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Abstract: We prove infinite differentiability of the magnetization and of all quenched
correlation functions for disordered spin systems at high temperature or strong mag-
netic field in the presence of Griffiths' singularities. We also show uniqueness of the
Gibbs state and exponential decay of truncated correlation functions with probability
one. Our results are obtained through new simple modified high temperature or low
activity expansions whose convergence can be displayed by elementary probabilis-
tic arguments. Our results require no assumptions on the probability distributions
of the random parameters, except for the obvious one of no percolation of infinite
couplings, and, in the strong field situation, for the also obvious requirement that
zero magnetic fields do not percolate.

1. Introduction

In 1969 Griffiths [1] considered the statistical mechanics of a random ferromagnetic
Ising model, with Hamiltonian given by

where x G TLd , (xy) denotes a pair of nearest neighbor sites in TLd , σx = ±1, and the
couplings J = {Jxy ^ Oj^v) are taken as identically distributed random variables.
He pointed out that for the site diluted model, i.e., Jxy = Jξxζy, where the inde-
pendent random variables ξx are 1 or 0 with probability p and 1 — p respectively,
the quenched magnetization, considered as a function of z = eβh, displayed a non-
analytical behavior at z = 1 for values of the inverse temperature β at which the
system has neither long-range order nor spontaneous magnetization (see also [2, 3]).
His arguments should apply to a large class of ferromagnetic models; in particular,
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if the couplings Jxv > 0 are independent identically distributed random variables,
which may assume with non-zero probability arbitrarily large values, these singular-
ities should occur for every value of the temperature. At the origin of this behavior
is the fact that even if, with probability one, the infinite system is not ordered as a
whole, there are, also with probability one, infinitely many arbitrarily large regions
inside which the system is strongly correlated.

This phenomenon is now recognized to be a regular feature in the statistical
mechanics of disordered systems not just of the type discussed above. It has the
unpleasant consequence that the usual high temperature or low activity expansions,
the standard tools for obtaining exponential decay of correlation functions (and also
existence and uniqueness of the thermodynamical limit), fail to converge.

In this paper we consider a class of systems whose typical representative is an
Ising model in TLd whose Hamiltonian is given in a finite volume A C TLd by

HΛ = - Σ Jχvσxσy + &Σhχ<r* + hΣσx> (1-2)
(jtv)G/l* x€Λ xζA

where the couplings J = {Jxv, (xy) e ΊLd*} and the external fields h = {hx,x ξ.ΊLd}
are independent families of independent identically distributed (within each family)
random variables; we allow the random variable Jxy to take also the value -foo.
We use the notation /I* = {(xy);x, y e A}. If $ — 0, the model may be used to
describe a spin glass or a random ferromagnet; if the Jxy = J > 0, we have the
random field Ising model.

For such a model, we prove that at high temperature or at strong field 38, in
spite of the non-analyticity pointed out by Griffiths, the magnetization, or more
generally all quenched correlation functions, are infinitely differ entiable functions
of the uniform external field h. We also show uniqueness of the Gibbs state and
exponential decay of truncated correlation functions with probability one. Our
results require no assumptions on the probability distributions of Jxv and hx,
except for the obvious requirement of no percolation of infinite couplings (e.g,
P{JTV — -foe} small), and, in the strong field situation, for the also obvious
requirement that zero magnetic fields do not percolate (e.g, P{/zΛ — 0} small).

To prove these results, we develop a modified high temperature/low activity
expansion whose convergence can be displayed through simple and elementary
probabilistic arguments. A key new feature of these expansions is their simplicity.

Our methods can be applied to any lattice model in classical statistical me-
chanics. For models with finite range interaction, bounded spins and independence
of the random parameters, the application is straightforward.

Boundary conditions may be introduced in the usual way. Given A, we define
its boundary dΛ and its external boundary dΛ+ by

dA = {(xy) e Zd*;x e A,y £ A] , (1.3)

dA+ = {y e TLd\ (xy) G dΛ for some x G Λ} . (1.4)

A boundary condition on A is a map χ : dA+ — > [-1, 1]. It is an external boundary
condition if it is a configuration of dA+, i.e., a map χ : dA+ — > {—1, 1}. If χ = 0
we have free boundary conditions. We set

H*(σ) = HΛ(σ)- Σ J*yWy (1-5)
(.*->>} eί/i
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Finite volume thermal averages of local observables (i.e., functions of a finite
number of spins) at fixed J and h, with boundary condition χ, are defined by

the sums running over all configurations σ in Λ\β being the inverse temperature.
If some Jxy = -foe we take limits in (1.6). In the case of free boundary conditions
we will simply write (A)Λ When necessary we will make explicit the dependence
on the uniform external field h.

The truncated or connected finite volume correlation function of two local ob-
servables A(σ) and #(σ), with boundary condition χ, is defined by:

(A BYΛ = (ABYΛ-(AYΛ(BYΛ. (1.7)

More generally, given a state -< >- on an algebra of local observalbes, we define
the truncated correlation function (Ursell function) of n local observables A\,...,An

by (e.g., [4])

l ) !Π ^ ΓM, !- , (1.8)

(1.9)

where the sum runs over all partitions 3P of {!,...,«}. We recall

δ"
In -< exp

i=l s\=- =sn=0

Given a local observable A we set ||^4|| = supσ|^4(σ)|, and denote by supp A the
support of A, that is, the (finite) set of x G TLd such that A(σ) depends non-trivially
on σx.

The precise statements of our results are presented in the two theorems below
which consider separately the two situations, high temperature or strong field, to
which our methods apply. We will use pb

c(d) and ps

c(d) to denote the critical
probabilities for bond and site percolation in TLd ^ respectively. Recall (e.g., [5])

/£(!)= / # 1 ) = 1 ,

~ = pb

c(2) < ps

c(2) < 1 ,

0 < ^—^ < P

b

c(d) ^ ps

c(d) < 1 for d ^ 3 . (1.10)

We will use the /' norm in Έd:

distances in TLd will be measured with respect to this norm. Given X, Ύ c TLa ', d(X, 7)
will denote the distance between X and 7; notice that in the ̂  norm

d(X9Y) = min{|G|;G C TLd* connecting X and 7} . (1.11)
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More generally, if X\, . . . , Xn C ΊLd , we set

d(Λ rι,...,JSfπ) = min{|G|;G C TLd* connecting Xl9...,Xn} . (1.12)

Here by G C %d* connecting X\,...,Xn we mean that for each ij G { 1 ,...,«},/ φy ,
we can find (x\y\ ), . . . , {*/>>/) G G with *ι G Jζ and >y E J£/ , such that for each
k — 1, . . . , / — 1 we have either jc^+i = j^ or we can find f E {1, ...,«} so that

If ^4 and B are local observables, we will write d(A,B) for the distance between
the supports of A and B, i.e., d(supp ^4,supp B). We will also write d(A,x\,...,xn)
for d(supp ^,^1,...,^).

We start with the high temperature case. In this case we fix arbitrary $ E

R , h G l R z and h G 1R in (1.2); 0«/y J w random (all our estimates will be
uniform in ^,h and h). For a given <5 > 0 we set p$ — F{|J^| > δ} and

We also set ^oo = ff{Λy = +°c}; notice lim^oo ̂  = p^.

Theorem 1.1 (High Temperature Regime). If p^ < pb

c(d} there exists β\ —
βι(d) > 0, such that:
(i) For all 0 < β < β\ we can find C — C(β) < oc and m — m(β) > 0, such that
for any two local observables A and B and any finite A containing their supports,
we have

) l \ ) £ C|supp A\\\A\\\\B\\e~md^ , (1.13)

for all ^ G R,h G 1RZ ,h G 1R and any boundary condition χ on A.
(ii) There exists a set 3~ of realizations of the random couplings with F{J G 3~} —
1, and for each 0 < β < β\ we can choose μ — μ(β) > 0 with lim^_,o μ(β) — °°?

such that if J G F and 0 < β < β\, then for all Si G IR,h G 1R^ and h G IR :

(a) For any two local observables A and B, any finite A containing their supports,
and any boundary condition χ on A, we have

\(A;ByΛ £ DA\\A\\\\B\\e-^A>» , (1.14)

for some DA — D(supp A,J,β) < oo.
(b) For every local observable A, the thermo dynamical limit

(A)= \im(A)7

A

Λ (1.15)
Λ-*1d

exists and is independent of the boundary condition χ^ used in each finite
volume A. In particular, there is a unique Gibbs state.

(iii) For all 0 < β < β\,& G IR,h G IRzί/ and h G IR, the quenched expectation
ΊE((A)(h)) of a local observable A is an infinitely differ entiable function of the
uniform external field h. In particular, for each n — 1,2, ... there exists a constant
Cn < oo, depending only on C, m and n, such that

( o ^
EO^;^;...;^)!) ^ Cn |suppΛp||exp l-^^d(A^..^xn)\ (1.16)

for all local observables A and xι,...,xn G %d, and

dn

X l ; . . . ; σ X n ) . (1.17)
on d
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Remark 1.2. If p^ < ^rj and we pick δ > 0 so p$ < ^zj j then for any inverse
temperature β such that

(1.18)

(1.19)

- y^V ) ' 2d — I '

we can take

and
C - 4d[(2d - 1)(1 - (2rf - l)^)]-1 (1.20)

in (1.13).
Remark 1.2 was discussed by Klein [6].

We now turn to the strong field case. We will denote by p¥\d) the critical
probability for site percolation on the lattice Z^, which has for vertices the subset

of TLd (also denoted by Z^f) consisting of all sites x G Zd with ||;c||ι an even integer,
and for edges the collection

Zf = {[xy]',x,y G Zf with ||jc - j,||, - 2} (1.21)

notice that each site in TLd

2 has 2d2 nearest neighbors, i.e., it belongs to 2d2 edges.

It is easy to notice to see that pc (1) = 1 and, if d ^ 2.

g jfc(d). (1.22)

For each c <G TLd and & > 0 (we can take ^ > 0 in (1.2) without loss of gener-
ality) we define

-6 Σ |Λ,|, (1.23)

and for δ ^ 0 we set Yχ = Y#^{γ# x>δ} and q^δ = W{Y.^X ^ δ}. We have
oo q^δ = #00 for any δ ^ 0, where

. (1.24)
Vlb-^llι=ι /

Notice that q^ < p(c\d) implies p^ < pb

c(d).

Theorem 1.3 (Strong Field Regime). Ifq00< p(^\d), then for each β > 0 we can
find &\(β,d) < oo, monotonically decreasing in β, and ε(β,d) > 0, such that:

(i) For any β > 0 and 3d > $\(β,d\ we can find C = C(β,3i) < oo and m =
m(β,&) > 0, such that for any two local observables A and B and any finite A
containing their supports, we have (1 .13) for any \h\ < ε(β,d) and any boundary
condition χ on A.
(ii) There exists a set Ω of realizations of the random parameters (J,h),
with P{(J,A) G Ω} = 1, and for each β > 0 and ^ > 3S\(β,d) we can choose
μ = μ(β,3S) > 0, with lini^oo μ(β,3S) = oo, such that if (J, h) G Ω, β > 0,
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^ > &\(β,d) and \h\ < ε(β,d), then the conclusions (a) and (b) in Theorem
l.l(ii) are true with DA — Z)(supp ,4,J,h,β,&) < oo.
(iii) For any β > 0,^ > &\(β,d) and \h\ < &(β,d) the conclusions of Theorem
l.l(iii) hold.

Remark 1.4. If q^ < Λ,.J ., and we pick $ > 0 such that q@Q < .,. i 1 λ , then
2{2a —1) ' 2(2α —1)

for any inverse temperature β and h £ IR such that

θ%,β,h = 31E(e ^'x ) + <7j?,o < ^/^ 72 _ ι \ ' (1.25)

we can take

m--^log(2(2J2-l)^,^,) (1.26)

and

C- 8d\2d+ l ) 2 [ ( 2 d 2 - 1)5(20^^0^(1 - 2(2d2 - l)θ#,βyh)]~l (1-27)

in (1.13).

Remark 1.5. If the Jxy are bounded, say \Jxy ^ M < cχo, then we only need q^ <
ps

c(d) in Theorem 1.3. In this case, if #00 < ^4—r we can

m = -log ( ( 2 c / - l ) , / u ) (1-28)

and

C = 4rf[(2rf - 1)(1 - (2d - \)θΛ,β,,,)]~lθΛ,β,h , (1.29)

if θ.%,β,h < 2ίΓΊ"> wnere θ.%,β,h is defined as in (1.25), but with 7^>JC replaced by

The first rigorous results controlling the effect of Griffiths' singularities were
obtained by Olivieri, Perez and Rosa Jr. [7], who studied the Ising ferromagnet
with random couplings (Jxy §: 0, hx ~ 0, h = 0), and showed exponential decay of
correlation functions in the presence of Griffiths' singularities ifJE(Jxy) < oo. These
same results were obtained by Perez [8] without the finite moment requirement.

Exponential decay of truncated correlation functions and uniqueness of the Gibbs
state for the class of models described by (1.2), for small β or large &, were ob-
tained by Berretti [9] with strong restrictions on the probability distributions of the
random parameters (lϋ(ea\Jχy\) < oo for all a > 0;P{/^ = 0} = 0). Frohlich and
Imbrie [10], through an intrincate analysis of partially resummed high tempera-
ture/low activity expansions were able to obtain these results under less restric-
tive assumptions on the probability distributions of the relevant random parame-
ters (\Jxy\ < oo with a slowly decaying distribution, e.g. a Cauchy distribution, for
small j8, and W{hx — 0} — 0 for large ^). Bassalygo and Dobrushin [11] proved
uniqueness of the Gibbs state for small β with no assumptions on the probability
distributions if \Jxy\ < oo. The small β behavior of long range spin glasses has
been studied by Frohlich and Zegarlinski [12] and Zegarlinski [13].
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2. The Expansions

In this section we will prove parts (i) and (ii) of Theorems 1.1 and 1.3. Our
strategy may be summarized as follows: given a realization (J,h) and a set £f of
bonds\sites, we perform a high temperature\low activity expansion outside .̂ We
then show that if ^ is taken to be the appropriate singular set, characterized by
either Jxy being large (in the high temperature case) or &hx begin small (in the
strong field case), and we are in the situation when a bond\site has low probability
of belonging to £f (i.e., small β\large ^), we get decay after either averaging in
(J, h) (part (i)) or by picking (J,h) in a set of probability one by a Borel-Cantelli
argument (part (ii)).

To deal with truncated correlation functions we use the duplication trick.
We thus consider two non-interacting copies of the original system, i.e., a new
spin system with configurations σ = {σx = (σx,σ'x);x G Zd}9σx,σx E { — 1,-f-l}, and

Hamiltonian HΛ(σ), where for any function F(σ) we set

F(<τ)=F(σ) + F(σ') (2.1)

The set of all configurations of the duplicated system in a given region A C %d

will be denoted by ^(Λ). Finite volume thermal averages of an observable C(σ) in
the duplicated system, with boundary condition χ (same for both copies), are given
by

V CίπΛp-P^Λσ)

((C}}\ = ̂ (A) :Γ - with Z'Λ = Σ *-^(ί) . (2.2)

Truncated correlation functions of the original system may be expressed as or-
dinary correlation functions of the duplicated system through the identity

(A;B)\=l-((ABYA, (2.3)

where to every observable A of the orginal system we associate an observable A of
the duplicated system by setting

A(σ)=A(σ)-A(σ/). (2.4)

2.1. The High Temperature Expansion

The following notion will play an important role in our expansion: a self-avoiding
bond walk ω from a site x to another site y, written ω : x —» y, is a finite sequence
( x \ y \ ) , . . . 9 (xnyn) of bonds of (Zd)*, such that:

1. x\ = x and yn — y.
2. xi+ι = yι for i = 1,..., n — 1.
3. Xj=^Xj if /Φy'.

For such ω we set ω| — n. We define Ί^xy = {ω : x —> 3;} and set i^x =
\Jy£%d iί^xy. In addition, given two local observables A and B, we write H^AE =

{ω : x —» y : x G supp A,y£ supp B}.
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We have the following high temperature expansion for fixed J, h, h and M
in (1.2).

Theorem 2.1. Given .9' C Zd* let

Cw // the bond (xy) e , 2- (2.5)

ς.rv = G, (J,j8) = e4/l|Λ ' | - ι . (2.6)
ί r ί//7j? local obserυables A. and B, any finite A containing their supports,

and any boundary condition χ on A, we have

\(A BYΛ\ ^2\\A\\\\B\\ Σ Π A v v . (2.7)
ω€'// A B (-vv)ew

We start by redefining the Hamiltonian (1.2) as

HΛ = - Σ (JxyWy + iΛ-v I ) + -̂  Σ hxσx + h Σ σ, , (2.8 )
{.\-v)€/1* A-e/1 Λ-G/l

which differs from (1.2) by a harmless subtraction of an overall constant. We set

= - Σ (Λ-v^-σv + | Λ - v | ) , (2.9)

for any G C Z^ if G C /I* and χ is a boundary condition on Λ, we set

T"£(σ) = T G ( σ ) - Σ Λ v ^ v Z . v , (2.10)
{ .vv)GΓ/l

so
+ VΛ, (2.11)

with
(2.12)

For (xy) G Tίd we define

£τ,.(ί) = eWv.,(^,.+n;X.)+2/»|Λ,.| _ , . ( 2 1 3 )

notice
0 ^ Exγ(σ) ^ C w , (2.14)

the nonnegativity coming from the subtraction in (2.8).
We now perform a high temperature expansion in /I* \ f-f only. We can write

WYΛ = J,_
ΔA σ

Ϊ(T',* ,. + y,.\) γ~> T~T 77 /^) ι r \
1 n / Z_v 11 ^Λ-V (Z.I 3)

GCΛ*\ C/ {.γy)eG
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Due to the invariance of the Hamiltonian of the duplicated system under the
exchange σ <-» σ7, any G C. Λ* \£f such that the graph G U ̂  does not contain
some ω G ̂ 5 gives a zero contribution in (2.15). We can thus restrict the sum
to those G of the form G = ω#> U G7, where ω G i^AB, ω#> = ω \ ̂ , and G7 C
^OJ = ( Λ * ^ ) ω . Thus

I^Σ*-*7^*™ Σ Π εxy

x Σ Π G /W

Π t v-^v —/?(TΛ *,-,<-/>+^/ι) v^ TT
ζχyL,e Λ n'r Z^ il

A-/ 11 ζ>χy 2-^
£ 'Λ ω G'// ^5 < xy) G c/j.^ σ

Π (£*, + υ Σ Π ^v

Π ξ*yZ*Λ

y}ζω</>

Π t*y (2.16)
eω.y.

Σ Π P*y (2.Π)

where we used (2.14) and (2.5).
Equation (2.7) now follows from (2.17) and (2.3).

Proof of Theorem 1.1 (/). If p^ < ^J^ϊ^ we P^k ° > ^ sucn tnat Pδ <
and take

Z r f;|^| > < 5 } ; (2.18)

so /?^ = F{(^3;} G ̂ }. In this case we have E(pJCj;) = pδ β given in (1.18). If we
now take expectations in (2.7) we get

K(\(A BYΛ\)^2\\A\\\\B\\ Σ pH . (2.19)

A standard argument now gives (1.13) with (1.19) and (1.20). (See [6]).
In the more general case when we only have p^ < pb

c(d), we choose δ > 0
such that pδ < pd

c(d\ and take ^ as in (2.18). Let τ((xy)) = lz</*\^({^» for

any (xy) G TLd\ and set τ(ω) = Σ{^)eω τ((JCJ;»- Tt follows from (2.16) and (2.6)
that

\(A;ByΛ\ £2\\A\\\\B\\ Σ ίτ(ω) , (2.20)

where

ξ = ξA δ = ̂ -l. (2.21)
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To estimate (2.20) we use a result of Kesten [14]. Given r > 0, let us define
the events

gn(x) = {there exists ω G i^x such that |ω| Ξ> n and τ(ω) < rn} . (2.22)

Proposition 5.8 in [14] states that, if p$ < pb

c(d), we can pick r for which there
exist constant b > 0 and C\ (we will use C\,C^... to denote finite constants) such
that

ΠW*)) ^ Cι£Γ*Λ (2.23)

for all x £ Zd and all 77 = 1,2, . ... We now define the random variable

ή(x) = sup (n\gn(x) occurs } , (2.24)

and we have from (2.23) that

P{«(*) ^ ^} ^ C2£T^ . (2.25)

We also define
n(A) = max{ή(jt);* 6 supp A} , (2.26)

notice
lP{ή(A) ^ n} <Ξ C2 supp A\e~bn . (2.27)

Thus

Σ <f(ω)

^ 2μ||||5|||supp A\(C2e-M(A B) + C3((2J - iχr)^^) , (2.28)

by (2.20) and (2.22)-(2.27), if β is such that

pr <- _ O ΊQΛ
ξ < 2d - 1 (2 9)

If we now pick β\ > 0 by

^1'-1)r=2^T' (230)

it is clear from (2.21) that (2.29) holds for all β < βι, in which case (1.13) follows
from (2.28). »

Proof of Theorem 1.1 (#)(«)• If 0 < jS < ft, it also follows from (2.20) and (2.29)

that for all Si £ R,h e Rz</ and A € R,

(2.31)
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So let y be defined by

y = {J wOO < oo for all x G Zd} . (2.32)

It follows from (2.25) and the Borel Cantelli Lemma that P{J G 3~} = 1. But for
J G ̂  (1.14) follows from (2.31), with

iχ r), (2.33)

so Iim0_>oμ = oo by (2.21).

2.2. The Low Activity Expansion

We now define a self-avoiding site walk v from a site x to another site y, written
v : x — > y, as a finite sequence Jtι,Jt2, ,Xn of sites in 7Ld , such that:

1. x\ — x and #n = y.
2. | | jc / + i- jc/ | | i - 1 for z = l , . . . , n .
3. */+*/ if /Φy.

For such v we set |v| = n. We define Jfxy — {v : x — > jμ} and set ΛΛf = UJ/GZ^ ^*j"
In addition, given two local observables A and B, we write J\ί 'AB = {v : x — > y
x G supp A,y G supp 5}.

Self-avoiding site walks v on the lattice TLd

2 are defined in the same way, except

that we now require ||*ί+1 - jc/ | | ι = 2. We define v : x^y.J^xy and J^x as above.
We have the following low activity expansion for fixed J,h,/z and $ in (1.2).

Theorem 2.2. Given 6? C Zd let

(2.34)
i f x e & > ,

where

where 7^?JC is given in (1.23). Then for any local observables A and B, any finite
A containing their supports, and any boundary conation χ on A, we have

\(A',BYA\ ^2\\A\\\\B\\ Σ Π f t r - (236)

Proof. For best visualization of the expansion steps, we introduce the variables
η = {ηx,;x G Z^}, where each ηx G {0,1} is given by

= (sgn hx)σx + 1 37

where sgn u=\ if u ^ 0 and sgn u = -1 otherwise. The Hamiltonian (1.2) writ-
ten in terms of the new variables (after a subtraction of an overall constant) reads:

HΛ(η)=-4 £ Kxyηxηy + 2l
(xy}€Λ* xζλ \ yeΛ:(xy)ζΛ*

(2.38)



32 H. von Drefus, A. Klein, J. Fernando Perez

where Kxy = (sgn hx)(sgn hy)Jxy. If χ is a boundary condition on A, we have (after
subtracting a harmless boundary term)

Hγ

Λ(η) = HΛ(η)-2 £ Kxyηx(s& hy)χy . (2.39)
(xy)edΛ

Given a configuration ή = ( η , η f ) of the duplicated systme, we set

Gi,= {xeX1 ,ηx + η'x>0} , (2.40)

G. We rewrite ((AB}}\ as

and say that a configuration ή is compatible with G C Έd, and write ή -< G, ΊϊGή =

((AB}YΛ = -

ή

where

(2.42)

We now perform a low activity expansion in A \ ̂  only. Again, due to the in-
variance of the Hamiltonian of the duplicated system under the exchange η <-* η1 ,
we can restrict the sum in (2.41) to those G of the form G = v^ U G', where
v G Λ^ΛS = {v; G Λ^fi; vx C A}, v,y = v\^ and G7 C 0y> = yl \ v^. Thus

. Σ Σ Σ Γ^t^^

4|MIH|β||^ Σ Σ Σ Π e- '̂V^*00 , (2.43)

where

/?'(»?) =-4 Σ Kxyηxηy

\hx +(sgnhx)h+ Σ κxy- ^ Σ K

(2.44)

Since we have

f**(ή) ^ 2(Y^X - 2\h\) i f η x + η'x>09 (2.45)
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we get

\((AB))*Λ\£4\\A\\\\B\\ Σ Π 3
^ [Λ, AB χ£γ (S Gf C&(/>ίYv^G'

(2.46)

= Σ Σ* ' '^ Σ Σ * ' 0 0 , (2-47)
GC Λ vX G G' C ̂ /r,v v^ G'

since

and
Σ 1 = 3 | v / / l . (2.48)

Equations (2.36) now follows from (2.46), (2.35) and (2.34). D

Proof of Theorem 1.3(ΐ). If the Jxy are bounded, so we are in the situation de-
scribed in Remark 1.5, the {Y%j\x G Zd} are independent random variables. In
the general case the {Y$y,x G 2ζ^} are not independent, since Y%j and Y^y may
not be independent if \\x — y\\\ = 1, but the {Y.%y9x G Z2} are independent random
variables. Clearly, (2.36) implies

\(A BYΛ\ ^ 2\\A\\\\B\\(2d + I)2 Σ 2^Π^, (2.49)

where
ΛΓAB = {v : x^y : x G supp2^ί, y G supp2B} (2.50)

with
supp2C = {x G Z2 : d/(;c,supp C) ^ 1} (2.51)

notice that each v G Λ^AB replaces at most (2d + l)22' v '~1 v's in J^AB
If #00 < ....I ,,, we pick ^ > 0 such that #j> 0 < 0 / 0,? I Λ > an(i define

2.\2.d — 1 ) L\Lu — 1 )

c^ /„ (-- Tfd. Y ' ^ f\\ . o ^o\
•j — \X t iL , /.^.x ^ UJ , (Z.jZJ

in this case Theorem 1.3(i) (with (1.25), (1.26) and (1.27) follows immediately
from (2.49).

If #00 < PC \d\ we again use Proposition 5.8 in [14], which holds also for site
percolation in lattices like TLd and 2£2. More precisely, for Z2, say, let {τq(x);x G
2£2} be independent identically distributed {0, l}-valued Bernoulli random variables,
with q — W{τq(x) = 0}. Given r > 0, we define the events

$q,n(x) — {there exists v G Jfx such that |v | ^ n and τq(v) < rn] , (2.53)

where τq(ί) = ΣX£vτg(x) Since $q,n(x) is increasing in #, it follows from Propo-

sition 5.8 in [14] that given q < p[ \d\ we can pick r for which there exist
constants b > 0 and C\ < oo such that

(2.54)
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for all q rg q,x G TL\ and n — 1,2,. . . .

So given ̂  < p(

c

2\d) we pick #,#00 < q < p(?\d\ and the corresponding
r,b and Cj in (2.54). For a given inverse temperature y we define <57 > 0 and
*(y) ^ 0 by

~ " ' ( 2 55}l j

and

notice q.#^ ^ q for all $ > &\(y). We take

and τ(7)(;c) — HZί/yAι(jt), so the {τ("'\x);x G ΊLd

2} are independent identically dis-

tributed Bernoulli random variables with W{τ^;\x) = 0} ^ g; in particular we have
(2.54).

Let β ^ 7,^ > ^1(7) an^ Λ" 0 ̂ 7; we have

- ®

so (recall (2.35))

ς v < 3e ' *\(' '>' ' ' . (2.59)

If we now set ε7 = 4<5r and take \h\ ̂  εv, we get

(2.60)

the last inequality following from (2.55).
Thus for β ^ 7,^ > ^ι(y) and \h\ g εv it follows from (2.49) that

\(A BYΛ\ g 2\\A\\\\B\\(2d + I)2 Σ 2l^(3β , < v > η τ v . (2.61)
ve 1^5

Theorem 1.3(i) now follows from (2.61) in the same way as Theorem l . l ( i ) fol-
lowed from (2.20).

Proof of Theorem L3(ίi)(a). For each y > 0 the argument used to prove Theo-
rem l.l(ii)(a) now gives a set Ω7 of realizations of the random parameters (J,h),
with P{(J,h) G Ω-;} = 1, such that for each (J,h) G Ω7 conclusion (a) in Theorem
1.3(ii) holds for all inverse temperatures β ^ y. Now let Ω = (Jo<]Έ<$Ωγ, clearly
P{(J, h) G Ω} = 1 and now for each (J,h) G Ω conclusion (a) in Theorem 1.3(ii)
holds for all inverse temperatures β > 0.

2.3. Thermo dynamical Limits and Uniqueness of the Gibhs State

Lemma 2.3. Let us fix J,h, $ and h in (1.2). Suppose that for a given inverse
temperature β and a local observable A, we can find μ > 0 and DA < oo, such
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that for any other local observable B, any finite A containing their supports, and
any boundary condition χ on A, we have

\(A;B)χ

Λ\^DΛ\\A\\\\B\\e-'"1^. (2.62)

Then for any finite A containing the support of A and any boundary condition χ
on A, we have

\(A)\~(A)A\ ^βDA\A\\ £ \Jxy\e-^A *ϊ . (2.63)

Proof. If follows from the Fundamental Theorem of Calculus that for any finite A
containing the support of A and any boundary condition χ on A, we have

(AYΛ-(A)Λ=f~(A)JdS = β} Σ J*yXy(A;σxy*dS: (2.64)
0 as 0 (xy)£cΛ

Equation (2.63) is now an immediate consequence of (2.62) and (2.64).

Lemma 2.4. Let us fix J,h,^ and h in (1.2). Suppose that for a given inverse
temperature β we can find a sequence {An} of finite subsets of 7Ld ', with the
property that every x G ΊLd is eventually in An, such that for any local observable
A we have

lim sup (A}y

Λn - (A)Λπ = 0 , (2.65)
π — >oo γ

where the supremum is taken over all external boundary conditions χ on An. Then
there exists a unique Gibbs state at this inverse temperature β, and for every local
observable A the thermodynamίcal limit

(A} = lim (A)*Λ (2.66)
Λ-*Έl{

exists and is independent of the boundary condition χΛ used in each finite
volume A.

Proof. Let Φ be a Gibbs state at inverse temperature β; for every local observable
A and finite A containing its support, the DLR equations give

Φ(A) = f(A)σAdΦ(σ) . (2.67)

Thus
\Φ(A) - (A}Λ\ ^ sup|(^ - (A)Λ\ , (2.68)

7

so the lemma follows.

Recall ̂  - JP{Jxy = +00} and pδ = !P{\Jxy\ > δ}. For R > 0 set

£Λ = {* e Z'; ||*|| ! ^R}. (2.69)

Lemma 2.5. Suppose p^ < pb

c(d). Then there exist a finite number K > 0 and
a set ,T' of realizations of the random couplings with P{J G 3~'} = 1, such thai
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for any R > 0 and J G 9~' we can find a finite subset AR = ΛRJ of TLd with BR C
AR and \Jxy\ ^ K for all (xy) G 8AR.

Proof. Since p^ < pd

c(d\ we can find a finite number K > 0 such that pκ <
pb

c(d). Given x, y G Zd

 9 we will say that x <-> y if there exists a self-avoiding
bond walk ω : x — * y with \Jxty'\ > K for each (x'yf) € ω; for x ζ Έd we call

^x — {y G TLd\x <-> y} the cluster of c. As /7K < pd

c(d\ we can find a set 3~'
of realizations of the random couplings with F{J £ 2Γ'\ = 1} = 1, such that for
J G ̂ ~' there are no infinite clusters. For any R > 0 and J G 5r/ the set

U ̂  (2.70)
€£Λ J

is finite and clearly satisfies the desired properties.

Proof of Part (ii)(b) of Theorems 1.1 and 1.3. In both cases we have p^ < pb

c(d),
so we use Lemma 2.5 to pick K and 9~' and choose ΛR = ΛR^ for each R > 0
and J G 3~' . Now let J,h, $,h and β be as in part (ii)(a) of either Theorem 1.1
or 1.3, with J G 9~' also. Let A be a local observable with supp A C Bs for some
S < oo. It follows from (1.14) and Lemma 2.3 that for any R > S we have

£κβDA\\A\\ Σ
(χy)eeλR

^κβDA\\A\\e»s Σ

The desired conclusion now follows from Lemma 2.4.

3. Infinite Differentiability

In this section we will prove part (iii) of Theorems 1.1 and 1.3, i.e., the infinite
differentiability of all quenched correlation functions. In particular we will obtain the
infinite differentiability of the magnetization with probability one, since it follows
from ergodicity that

with probability one.

Lemma 3.1. Let ( ) Λ be a random state on the algebra of local observables with
support in the set A C TLd, such that there exist C < oo and m > 0 for which

E(\(A;B)Λ\) ^ C\ supp A\\\A\\\\B\\e~"^A B) (3.2)

for any two local observables A and B with support in A. Then there exist con-
stants Cn < oo,n = 1,2,..., depending only on C,m and n, such that

JE(\(A;σx 9...9σXn)Λ\) ^ |supp A\\\A\\ exp {-mnd(A,xι,...,xn)} (3.3)
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for all local observables A with support in A and all x\9...9xn G A9 where

-^^ (3-4)

Proof. The proof proceeds by induction on n. If n = 1 (3.3) is just a special case
of (3.2).

Now suppose (3.3) is true for all n' ^ n — 1 and let A be a local observable
with support in A and x\9...9xn G A. Using Lemma 3.9 in [4] we have the reduction

(A\ σX] . . . σXn) = (σXlA\ σ X 2 ; . . . σXn)Λ

- Σ (A>°χP,> ~><*χpk}A(
σ*ι' > %;•••;%,_,_! Xi (3 5)

PC{2, ...,«}

where /? = {/?!,...,/?#} and {#ι,. . . ,# w _£_ι} = {2,...,«} \P. Using Holder's in-
equality and the induction hypothesis, we have that for any P C {2, ...,/?},

Γ * 1^ C^ supp A\\\A\\ exp <^ -- —mkd(A,xpl,...,xPk)\

< - ^— y— m π _ Λ _ιrf(Λ:ι,Λ: 9 p . . . ,^ n _ Λ _x exp

<; C^|supp A\\\A\\ exp {-mn-ιd(A\Jxι,x2,...9xn)} , (3.6)

where we used A \Jx\ for supp A \Jx\ — supp σXlA9 since

:2,...,xn)} (3.7)

By C'n9C"9... we denote finite constants depending only on n, C and m. It thus
follows from (3.5), with the induction hypothesis applied to the first term on the
right-hand side and (3.6) to each term in the sum, that

Έ , ( \ ( A , σ X l ' 9 . . . ' , σ X n ) A \ ) ^ Cf^\suppA\ \\A\\^xp{-mn^d(A Vxl9x2,.. .,x»)} . (3.8)

We need one more reduction formula, which follows from Lemma 3.9 and
formula (1.2) in [4]:

(A σxι;... 9 σXn)Λ = (A; σxι... σXn) - £ (A; σx . . . σx )Λ(σx . . . σx ) ,

(3.9)
where P = {p\,...,pk} and {q\,...,qn-k} = {!,...,«} \P. Taking expectations
and using the induction hypothesis we get

E ( \ ( A ; σ X { ; . . . , σ X n ) Λ \ ) ί C|supp A\\\A\\ exp {-mn.λ

(3.10)
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Equation (3.3) now follows from (3.8), applied to each of the n cyclical per-
mutations of JCι,;c2,. ..,#«, and (3.10), since a moment of reflexion shows that

n

xι,x2,...,Xn}) ^ d(A9xι9...9xn) . (3.11)

Proof of Part (iii) of Theorems 1.1 and 1.3. For any J e RZ£ ,h e RZ £,^ G
R, and h\,h2 G !R,β > 0, finite region yl C TLd and local observable A with support
in /I, it is easy to see that

(A'9σxι . . . σXa)Λ(h2) - (A; σxι . . . σXn)A(h\ )

(3.12)

for any n — 0, 1 . . . and x\ , . . . ,xn G TLά ' .
If our parameters satisfy the hypotheses of part (iii) of either Theorem 1.1 or

Theorem 1.3, (1.16) follows from Lemma 3.1. Moreover, we can take expectations
in (3.12), use Lemma 3.1 and take the thermodynamical limit to obtain

A\\\A\\\h2 - h} Σ>xp {-mn+ld(A,Xl,...9xn,x)}9 (3.13)

so we can conclude that each JE((A] σX{ . . . σ X n ) ( h ) ) is a continuous function of h.
It follows that

Σ E((A 9 σ X } 9 . . . 9 σ X n ) ( h ) )
χλ,...,xn£7Ld

is also a continuous function of h since

Σ exp {-mn+\d(A9xι9 ...9xtt9x)} < oo . (3.14)
^,...,^,,^2^

Once more we take expectations and the thermodynamical limit in (3.12), using
the continuity of E(^4; σX{ . . . σXn\ σ x ) ( h ) ) in h, (3.3) and the bounded convergence
theorem, obtaining

(3.15)

The Fundamental Theorem of Calculus now tells us that

δ

δh'
Έ.((A σXl;...;σXΛ)(h))= ^Έ((A;σXl ... ,σXl, , σ x ) ( h ) ) . (3.16)

7d
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Since

-j^Έ((A)A(h)) = (-β)n Σ E((A 9 σ X l ; . . . ' , σ X n ) A ( h ) ) 9 (3.17)
ϋn *ι,.. Λιe/l

a similar argument using (3.14) gives the infinite differentiability of ]E((A)(h))
and (1.17).
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