each / G Fj

C Σ qLUΛ)X{k)

j€l'N

Σ qLU

where

\Λι

N

^ (1 — S)(^a\ogN + Z?τv) + 5(6^ Aθ) -hZ^ ,

1
> a \ Ί

I71^vl jeiι

NkeLΈd\vN

In Lemma 3.7 below we show that, for each K > 0,

= — oc .
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for any 0 < δ < 1 and a < 2αGL. Set aN = (1 - δ)(^/a\ogN Λ- bN) + δ(bN A 0),
then

lim .aN =(l- (5)(x/fl + b) + δ(b A 0 ) . (3.6)
N /lN

Since {S^:i e VΔ} is centered Gaussian, for each {/},/ e ^ } non-negative

^ aN}) SP[Σ fiK ^aNΣ ft

^ -exp
2 ^

Next, by the linearity of the conditional expectation and Jensen's inequality,

Var I Σ fi$N I = v a r I Σ fi^N I

Define now

h(x) = Σ fΛ v<(x) w i t h ^ = i/Δ + V(l/Δ)CV ,

where F(l/zJ) = [— J^,J^]9 then

Σ Λ = UΛ Σ Kj/N)X(j), Σ // = Δdίh{x)dx ,

and therefore

var Σ / ^ = - — Σ h(i/N)h(j/N)G(iJ).

Thus by Lemma 2.2 of [0] in case (a'), respectively Lemma A.8 below in case (b),

1 \l^ievAf
i) (Jv h(x)dx)
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As a consequence we get, by (3.6) with a — 2αGL,

limsup logP(ΛΓ(0 £ bN,i £ VN)

g - ((1 - δ) (V2αG L + ft) + <S(ft Λ 0)) : C(A)

Taking first £ -* 0, then L —> oo and zl —> oo yields the constant (\/2αG -h ft)2 y ,
cf. (3.4), where

C' = sup {C(h): h piecewise constant on a uniform grid} = capα(K)

by Lemma A.7 in case (b), respectively, Lemma 2.1 of [0] and (A.4), in
case (a). D

Lemma 3.7. For each K > 0

Proof Throughout this proof, c will denote a constant, which depends on Z, K but
not on N, whose value may change from line to line. Let

Note first that since \V^\ is bounded independently of N, it is enough to show that
for each /,

l o g ^ = —oo .—j

Nd~*logN

We will show that there exists ε7 > 0 such that

lim N-d-εΊog0>j = -oo.
N-*oo

To this end, let Iβ denote a set of |j8| ^ δ\Λι

N\ indices in Λι

N. Note that the number

of admissible β is bounded by 2'/1ΛH. Let

J&β keLZd\VN

For fixed Iβ,Zβ is Gaussian, then

The lemma thus follows if we can show that there exists an ε > 0 such that

maxE[ZJ] ^ cN~d~ε . (3.8)
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We show (3.8) in case (b ;), the proof in case (a7) is similar. To see (3.8), note
that, by (A. 13) below, for all α' < α,

E[ZJ] ^ cN~2d

j

S cN~2d Σ Σ \J -
j,j'eΛN k,kf

j,j'€ΛN k,k

j
N

k

~ N

' -k'

-d-J

-rf-α'

f
N N

•k>

k__k'
N ~ N

By Riemannn integration

\ΛN\4
(3.9)

lim Σ
j,jfeΛN k,k'eLZd\VN,kφkf

= SSJS\*ι-χ2\-
V γcγc v

TV N

-"-*' / _ £ ~d-J

N N
2 κ ι-d+ot ι

N N]
 \ΛM\4

< oo .

In order to verify that the last integral is finite, we may replace V = [1/2, \β]d by
the unit ball B — {x 6 IR^ : |x| ^ 1} and use the inequality

f\Xi-X2\
B \-*-J 3 ^ |χ2| <

Choosing now α — α' small enough and using (3.9), the lemma follows. D

We conclude this section with the proof of Proposition 1.7:

Proof of Proposition 1.7. We begin with a Gibbsian description of Pε: Let
P\{ W(k\c) be the conditional law of X{k) given by ^ ( ^ i c Then

where X(A:) = Σ7>/t Qi^JV^U)- We can view P ε as the unique Gibbs state to the

interaction potential W = {UF:Φ^F CC Zd}

x-ψ
UF(X) = { -(1 - ε)Q(k,j)X(k)X(j) F ={k,j}

0 F > 2,
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w i t h r e f e r e n c e m e a s u r e t h e L e b e s g u e m e a s u r e dx o n R . C o n s i d e r n o w t h e n e w
i n t e r a c t i o n p o t e n t i a l <f+ = { [ / + '

U+{X) = I -(l - ε)Q(k,j)X{k)X{j) F ={k,j}

10 \F\>2.

Let ^ o ( ^ + ) be the associated set of translation invariant tempered Gibbs states on

Ω+ Ξ ( R + ) z . ^ o ( ^ + ) + 0 since <^+ is superregular and superstable, cf. Definition
1.7 and Example 1.12 of [9]. We claim that ^ 0 ( ^ + ) consists of a unique point
{Q*}. This follows from Dobrushin's uniqueness criterion: let

be the conditional law of X(k) given ^{UΛC for any Gibbs' state in ^ o ( ^ + ) Next
let W : ^#i(R) x ,/#i(IR) —> [0,oo] be the Wasserstein metric with respect to the
Euclidean norm | | on R, that is

W(v,μ) = sup{ / f(x)v(dx) - J f(x)μ(dx) : / G

Set

Then, if v+(f\y) = / R + /(z)v+(Jz| j), respectively v+(*|.y) = / R + zv+ί^zlj), we
get by the Cauchy Schwarz inequality

f =(1 - e)| / (/(z) - v+(/|j))(z - v+(x\y))v+(dz\y)\

/ \ ! / 2

^(1 - ε) / (/(z) - v+(/b))2v+(ί/z|j)
\R+ /

x f(z-v+(x\y))2v+(dz\y)\
W J

This yields
D(kJ) g (1 - ε)ρ(A,y) sup var(v+(

with

var(v+( b ) ) =inf
2 ^ 2

J 0 e~(χ~y> <2dx J 0 e~^x~y> <2dx
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Thus

sup ΣD(kJ)^(\-ε)< 1,

and we have uniqueness by Dobrushin's criterion, cf. Theorem 4 in [5]. Using
the standard variational principle, one then verifies that Q* minimizes the specific
entropy h( \Pε) under the constraint Y[(Q) £ s#9 cf. [9]. Also the upper bound
large deviations yields

limsup -±- \ogPε(ΩN) £ - inf XQ\Pε) = -h(Q*\Pε) .
A^oo \VN\ Q:Π(Q)e^

Hypercontractivity shows that h(Q\Pε) ;> cHι(H(Q)\H(Pε)) for some constant
c > 0, cf. Sect. 5.4 [3], and hence h(Q*\Pε) > 0. We cannot apply directly the
large deviation principle for the lower bound, since s/ has a void interior. However
Q*(ΩN) = 1 and this implies

liminf y-L \ogP
ε(ΩN) ^ - h ( β * | P ε ) ,

N-+OO \VN\

cf. Proof of Lemma 2.3. Finally, the convergence of Pε( |Ω#) follows along the
same pattern as the proof of Theorem 3.5 in [4]. D

4. Entropic Repulsion

In this section we give a proof of Proposition 1.3. Our main technique is the
monotonicity or FKG property of the measure P. Our starting point is Propo-
sition 4.1 below. Note that only (4.2) will be actually needed in the proof of
Proposition 1.3.

Proposition 4.1. Let a < 2aG,b > 2αG and δ e (0,1), then

lim P(LVN[09 ValogN] ^ δ\ΩN) = 0 , (4.2)
N—*oo

and

N
lim P(LvJy/b\ogN,oo) ^ δ\ΩN) = 0 . (4.3)

For fixed L e 2N + , define &L,ΛN, X(i\GL{iJ)JJ e ΛN as in Sect. 3 and set

LΛN = -rr-7 Σ

The crucial step in the proof of (4.2) is the following.

Lemma 4.4. Let a < 2αGL, then for each δ > 0,

lim P(LΛN[0, ^/alogN] ^ δ\ΩN) = 0 .
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Proof. Set

IN(a) = {/' ^ ΛN 'X(j) ύ ^/alogN] ,

h(a) = {j G ΛN : X(j) S \Λ*logiV} , ϊN(af = {/ G ̂  : X(j) > y/aλogN} .

Following the argument of the proof of Proposition 3.1, we know that for each
δ > δf > 0 and a < a1 < 2αGL

P{\ΪN{a')\ £ δ'\ΛN\;ΩN) £

for some c,ε > 0. By (2.2), this implies

lim

Since

^δ} = {\IN(a)\ ^ δ\ΛN\}

< δ'\ΛN\}U {\IN(a)\

fl')| ^ δ'\ΛN\}

all we have to show is

JimQP(\IN(a)nϊN(atf\ ^ (δ - δ')\ΛN\\ΩN) =0.

Let k G IN(a)nϊN(a')c then

X(k)-X(k) ^ (Vd-Va)

Thus on {|/τv(α) ^^N(^)C\ ^ (δ — &)\AN\}, we have

(4.5)

\Λ

Note that GL(kJ) = cov(X(k%Xφ\^L) = E[(X(k)-X(k))(X(j)-X(j))] is
rapidly decaying, cf. (3.2), but this implies

1 ^ Σ \
N\ k£ΛN

\X{k)-X{k)\

^(δ- δ')(Vrf - Va)y/logN) < -c

for some c > 0 depending on L, δ — δ' and \[~a! — ̂ /ϋ. This together with (2.2)
proves (4.5) and concludes the proof. D

Proof of (4.2). For £ e VL, define ^ L ( / ) = σ(X(k + ί\k e LΈd\A(ί) = (1/2 +
/,... ,L/2 + /) + LΈ\ AN(ί) = A(ί) Π VN and
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Using the argument of the preceding lemma, one shows that for each ί <E VL, a <

2αGL and δ > 0

lim P(\IN(aJ)\ ^ δ\ΛN(O\ \ΩN) = 0 .

Also

{LVN[Q,y/alogN] £ δ} = {\{k G VN:0 ^ X(k) £ y/alogN}\ ^ δ\VN\}

£ U

This implies (4.2) for each a < 2αGL, and the result follows with L —> oc by
(3.4). D

Proof of (1.4). Let us recall (1.4):

lim sup P(X(k) ^
N—+OO i

\ ΩN) = 0 . (1.4)

Consider a small cube, VN(k) centered at k with side length ^ (ε/3)N. Let WN(/)
be a cube centered at ί with size length (2ε/3)N. Then, for k G VN,ε,

^ OJ G WN(k))

") ^ 0>7 ^ WN(k

) ^ 0,y G ^

Σ
1

and by the FKG property, for each / G VN(k)\

P{X(k) ^ ^a\ogN\ΩN) ^ P(X(k) S

= P(X(yc + o ^

Thus, for any δ > 0,

P(Λ-(*) ^ v/βϊog^l^O') ^ OJ € VN) ύ

S ^/a\ogN\X(j) ^ OJ e

^ δ + P(LVN(k)[0, ^alogN] > δ\X{j) ^ O J e Vh

Using (4.2), we have

\\mP{LVhiφ, sJa\ogN\ > δ\X(j) ^ OJ e VN{k))

"~' ~" ~'\XU) = 0' i ' e

>δ\ΩN) = 0.

= lim
N-> oo

= lim
N~>oo

Since 5 > 0 is arbitrary, we have the result. D
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Remark. 4.6. One could wonder, what may happen with k closer to the boundary

of VN. For l > ε > 0 , let dLV = [)d

J=l{x = (xu...9xd) G WLd: \x,-\ = 1/2, \xk\ £

(1 - s)/2,kφj} and set δVKε = {/ G Zd : i/N G δεV}, the "interior" of the bound-
ary of V^. An adaptation of the above argument shows, for any 1 < α ^
2Λ d and a < 2(α - 1)G,

lim sup P{X{k) S y/aϊogN \ ΩN) = 0 .

Next, we are going to show first (1.5), and then (4.3). Our first step in the
proof of (1.5) is the following.

Lemma 4.7.

ra^^ (4.8)l i m s u p s u p ^
N->oo k£VN V log N

Proof Again, we use FKG: for fixed m G N, and any / G VmN, k G VN,

E[X(k)\ΩN] = E[X(k + n\XU + m 0,7 G VN]

S E[X(k + S)\Ωim+ι)N] ,

since V{m+ι)N = [jίeVmN(VN + /) and F w ^ + £ C F ( w + i ) i V . Next for any h ^ 0 with

support in VmN and β > 0, we have

where FN = β Σ/evmN K<f)X(k + ̂ ) Using the entropy bound

we get,

Further,

and

and

by

by taking the best β,

E[X(k)\ΩN]

note that

(ιvmN,h)2

VmN

S > P (h Gh)v

Theorem 1.1

- l o g P(Ω{m+X)N) =

therefore

mNΛvmN)vmN = cπpmN(VmN)

l)d-*Nd~*log#(aGcaP:((F)

l i m s u p su
 £ ί y i

ylogTV

Now (4.8) follows with m —• oo. D
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Proof of {1.5). We want to show that

limsup sup P(X(k) ^ y/b\ogN\QN) = 0 (1.5)

for all b > 2αG. Choose 0 < δ < \/2αG and set y = \/2αG - (5, then, writing
X(k) = ^ 1 — , we have

£[1(AΓ)|ΩΛΓ] ^ yP(y g X(£) < Vb\ΩN) + VbP(X(k) ^

- y ( l - / W ) ^ ^ | Ω ^ ) - P ( 1 ( ^ ) ^ y\ΩN))

+ VbP(X(k) ^ β\ΩN) .

Thus

Since, by (4.8),

and, by (1.4),

we get

limsup sup P(X(k) ^

which yields the result with δ \ 0. D

vb-

limsup sup E\X{k)\Ωχ] ^ v2αG
7V-+oo keVN

lim sup P(X(k) ^ y|ΩΛr) = 0 ,

/— I 5

yb — V2αG

Proof of (4.3). Let 6 > λ/2αG and 0 < δ < 1, then for any ε > 0,

1 _

^ sup

for some constant cj > 0. Thus by (1.5)

lim supP(LVN[^b logN,oo) ^ δ\ΩN)
N-^oo

and (4.3) follows with ε \ 0. D

Appendix

In this appendix we show the convergence of the capacity and derive the estimates
of the conditional covariances for the α-stable case.
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Let α G (0,<i Λ 2) and let qa be the density of the isotropic symmetric α-stable
law on IR^ with characteristic function given by

/ eu'xq^x)dx = e~pW , t e WLd , (A.I)

for some p > 0. Define £? as in the introduction and let Qn be the nth product
of Q.

Lemma A.2. Assume (b) or (b')> then

lim |Af+ αρ(£,0) = cα (A.3)

sup Qn(j\k) ^ c/Γ^* (A.4)
h

for some c,cΛ > 0. Also

I^Hoo1 ' α'r f (2π)^ α / R , ( l-^( jc)) |x | - 1 -^x v }

with ψ(x) = ^ Σf=1

Proo/ The first equality, (A.3), follows from the definition of Q and (A.I). As for
the proof of (A.4) and (A.5), we use harmonic analysis as in Sect. 7, Sect. 8 of
[13], cf. in particular the proof of P6, see also [12], Propositions 2.3, 2.4 and 5.2:
Let

Q(θ)= Σ i k \ d

be the Fourier transform of Q, then

lim |0|-*(1 - Q(θ)) =

cf. Example 2 Sect. 8 of [13]. Note that Ψ(θ) = \Q(Θ)\2 is the Fourier transform
of Q2. Since Q is strongly aperiodic by assumption, Ψ(θ) = 1 if and only if θ £
(2π)Έd, cf. P8 of Sect. 7 of [13]. Also the above shows

Thus

But

lim 0 ~α(l - Ψ(θ))
|0|->O

there exists λ > 0, such

0 S Ψ(θ) ^

(2π)dQ2n(j\k)= J e

= lim
|θ|-»0

that

l - λ | 0 |

\e\-\\-Q

α ^ e-Λ|β|»

Kβ))(i

/

(-π,π] r f .

and the same bound holds if Q2nQ\k) is replaced by Q2n+ι(j\k). This proves (A.4).
Next note that, if G denotes the Fourier transform of G, then G(0) = (1 -
with

lim WG(Θ) = —
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and

1

( 2 π ) (-π,π]d

This yields

lim \k\d-*G(k,0) = \ f ψ(x)\x\-*dx = ωα d . D

Let gαOO = ωα ^xl"^4"* be the Riesz kernel and define the integral operators K
and Kv on ^ ( R * j and L2{V\

Kφ(x) = / #α(x - j )φ(^) </;/, j ^ ψ ( χ ) = / ga(x - y)φ(y) dy .

^ is a positive definite, compact self-adjoint operator with (L2(F)-normalized)
eigenfunctions {en} and eigenvalues {λ{(V) > λ2(V) ^ •}. For φ e C 2 (JR J )n
L2(J&d) let

where

Finally consider the Dirichlet forms £ and £v on Z,2(IR'ί) and L2(V):

,Ψ) = Σ T(Φ,e«)2

r •

Let Ή^v be the extended domains of $ and <?y. Both Dirichlet forms are regular,
cf. Example 1.5.1 of [7]. $ is the Dirichlet form associated with the symmet-
ric α-stable process on Wίd, whereas Sγ is the Dirichlet form of the symmetric
α-stable process imbedded in the unit cube V. Using the positivity and continuity
of Kv on L2(V), we have, for each dense subset Q)(V) of L2(V),

,Φ) = sup{2(φ,f)v - (f,Kvf)v:fe

= s u p { t « (A.6)
ΛvJjv

Lemma A.7.

gv(\v,ly) = inf{β(h9h): h e Cι(WLd)ΠL2(Widlh ^ 0,A = 1 on V} = capα(F).

(A.8)

Proof. By Lemma 3.1.1, Problem 3.3.2 and Example 3.3.1 of [7], (see also [10],
Theorem 2.3, page 138)

capα(F) ΞΞ inf{<ί(M): h £ <$,h ^ 0,A = 1 on V}

= inf{^(A,A): A G Cι(JRd)ΠL2(JRd)9 h ̂  0, A - 1 on V} .
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Also

capα(F) - sup{2/i(F) - f f gΛ(x - y)μ(dx)μ(dy) :
V V

μ positive Radon measure on V with finite energy} .

For each μ with finite energy, we can find a sequence {/«} C L2(V), such that

lim 2{/F>/n)κ - (fn,Krfn)v = 2μ(V) - J /ga(χ - y)μ(dx)μ(dy) , (A.9)
W~>OO γ y

cf. Example 3.2.1 of [7]. Thus, by (A.6)

capα(F) = sup{2(l F ,/) F - (f9Kvf)v : / G L2(V)} = δv{\vΛv) . •

Lemma A.10. Let f be Riemann integrable on V and let h <E Cx{WLd)Γ\L2(WLd\
Set fN(k) = f(k/N), hN(k) = h(k/N% then

lim iv \JN >{JNJN)VN — \J >&vj )v ?

lim N~d+*(hN,G~λhN)πd = $(h,h) .

Proof This follows from Lemma A.2 and Riemann integration:

lim N~d~y'{f^,G^fN)vN

= lim lim £ f(k\N)Nd'ΛG(k-j)f(j/N)N~

= ^ Σ f(k/N)g,(j/N - k/N)f(j/N)N-2d = (f,Kvf) y ,

and

lim

x-^ ^ . 7 / i r x r / "*τ^\2\τd+y.sΛίlr ;\ΛT-2d= i lim lim £ (A(A/JV) - h{JlN))2Nd+*Q{k - j)N

= L l i m Σ {KklN)-h{JlN)fg-\jlN-klN)N-2d

= £(h,h). D

Proposition A.Π. Lei / e C'(T) ^e

lim N-d+ΊJN,

In particular if f — I F ,

d + ι d

N ) = c a p α ( F ) .

Proof. First note that for any φ e C(V),

φ)VN -Nda(φN,GNφN)VN^ N-d2(fN,φN)VN -N-d-a(φN,GNφN)VN .
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Thus in view of Lemma A. 10 and (A.6),

^ ^ G - 1 / ^ ) ^ ^ sup

Next for each h e Cι(ΊRd)nL2(Wίd), with h = f on V

{/N,GU /N)VN = sup {2{hN,φN)yN - {φN,G

S sup {2(hN,φ)Έd - (φ,Gφ)Έd}
φ^L\Ίβ)

= (hN,G'ιhN)πd=
l- Σ (h(j/N)-h(k/N))2Q(j~k).

Using Lemmas A.7 and A. 10, we see that

d+*(fN,GNlfN)VN S inf {δ(h,h) :h £

= £v{fJ). D
N->oo

),h = f on V)

Finally, let {ξn — Ύ\ -f ... -f Yn} be a random walk generated by Q and τ =
\nϊ{n ^ 0: ξn £ LΈd}. Remember that, by the random walk representation, we have

qL(ί,j) = Ψi(ξτ = j)9 G (ij) = Έi Σ lξn=j •

Proposition A.12. Assume (bf\ then there exists c3 > 0, such that, for \i — j \ > 1,

GL(iJ) S c3L
c<

qL(iJ) S c3L
c*

with c4 = (d + oc)(d -f 2 + α). Also, for each i £ A,

lim GL(i,i) = G(i,i) . (A.14)

Proof First remark that, for i £ A,

G{i,i) - GL(i,i) = E, I Σ l[i}(ξA = Σ qL{i,j)G(iJ) £ max G(i,j) -> 0 ,

as L —>• oo.
Next let τ ; = inf{« ^ 0 : ξn = 7}, then, referring to the proof of Lemma A.7

in [1],
GL{i,j) S G(0,0)(]P;(τy S Ό + Ψiiτ > T)),

V,(ξ, =j) ^ ΊPiiτj £ τ) ^ P,(τy ^ Γ) + P, (τ > T)

for any T ^ 1. We claim that

JP,(τ > T) S e-k'TL~d~*

iitj ^ T) ^ i 2 7" ί + 2 + Ίy - i'

(A.15)

(A.16)
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for some kuk2 > 0. Equation (A. 13) follows from these estimates by choosing
T = ^1 '

Proof of {A. 15). Simply note that

Pz(τ > T) = V^o £ LZd,...,ξτ £ LTLd) g (1 - pL)τ ,

where

pL = minW,(ξι eLZd)^ min Q(i,0) ^ kL~d~a ,

for some k > 0.

Proof of (A. 16). The crucial step is to show that, for each |y| > 1,

Once (A. 17) is shown, (A. 16) follows from

=j

In order to prove (A. 17), note that,

Ψ0(ξ,,=j) = Ψ0(ξn=j;{j{\Y,\ £ ^

and use the fact that, for ( ^ ^-,

Ψ0{Yn = O ύ h\j\-d-«nd+* . D

We conclude this Appendix with a proof of the hypercontractive estimate:

Proposition A.18. Let {ζi}ίezd be a Gaussian field of zero mean and summable
covariance R(iJ) = R(\i - j\) Assume that

for some δ, C > 0. Then there exists a constant CR ^ 1, independent of N, such
that for any bounded measurable function / ( ),

11 j(ζi)\ έll / \\cR •>

where || / | | C Λ = ( £ [ | / ( & ) | C Λ ] ) 1 / C * .

Proof. Let I\J2 be two disjoint sets of indices in VN. For any two vectors
{%i}ievNΛβi}ιevN, let (ot,β) =Σi,jevN

cc*βjR(i>J)> w i t h t h e o b v i o u s definition of
|| α || . Following [2] (see p. 648, last line, and work in the time domain instead of
in the frequency domain), let

τ}c

Jl = sup{(α,β): || α || = || β | | = 1, αf - OVz £ /1? ^ = OVz £ 72} .
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By an adaptation of Nelson's hypercontractive estimates similar to [2], lemma,
p. 645, for any two bounded functions f\,fi measurable respectively on tFϊλ =

Note that

Σ *iβj

^ II « II2II β 111 ( s u p Σ \R(\i-J\)\ + sup Σ \R(\i - j\)\) ,

with II α II2 denoting the 2̂ norm of α. On the other hand,

where R(x) = R(x) if xφO and Λ(0) = 0. Hence,

with an analogous expression for || j8 || . It follows that

τV 2 S 1 Λ

Let now V£ (V^) denote the odd (respectively, even) points in
the above,

Π 1̂1 π /(ω π

q. Then, using

(A.20)

One may now iterate this inequality, partitioning in each stage the "odd" and the
"even" parts again to two subsets. To keep track of the partitioning, we use the
multi-index fk £ {0,1}* to denote the partition history of each of the 2k sets in the
kth interation, denoted VN

h , with 0 representing "odd" and 1 representing "even."
Note that

sup Σ \R(\i-J\)\)£ Σ

Let / ^ - 1 denote the truncation of the last coordinate in /#. Using the above, it

holds that for all k > ko (with k0 depending on R only), and all ίkJk satisfying
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Let τ/c — 4X] G2(LWJ)F ^(l/1) Iterating the basic inequality (A.20) yields now

Π /(&)

=11 fit ) \\{VN1

k=kQ κ κ '

where CR = 2k° + π^k (1 -+- r^) < oo and the last inequality follows from the fact

that YT=k n < oc due to (A. 19). D
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