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Abstract: We study quasifinite highest weight modules over the supersymmetric
extension of the ^ι+0o algebra on the basis of the analysis by Kae and Radul. We
find that the quasifiniteness of the modules is again characterized by polynomials,
and obtain the differential equations for highest weights. The spectral flow, free

field realization over the (B, C)-system, and the embedding into gl(oo oo) are also
presented.

1. Introduction

Conformal field theory has attracted much interest for the last ten years, since it
describes classical vacua of string theory and the two-dimensional statistical system
at fixed points of the renormalization group. The representation theory of the Vi-
rasoro algebra plays a central role [BPZ]. However, when the systems have larger
symmetries, the Virasoro algebra must be extended. For example, when supersym-
metry exists one will be led to the super Virasoro algebra [NS, R, GS], while for
ΊLN symmetry what is called the i^N algebra will be relevant [Z, BS].

In the 1̂ /v algebra (or its supersymmetric extension [IMY]), there are
(TV — I) generating currents with spins s = 2,3, . . . , 7 V (and their superpartners
if supersymmetry exists). Here s = 2 corresponds to the energy momentum tensor.
The peculiar nature of the algebra is in its nonlinearity, i.e., the singular part of
the operator product of generating currents is not expanded as a linear combination
of the generating currents, and one has to introduce composite fields made of the
currents. The occurrence of such operators implies that the corresponding algebra
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is not a Lie algebra in the ordinary sense. Indeed, the check of the Jacobi identity
gives severe restrictions on the structure constants.

The situation changes drastically if we take a suitable limit N —> oo [B]. The
resulting algebra, called the iΓ^ algebra, becomes a Lie algebra [PRS1]. This lim-
iting procedure is essentially equal to regarding the composite fields needed in the
operator product expansion of lower spin currents, as a new generating current with
higher spin.

Great simplification further occurs if we add the spin-1 current (u(\) current)
to the l^oo algebra [PRS2]. The obtained algebra is named the ^i+oo algebra for
this historical reason. Although there are several types of W infinity-like algebras
[BK, FFZ], we may say, at cost of rigor, that this is the most fundamental one.
All other algebras such as 1^^ and W^ are obtained by imposing some suitable
constraints on it.

The T^i+oo algebra naturally arises in various physical systems. Firstly, in two-
dimensional quantum gravity (the square root of) the generating function of scaling
operators is identified with a τ-function of KP hierarchy and obeys the vacuum con-
dition of the i^i+oo algebra [FKN, DVV, IM, KS, S, G]. Secondly, in the quantum
Hall effect, edge states satisfy the highest weight condition of the i^\+00 algebra,
reflecting the incompressibility of quantum fluid [IKS, CTZ]. Some interesting ap-
plications are also known in higher dimensional physics, such as the construction
of gravitational instantons [T, YC, P]. Furthermore, the l^i+oc algebra is known to
be closely related to the central extension of the gl(oo) algebra [KR]. The applica-
tion to the large TV two-dimensional QCD [GT, DLS] seems also intriguing in this
context.

The major reason of such generality of the i/^\+00 algebra is that it is a central
extension of the Lie algebra of differential operators on the circle [PRS1]. Recently,
Kac and Radul gave a general framework on such Lie algebra and classified all the
quasifmite representations [KR]. Since the purpose of this paper is to extend their
work to the system with supersymmetry, it may be instructive to review their main
results.

Let ^ be the Lie algebra of differential operators on the circle; ^ = {znf(D)\n G

2£}, where /(w) G C[w] (polynomial ring with w indeterminate) and D = z-j^. Let
then ^i+oo be the central extension of ,̂ and for znf(D) G ̂  we denote the
corresponding operator in l^i+oo by W(zn/(£>)). The central extension is defined
by the following commutation relations:

[W(znf(D)\ W(zmg(D)}} = W([znf(D\zmg(D)}) + CΨ(zn f(D\zmg(D)),

where the two-cocycle Ψ is given by

Ψ(znf(D\zmg(D)) = -Ψ(zmg(D\znf(D))

_{Σf(-J}0(n-j) i f / ! = -/« > 0
- \ 7=1

10 if n ^m^O or n = m = 0 .

More symmetrically, it is written as

[W(znexD\ W(zmeyD)} = (exm - eyn)W(zn+me(x+y}D) - Con+m^+y ̂

The two-cocycle is shown to be unique up to coboundaries [Li, F].
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The ^i+oo algebra has the following principal gradation:

W+oo)* = (2nf(D)\f(w) e C[w]} .

Note that the Cartan subalgebra is given by (^+00)0 = 0^0 €W(DS). A highest
weight state |/) is thus characterized by the condition

We introduce the energy operator LQ = —W(D) and call its eigenvalue of state the
energy level. Note that [I0, W(z~kf(D))} = +kW(z~k f(D)).

At each energy level k, there might be infinitely many states, reflecting the
infinitely many degrees of freedom in the polynomial ring. The quasifinite repre-
sentation is obtained if we require that all but finitely many states at each energy
level vanish. More precisely, it is equivalent to saying that the set

i-k = {f(w) e <CM\W(z-kf(D))\λ) = 0}

is different from {0} for any k ^ 1. Since /_£ is an ideal in C[w], we can intro-
duce the monic (with unit leading coefficient) generating polynomial ^(w);/_^ =
(bk(w)). These polynomials {^(w)}^=ι,2,3,... are called characteristic polynomials.

A surprising result obtained in ref. [KR] is that they are almost uniquely deter-
mined by the first characteristic polynomial 6(w) = b\(w). To show this, one has
to observe that (i) bk(w) is divided by l.c.m.(b(w), b(w - 1 ),. . ., b(w - k + 1 )), (ii)
b(w)b(w— \)...b(w — k+ 1)) is divided by bk(w). These statements are proved
by using the null state conditions of the i^\+0o algebra. Thus, if the difference of
any two distinct roots of b(w) is not an integer, then bk(w) is uniquely expressed
as bk(w) = b(w)b(w - l)...b(w-k+ 1).

It is further shown that the generating function Δ(x) of highest weights:

00 γS

Δ(X) = -Σ-,Δ(S] for W(Ds)\λ] = Δ(s)\λ)
s=0s

satisfies a simple differential equation:

To cover all ^"-like algebras with supersymmetry, the ^l+oo algebra must be
extended such as to contain supersymmetry. Such extension was first considered in
ref. [MR, UY] in the context of supersymmetric Kadmtsev-Petviashvili hierarchy,
and also in ref. [BdWV, BPRSS], where the explicit form of (anti-) commuta-
tion relations are given. In this paper, we reformulate their work on the super
i^i+oo algebra (later denoted by ^i^\ +00) and develop the representation theory,
on the basis of the analysis by Kac and Radul for the T^ΐ+oo algebra. We find that
quasifiniteness is again characterized by polynomials, and that the highest weights
are expressed in terms of combined differential equations.

The present paper is organized as follows. In Sects. 2 and 3, we discuss the
general theory of the super i^\+00 algebra, viewing it as a central extension of the
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Lie superalgebra of superdifferential operators on the circle. In Sect. 4, we classify
the quasifinite highest weight representations of the super i^\+oo algebra, and then,
in Sect. 5, derive the differential equation which determines the highest weights. In
Sect. 6, we discuss the spectral flow (two-parameter family of automorphisms) in
y^l+oo. In Sect. 7, we consider the (B, C)-system as an example. Section 8 is

devoted to conclusion and discussion. The embedding of ^^i+oo into gl(oo|oo)
and null vector condition are given in Appendices.

2. General Theory of Lie Superalgebra of Superdifferential Operators on the
Circle

2.7. Let j/ = stf^ 0 s$^ be a TL^— graded associative algebra and let σ : stf — >
j/ be a Z2— preserving automorphism of j/; σ(^/(0'1)) = stf(Q*l\ We specify the
2^2— gradation of an element a G s/^\resp.a G ̂ !)) as \a\ — 0 (resp. a\ = 1).
We then introduce the twisted Laurent polynomial algebra stf[z,z~l] over j/:

an G j/, all but finite number of an's vanish >

with the following * -multiplication:

(z«

Note that the ^2— gradation of j/ naturally induces that of j/[z,z-1]; |zw 0 α = |α|
if α G ̂ /(0) or j/(1). In what follows, we will denote zn 0 a by z"α for simplicity.

2.2. Let j/σ denote the algebra j2/[z,z~!] regarded as a Lie superalgebra with
respect to the usual (anti-) bracket:

[zna,zmb] = (zna) * (zmb) - (-l^(zmb) * (zna)

= zn+mσm(a) - 6 - (-l)HIV+wσΛ(6) - α .

2.3. Fix a linear map str : $0 — > F such that strαZ? = (— I)lα"όlstr6α, where F is

a vector space over (C. Then we can define a central extension J3/σ,str of j/σ by

F, 0 — > F — > J2/σ,str ~^ ^σ — ̂  0? as follows. First, we notice that the map !FσjStr :
j/σ x ̂  σ — > F defined by

= ίstr((l -i-(T + ... + σ«-i)(σ-«(fl) . fe)) if w = -/w > 0,

1 0 i f ^ + m φ O o r

satisfies the 2-supercocycle condition:

(1) n,s,r(^,β) = -(

(2) (-\)^c\Ψσ^([A,B},C)+ cyclic permutation = 0.



Quasifinite Highest Weight Modules over Super i^\+00 Algebra 155

Thus, denoting by W(A] the element in J3/σ,str which corresponds to A £ ja/σ, we
define the (anti-) bracket of two elements W(A),W(B) 6 J/σ,str by the following
formula:

[W(A\ W(B)} = W([A,B}) + Ψσ^(A,B) .

Hereafter, we will restrict ourselves to one-dimensional central extensions; V = C.

3. The Super Wι+σo Algebra

3.1. In the rest of the present paper, we will exclusively consider the case where
stf is the polynomial algebra over ( 2 x 2 ) supermatrices:

f-(W)

(3.1)

Here we assign the Z2-gradation as follows:

*0(ιv) 0
0 f l ( w )

: £2 -even ,

Introducing a basis = 0,1,±) in stf as

1 0
0 0

0 1
0 0

P —•) ί —

0 0
0 1

0 0
1 0

e «j

we may denote F G £0 as F(w) = fA(w)Pj. Note that the multiplication as matrices
respects the ^-gradation.

5.2. Following the general prescription given in the previous section, we fix a
^2-preserving automorphism σ : jtf —> j/, and define a new ^2-graded associative
algebra

Fn(w) G ^/, all but finite number of FΛ(w)'s vanish

with the following ^multiplication:

(z"F(w)) * (zmG(w)) = zπ+mσm(F(w
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We will set σ as σ(F(w)) = σ(fA(w)PA) = fA(w + l)/^, so that we may re-
place fA(w) by fA(D) with D = zd/dz, and *-multiplication by the usual multi-
plication as matrices.1 Note here that f(D)zm =zmf(D + m) for any holomorphic
function f(w).

3.3. Let j3/σ Ξ sw\+oc denote the algebra j/[z,z-1] regarded as a Lie superalgebra
with the following (anti-) bracket:

[Z"F(D),Z

mG(D)} = [z"fA(D)PA,Z"'gB(D)PB}

= (znfA(D)PA) (zmgB(D)PB)

(z"fΛ(D)PA) .

3.4. We now introduce a linear map str0 : «*/ —> C as str0F(D) = strF(0),z.e.,

. Γ/°Φ) /+(
str0 r-m^

We should notice that stro has the following property:

str0F(D)GCD) - (-

Thus, we can define a one-dimensional central extension J/σ,stι 0 = &*"$ Ί+oo of

through the following (anti-) commutation relation:

W(zmG(D))} =W([znF(D\zmG(D)})

(3.2)

where C is the central charge, and for n = —m > 0, the 2-supercocyle V^stro is
given by

Note here that

1 if (A9B) = (Q,Q) or (+,-)

sivPAPB={-\ if (^,5) = (-,+) or (1,1)

0 otherwise .

1 This choice of σ is not unique. In ref. [KR], for example, they also consider the case,
σ'(F(w)) = F(qw).
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The above (anti-) commutation relations can be rewritten in a simpler form if we
introduce znexD as a generating series for ztlDk:

(3.3)

We remark that the indices n and m need not be integers in this expression.
The bosonic part of this algebra is the direct sum of two 1^\+OG algebras with

central charges C and — C.

= exmW(zn+me(x+y)DPAPB} - (-1

+ C

3.5. The principal gradation in ^i^\+00 may be introduced with half-integer labels
α E Z/2 as l̂T1+00 - ®aeZ2(^lT1+00),, where

C[W]} ,

) G CM} .

In fact, one can easily show that
with α,jS G ΊL/2. We notice that the Cartan subalgebra of is given by

.5. We let θ be a Grassmann number, and identify

PO P+
P- Pi

θdθ θ

Then the multiplication (fA(D]PA] (gB(D)PB] as superderivatives corresponds
to the multiplication

g°(D) g+(D)
g~(D)

f°(D) f+(D)
J~(D) fl(D)

as matrices.
The (anti- ) commutation relations of superderivatives (with central terms) are

now easily obtained. For example, setting n > 0, we obtain2

[W(z"f(D)Pa\ W(zmg(D)Pa)} = W([z"f(D)Pa, zmg(D)Pa])

- (-1 )αcέ/(-y)9(n - j)δn+m,0, (a = 0,1) ,

{W(z"f(D)P±), W(zmg(D)P^)} = W({z"f(D)P±, z"

Other (anti-) commutation relations have no central terms.

2 [X, Y] = XY - YX, {X, Y}=XY+ YX.
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4. Quasifinite Representations

4.1. Let V(λ) be a highest weight module over 5^^ι+oc with the highest weight
Λ. The highest weight vector \λ) G V(λ] is characterized via the principal gradation
as (^T1+CX))α|/) = 0 for α ^ 1/2 and (^//Ί+oc)o |/> C C|Λ). Explicitly, these
conditions are written as

W(znfA(D)PA)\λ) = 0 (n ^ l W) G C[w]) ,

^(D^jμH^μ) (j ^ 0;fl = 0, l ) (4.1)

for some functions Δcf of λ.
It is convenient to introduce the generating functions Δa(x) of highest weights

Δ(a\a = 0, 1) : Δa(x) = - ]Γ 0̂ 4/V/s!. Note that they are formally given as the
eigenvalues of the operators — W(e*DPa):

W(exDPa)\λ) = -Aa(x)\λ) (fl = 0 , l ) .

4.2 Let U(λ) be a subspace of V(λ) which is obtained from the highest weight state
μ) by acting on it ^Y/ Ί+00 once: U(λ) = <9^if'\+oc λ). The principal gradation of
yΛ)// Ί+00 naturally induces the labeling of U(λ) : U(λ) = φα>0 U-y{λ).

The ^y/Ί+00 module V(λ) is called quasifinite if U-z(λ) is finite dimensional
for each α ^ 0. This condition is equivalent to the statement that

U^(λ] = {W(z-kf(D)PΛ)\λ}\f(W) € C[v,;]}

is finite dimensional for each k ^ 0 and A — 0, 1,±. It is straightforward to see
that the following subsets of C[w] are all ideals of C[wj:

/o" = ί/(w) ^ C[w]|^(/(D)P_)|/,) = 0} ,

l^) - 0} (A ^ 1;^ - 0, 1,±) .

Thus, if U^_k(λ) is finite dimensional, all of /0~ and I^k are different from {0},

so that /Q~ and /1A, are generated by some monic polynomials a~(w) and 6^(w),

respectively: 70~ = (α~(w)) and /l/c = (bf(w)]. Conversely, if 70~ and lA_k are gene-
rated by monic polynomials, then U^_k(λ) become finite dimensional since

dimC7^(/) = dimC[w]/7lA. = deg^(w) < oc .

Thus, we have proved the following theorem:

Theorem. The highest weight module V(λ) of 6^^'\+:yc is quasifinite if and only
if the subsets 1^ and lA_k of C[w] are generated by monic polynomials;

70- = (a-(vv)) lΛ_k = (bί(w)) (k ^\;A=0,l,±). (4.2)

We will call a~(w),b^(w) the characteristic polynomials for the highest weight
module V(λ).
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ΛBk(w) = bA

k(w)PA =
' " / Λ Ί — / x 7 I / \

bk(w) bl

k(w)

and further denote bA(w) = bA (w),/?(w) = B\(w). In the following discussions, we
will see that a~(w) and b+(w) play the central role in the quasifmite representations

4.3. Theorem. Characteristic polynomials α~(w), bA(w) (/ί = 0, 1,±) are related
to each other in the following manner:

a~(w- 1) I bl(w),

a~(w), a~(w — 1) I b~(w) , (4.3)

and

(4.4)

/ι(w),...,/ r(w) I g\(w),...,gs(w) implies that any //(w) divides all gj(w)'s.

Proof 3 We start from the identity

°'~+ /"λ Ί λ V) = o,

which holds for arbitrary constants a,β,γ,δ and ε^ (̂  = 0,1,±). Suitably choosing
these constants, we can derive the following equations:

W

W

W

0 0

b*(D) O

^φ+1

0
b~(D) 0 μ> = o,

which assert the first statement, Eq. (4.3). The second statement, Eq. (4.4), can be
similarly proved, by using the identity

W
0 βb+(D)

_ε~a-(D) O j y " \* [yb~(D) δbl(D)

and taking a suitable choice of the constants u,β,y,δ and ε±. D

μ> = o,

3 Another proof of Theorems 4.3 and 4.4 is given in Appendix A, resorting to the embedding
of ^ir1+00 into gϊ(oo|oo).
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4.4. Theorem. Characteristic polynomials bf(w) for k ^ 1 are related to each
other in the following manner.

(4.5)

and

(4.6)

Proof. The first statement, Eq. (4.5), is obtained by combining the following two
identities:

W\z \λ) = 0 ,

/fo*+ιΦ)
Sbl

k+l(D)

which hold for arbitrary constants %,β,y,δ and εA (A = 0,1,±). The second state-
ment, Eq. (4.6), is obtained by looking at the identities

\λ) = 0 ,
b\(D)\)> δb](D)\

δb](D)

D

Note that if we set bg(w) = a~(w\b^(w) = 1 and ig(w) = b^(w) = 0, then The-
orem 4.4 reduces to Theorem 4.3 with some suitable choices of k and /.

4.5. Iteratively using Theorems 4.3 and 4.4, we obtain the following Corollary:

Corollary. Characteristic polynomials b^(w) for k ^ 1 are related to the polyno-
mials a~(w) and b+(w) as

l.c.m. α ), α~(w -

-Ar+l)) | b£(w) , (4.7a)

- k + 1 )) | b°k(w) , (4.7b)

"(w-^)) | bl

k(w) , (4.7c)

(4.7d)
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and

Z?+(w) I b+(w)a~(w- \)b+(w- \)a-(w-2)...b+(w-k+ 1), (4.8a)

b°k(w) I a~(w)b+(w)a-(w - 1 )ό+(w - 1 ) ... b+(w - k + 1 ) , (4.8b)

bl

k(w).\ b+(w)a~(w- l)6+(w- l)α~(w - 2). . .α"(w - jfc) , (4.8c)

6~(w) I α~(w)6+(w)fl~(w- l)6+(w- l) . . .α~(w-£) . (4.8d)

Let fiΓ(w) = ΠUΓιO ~ V) and 6+(w) = Π^iO ~ ;v+) If the difference of

any two distinct elements of the set {λ^~} U { λ f } is not an integer, then a~(w),

b+(w),a~(w— 1), b+(w — 1),... are all mutually prime. In this case, the charac-
teristic polynomials b^(w) (k ^ I, A = 0, 1,±) are uniquely determined due to the
above corollary as follows:4

w - - _ _, ; λ τ + / Λ -/v y v (w -

(4.9)

5. Differential Equations for Highest Weights

5.7. The structure of characteristic polynomials automatically determines that of
highest weights. In the following subsections, we derive the differential equations
for Δa(x) (a = 0, 1). Recall that W(exDPa)\λ) = -Aa(x)\λ).

5.2. We first note that for arbitrary functions /(w) £ C[w], the following equation
holds:

w(\° f(D}} w( ° °U° ° \r Uβ~(β) o
The left-hand side can be rewritten as W(f(D)a~(D)(P0 +/>

!))|/t}, and thus, by
setting f(D) = e\p(xD), we obtain

. (5.1)

5.5. We then use the identity [W(zG(D + l))9W(z-lB(D))]\λ) -0 which holds

for an arbitrary element G(w) = gA(w)PA G stf . If we set gA(D) — α^exp(jD) and

This equation is derived in a simpler way in Appendix.
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pick up the coefficient of %A (A = 0, 1, ±), we obtain the following set of differential
equations:

[exA0(x) + Al(x)-C] = Q , (5.2a)

(l-e*)4>(*) + C ] = : 0 , (5.2b)

- [(1 - e x ) A t ( x ) - C] = 0 , (5.2c)

eΆ^x) + C] = 0 . (5.2d)

Surprisingly, all of these four equations reduce to the first one if we use Eq. (5.1).
To prove this, we first notice that Eq. (5.1) can be rewritten as

cΓ (^ - 1 }[eλ'AQ(x) + e x A } ( x ) ] = 0 . (5.3)

Since Eq. (4.4) implies that bQ(w),bl(w) and b~(w) are all divided by b+(w\ we
can replace b+(d/dx) in Eq. (5.2a) by bA(d/dx) (A = 0, 1,±):

bA - [exA*(x) + Δ λ ( x ) - C] - 0 (A - 0, 1, ±) .
\dx)

As for A — 0, Δ\(x) can be replaced by —A0(x), since b°(w) is divided by a~(w).
As for A = l,eλ'A()(x) can be replaced by —exA\(x), since bl(w) is divided by
a~(w - 1), and so we can use Eq. (5.3). Finally as for A = —,exΔQ(x) and A\(x)
can be replaced by —exA\(x) and —Ao(x), respectively, since b~(w) is divided by
both a~(w - 1) and a~(w).

We summarize the results obtained above in the following theorem:

Theorem. The generating functions Aa(x) (a = 0, 1) of highest weights satisfy the
following differential equations:

A } ( x ) - C] = 0 . (5.4)

5.4. We assume that polynomials a~(w\b+(w) have the following form:

M N

Π(w - fr)mi, 6+(w) - Π(^ - v;)"' , (5.5)
/=! 7=1

where μ / φ μ / / if / Φ / 7 , and v7 φ v 7 / if yφy 7 . Then the differential equations (5.4)
may be solved as
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Here /?/(*) and qj(x) are, respectively, degree m/ - 1 and nj - 1 polynomials of x.
Since these equations can be rewritten as

we obtain four typical representations,

eh - 1 e'* - 1
Δ0(x) = -€-—-, Al(X) = +C-Γ~, (S.la)

ex — 1 ex — 1

_ ι e(' +\)x _ 1
— , Δ λ ( x ) = +C , (5.7c)

,
- 1

(5.7d)

with ^ e Z>o Here Eq. (5.7a) corresponds to the case where a~(w) = 1 and
Z?+(w) = w - /, and Eq. (5.7c) to the case where a~(w) = w — λ and b+(w) — 1.
Equation (5.7b) corresponds to the special case where a~(w) = 1, Z?+(w) = (w —
A/+ 1 and C = 0, while Eq. (5.7d) to the special case where a~(w) — (w -
/t)^+1,Z?+(w) = 1 and C = 0 [M]. The first two solutions describe the system hav-
ing no degeneracy in the vacuum (a~(w) = 1). On the other hand, in the last two
representations, we have several states at level 0.

6. Spectral Flow

6.1. Since ^i^\+QO contains two u(\) Kac-Moody algebras as subalgebras,
^i^\+OG has a two-parameter family of automorphisms which we will call the
spectral flow.

Theorem. There exist the following automorphisms W( ) \— > W'( )\

W'(z«exDPa) = W(z«e*D^Pa} ± C δ * , α =

W'(znexDP±) = W(zn±(λ'-}^ex(D+λa}P±) , a - { J , (6.1)

w/ίA arbitrary parameters λa (a = 0, 1).

Proof. One can easily show that these new generators W'( ) satisfy the same (anti-)
commutation relations as those for the original ones W( \ Eq. (3.3). D

6.2. Under the spectral flow, the highest weight state may change although the
representation space as a set is kept invariant. We illustrate this phenomena by
taking the TV = 2 superconformal algebra [SS] as an example (see Fig. 1 ).
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Jo

Fig. 1. Spectral Flow for the N = 2 Superconformal Algebra

The generators of the N = 2 superconformal algebra consist of Λ(ί/(l)-current),
Ln (energy-momentum tensor) and G^ (supercurrents), and satisfy the following
(anti-) commutation relation:

[Ln9Lm] = (n- m)Ln+m

c ( \\
{G+, G- } = 2Lr+s + (r - s)Jr+s + - (r2 - - J <5r+J,0 ,

[Ln,Jm] = -mJn+m ,

Here n e
Ramond (

{Gf, G*} = 0 ,

\Jn >Jm\ — T«^«+m,0 ,

, and r G Z + 1/2 for the Neveu-Schwarz (MS) sector or r G TL for the
) sector. The highest weight state \q,ti) is characterized by

Jn,Ln,G?9G-\q,h) =0 (n > 0,r ^ 0,5 > 0),

This algebra is invariant under the following transformation with arbitrary parameter
λ:

i c « zJn = Jn + - AOnQ ,

/~<±
= Gr±λ '
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When λ is an integer (or half-odd integer), the spectral flow maps NS sector to NS
sector and R sector to R sector (or MS to R, R to NS).

We first consider the case of R to R with λ — 1. For /zΦc/24, \q,h) is no longer
the highest weight state with respect to the new generators, because G\~\h,q) =

G$\q,h) does not vanish. However, the new state UQ\q,h} satisfies the highest
weight condition, and may be identified with the new highest weight state \q',h'}' .
Here, the new u ( l ) charge q' and the new conformal weight h' are

q - q - 1 + c/3 h1 = h + q - 1 + c/6 ,

because Jά\q',h'Y = (J0 + c/3)Gΰ\q,h) = (q - \ + c/3)G~\q,h) and L'Q\q' ,h')' =

(Lo + /o + c/6)G^|^,A} = (A + $ - 1 + c/6)G~|^A). For A = c/24, the new high-
est weight state is given by \q' ', A')' = \q,h) with q' = q -f c/3 and h' = h + q -{- c/6,

Similarly, in the case of R to R with / = -1, the new highest weight state
for λ - g r + C/8ΦO is given by \q' ,h')' = GίJ^A) with <?' = g -}- 1 - c/3 and A' -
h- q + c/6.

6.3. Let us go back to ^W]+oc. We would like to derive the modification of
the weights and the characterisitic polynomials under the spectral flow. We restrict
ourselves to the case λ1 - Λ° G TL. Thus, it is sufficient to consider three cases
/} ~ /° = 0, ±1, because, for example, the flow with /' — /° — 2 is obtained by
taking twice the flow with λ1 — λ° — 1. We have the following theorem:

Theorem. Under the spectral flow, the new weights, Δ'a(x\ and the new charac-
terisitic polynomials, a'~(\v) and b'+(w), are given as follows, for generic values
of C and Aa(x):
(i) If λ1 -/° = 0, then

and a'~(w) = a~(w - Λ°),fe / +(w) = b+(w - λ{ ).
(ii) If λ1 -Λ° = I then

/ a x i A7__

Δ'a(x) = eλ°xΔa(X) T C^— ± E^(/Γ+///)Λ", α = (6-3)λ

(iii) 7/'/1 -Λ° = -1,

Δ'a(X) = e**Δa(X) T C i T -(^+/1 Xτ, α = (6.4)

Equation (6.2) is identical with the formula in the bosonic case [AFMO1].

Proof

(i) Λ 1 — Λ° = 0. The highest weight state \λ) with respect to the original generators
W is also the highest weight state |//)' with respect to the new ones W , \λ'}' = λ).
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Hence, the new weights, Δ'a(x\ are given by Eq. (6.2). Since \λ'}' — |/t), we also
have the following equation:

W'(cΓ(D - λQ)P-)\λ')' = W(a-(D)P-.)\λ')f = 0 ,

W'(z~lb+(D - λl)P+)\λ'Y = W(z-lb+(D)P+)\λ'Y = 0 .

Therefore, the new characteristic polynomials are given by af~(w) — a~(w — /i°)
and b'+(w) = b+(w-λl).
(ii) λl — λ° = 1. In this case \λ) is not a highest weight state with respect to the
new generators W . In generic situations5, the new highest weight state is given by

\ λ } , (6.5)
k=Q

if α~(w) = Π/L~ι(w-Λ Γ) To Prove a* we first remark that W'(zn+lf(D}P^\
W'(zn+lf(D)Pl\W'(znf(D)P+) and W'(zn+2f(D)P-) with n ^ 0 annihilate |/L')'
in a trivial way. On the other hand, W'(zf(D)P-) annihilates \λ'}' since the state
W'(zf(D)P-}\λ'}' can be rewritten in the following form:

W'(zf(D)P_)\λ'}f = (-!)"-
k=0

N--1 /V_-l

c,W(DlP-)\λ) 9
k=0 1=0

where c/ are some constants. In this expression, we have replaced f(D + λQ) by
a polynomial with degree less than 7V_, making use of the quasifinite condition
W(a~(D)P-)\λ) = 0. This state vanishes because W(DkP-)2 = 0.

The weights of this new highest weight state \λ'}' are calculated as follows.
First, we note the following equation:

\λ)
k=o e — i

7V_-17V_-1

± Σ Π W(DkiP_) W(ex(D+;a}DkP_)

N_ -\N_-l

± Σ Π
yt^O ^=^+1 ^1=0

Here we first moved W(ex(DΛ~λ ^DkP-) to the right, and then, after reducing the
degree in D using the quasifinite condition W(a~(D)P-)\λ) = 0, we substituted it

into the original position. The function r^(D,x) — ]ζ/rΓ0~ r^t(x~)Dl is defined as a

remainder of exDDk by a~(D) : e^Z/ = a~(D)q~(D,x) + rf(D,x). Note that only

5 When Eq. (6.5) is a null state, we must replace the upper bound of the product by a smaller
number.
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the Dk term in r^~(D,x) contributes because W(D1P_)2 = 0. Furthermore, we can

also show that r~k(x) = φkr~k(x) and Σ^'Φ^W = Σ^Γ* We thus
obtain Eq. (6.3).

Moreover, one may show that W(z-lb-(D)P-)\λ')' = 0 and W(a-(D)P+)\λ')'
= 0 if and only if W(z^lb-(D)P^)\λ) = 0 and a~(£)[Δ0(x) + AI(X)] = 0, respec-
tively. This can be proved as follows: First, since {W(zmf(D)P-),

Second, since [W(f(D)(PQ + Λ)), W(g(D)P-)] = 0 ,

W(a~(D)P+)\λ'y = Σ (-If—1-7 Π W(DhP_). W(a-(D)Dl(P^Pl)}\λ)
Ϊ=Q

k Φ /

Hence,

W'(b~(D - /°)P_)|//)/ - ̂ (z'^-φ)^)!;/)7 - 0 ,

lλ 7) 7 - 0 .

Therefore, the new characteristic polynomials are given by β;~(w) = b~(w — A°)
and ^/+(w) = α-(w-;,1).
(iii) λl — λ° = —1. Similarly to case (ii), in generic situations the new highest
weight state is given by

(6.6)

if b+(w) = Πj=ι(w — λ*). The weights of this new state are also similarly calcu-
lated.

Moreover, one may show that W(zb+(D + \)P_)\λ'}' = 0 and W(z~2b+

(D)P+)|A/>/ = 0 if and only if b+ (±)[e* ΔQ(X) + Δ λ ( x ) - C] - 0 and W(z~2b^
(D)P+)\λ) =0, respectively. This can be proved by using the facts that {W(zm

f(D)P+), W(z«g(D)P+)} = 0 and [W(f(D)Pλ + f(D + 1)P0)), W(z'lg(D)P+)] -
0. Hence,

W'(b+(D - λl)P-)\λ')' = W(zb+(D + l)P-)\λ')' = 0 ,

\λfy = o .

Therefore, the new characteristic polynomials are given by af~(w) — b+(w - λl)
and 6/+(w) = 6^(w-λ1).

This completes the proof of Theorem 6.3. D
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(ί) (M)

Fig. 2. Spectral Flow for the y Algebra

6.4. Figure 2 illustrates the W(P±) part of the ^^ι+0o module: (i), (ii) and (iii)
correspond to the cases λl - /° = 0,1 and -1, respectively.
The arrow a corresponds to the generator W(DkP-),b to W(z~lDkP+),c to
W(z~lDkP,\d to W(z-2DkP+\af to Wf(DkP.)9 and V to Wf(z~lDkP+). We
can easily understand that if λ1 — /° = 0, then

i f / 1 -/° = 1, then

i f / 1 -/°--l, then

7. Example: The (B, C)-System

7.1. In this section, we give the free-field realization of ^i/^ι+00 by using the
(£,C)-system. Here the superfields B(z,θ) = β(z) + θb(w) and C(z,θ) = φ) +
θy(w) are defined by the following OPE:

y(z)β(Q) - -β(z)γ(Q) - - , φ)i(O) - *(z)c(0) - - , (7.1)

and the conformal weights of (β,γ,b,c) are assigned as (/ + 1, —λ,μ H- 1, — μ) with
/,μ G C. Conformal dimension of θ is thus / - μ - 1/2.

7.2. For explicit calculation, it may be useful to "bosonize" the (B, C)-system as fol-
lows [FMS]. First we introduce free bosons φ(x),σ(x) and free fermions ξ(z\η(z)
with the following OPE:

φ(z)φ(0) - -hlogz, σ(z)σ(0) - -logz ,

η(z)ξ(0) - ξ(z)η(0) - - .
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Then β(z)9γ(z\b(z) and c(z) are expressed by φ(x\σ(x),ξ(z) and η(z) as

It is easy to show that the OPE (7.1) is actually reproduced in this representation.
Let the mode expansions of σ(z) and φ(z) be as follows:

*(*) = - Σ -z-'7 + αologz- fσ 0 ,
n

-z-n + a0logz + φ0.n

Introducing the bosonic vacuum |0) satisfying αw |0) = αw |0) = 0 for n ^ 0, we
define the (/, μ)-vacuum \λ,μ) by

λ,μ) =: β-Mθ

Note that it satisfies the following equation:

βnλ,μ)=γn+\\λ,μ)=bn\λ9μ)=cn+l\λ,μ)=0 (n ̂  0) . (7.3)

7.3. Here we discuss the free-field realization of the fundamental representations of
^^i+oo, Eqs. (5.7a) and (5.7c): Recall that Eq. (5.7a) corresponds to the case
where «~(w) = 1 and £>+(w) = w - /, while Eq. (5.7c) to the case where a~(w) =
w — λ and b+(w) — 1.

Using the correspondence in Sect. 3.6, we define the representation of ^^i+oo
over the (#, C)-system by

W(z"F(D)) = §^ : B(z,θ)z"fA(D)PAC(z,θ) :
2πι

= §~ : β(z)z" f\D)y(z) : +§ΪLβ(z)z»f+(D)c(z)
2πι 2nι

+ §ΪLb(Z)Z"Γ(D)y(z) + §^-. : b(z)zn f\D)c(z) : . (7.4)
2m 2m

Explicit calculation shows that the central charge C = 1, and W(znF(D)) has the
following mode expansions:

W(znF(D)) = Σ/°(λ + /) : βn+lγ_, : +Σf+(μ + l)βa+ι-i+μc-,
/ez /ez

μ + /) : *π+/c-/ : . (7.5)
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Thus, using Eqs. (7.3) and (7.5), we can prove that \λ,μ) is a highest weight vector
if μ-λ -0 or 1:

W(z"F(D))\λ,μ) = 0 (n ^ l;vF(w) G s/) ,

W(f(D)P+)\λ9μ) = 0 (V/W G <C[w]) ,

G C|A,/x> (V/°'V) G C[w]) .

7.4. When μ - λ = 0, Eq. (7.3) implies that W(P_)\λ,λ) = Σ^^μ,/) = 0, and
thus we know that in this representation a~(w) — 1. For characteristic polynomials
bfc(w) (k ^ \\A = 0,1,±), one can prove the following equation as in the free
field realization of the C = ±1 i^\+0o algebra [M]:

fc£(Λ+7) = 0 (7 = 0,1,..., A:- 1M = 0,1,±). (7.6)

As for ^4 = —, for example, Eq. (7.6) is obtained from the following equation by
setting 7 = 0, ! , . . . , & — 1, and picking up the coefficient of b-(k-i)\λ,λ) :

Here we have used the fact that b-n\λ,λ) (n ^ 1) does not vanish. Thus, solving
Eq. (7.6), we obtain the explicit form of characteristic polynomials:

b£(w) = (w - λ)(w - λ - l ) . . . ( w - / - £ + ! ) (Λ = 0,1,±) . (7.7)

In particular, noticing that b+(w) (= b*(w)) = w — λ, we can rewrite Eq. (7.7)

into the form b%(w) — Π/Γo b+(w — /), which is consistent with Eq. (4.9) for
a~(w) = 1.

When μ — λ = 1, we can similarly show that a~(w) ~ w — λ and b+(w) — 1.

7.5. The eigenvalue AQ(X) of the operator —W(exDPo) is calculated as follows [M]:

— W(exDPo)\λ,μ) = — §— : β(z)exDy(z) : \λ,μ)

z - exz

. e-λσ(Q)-μφ(Q) . |Q\

= ~ ^ £dZ ^ Γ; e-σ(z)+σ(exz) . _ j l . ^-/.σ(0)-μ<^(0) . J Q \

/JC _ 1

Namely, we obtain
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Similarly we can calculate Δ\(x) as

-W(^Pλ)\λ,μ) = -§^ : b(z)c(e*Z) : \λ,μ)

e1" - 1
=

i.e.,

7.6. If μ — λ = 0, then the generating functions Δa(x) (a — 0, 1) given in Eqs.
(7.8) and (7.9) actually satisfy the differential equations in the previous section
with a~(w) = 1, b+(w) = w — / and C = 1:

*Joto + Λ, (*) - 1] - 0 .

If μ — λ = 1, then they satisfy the differential equations with a~(w) — w — λ,b+(w)
= 1 and C= 1.

8. Conclusion and Discussion

In this paper we have formulated the super i^\+00 algebra, ^^+00, as a cen-
tral extension of the Lie super algebra of superdiίferential operators acting on the
polynomial algebra over 2 x 2 super-matrices. We then have studied the quasifi-
nite highest weight modules over ^iΓ\+ΌQ. Our discussion is parallel with Kac and
RaduΓs. The quasifiniteness of the modules is characterized by polynomials, and the
generating functions of highest weights, Δa(x) (a — 0,1), satisfy a set of differential
equations.

Mathematically, there are many things to be clarified. In the bosonic counterpart,
we have already obtained the determinant formulae of the i^\+00 module and the
character formulae of the degenerate representations [AFOQ, AFMO1, AFMO2].
Furthermore, we study the structure of subalgebras of the i^\+0c algebra [AFMO3],
especially, the if^ algebra (algebra without spin one current). The supersymmetric
extension of this analysis seems to be of some interest.

Since ^i^\+σo contains the N = 2 superconformal algebra as a subalgebra,
^^ϊ+oo has another interesting application, geometry. In fact, geometry of complex
manifolds (especially the Calabi-Yau manifolds and their mirrors), and topological
field theory have been studied by using the TV = 2 superconformal algebra. For
example, the Calabi-Yau manifolds are described by the N — 2 supersymmetric
non-linear σ model or by Landau-Ginzburg orbifolds, whose elliptic genera have
been computed recently in refs. [EOTY, KYY]. έfi^i+oo naturally appears there
through the free field realization, and thus, using 6^^ι+00 we may obtain more
information than using the TV = 2 superconformal algebra only. We hope to report
on these subjects in a future communication.

Finally we comment on the family of (super) W infinity algebras. The super
Ί^oo algebra given in ref. [BPRSS] is a subalgebra of ^^1+00, which corresponds
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to the relation between i^\+00 and W^ [AFMO3]. The super ϋf^ (^^) was
extended to 1^^N [O]. Similarly, by replacing 2 x 2 supermatrices by (M -f N) x

(M -f-ΛΓ) supermatrices, one can easy extend ^T^i+ooί^ί+oo) to ^1+ '̂ wmcn

contains i^^N as a subalgebra.

Acknowledgements. Two of the authors (Y.M. and S.O.) would like to thank members of YITP
for their hospitality. This work is supported in part by a Grant-in-Aid for Scientific Research from
the Ministry of Science and Culture, and by Soryushi-Shogakkai.

Appendix A. Embedding into gl(oo|oo)

A.I. Let Emn(m,n £ TL) denote the matrix unit of infinite size: Emn

An infinite dimensional Lie algebra gl(oo) is then defined as

amn = 0 for \m - n\ > 0

with stf the algebra over ( 2 x 2 ) su-

gl(oo) = < Σ amnEmn

V

We further define gl(oo|oo) = gl(oo) (
permatrices,

= /[/'(«) /-(»o
/+(ι») /°(m)

with the same Z2-gradation as Eq. (3.1). We have changed the arrangement of
matrix elements from Eq. (3.1) for later convenience.

A.2. Let θ be a Grassmann number and z"F(D) = ΣAz"fA(D)PA 6 sw1+00. The
embedding map φ : swj+00 ^—> gl(oo|oo) is defined through the action of swι+ac on
<C[z,z-}]®<C[z,z-l]θ as follows:

z"F(D) zm(\,θ) = (A.I)

Since the action of /Ys on (l,θ) is given as

Pi P-
P+ PO

O
0 '

PI P-

the left-hand side of Eq. (A. 1) reduces to

zm+n(\,θ) I f

Thus, we obtain

φ(z"F(D)),,m = δ,,m+n I ̂ '

0 1
0 θ

"'(
' Ol,m+n I /•+f+(m)
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Here A and [F(d)] stand for the following infinite matrices:

Λ = Σf"'"-1'

By definition, the map φ : sw\+oc —» gl(oo|oo) is homomoφhic, i.e.,

φ(AB) = φ(A)φ(B) .

A.3. Let us introduce new variables μ = θ + zdβ and μ~' =z~[θ + dg. Note that
they satisfy μ2 = z,μμ~l = μ"~'μ = 1, and also that

F, P_]_\Pι μ~lP0

P+ P0\- [μP, PO

Thus, we can think of the diagonal elements PQ and P\ as the fundamental elements.
Hence, elements of gl(oo|oo) can be represented by matrices with half-integer in-
dices as follows:

gl(oo|oo) = axβ = 0 for |α - β\ > 0 } ,

where we denote Ey_β = (<5/ία<5vβ)μ,v€Z/2 The ^-gradation is assigned as gl(oo oo) =
gl(oo|oo)(0) θ gl(oo|oo)(1) and Exβ e gl(oo|oo)(0) if and only if α - β G Z, other-
wise E%β G gl(oo|oo)(1).

A.4. Denoting by W(A) the element in gl(oo|oo) which corresponds to an element

A in gl(oo|oo), we introduce gl(oo|oo) as the central extension of gl(oo|oo) with
the following (anti-) commutation relation:

[W(A\ W(B)} = W([A9B}) - CΨ(A,B), Ψ(A,B) = strJ[A,B} ,

where J = Σα>0^αα and str^4 = — ΣαG^/2(~ l)2α(^)αα The fundamental (anti-)

commutation relation for gl(oo|oo) is

[W(EΛβ)9 W(Ejδ)} - δβyW(E«δ) - (-lγ(Λ-β™-δ)δδxW(Eyβ)

+ CδβyδδΛ(-l)2*(θ(*)-θ(y))9

where θ(α) = 1 if α ^ 0 and otherwise θ(α) = 0. The (anti-) commutation relation

for ^i^ι+00 embedded in gl(oo|oo) is thus given by

= W([φ(znF(D)\φ(zmG(D))})

Σ - Σ {Aπ(y) + A~+σ) - *+"(y) -

with /z^'5(y) = fA(j + m)gB(j), which is the same as that in Eq. (3.2).

A.5. We can easily understand automorphisms of ^i^ι+00 in Eq. (6.1) as the ones

of gl(oo|oo) as follows.
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Since any automorphisms πw : 5 wι+00 —> sw\+00 and πg : gl(oo oo) —> gl(oo|oo)
are realized by the basis transformation πz : (£[z,z~l,θ] —> (C[z9z~l,θ] as

znF(D) πz(zm(l,θ)) =

πw(znF(D)) πz~
l(zw(l,0)) =

we have

πw(z"F(D)) - zw(l,θ) -

Furthermore, one can also easily obtain the induced automorphisms πw :

—> £fi^ι+00 and πg : gl(oo oo) —> gl(oo|oo) with some modifications coming from

central terms. For example, for the transformation πz(zm(l,θ)) =Z/M(ZΛ ,ZA 0), the
automorphisms are given by

πg (W(φ(znF(D)})

= W

λ°f+(D + λl

}' f~(D

Σ - Σ / O O - Σ -

which corresponds to the spectral flow in Eq. (6.1).

A.6. We can reformulate the quasifinite highest weight representation of

in terms of gl(oo|oo). We denote Aa = M~2*Aχ with a diagonal matrix AΛ and
M = ΣαeZ/2 £«,«-l/2> Λ = M*' _ _

We define 7α = {^fα|ίΓ(yία)|Λ} = 0}, where /} is the highest weight vector such

that W(Aχ)\λ) = 0 for all A^ with α > 0. Then we can show that 7α is an ideal,

i.e., if AX G 7α, then 77Aα G 7α for any diagonal matrix 77. Hence, 7α is generated
by a characteristic matrix Cα,/.e., if v4α G 7α, then there exists a diagonal matrix 77
such that AX = 77Cα. The relation between C^ and the characteristic polynomials
a~(w) and b£(w) in Eq. (4.2) is

\^n)kk ( ,̂,4.1 )fr_ι_I t-L

L*+ 2 J
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where n ^ Q,k G Z, and we set b~(k) = a~(k),b%(k) = bl

0(k) = b%(k) = 0. The

matrix (Σα>0 Cα)μ,vez/2 is arranged explicitly as follows:

μ\v
-2 -^ -1 -i 0 iZ 1 U

-3)

-i)
-2)

-i)
-i)
4)
0)

5)

" • • • ,1(_2)

b+(-2)

0
0

0
0

0
0

b-(-2)
b°(-2)

a- (-2)
0

0
0

0
0

b\(-\) »2-(-D AJ(0) MO)
δj(-l) ^(-1) ^(0) b°3(0)

bl(-l) b-(-l) b{

2(0) dJ (O)
b+(-l) b°(-l) b+(Q) b°2(0)

0 α~(-l) *'(0) *~(0)
0 0 6+(0) ί>°(0)

0 0 0 α-(0)
0 0 0 0

We can show that there exist diagonal matrices Hn(n ~ 1,2,3) such that

This equation can be solved recursively, and we obtain

for all μ, α e Z/2. This is equivalent to the relations in Eqs. (4.3)-(4.6). Fur-
thermore, if the elements of Cj. are mutually prime, then we have the relation

Cα = (Ci )2α, which is the same as Eq. (4.9). Note that if we set

then one may show that W(CX )\λ) is a null state. We will prove it in Appen-
dix B.

Appendix B. Null Vector Condition

B.I. We discussed the quasifinite highest weight module as the generalized Verma
module [KR], which is annihilated by the parabolic subalgebra. However, as seen in
Corollary 4.5, the characteristic polynomials b%(w) are not fixed uniquely. Here we



176 H. Awata, M. Fukuma, Y. Matsuo, S. Odake

will show that the characteristic polynomials are uniquely determined if we demand
that the quasifinite highest weight module be irreducible.

We first introduce a bilinear form. Recall that V(λ) is the Verma module over
y^ι+00, generated by the highest weight vector \λ), such that

W(DkP+)\λ) = 0, W(zn+{DkPA)\λ} = 0, W(exDPa)\λ) = -Δa(x)\λ)

with n,k G %^o,A = 0,1,± and a — 0,1. The dual module V(λ)* is generated by
(λI which satisfies

(λ\W(DkP.) = 0, (λ\W(z-n~lDkPA) = 0, (λ\W(exDPa) = -Δa(x)(λ\

with n,k G Z^o,A = 0,1,± and a = 0,1. The bilinear form F(/)* ® K(A) -> C is
uniquely defined by (iμ) = 1 and ((u\W)\v) = (u\(W\υ)) for any (u\ G F(/)*, \v) G
F(A) and £F G ̂ iT1+00.

The null vector |χ) is defined by the condition that (u\χ) = 0 for all (u G F(/)*.

B.2. We let ^(w) = a~(w),b$(w) = 0 with v4 = 0,1,+ and

b~^(w) = l.c.m.(b^(w),a~(w — 1),b+(w — l),a~(w — 2),.. .,b+(w — k + 1)) ,

b7(w) = l.c.m.(a~(w},b+(w},a~(w — l),b+(w - l),. . .,α~(w - fc)) , (B.I)
fa \ S V V / 7 V X 7 \ /' V / 7 7 V / / 7 V /

for A: G Z>Q. We will show the following theorem:

Theorem. If the weight functions ΔQ(X) and Δ\(x) satisfy the differential equation
(5.4), then \χf) = W(z-k

ey
DbA

k(D)PA)\λ) is a null vector for all y G €,£ G TL^
and A G {0,1,+,-}.

To obtain the quasifinite irreducible highest weight module, we must factor out the
null vectors which are characterized by the polynomials in Eq. (B.I). Since there
possibly exist additional null vectors for some special values of C and Δa(x\ we
here discuss the generic case.

B.3. Proof of the Theorem, First we have the following lemma:

Lemma. The subalgebra

^T++00 = {W(DkP+),W(zn+lDkPA)\n9k G Z*o,A = 0,1,±}

of yifi+oo is generated by W(DkP+) and W(zDkP_) with k G Z^0

6

Proof. W(zDkPa) with a = 0,1 are obtained as follows:

W(zDkP0) = {W(DP+\ W(zDkP_)} - {W(P+\ W

W(zDkPλ) = {W(P+), W(zDk(D + 1)P_)} - {W(DP+\ I

Note that the whole algebra ^lTι+00 is generated by W(P±\ W(z±[P^) and W(DPQ).
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One can further obtain W(znDkPA) from W(zn~lDlPA) by taking (anti-) commuta-
tors with W(zP0) or W(zPλ). D

Hence, to prove that |χ) is a null vector, it is sufficient to show that W(exDP+)\χ)
and W(zex(D+l}P,)\χ) are null vectors or vanish for all x G <C.7 The proof of the
theorem is given by induction as follows:

Step 1. \XQ) and \χ*) are null vectors.

Proof. From the differential equation for ΔQ(X) and Δ\(x\ we obtain

W(exDP+)\χ^) = <Γ ( ̂  ) [Δ0(X) + ̂ (X)]\λ) = 0 ,

ι-C]|λ>=0,
,dX,

with X = x + y. Moreover, W(zej(D+l)

JP_)|χ0Γ) = 0 and W(exDP+)\χ+} = 0 . D

Step 2. If \Xk~_i) and \y£) are null vectors for a positive integer k, then \χfy and

\χ\) are also null vectors.

Proof. Since b+(w) \ b°k(w),bl

k(w), and ^7_,(w) | fe°(w),fc|(w + 1), the following
four vectors are null (here X = x + y):

W(e*DP+)\χl] = -W(z-keXDb°k(D)P+)\λ) ,

W(e*DP+)\χl)=,

D

Step 3. If \χ®} and \χl

k) are null vectors for a positive integer k, then \χ^) and

\Xk+ι) are a^so nuH vectors.

Proof. Since bQ

k(w),bl

k(w) \ b~(w) and b\(w) \ tf+l(w) and 6g(w) | ^+1(w+ 1),
the following two vectors are null:

Moreover, W(exDP+)\χ+) = 0 and W(zex(D+l}P^)\χ-+l) = 0. D

Thus we have completed the proof of Theorem B.I.

1 In the bosonic case, the ^i+00 is generated by W(z±l) and W(D2). To show the null vector
condition, it is sufficient that W(zeχ(D+l*)\χ) is a null vector or vanishes.
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