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Abstract: We study representations of the central extension of the Lie algebra of
differential operators on the circle, the ΨΊ+Oo algebra. We obtain complete and
specialized character formulas for a large class of representations, which we call
primitive; these include all quasi-finite irreducible unitary representations. We show
that any primitive representation with central charge N has a canonical structure of
an irreducible representation of the ^-algebra iV{gl^ with the same central charge
and that all irreducible representations of iί^{gl^) with central charge N arise in
this way. We also establish a duality between "integral" modules of Ψ*(glN) and
finite-dimensional irreducible modules of glκ, and conjecture their fusion rules.

Introduction

The Lie algebra 2, which is the unique non-trivial central extension of the Lie
algebra <3) of differential operators on the circle [KP1], has appeared recently in
various models of two-dimensional quantum field theory and integrable systems,
cf, e.g., [BK, FKN, PRS, IKS, CTZ, ASvM]. A systematic study of representation
theory of the Lie algebra 3, which is often referred to as #l+oo algebra, was initi-
ated in [KR]. In that paper irreducible quasi-finite highest weight representations of
2 were classified and it was shown that they can be realized in terms of irreducible
highest weight representations of the Lie algebra of infinite matrices.

In the first part of the present paper we recall some of the results of [KR] and,
as an immediate corollary, obtain complete and specialized character formulas for
an arbitrary primitive representation of Q). (A primitive representation of <3 is an
"analytic continuation" of a quasi-finite irreducible unitary representation of S>.) The
results of [KR] were used previously in [Mat, AFOQ] to derive character formulas
of primitive representations of central charge c = 1.

* Supported by a Junior Fellowship from Harvard Society of Fellows and in part by NSF grant
DMS-9205303.
** Supported in part by NSF grant DMS-9103792.
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In the second part of the paper we exhibit a connection between Q) and
the 1^-algebra Ψ*(glN) at the central charge N. Our main result is that any prim-
itive representation of 3) with central charge N has a canonical structure of an
irreducible representation of iV{gl^) with the same central charge and that all
irreducible representations of i^igh) with central charge N arise in this way. An
immediate corollary is a character formula for these representations.

The vacuum module of 3> of central charge c is irreducible if and only if c is
non-integral [KR]. If c is a positive integer N, then this vacuum module contains
a unique singular vector of degree N + 1, and the quotient by the submodule gen-
erated from this singular vector is an irreducible ^-module [KR]. We will show
that this quotient is isomorphic to the vacuum module of the i^-algebra W{gl^)
with the same central charge. All these modules carry vertex operator algebra (or
chiral algebra) structures, and this isomorphism holds at the level of vertex operator
algebras. It follows that the Lie algebra of Fourier components of the fields from
i^(glN) with central charge N is a quotient of the local completion UN(^)ioc of
the universal enveloping algebra of 3) with the same central charge, by a certain
ideal. A similar statement was conjectured in [FKN], where it was used in the study
of the so-called ^-constraints in two-dimensional quantum gravity.

We recall that the if -algebra 1V{glN) can be defined as the kernel of certain
"screening" operators acting on bosonic Fock spaces, cf. [FF2]. These operators
depend on a complex parameter β, and for "generic" values of β, this kernel is
finitely generated as a chiral algebra. We show that β = 1 is a generic value; this
value corresponds to central charge N, cf. also [F2, Bo, BS]. We then use the
realization of 3) in terms of N free bosonic fields to construct an explicit map from
the chiral algebra of 3) to the chiral algebra ^ ( ^ / ^ ) , and to show that this map is an
isomorphism. It follows that under this map of chiral algebras, the first N generating
fields J\z),...,JN-ι(z) of 9 map to the generating fields W\z\...,WN-\z) of
^(QINX a n d the remaining fields Jm{z\m ^ N, map to certain normally ordered
combinations of W°(z),..., WN~ι{z) and their derivatives. This happens so because
by taking the quotient by a submodule generated from the singular vector (this is
often referred to as decoupling of a singular vector), we effectively set to zero a
field of the form

where the second term is a normally ordered polynomial in J°(z),...,JN~ι(z) and
their derivatives. This allows one to express Jm{z\m ^ TV, as a combination of
J°(z),...,JN~ι(z) and their derivatives. Since such combinations are non-linear,
the resulting commutation relations between W°(z),...,WN~ι(z) also become non-
linear, which is what we expect in i^(glN)-

One could try to prove this correspondence between 3) and i^(glN) by using an
explicit formula for the singular vector in the vacuum module of 3). Although we
know a simple formula for this vector in the Verma module over 3) [KR, Sect. 5.2],
for large N it is difficult to derive from it a formula for such a vector in the vacuum
module in the PBW basis. But even if we knew a precise formula for it, it would
still be unclear how to show that decoupling of this vector gives i^iglN)- That is
why we prefer a less direct, but simpler and more transparent proof, which uses
free field realizations of 2 and Ψ~{glχ).

Our result implies that any irreducible representation of i^igh) with central

charge N gives rise to a quasi-finite irreducible representation of 3) with the same
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central charge. Irreducible representations of i^(glN) can be constructed as sub-
modules of the Fock modules over the Heisenberg algebra of N scalar fields. They
yield primitive representations of 3) and all of them can be constructed in this way.

In the third part of the paper we establish a remarkable duality between "inte-
gral" irreducible representations of Ψ*{glN) and finite-dimensional irreducible rep-
resentations of GZ,/y((C), cf. also [K,F1,F2,KP1]. This leads us to the conjecture
that the fusion algebra of integral representations of Ψ"(glκ) is isomorphic to the
representation algebra of the group GLN(<E).

Throughout the paper we systematically use vertex operator algebra methods. In
particular, we give a general existence theorem (Proposition 3.1) which allows one
to check easily axioms of a vertex operator algebra.

The paper is organized as follows. In Sect. 1 and the first part of Sect. 2 we set
notation and recall some of the results of [KR]. In the second part of Sect. 2 we
establish character formulas for primitive representations of ώ with central charge
N. In Sects. 3 and 4 we study the vertex operator algebra structure on the vacuum
module of Q) and on i^(glN)- In Sect. 5 we construct a surjective homomorphism
between them and derive consequences of this fact. In Sect. 6 we establish the
duality between 1f(glN) and GLN(<C).

1. The Lie Algebra Q)

Let 3) be the Lie algebra of complex regular differential operators on C x with the
usual bracket, in an indeterminate t. The elements

form a basis of 3. The Lie algebra 3ι has the following 2-cocycle with values in
C [KP1, p.3310]:

™^l m ) ( 0 d t , (1.2)

where f{m\t) = d™f(t). We denote by 9 = 9 Θ CC, where C is the central ele-
ment, the corresponding central extension of the Lie algebra 3).

Another important basis of 3) is

L[ = -tkDι ( t e l , / G 2 + ) J (1.3)

where D — tdt. These two bases are related by the formula [KR]:

4 = -tk[D]t. (1.4)

Here and further we use the usual notation [x]ι = x(x — l ) . . . ( x - / + l ) . One has
another formula for this cocycle [KR]

f Σ fU)g(J ), ^ ,
Ψ(trf(D),tsg(D)) = ! -rsyg-i (1.5)

(.0,
The bracket in 3) may be conveniently calculated by the following formula:

[ff{D), fgφ)] = tr+s(f(D + s)g(D) - f(D)g{D + r)) + Ψ(tr/(£>), fg(D))C.
(1.6)



340 E. Frenkel, V. Kac, A. Radul, W. Wang

The Lie algebra 9) contains two 1-parameter families of Virasoro subalgebras
^ e V , defined by

ϊ (1.7)

so that

[2£(j8),L±(j8)] = (m- n)L±+n(β) + δmt_n

rH^Cβ , (1.8)

where Cβ = —(12/?2 - 12)8 + 2 ) C ] Note that these two families intersect at β = \
and that C\ = C.

2 ^

As in [KR], define an anti-linear anti-involution σ of 2 by:

σ(tkf(D)) = Γkf(D-k)9 σ(C) = C, (1.9)

where for f(D) = ΣifiD
i,fi e <C, we let f(D) = ΣifiDi τ h e n w e h a v e

σL^(β) = LZk(β). In particular, Fz'r Q) := Vi^ (\) is the only σ-stable subalgebra
among the Vir±{β).

Define a Z-gradation Q) — ®je%@j by letting

wtZ[ = wtj[ =k, wt C = 0 .

This gives us the triangular decomposition of <3)\

where ϋ ± = ΘyG±]N%,^o = * θ CC. Note that σφj) = ̂ _y3 σ(§+) = § _ ,

Fix C G C . Given λ G ̂ Q , we define in a standard way the Verma module with

central charge c over Si\

where C;w is the 1-dimensional ^o θ &+-module, on which C acts as multiplication
by c,h e @o acts as multiplication by λ(h\ and @+ acts by 0. Here and further we
denote by U(Q) the universal enveloping algebra of a Lie algebra g. In general, we
shall say that a ^-module has central charge c £ C if C acts on it by multiplication
by c.

Denote by & the subalgebra of Θ, which consists of the operators that can be
extended to regular differential operators on C. We have:

& = linear span of {Jι

k\l + k ^ 0} .

It follows from (1.2) that 9 is a subalgebra of 9. Let ̂  = ̂ 0 (CC. Note that

§ o θ ^ + C ^ and that the 30 θ ^ + -module C o can be extended to be a ^-module

by letting 9 H-> 0. The induced ^-module

1 The value of Cβ given in [KR] should be corrected.
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which is a quotient of the Verma module Mc(@,0), is called the vacuum <3-module
with central charge c.

There exists a unique irreducible quotient of the Verma module Mc(β>λ\
denoted by Vc(β> λ). The module Vc(β),X) is called quasi-finite if all eigenspaces
of D are finite-dimensional (note that D is diagonalizable). It was proved in [KR,
Theorem 4.2] that Vc(β,λ) is a quasi-finite module if and only if the generating
series

Σ
n=0

has the form:

where φ(x) is a quasi-polynomial (i.e. a linear combination of functions of the form
xneoυc, where « G Z+ and α G C) such that φ(0) = 0.

Furthermore, it was shown in [KR, Theorem 5.2] that Vc{β),λ) is a non-trivial
unitary module with respect to the anti-involution σ if and only if c is a positive
integer and

Mx) = t£=T (U2)

for some r\,...9rc G 1R.

Definition 1.1. The ώ-module Vc(β,X) with c a positive integer and Δχ(x) of
the form (1.12) with n , . . . , r c G (C is called a primitive ώ-module. The numbers
ri, . . . ,r c are called the exponents of this module.

2. Characters of Primitive ^-Modules

Let gl be the Lie algebra of all matrices (aιj)ιje% with only finitely many nonzero

diagonals. Letting wtϋ^ = j — ί defines a Z-gradation gl — ®jeiQlj Given s G (C,

we may consider the natural action of 2 on the space ts(C[t,t~1]. Choosing the
basis Vj — t~-i+s(j G Έ) of this space gives us a homomorphism of Lie algebras

φs:®-+ gl:

φs (tkf(D)) = Σ f(-j + s)Ej-kJ . (2.1)

Denote by gl = gl Θ &K the central extension given by the 2-cocycle [KP1]

C(A,B) = tr([J9A]B), where J =Σ Eu •

The Z-gradation of gl extends to gl by letting w t ^ = 0. The Lie algebra gl has
the following antilinear anti-involution:

where *A stands for the hermitian conjugate of a matrix A.
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T h e m a p φ s : <3 \-+ gl defined b y

φs(exD) = φs(exD)-^Γ-jκ, φs(C) = K (2.2)

is an injective homomoφhism compatible with the Z-gradations and the involutions
^ ϊϊl s-^

[KR]. Let gl be the direct sum of m copies of gl. Given s = (s\,.. .,sm) £ (Cw we

have a homomorphism φs — ΘiφSι \ Q) ̂  gl .
Given λ £ gl0 and c £ (C, there exists a unique irreducible ^/-module Vc(gl,λ)

with ^ = c/, which admits a non-zero vector |A) such that

Eij\λ)=0 forz<y,

U) for / £ Z .

All the modules Vc(gl9λ) are quasi-finite in the sense that all the eigenspaces of

φo(D) (and hence of φs(D),s £ C) are finite-dimensional.

Define Λj £ gf/0(y £ Z) as follows:

( 1 for 0 < z g 7 ,

- 1 f o r y < / ^ 0 , (2.3)

0 otherwise.
Then a ^/-module Vc(gl,λ) is a non-trivial unitary module if and only if c is a
positive integer and

λ = Λnγ-\- Λni + ... + Λnc, where n\ έi ri2 ^ ... ^ nc. (2.4)

One has the following "specialized" character formula for these modules [KP2]:

trvc(ΐu/S^ = <f*X) Π < (1 - ^-"

where A is given by (2.4), α(λ) = ^(/ijt - ^ ) ( ^ - 5 H- l)/2, and φ{q) =
ΠyΞi(l ~ # 7 ) i s m e Euler product.

It is proved in [KR, Theorem 4.5] that an irreducible quasi-finite gl -module

remains irreducible when restricted to φ s ( ^ ) , provided that sι — Sj £ TL for z'Φy.

This allows one to describe the primitive ^-modules.

Proposition 2.1 (KR, Theorem 4.6). Let V be a primitive Q)-module with exponents
ri,. . .,r c . Break the set {r\,...,rc} into a disjoint union of congruent mod Έ
classes, i.e.

where Si = <Si H- n^,..., j , -I- n^X ,/f E Z α « J s/ - jy ^ Z . L β ί s = ( j i , . . ,9sm)

and Λ^\V) = A & + ... + Λ (,> Γ/zen ίΛe ^-module V is obtained from the
n\ ncι

gl -module

i=\
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by restricting to φs(β). In particular the specialized character tryqLo is equal to
the product of the corresponding characters of the irreducible gl-modules (given
by the right-hand side of (2.5)).

Let Hi = Eij — Ei+\j+\ -\- δioK(i G Έ) be the simple coroots of gl. We define
^ ^ * ^ ' ' ^ -—- * ^ *
ΛQ G #/0 by /loC^O = l,Λo(Eil) — 0 for all / and extend Λj from gl0 to #/0 by

letting Λj(K) — 0. Then Λ3 = Λj + Λo(j € Έ) become the fundamental weights,

i.e. Λj(Hi) = <5i7.
The highest weight of a unitary module Vc(gl, λ) is defined as λ = 1 -f cΛo We

have ^ ^
where kι G Z+ and J ^ ^ = c . (2.6)

We shall often write V(glJ.) in place of Vc(gUλ).

Let /?(A) = {pi} be the sequence associated to λ which is non-increasing and

contains kj integers equal j (j G 7L). Because of the obvious stabilization properties,

the classical character formula for gl(N9<C), cf. [M, Chap. 1,(2.9')], still holds for gl

and can be stated as follows. Define the complete character of the module Vc(gl,λ)

by

chcJih)(= c h τ ( A ) ) = *VcQj/, h£gl0.

Let Sn — ch^ (n E Έ) be the character of the nth fundamental module. Then we
An

have:
-, + ; ) , ,y=U,c. (2.7)

Example.

We can now define the complete character of a ^-module V by

Due to Proposition 2.1 and formula (2.7), the calculation of the characters of prim-

itive ^-modules reduces to the calculation of characters of fundamental #/-modules

restricted to φs(Φ).

Let ^ — ®iezV(gl,Λt) denote the direct sum of all the fundamental ^/-modules.
The following construction of J^ is well known (see e.g., [K2, Chap. 14]). Fix s G C
and consider the Clifford algebra Cl over C on generators ψj and ψj*(j G Έ) with
defining relations

[ψi9 ψ;] + = δit-J9 [ψi9 ψj] + = o, [ψ;9 ψ;] + = o . (2.8)

Then 3* is identified with the space of the unique irreducible representation of the
algebra Cl which admits a non-zero vacuum vector |0) such that

•̂|0> = 0 ify ^ 0, ^*|0> = 0 ify > 0 .

The basis element Etj of gl is represented by the operator : φ-iφj* : (= φ-iφj* if
j > 0 and = —ψj*ψ-i otherwise) and K by the identity operator. The decomposition
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of J* into irreducibles with respect to gl coincides with the charge decomposition
& = ®mez^{m\ where charge |0) = 0, charge ψj = -charge^* = 1. Due to (2.1),
we have

[φs(L0),ψr~\ = -(r + s)b, [φs(L0),ψ;] = ( -

Since the vectors I/IL,-, ...φ-^ψlj ... ψlj |0) with 0 < i'i < h < • • •, and 0 ;£ j \ <

)2 < ..., form a basis of #", we obtain the following formula for chJ^ restricted

to φsφ) (cf. [AFOQ]):

ch#- = π ( i + Π χ-{r+x+sΛ ( l + Π ή~r+sf) • (2.9)

Then the character of mth fundamental ^/-module restricted to φs{2>) is equal to

Sm{x) = Xo-mResXo=oXo~lch&dxo . (2.10)

Summarizing, we obtain the following result:

Theorem 2.1. Lei F f e a primitive ^-module with exponents r i , . . . , r c . PFe keep
notation of Proposition 2.1. Lei A^k\V) = Λ{k\V) +ckΛo,k = l,...,/w.
complete character of V is given by

m

chF =

by formulas (2.9) am/ (2.10).

3. VOA Structure on the Vacuum Module of Θ

In this section we will define the structure of a vertex operator algebra (VOA) on
the vacuum module Mc and hence on the irreducible quotient module Vc over Q).
The general definition of VOA was given in [B, FLM]. We will however use a
slightly different approach, inspired by [G]. This approach will allow us to give a
simple proof that this structure indeed satisfies all axioms of VOA.

Let V = ΘjJioFί, be a Z+-graded vector space, where dimF« < oo for all n,
called the space of states. A field on V of conformal dimension Δ G TL is a
power series φ(z) = ΣjezΦjZ~J~Δ, where φj G End V and φjVn C Vn-j Note
that if φ(z) is a field of conformal dimension A, then the power series dzφ(z) =
Σjez(—j — Δ)φjz~J~Λ~ι is a field of conformal dimension A + 1. Let

Σ = Σ

Given two fields φ(z) and ψ(z) of conformal dimensions Δψ and Δφ one defines
their normally ordered product as the field

: φ(z)φ(z) := φ-(z)Ψ(z) + ̂ (z)φ+(z) (3.2)
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of conformal dimension Δφ + Aψ. The Leibniz rule holds for the normally ordered
product:

dz : φ(z)φ(z) :=: dzφ(z)φ(z) : + : φ(z)dzφ(z) : . (3.3)

Two fields φ(z) and ι/f(z) are called local with respect to each other, if for
any v e Vn and v* G V* both matrix coefficients (y*|</>(z)ι//(w)|z;) for \z\ > \w\ and
(v*\φ(w)φ(z)\v) for |z| < |w| converge to the same rational function in z and w
which has no poles outside the hyperplanes z = 0, w = 0 and z = w.

A Rλ4 structure on F is a linear map (the state-field correspondence) 7( , z ) :
V —> End F[[z,z - 1]] which associates to each a e Vn a field of conformal dimension
n (also called a vertex operator) Y(a,z) — Y^Jez

ajz~J~n^ s u c ^ m a t m e following
axioms hold:

(Al) (vacuum axiom) There exists an element |0) G Vo such that Y(\0),z) — Id
and limz_+o Y(a,z)\0) = a.

(A2) (translation invariance) There exists an operator T G End V such that

dzY(a,z) = [T, Y(a,z)]9 and T\0) = 0 .

(A3) (locality) All fields Y(a,z) are local with respect to each other.

A VOA V is called conformal of rank c G C if there exists an element ω G V2

(called the Virasoro element), such that the corresponding vertex operator Y(ω,z) —
ΣneπLnZ~n~2 satisfies the following properties:

(C) Z_i - T, L0\Vn = n Id, and L2ω = |c|0>.

One can show that a VOA automatically satisfies the associativity property
(cf. [G]):

Y(a,z)Y(b,w) = Y(Y(a,z - w)b,w) . (3.4)

Here the left-hand (resp. right-hand) side is the analytic continuation from the
domain \z\ > \w\ (resp. \w\ > \z — w\). Formula (3.4) gives the operator product
expansions. In particular, one easily derives from (C) that the Ln form a Virasoro
algebra with central charge c.

Let us call two fields φ(z) and φ(z) ultralocal with respect to each other
if there exists an integer N, such that for any v G Vn and v* G V£9 both series
(v*\φ(z)φ(w)\v)(z — w)N and (v*\φ(w)φ(z)\v)(z - w)N are equal to the same finite
polynomial in z±] and w±ι. Clearly, ultralocality implies locality. Moreover, in a
vertex operator algebra any two vertex operators are automatically ultralocal with
respect to each other according to formula (3.4) and the fact that the Z-gradation
on V is bounded from below.

The following proposition allows one to check easily the axioms of a VOA.

Proposition 3.1. Let V be a Έ+-graded vector space. Suppose that to some vec-

tors α ( 0 ) = |0) G F 0 ,α ( 1 ) eVΔl,...,one associates fields 7(|0),z) = Id,Y(a{l\z) =

Σ, aj z~J~Δι,... of conformal dimensions 0, A \,..., such that the following prop-

erties hold:

(1) all fields Y(a^\z) are ultralocal with respect to each other
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(3) the space V is spanned by the vectors

c^l_Δks...^_Δkχ|0), ;,,...,;• ez+ • (3.5)

(4) there exists an endomorphism T of V such that

[T, Y(a('\z)} = d2Y(ιί'\z), Γ( |0» = 0 . (3.6)

Then letting

Y(a{ks) -' a{kl) a(kι) 10) z)

= O"i! ... 'js\yι : dJ

z

sY(a{ks\z)'"dJ

2

2Y(a(k2\z)dJ

z

ιY(a{kι\z): (3.7)

(where the normal ordering of more than two fields is from right to left as usual),
gives a well-defined VOA structure on V.

Proof Choose a basis of monomials (3.5) and construct the map Γ( ,z) by formula
(3.7). Then it is clear that axiom (Al) holds. Given two fields φ(z) and φ(z)9 if
[T,φ(z)] = dzφ(z) and [T,φ(z)] = dzφ(z), then from (3.2) and (3.3) it follows that

[T,:φ(z)ψ(z):] = dz:φ(z)ψ(z):. (3.8)

Hence the axiom (Λ2) follows inductively from (3.7) and (3.8).
Using an argument of Dong (cf. [L, Proposition 3.2.7]), one can show that

if three fields χ(z),φ(z) and ψ(z) are ultralocal with respect to each other, then
: φ(z)φ(z) : and χ(z) are ultralocal. It is also clear that if φ(z) and ψ(z) are
ultralocal, then dzφ(z) and ψ(z) are ultralocal. This implies axiom (A3).

Finally, from the uniqueness theorem of [G] it follows that the map 7( ,z) is
independent of the choice of the basis. D

We shall say that the VOA constructed in Proposition 3.1 is generated by the
fields Y(a{i\z)J > 0.

Now fix c G C, and consider the vacuum ^-module Mc — Mc(^,^). The space
Mc is Z+ -graded by eigenspaces of the operator —D \MC — ®jez+MCfj9 so that
Mc$ = (C|0), where |0) = 1 <g> 1. Recall that j/ |0) = 0 for / € Έ+ and k + / ^ 0.
Note that vectors of the form

where (//,£/) G 7ί\ span Mc. It follows that the generating fields Jι(z) — Σkez
j[z~k~ι~λ satisfy conditions (2) and (3) of Proposition 3.1. Condition (4) clearly
holds. Condition (1) follows from the operator product expansion [R]:

m+n

Jm(z)J\w) - Σ ([ή\aJ
m+n-a(w) - (-l)a[m\aJm+n-a(z)) Kz - w)a+ι

+ (-l)mm\n\c/(z - w)m+n+2 . (3.9)

Hence the vacuum ^-module Mc is a VOA. It follows (by skewsymmetry of vertex

operators) that any quotient of the ^-module Mc is a VOA. In particular, the

irreducible vacuum module Vc = Vc(@,0) is a VOA.
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Let now ω(β) = {Jx_2 - βJ°_2)\0). It is easy to see that Y(ω(β),z) =
ΣkezLt(β)z~k~~2> w h e r e Lk(β) i s defined in (1.7). We know from (1.8) that
L^(β) generate the Virasoro algebra Vir(β) with central element Cβ. Furthermore
from (1.6) and (1.7) it is easy to see that the axiom (C) of the Virasoro element
holds. Thus, we have established the following result:

Theorem 3.1. For any c and β, the quadruple (Mc, |0),ω(β), Y( - ,z)) is a conformal
VOA of rank cβ = -(12β 2 - 12 β + 2)c generated by the fields J\z\ I = 0,1,2,...,
of conformal dimension /-hi. The same holds for Vc.

Remark. 3.1. Recall that a field φ(z) is called primary of conformal dimension A
with respect to a Virasoro element ω, if the following operator product expansion
holds:

Y(ω,z)φ(w) ~ -Γ + .
(z — w)1 z — w

The field J°(z) is primary with respect to Y(w(β),z) if and only if β = | (in
this case the rank of Mc equals c). For / > 0 one can always add to the field
Jι(z), / ^ 0, a normally ordered combination of the fields Jk(z),0 ^ k < /, so that
the resulting field is primary of conformal dimension / + 1 with respect to ω(β)
for all but a finite number of values of β.

4. Vertex Operator Algebra of

Let g be the Lie algebra glN(<C) or SIN(<C). Let ί) be the corresponding subalgebra
of diagonal matrices. We denote by A C ί)* the set of roots, A+ the set of positive
roots corresponding to upper triangular matrices, and let αi, . . . ,α#_i be the simple
roots. We identify I)* with f) using the trace form (α, b) = tr ab on #/#, so that
(α,α) = 2 for α e J .

Let g = g 0 Cf^ί" 1 ] θ Ck be the affine algebra associated to (g,( , •)) a n ( l l e t

Γ) = Γj(8)C[ί, ί""1]© Ck be the homogeneous Heisenberg subalgebra of g. The Lie

algebraί) has generators u(n\u eί),n e Z with commutation relations

[u(m),υ(n)] = mδm-n(u,v)k .

Given y G ί)*, denote by π r = πv(f)) the space of the irreducible representation of

the Lie algebra ί) which admits a non-zero vector |y) such that

u{n)\y) = <5Π,oy(«)|y>, for τi ^ 0, k|y) - \y) .

By Proposition 3.1, the space π 0 has a structure of a VOA generated by the fields
u(z) — Σnez u{n)z~n~x,u G ί). This VOA has the well-known family of conformal
structures given by the Virasoro element (in the slχ case the linear term should be
dropped):

\ Σ>(

where {MZ} and {wz} are dual bases of ί) and / is the identity matrix in glN. The cen-
tral charge of the corresponding Virasoro field Y(ωa,z) for slχ (resp. glχ) is TV — 1
(resp. Λ (̂l — 12α2)). The corresponding Z+-gradation πo = θ/ez+πoj is given by
wt|0) = 0, wt u(n) = -«.
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There exists a unique operator ey : πo —> ny which maps |0) to \y) and which
commutes with all operators u(n) with u G Γ},« + 0. Let

and let X7(z) = J2^y(n)z~n ^ e i t s Fourier expansion where Xy(n) are linear oper-
ators from π 0 to π r

Given β G <C, let

Λ / - 1

This is a vertex operator subalgebra of the VOA πo (cf. [FF2, Lemma 4.2.8]).

The VOA T0jS(g) is a Z+-graded subspace of π 0, i.e., ^ ( g ) = θye
where ^ ( g ) y is a subspace of the (finite-dimensional) vector space πo,y. It is clear
that, given y, for all but finitely many β G (C the dimension of i?β(Q)j is the same
(say fly) and is minimal. Such β is called j-generic. The value /? G <C which is
y-generic for all j G Z+ is called generic. Thus for each y we have a rational map
from C to the Grassmannian of fly -dimensional subspaces in πo,y given by /? i—>
^(g)y. This allows us to define for an arbitrary βo G (C, ̂ o=NO, the analytic contin-
uation: % ( g ) = θy€Z+%(9)y» w h e r e ^o(9)y = W - f o ^ t e ) ; a n d t h e l i m i t is
taken over the set of generic β. Thus Ψβ(Q) is a family of vertex operator subal-
gebras of π0, which depends on β. This family of VOA is called the family of 7^
algebras
of g.

Remark. 4.1. On a more formal level, consider β as a formal variable, i.e., con-
sider π0 and π^αi as free modules over the ring <C[/?] Then the intersection of the
kernels of operators Xβai(l) : πo —> π^α/,/ = 1,...,/, is also a free <C[/?]-module. For
any βo + 0, ̂ 0 ( g ) is then defined by the specialization of this ring at β = βo, i.e.,
as the quotient of this kernel by the submodule generated by (/? — βo). Clearly,
^ 0 ( g ) is a vertex operator subalgebra of ^ ( g ) , and it coincides with Ψβ(§) for
generic β0.

Remark. 4.2. The VOA Ψβ(glN) (resp. ifβ(glN)) is isomorphic to the tensor prod-
uct of the VOA ifβislu) (resp. Ψβ(slN)) and the VOA associated to a free bosonic
field (of conformal dimension 1).

The VOA Ψβ{slN) coincides with the 1^-algebra defined in [Z] for N = 3 and
in [FL] for general N.

The following is a corollary of Theorem 4.5.9 from [FF2].

Theorem 4.1. The VOA Ψβ(glN) is freely generated by fields W^β(z),i =
0,1,... ,N — 1, of conformal dimensions i + 1.

Remark. 4.3. Note that ωa G ̂ i(#/w); recall that the central charge is equal to
N(l - 12fl2).

The following theorem was conjectured in [Bo] and its proof was indicated in
[BS] (cf. also [BBSS]).
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Theorem 4.2.

Proof. Due to Remark 4.2, it suffices to prove the theorem for g — slN. By defini-
tion, Ψβ(slN) C Ψβ{slN), for any β. The theorem now follows from the comparison
of characters of Ψ{(slN) and Ψ\(slN) given below.

It follows from Theorem 4.1 that for generic β,Ψβ has a basis, which consists
of lexicographically ordered monomials in the following Fourier components of
the fields JV^β(z) = ]ΓM G Z wmz-n-i-\ . {w^)tβ,n ^ -ί - 1,/ = 1,...,7V - 1}.
Therefore we have for a generic β:

N-\ oo

chtffa/*) = chΨβ(slN) = chΨβ(slN) = Π ΠO - ^ Γ 1 (4 O
ι=i y=i

On the other hand, due to the vertex operator construction [FK] of the basic
g-module L(ΛQ), we have:

πo = {ve L(Λ0)\h - v = 0} , (4.2)

Z < 4 O ) | π o = Z , ( l ) . (4.3)

By the complete reducibility of the g-module L(ΛQ), we conclude from (4.2) and
(4.3) that _

W(slN) = {ve L(Λ0)\q υ = 0} . (4.4)

But the character of the right-hand side of (4.4) is known [Kl, Proposition 2],
which gives us

ch¥ϊ(slN)= Π {l-q(p

= Π

N-\ oo _,

- Π Π ( l - ^ + y ) . (4-5)
ί = l y = l

where p = ^ Σαezί+

 α Comparing (4.1) and (4.5) completes the proof. D

Corollary 4.1. Lei Q = gl^. Then the intersection of the kernels of the operators
X a ; (l) on π 0 coincides with Ψ\(glN\ Furthermore one has:

N-\ oo ,

Π Π 0 / + y )0) ( 4 6 )
Ϊ=0 7=1

Remark. 4.4. As in [FF2], ^ ( g ) and ^ ( g ) may be defined for an arbitrary simple
Lie algebra in the same way as for g = sl^. The same argument as above shows
that for an arbitrary simply-laced simple Lie algebra g, #ί(g) = ^ ( g ) , cf. also [Bo,
BS] (note that this is not true for non-simply laced g).

The Fourier components of vertex operators from the VOA π 0 span a Lie alge-
bra U(\))ιoc, which lies in a completion of l/(ί))/(k — 1 )£/(!)) [FF1]. The Fourier
components of vertex operators from the VOA Ψβ($) span a Lie subalgebra of

U(t))ioc9 which we denote by UΨβ(q)ι0C. This Lie algebra is also called 1^-algebra
of g.
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Remark. 4.5. The Lie algebra UΨ\(Q)IOC (for simply-laced g) was considered for
the first time in [F2]. More precisely, in [F2] the Lie algebra Sw was defined, which
is linearly spanned by all Fourier components of vertex operators from πo, which
commute with the action of g and which are invariant with respect to the natural
action of the Weyl group W of 9 on π 0 .

The Lie algebra Sw coincides with UiP\(Q)ι0C. Indeed, according to Theorem
4.2, the Lie algebra UΨ{(§)toc consists of all Fourier components of vertex
operators from π 0, which commute with the operators XΛι(l),i = l,...,N — I. This
is equivalent to commuting with 9. On the other hand, it is easy to show that all
elements of UΨ\($)ιoc are automatically W-invariant.

This is obvious in the case g = 5/2, because UΨ\(sl2)ιOc is generated by the
Fourier components of the vertex operator \ : u(z)2 :, which is invariant under the
transformation u(z) —* —u(z). This fact and Theorem 4.2 imply that all elements of
UΨ\(Q)I0C for an arbitrary simply-laced g are invariant under the simple reflections
from W, and hence are if-invariant (note however that not all if-invariant elements
of £/(ί))/oc belong to UΨi(Q)loc).

Moreover, it follows from Theorem 4.5.9 of [FF2] and Theorem 4.2 that if 9
is simply-laced, and P\(u),...,P/(u) is a set of generators of the ring Cfί)]^, then
the fields :Px(u(z)):,..., :P/(u(z)): freely generate the VOA #ί(g).

5. Connection Between Q) and

Due to Proposition 3.1, J^ is a (super) VOA with the generating (odd) fields

Recall that α(z) =: ψ(z)\l/*(z) := ΣneZ ocnz
 n x is a free bosonic field, i.e.,

[am, an] — mδm-n, and that each ^ m \ the subspace of $F of charge m, is irre-
ducible with respect to the an (this follows from formula (2.5) for c — 1). It follows
that 3F^ is a vertex operator subalgebra isomoφhic to the VOA πo(C).

Note that the homomorphism φo : @ —> gl induces a £^-module homomorphism

ε : Mi = C/(§) <8)Γ - λ <C0 -

Similarly, the homomorphism φ^f : ^ —> gl induces the homomorphism of

^-modules

&N :MN —> ( j ^ ( ( ) ^ 0 i V .

On the level of operators the map ε^ is given by

N

J\z) •-> Σ : Φi(z)dι

zψ^(z) : , (5.1)

where ψι(z) and ψ*ι(z) denote the fermionic fields on the zth copy of J^. Recall
also the following formula of the well-known boson-fermion correspondence (see
e.g., [K2, Chapter 14])

Xaι(z)=:ήz)rM(z): . (5.2)
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Lemma 5.1. Im εN c

Proof. Due to (5.2), #ίX#//v) is the intersection of the kernels of operators A{ —
J : ψι(z)ψ*ι+ι(z) : dz. Since |0) £ πo is in the kernels of these operators, and M^
is generated by the Fourier components of Jι(z), I ^ 0, applied to |0), it suffices
to check that Jι(z) commutes with At. Due to (5.1), we have to check that

Σ Φk(z)3mrk(z) : J ' Ψ\uWi+\u) :du}=0
=i J

for any m ^ Q and i = 1,...,7V — 1. In fact, a much stronger statement holds:

ί Σ " •' Ψk(z)ψ*k(w) :,/ : ήu)ψ*'(u) : du] = 0 . (5.3)
U=l J

In order to prove (5.3) we calculate the operator product expansions (OPE). We
have

— w z — w

By the Wick theorem, we have

k=\ w — u z — u

But for local fields a(z) and b(z) with OPE a(z)b(u) ~ ΣjcAz)/(z " w ) 7 w e h a v e

[α(z), fb(u)du] = c\{z). Hence the left-hand side of (5.3) is equal to
: ψιiz)ιl/*J(w) : + : \jj^{w)\j/l{z) := 0. D

By Lemma 5.1, we have a ^-module homomorphism εN : MN —> 1V\(glΉ). We
know that (see (4.1)):

Nγ\ fi(i - ^ / + 7 r ι = Σ ̂ ^ ,
z=0 /-I «^0

and clearly

Observe that chM^ and chΨ~\(glN) coincide from weight 0 to weight N, i.e.,
an — bn for n = 0,.. .,7V and, moreover, tfjv+i — ̂  v+i + 1. It follows that the lowest
nonzero weight of the kernel of EN is N + 1. From [KR, Example 5.2] we know
that there exists a unique singular vector v of weight N + 1 such that the submod-
ule (v) generated by v is the maximal proper submodule in MN, i.e., VM = MN/(v)
is irreducible. Hence we see that the kernel of ε^ is nothing but the submod-
ule (v). The homomorphism εN : MN-^ iΓ\(glN) therefore induces an injective
S-module homomorphism η^ : V^ —̂  ̂ \{glN)- By comparing specialized charac-
ters (see (2.5)), we have chF/v = c\i1f\(glΉ). Thus we have proved the following
fact.
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Theorem 5.1. The map εN :MN —> ifxiglu) induces a ^-module isomorphism

), which is also an isomorphism of VOAs. One has:

εN(ω(β)) = (8—1/2

Remark 5.1. To any VOA V one can canonically associate a Lie algebra, which
consists of all Fourier components of vertex operators from V. For the VOA MN this
Lie algebra, which we denote by U^{Θ)ι0C, lies in a certain topological completion
of ϋφ)/(C - N)ϋφ). We call UNφ)loc the local completion of uφ). Denote
by sn, n G Z, the Fourier components of the vertex operator Y(S, z), where S is a
singular vector of degree N + 1 in M#. Now let Uiί^\{gl^)ιoc be the Lie algebra
of all Fourier components of vertex operators from the VOA iV\{gl^\ which was
defined in Remark 4.4. By Theorem 5.1, UΨχ(glN)ιoc is the quotient of the Lie
algebra UN(@)ι0C by the ideal generated by sn, n G TL.

Corollary 5.1. i^\(glN) is a simple VOA.

Proof Any ideal of # ! ( # / # ) as VOA can be regarded as a ^-module via εN.
Since i^\{glN) = VN as a ^-module is irreducible, there are no nontrivial ideals of
1Tx(glN) as VOA. D

Corollary 5.2. Any representation of the VOA Ψ"\(glN) can be canonically lifted

to a representation of the Lie algebra Q) with central charge N.

Let ί) be the Cartan subalgebra of glχ (as in Sect. 4). For y G ψ let yt = γ(Eu),
z = l,...,N. Recall that each πy(y G ί)*) is a representation space of the VOA
7io, hence of the VOA if\{gl^). Denote by VN(y) the irreducible quotient of the
#l(#/Λr)-submodule of πy generated by the highest weight vector \γ).

Proposition 5.1. (a) The modules Vχ(γ) are all up to isomorphism irreducible
modules over the VOA if^\{gl^s\

(b) The lifting of a module VN(y) to 2 is isomorphic to the primitive ^-module
with exponents yi,...,y#

Proof, (a) follows from the fact that irreducible ^(g/^-modules are determined
by the highest weights. In order to prove (b) note that VN(y) is an irreducible
highest weight ^-module with c = N and one finds by a direct computation that

Thus, the primitive ^-modules with central charge Λ̂  produce all irreducible
^(gW-modules. In particular, from Theorem 2.1 and formula (2.5) one obtains
the complete and specialized characters of all irreducible /#/i(^f///)-modules. The
^i(#W-modules VN(Ϊ) with integral γ were considered in [BMP], where they
were used in the study of semi-infinite cohomology of JF-gravity models.

Remark 5.2. Fix r G C and consider the associative algebra Clr on generators
φjU G - r + Έ) and ψj*(j G r + Έ) with defining relations (2.8), and let ψ(z) =

Σ , G _ r + z Ψjz~J~r~\Ψ*(z) = Σ/er+z Ψ*z~J+r- Let 3Fr denote the unique irreducible
C/-module such that

\jjj\r) = 0 if j + 1 -h r > 0, φ/\r) = 0 if j - r > 0 .
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Then formula (5.1) gives a primitive representation of Q) in ^ \ with central
charge 1 and exponent r.

Remark 5.3. Summarizing, any positive energy ^-module M gives rise to a module
over the associated VOA Mc. If c <£ Z, then Mc = Vc. If c G Z+, then any primitive
^-module gives rise to a module over the VOA Vc and all irreducible modules over
Vc are thus obtained.

Remark 5.4. In [Zh],Zhu constructed an associative algebra A(V) corresponding
to an arbitrary VOA V and established a one to one correspondence between irre-
ducible representations of V and irreducible representations of Λ{V). In our case,
one can show that the associative algebra A(MC\ c G C, is isomorphic to the poly-
nomial algebra in infinitely many variables wo, wi,..., which correspond to the
generating fields J°(z), Jι(z\..., and that A(VN) for N G Z+ is isomorphic to the
polynomial algebra (C[wo, w\9...,w^-i]-

6. Towards Fusion Rules for Q)

We can define spaces of conformal blocks for the Lie algebra Q) in the same fashion
as for the Virasoro or aίfine algebras, using coinvariants, cf., e.g., [FFu].

For simplicity we will restrict ourselves to the genus 0 case. Consider the pro-
jective line (CP1 with a global coordinate t and n marked points: z\,...,zn. We
assume that z, φoo for all i — 1,...,n. Around the point zz we have a local coordi-
nate t — Z[. Denote by 3){z{) the Lie algebra of differential operators on the formal
punctured disc around zt. Elements of this Lie algebra are finite sums

Σ fm(t - Zi)(dtr, where fm(t - zt) G C((ί - z,)) .

Now let @(z\,...,zn) be the central extension by C of the Lie algebra Θ/Li^
(zz), such that its restriction to each of the summands Q){z{) coincides with the one
defined by the 2-cocycle (1.2).

Denote by @Zw..,Zn the Lie algebra of regular differential operators on <EWι\
{z\,...,zn}. We have a natural embedding of this Lie algebra into the Lie algebra
θ"=i^(z/), obtained by expanding a differential operator around each of the points
z/. One can check that the restriction of the 2-cocycle to 3)zχ^Zn is trivial, and

therefore we obtain an embedding 2Zu^Zn —>• ^(zi, . . . ,z w ).

Let Mi,...,Mn be highest weight ^-modules with the same central charge. Then
the tensor product M\ <S> ...(&Mn is a ^(zi,...,zw)-module. We define the space
of conformal blocks, corresponding to these modules, as the dual space to the
space of coinvariants of Mi 0 ... <S>MW with respect to the Lie algebra ^Zlv..,Zw. We
denote this space by H(M\,...,Mn). In particular, the case n = 3 corresponds to
the so-called fusion rules, which can also be defined via the intertwining operators
introduced in [FHL], cf. [W].

A primitive ^-module with positive integral central charge N is called inte-
gral if all its exponents ru...,rN are integral; denote this module by V(r) (recall
that all these modules are unitary). Let P = ΈN and P+ = {r G P\ rγ ^ ... ^ rN}.
Putting the exponents in a decreasing order, we see that the integral primitive



354 E. Frenkel, V. Kac, A. Radul, W. Wang

^-modules are parametrized by P+ : r ι—• F(r). On the other hand, we may view
P as the weight lattice of the group GLN(<E). Then P+ parametrizes the finite-
dimensional rational irreducible representation of GLχ(<L) : r ι—>• F(r), where F(r)
denotes the finite-dimensional irreducible representation of #/#(£) with highest
weight r, (i.e.,r(£/7) = r,).

Conjecture 6.1. The space //(F(ri),..., F(rπ)) is ίsomorphίc to the space of
glN(<£)-invariants in the tensor product F(i\) Θ ... ®F(rn). In particular, for
r, s G P+ let

F(r)®F(s) = 0 <

be the decomposition of the tensor product of glN((C)-modules. Then the fusion
rules of primitive integral @-modules with central charge N are given by the same
formula:

V(r) V(s)= φ c - F ( m ) .
m(EP+

Example 6.1 (a) Since if{gl\) is isomorphic to the VOA πo(<C), we have the
fusion rules V{r) - V(s) = V(r + s).

(b) ifr{glι) with c — 2 is isomorphic to the tensor product of the irreducible
vacuum module with c = 1 over the Virasoro algebra and πo(C). Denote by [n]
the irreducible module over the Virasoro algebra with central charge 1 and highest
weight n2/4,n £ Έ+. Conjecture 6.1 states that the fusion rules for these modules
are given by

[m] [ή]= Σ ίk],

w h e r e ^ m , n — { k \ \ m — n\ ^ k ^ m + n , rn + n + k i s e v e n } , m , n , k G Z + .

In order to provide some evidence for Conjecture 6.1, let

M = 0 πy ,

where πy is the irreducible ί)-module defined in Sect. 4, ί) being the Cartan subal-
gebra of $ = f̂/ (̂(C). Then the classical vertex operator construction [FK] gives M
a structure of a unitary g-module of level 1. More explicitly, M decomposes into
a direct sum of irreducible unitary cj-submodules of level 1 with highest weight
vectors \y) G π r, where γ G P are such that y, - yi+\ = δis for some 1 ^ s ^ N
(here we put y#+i =7i ) 5 the corresponding §-submodule being 0α € } ,+ρπα, where

{ | Σ }{Σ, }
Viewed as a g-module, M decomposes into a direct sum of finite-dimensional

irreducible modules, which can be integrated to GLN(<E). On the other hand, each
πy is a module over the VOA πo, hence over the VOA i^i (#/#)• Due to Theorem
5.1, we see that each πy has a canonical structure of a ^-module with central
charge N. Thus, M is a ^-module (and a /#/i(^/τv)-module) with central charge
N. Moreover, it follows from the proof of Theorem 4.2 that the action of Q) and

on M commute.

Theorem 6.1. With respect to the commuting pair {β, GLAΓ((C)) the module M
decomposes as follows:

M= 0 K(r)<8>F(r), (6.1)
r£P+

the highest weight vector of K(r)0F(r) δe/m/ |r).
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Proof. Recall that by the specialized character formula (2.5) we have

qϊ Σ/^+D Π 0 " ^~r^j'i) lφ(q)N (6.2)

On the other hand, denote by °ll(x) the direct sum of all GLAr(C)-submodules of
M isomoφhic to F(r). Since 3 commutes with GL^(<£), this is a ^-module. It
is clear that |r) G V(x) c °ll(x) is the vector with minimal eigenvalue of £ o ( | )
on Φ(r). Comparing (6.2) with the character of %(x) computed in [Kl] (see

also [K2,Exercise 12.17]), we see that t r F ( r ) / 0 ^ ) =χτaiί(J)q
LAv, It follows that

Φ(r) - V(x). D

Due to (5.3) we have the following equivalent formulation of Theorem 6.1:

Theorem 6.2. The representation of gl in ϊF®N given by Σt jezEijZi~λw~J^

ΣJLi Ψk(z)ψ*k(w) and the representation of 0/#(<C) in έF®N given by Ey \-+

J : ψι(z)ψ*J(z): dz(/, j = 1,...,7V) commute. The decomposition of £F®N with

respect to the commuting pair (gl, glN((C)) is as follows:

( ®F(r) . (6.3)

reP+ \ J

(By restricting to 3) via the embedding φ0 this decomposition coincides with the

decomposition (6.1) with respect to (3), glN(<E)).)

Remark 6.1. The decomposition (6.1) is easy for N = 1. For N — 2 an equiv-
alent form of (6.1) was established in [K]. The decomposition (6.3) for gen-
eral N was proved by another method in [Fl,Theorem 1.6]; it also follows from
[KP1, Proposition 1].

Remark 6.2. Another motivation of Conjecture 6.1 is the fact that fusion rules given
by this conjecture for c = N coincide with the limit of the fusion rules for the pth

unitary minimal model as p goes to infinity.

Note added. After this paper was finished, we saw on hep-th net the paper by H. Awata,
M. Fukuma, Y. Matsuo, and S. Odake "Character and determinant formulae of quasifinite repre-
sentation of the i^i+oo algebra" (hep-th/9405093), where character formulas for a certain subclass
of quasi-finite modules are given.
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