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Abstract: We develop a rigorous framework for constructing Fock representations
of quantum fields obeying generalized statistics. The main features of these represen-
tations are investigated. Various aspects of the underlying mathematical structure are
illustrated by means of explicit examples.

1. Introduction

The present paper concerns a generalization of the concept of statistic in quantum field
theory. We investigate the Fock realization of TV-component fields whose annihilation
parts obey the relation

Here x± , x2 G Rs and the exchange factor R is a TV2 x TV2 matrix function on Rs x Rs,
which satisfies certain consistency conditions to be specified in what follows. Our
main task below is to construct a Fock representation ,^R of the algebra (1.1). We
also establish the basic properties of the fields aa(x) as operators in ,^R and derive
the relative correlation functions. Finally, some aspects of the time evolution in the
Fock space ,^R are investigated.

The statistic of quantum fields is usually associated with the irreducible represen-
tations of the permutation group which lead to bosons (more generally para-bosons)
and fermions (para-fermions). In the last two decades it has been discovered, however,
that alternative, not permutation group statistics [15, 27, 30, 39, 42] appear actually in
many different areas of quantum theory. An outstanding example is conformal field
theory; the basic building blocks of conformal invariant models in 1 + 1 space-time
dimensions obey statistics corresponding in general to irreducible representations of
the braid instead of the permutation group [10, 12, 13]. Charged sectors of 2 -f 1
dimensional gauge theories [6] also give rise to braid statistics [14]. The excitations
associated with Abelian and non-Abelian representations of the braid group are called
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anyons and plektons respectively. It is generally believed [18,28] that anyons oc-
cur as quasi-particles in the fractional quantum Hall effect and may be relevant for
explaining some features of high Γc-superconductors [9, 25, 29]. Other striking phys-
ical phenomena as fractional charge [22,41] and fractional spin [39] are also deeply
related to generalized statistics. For all these reasons the subject has been exten-
sively studied in the last few years (see [11, 40] and references therein). The methods
which have been most frequently applied are the mean-field approach [1,4] and the
non-relativistic field theory formulation of the AΓ-body quantum-mechanical anyon
problem [21].

One of the main goals of this work is to show that the Fock representation
of the algebra (1.1) provides a convenient basis and a unifying framework for
the investigation of statistics in quantum field theory. Indeed, varying R among
the admissible exchange factors, one gets a rich family of quantum fields. The
x-independent .R-matrices lead to permutation group statistics whereas piecewise-
constant .R-factors give rise to braid statistics. But the family in consideration is
even larger because it involves also fields corresponding to .R-matrices with more
complicated x-dependence. From the mathematical point of view we find it instructive
to study the whole family in general. Concerning physics, one should mention
that deviations from the Bose-Fermi alternative are not expected for fundamental
elementary particles [17]. There exist several indications, however, that generalized
statistics are relevant for describing collective excitations in solid state physics [9, 18,
25, 28, 29]. Products of "order" and "disorder" variables [20, 24], which control the
phase structure in quantum field theory and statistical mechanics, are also expected
to have exotic statistics [19].

We end the introduction by recalling those universal structures of any Fock
representation (see for example Sect. X.7 of [36]), which are used below. This
allows both to fix the notation and to explain our strategy for constructing the Fock
representation ̂ . Consider a separable Hubert space {J ,̂ ( , •)} and its n-fold tensor
power β&n — $$®n which in physical terms is the n-particle space. The direct sum

_ (! 2)

where 3$* = C1 is called the Fock space over 3%. The elements of .Φ'(3&) can be
represented by sequences {φ = (φ®\ φ^l\ . . . , φ^n\ - - .):^(n) G J$n} and the finite
particle subspace 3?®(3&) C 3^(3%) is defined as follows: φ G &^(3&) if and only
if φ(n) = 0 for n large enough. By construction ^°(J^f) is dense in ^(3

We turn now to the definition of annihilation and creation operators on
Let us denote by S$n the set of decomposable vectors

Recall that £$n is a total set, i.e. the set 5§(βn} of finite linear combinations of
elements of <2$n is dense in ̂ n. Following [36], for each / G ̂  we introduce the
operators

n ^&n'1 , n> 1,

6*(/):^rn^^rn+1, n > 0 ,

defined by

(1-3)

(1.4)
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In addition, we set 6(/)^° = 0 and extend by linearity both &(/) and &*(/) to
Sg(βn\ Now, one can easily prove [36] that for any φ e S?(&n) and ψ £
one has:

\W)φ\\ < V^l l/ l l \\φ\\ , \\b*(f)φ\\ < V^Tΐ\\f\\ \\φ\\ , (1.5)

) . (1.6)

In what follows ^ denotes either 6 or 6*. From the estimates (1.5) one has that
can be extended by continuity to 3%n and finally, by linearity, to .F°(β%). The

extensions obviously obey the relation (1.6) for any φ, Ψ £ .̂ ~°(Ĵ ?).
For describing bosons and fermions in this context one introduces the subspaces

^™ and 3tf™ of ̂ n, which are the n-fold symmetric and totally anti- symmetric
tensor powers of 3@ respectively. Then, the associated bosonic and fermionic Fock
spaces are

n=0

Denoting by P± the orthogonal projectors on J^j_(J^), the bosonic and fermionic
creation and annihilation operators are defined by

a*±(f) = P±tf(f)P±. (1.8)

At this point we have a sufficient background for formulating our approach to the
Fock realization of the algebra (1.1). The main steps are essentially two:
(i) With any admissible exchange factor R(xl,x2) we associate a distinguished

subspace ^R(3^) C &(3%)\
(ii) We generalize Eq. (1.8) by replacing P± with the orthogonal projection PR on

The key points of this procedure are discussed in full details in the next two
sections. Section 4 concerns the description of time evolution in our framework.
In Sect. 5 we show that the Leinaas-Myrheim anyons represent just a particular
example of the general scheme developed in Sects. 2-5. In Sect. 6 we establish the
generalization to multicomponent fields. Finally, Sect. 7 is devoted to our conclusions.

2. Exchange Factors and Relative Fock Spaces

For simplicity we start by considering Eq. (1.1) for fields with a single component
(TV = 1). We take as one-particle space ̂  the complex Hubert space L2(Rs,dsx),
the generalization to an arbitrary L2(X, dμ) being straightforward. With these assump-
tions, the exchange factor R is in general a complex-valued function on Rs x Rs. We
require R to be measurable and to satisfy

β(x1,x2)β(x2,x1)= 1, (2.1)

β(x1,x2) = Λ(x2,x1), (2.2)

where the bar stands for complex conjugation. Equation (2.1) guarantees the consis-
tency of Eq. (1.1) under the interchange of xl and x2. The meaning of (2.2) will be
clarified a few lines below.

Combining Eqs. (2.1, 2) one gets the parametrization

, x2)], (2.3)
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where r is real-valued and obeys

r(x1,x2) + ̂ (^2'xι) — 2πkr , kr G Z . (2.4)

We call # factorizable if there exists a real- valued function p on Rs and kr G Z,
such that

r(x1? x2) = p(xv) - p(x2) + ττkr . (2.5)

Notice that in general R(xl , #2)
2 7^ l F°r AT = 1 the only possible constant exchange

factors are ±1, i.e. generalized statistics require x-dependent R.
Fixing any admissible exchange factor, we introduce for n > 2 the operators

{Sτ:i = 1, . . . , n — 1} acting in 3$n according to

1? . . . , xτ, x +1, . . . , xn) = R(xl,xi+l)φ(xl, . . . , xi+l,xiΊ . - - , zn) . (2.6)

As a simple consequence of the defining properties of R, one has

Proposition 1. {Sτ:i = 1, . . . ,n — 1} are bounded (\\Sτ\\ = 1) Hermitian operators
on 3%n satisfying:

Sβ3=S3S^ \i-j\>2,

SτSί+lSi = Sτ+lSτSi+l , S i = 1 .

We observe that (2.2) ensures the hermiticity of Sτ, which is actually the main
motivation for this condition on R.

Let d^n be the permutation group of n elements, whose generators (elementary
permutations) are denoted by {σ^i = 1, . . . , n — 1}. The above proposition has the
following simple

Corollary. The mapping
S'.σ^S, (2.7)

provides a representation ofί^n in 3$n and

is an orthogonal projection operator.

Setting P(ft = 1 and P^1} = 1, we define the n-particle space relative to R by

(2.9)

The set {P^:n — 0, 1, . . .} determines a projection operator PR on ̂ "(ĵ ), given
by

[Pβ(p]^-P^Vn). (2.10)

It is worth mentioning that PR for .R = ±1 coincides precisely with P±. The R-
subspace ^R(W) C .^(3$} we are looking for is defined by

(2.11)
n=0

The associated finite particle subspace reads J^°(j^f) = PR&^(3@) and is dense in
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Consider now the operator C, defined on ,^n by

(Cφ) (xl,..., xn) = φ(xn,..., X j ) . (2.12)

One immediately verifies that C is antilinear, norm-preserving and satisfies C2 = 1.
Therefore C represents a conjugation on ̂ n, which automatically extends to a
conjugation on .$f(β$). From Eqs. (2.2, 6) it follows that CSτC = Sn_τ. Consequently
C.^R(^ί) C .ί̂ (Ĵ ), i.e. C provides a conjugation in any β-subspace ,ί̂ (,̂ f).

We conclude this section by establishing the relationship between any couple of
Fock spaces .^R (3$) and ,^R (3$) relative to two different exchange factors R\ and

R2. Clearly, being infinite dimensional separable Hubert spaces, ,^R (3$) and j^ (J^7)
are isomorphic. Among others, there exist however some natural isomorphisms which
play a distinguished role and can be constructed as follows. Let us consider the
functional equation

with the supplementary condition

Γ±(x1,x2)Γ±(x1,x2)=l. (2.14)

Equations (2.13, 14) have several solutions; recalling Eqs. (2.3, 4), the most evident
ones are

Γ i 1 \T+(xλ,x2) i f f c r 6 2 Z ;
exp \-~r(xi,x2)\ = •> i f A ^ 2 Z + 1 (2'15)

\ Z, I v 1 ' 2^ r **LΛ ~\~ 1 .

For any solution T±(xl,x2) of (2.13,14) and for any φ e β%n we define the
operators

Π n > 2 , (2.16)

setting also Uf(R) = 1 and U(±\R) = 1. Due to Eq.(2.14), U(±\R) are unitary
operators on ,ytfn, which therefore extend to unitary operators U±(R) on ,S^(J^).
Using (2.13), one immediately verifies that

(2.17)

Consequently the compositions

U±(R,,R2) = U^R

provide two natural isomorphisms between ̂

operators C± = U±(R)CU±(R)~l are conjugations on

Π

and .

(2.18)

Notice that the

one has

. ,*ι), (2.19)

which in general differ from C.
Summarising, for any admissible exchange factor R we have explicitly constructed

an .R-subspace .^R(M) C ,^(J^). Any ,3FR($f) is equipped with a conjugation and
we have established some isomorphisms between pairs of such Fock spaces. Our next
step will be to define creation and annihilation operators on .
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3. Creation and Annihilation Operators

In analogy with Eq. (L8), we introduce the creation and annihilation operators

(3.1)

The estimates (1.5) imply that a$(f) are densely defined (with domain &^(β&)) linear
operators, which satisfy

). (3.2)

Therefore afl(f) are closable. Since 3^(3%) is invariant under aP(f), we shall
concentrate below on the restrictions of a(f) and α*(/) to 3^(3%). Their action
is given by

[a(f)φ](n\xl , . . . , xj = v W l ί ds x f (x)φ(n+l\x , xl9...,xn), (3.3)

1^, . . . ,x f c, . . . ,xn), (3.4)
/c=2

where φ e 3^(3%) and x indicates that the argument x must be omitted. For deriving
the commutation properties of α^(/) it is convenient to introduce the operator- valued
distributions α^(x) defined by

α(/) - / dsxf(x)a(x) , α*(/) - / dsxf(x)a*(x) .

Then from Eqs. (3.3,4) one gets

[a(x)φ](n\xl ,...,xn)= V^Πφ(n+l\x, Xl,...,zn), (3.5)

[a*(x)φ]< n\x1, ...,xj=-^δ(x- Xl)φ(n~l\x2, ...,xn)

'1^, . . . , A f c, . . . ,arn). (3.6)

Precisely as for bosons and fermions, a(x) is a densely defined operator in
whereas α*(x) makes sense only as a densely defined quadratic form in J ^ ( ) x

). Using Eqs. (3.5, 6), one easily checks that α#(x) satisfy the exchange relations

- R(x2, xl)a(x2)a(xl) = 0 , (3.7)

α*(xj)α*(x2) - Ή(x2, X1)α*(x2)α*(x1) = 0 , (3.8)

α(xj)α*(x2) — R(xγ, x2)α*(x2)α(Xj) — δ(xl — x2) . (3.9)

Now we are going to establish some other basic features of the fields α^(/). It is

well known that α!(/) are bounded operators, which is not the case of α+(/). The
following proposition generalizes this statement.

Proposition 2. αtt(/) are bounded operators of norm

< H / l l , (3.10)
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if and only if

ίdsy fdszg(y)R(y,z)g(z) < 0 (3.11)

for any g G BQ(RS) - the space of bounded functions with compact support.

Proof. Because of Eq. (3.2), it is sufficient to consider α*(/). Using Eqs. (3.3, 4), one
finds the equality

' dX-i I dsy J dszg(z)R(y, z)g(y)

ι , . . . , x n _ ι ) , (3.12)

valid for any g G B0(RS) and φ
Assume first that α*(/) is bounded and satisfies (3.10). Taking φ G 3$ in

Eq. (3.12), one gets

N|2|M!2 + dsy dszg(z)R(y, z)g(y)φ(z)φ(y)

^||α*(^||2<||α*te)||2|b||2, (3.13)

which in view of Eq. (3.10) leads to

dszφ(y)g(y)R(y, z)φ(z)g(z) < 0 (3.14)

for arbitrary g G £0(RS) and φ£3%. This proves (3.11).
Suppose now that (3.11) holds and consider

l 5 . . . ,zn_ι) = / dsy I dszg(z)R(y,z)g(y)

ι, . - . , xn_ι) - (3.15)

For any g G £0(RS) one has that x G L^R^"1^. Moreover, from (3.11) it follows
that χ(x l5 . . . , xn_ι) < 0 almost everywhere in R^71--1). Therefore

/ dsx{ ... dsxn_{χ(xv, . . . ,

which, combined with Eq. (3.12) gives

\\a*(9)φ\\< \\9\\ \\Ψ\\ (3.16)

This estimate holds obviously also for any φ G J °̂(J^) and implies (3.10) because
B0(RS) and &£(3&) are dense in 3% and &R(3g) respectively.

We observe that any factorizable exchange factor (see Eq. (2.5)) with odd values of
kr obeys (3.1 1) and consequently leads to bounded creation and annihilation operators.
In general cfi(f) are not bounded, but the technical difficulties stemming from this
fact can be avoided (at least partially) by considering bounded functions of α^(/).

Following for instance the standard treatment [36] of the boson field α+(/), one can
introduce the Segal-type operator

Φ(/) = -^[α(/) + α*(/)] (3.17)
γ2

and prove exactly in the same way
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Proposition 3. The operator Φ(f) is essentially self-adjoint on ^(W).

Therefore, in spite of the fact that in general Φ(f) is unbounded, the operator
exp[zΦ(/)] built with the self-adjoint closure of (3.17), is a unitary operator on
,^R(^). Notice that the Segal field (3.17) is not a linear functional in / since α(/)
is antilinear.

We now turn to the construction of the correlation functions of the fields α^(/).
Denoting the vacuum state by Ω = (1,0, . . . ,0, . . .) and using that <^n is a total
set in J^n, one can show that {α*^) . . . α*(/n),ί7:/ G 3%} is a total set in J^J.
Therefore, all non- trivial correlation functions (in the form of distributions) are

- (α*(xO . . . α*(zn)β, a*(yι) . . . a*(yn)Ω) , n > 0 . (3.18)

Applying Eq. (3.2,9) one derives the recursive relation

Wn(Xl J - ιxn> 2/ι , - - - , 2/n) = 6(X1 - 2/l)^n-l(X2^ - ιXn> 2/2> - - » 2/J

n

(χλ , 2/1) . . .

X ™n-l(X2> - - - , Sn; 2/1 » - - > 2/fc» - - > 2/n) »

which permits to compute wn. One finds

and so on. As expected the ^-dependence shows up for n>2.

4. Time Evolution

We first recall the notion of second quantization dΓ(A) of an operator A acting in the
one-particle space J$. Assume that A has a dense domain D C 3$. Then the subset
D(A) = {ψ G .^0C^O:<£(n) G L>Θn for n > 1} is dense in .^(^) and dΓ(A) is
defined on D(A) by [35]

= 0, (4.1)

[dΓ(A)ψ](n) = ( A ( 8 ) 1 0 . . . 0 l H - 1 0 A 0 . . . 0 1 + . . .

+ 1 0 1 0 ... 0 A)(^(n) . (4.2)

We furthermore introduce the operator

dΓR(A) = PRdΓ(A)PR . (4.3)

Provided that
PRD(A) c D(A) , (4.4)

Eq. (4.3) defines an operator in J^ (̂ ) with dense domain DR(A) — PRD(A). For
R = ±1 the condition (4.4) is automatically satisfied and Eq. (4.3) gives rise to
the operators dΓ±(A) = P±dΓ(A)P± on D±(A) = P±D(A). These operators are
familiar from the Bose- and Fermi-quantization.
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Let us consider now the time evolution in J^(J^) starting with the free one-particle
hamiltonian

defined on the space of C°° -functions with compact support C^°(RS) C L2(RS). It is
well known that h is essentially self-adjoint. In this section we concentrate on smooth
exchange factors R G C°°(RS x Rs). For such factors PRD(h) C D(h) and therefore

HR = dΓR(h) = PRdΓ(h)PR (4.6)

is a densely defined Hermitian operator in 3FR(3@) with domain DR(h). Using that PR

and dΓ(h) commute with the conjugation C, which in turn leaves invariant DR(h\
one concludes that HR admits at least one self-adjoint extension [36]. We shall prove
now that HR has a unique self-adjoint extension. For this purpose we introduce the
operators H± related to HR by the isospectral transformation

H± = U±(R)HRU±(RΓl (4.7)

H± act in ,ίζ-(ĵ ) but, as shown in what follows, are different and should be
distinguished from the free bosonic and fermionic hamiltonians H± — P±dΓ(h)P±.

In order to determine the domains of H±, one can use the operator identity

= P±U±(R), (4.8)

valid on 1^(3$). Applying Eq. (4.8), one obtains the chain of equalities

U±(R)DR(h) = U±(R)PRD(h) = P±U±(R)D(h) = P±D(h) = D±(h) ,

which show that H± are well defined on D±(ti) - the domains of H±.
The n-particle hamiltonian following from Eq. (4.6) reads

where Δk operates on the kth variable. Therefore

fc=l /

which according to Eq. (4.8) can be written in the form

(4.10)

This general result holds for U±\R) constructed (see Eq. (2.16)) in terms of any

solution T± of Eqs. (2.13, 14). For obtaining more explicit expressions for H^
one should fix some T±. At this stage it is convenient to distinguish two cases; we

consider H^ if kr G 2Z and H^ if kr G 2Z -h 1. Then one can adopt for T± the
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simple expression (2.15). Moreover, without loss of generality one can assume that
r G (7°°(RS x Rs), because R is smooth. With these choices one easily derives

rr(n)
=

where the short notation

k=l

π 2

\ Σ <vfcro > p(n) (4.11)

has been introduced. The idea now is to move the projections P± in front of the

r.h.s. of Eq. (4.11) to the right, taking into account at the end that [P±}]2 = P±n).
After some algebra one finds

where

(4.12)

(4.13)

with
-, 2 >

(4.14)

Observing that F(n) > 0 and F(n) e L2(Rns)loc, by Theorem X.28 of reference [36]

one concludes that H(n) is essentially self-adjoint on CQ°(Rns). Since P£n) commute

with H(n\ the same conclusion holds for H^ on D%_(h) = D±(h) Π ̂ ±. Then,

a standard argument (cf. Sect. VIII. 10 of [35]) implies that H± are essentially self-
adjoint on D±(K), which combined with Eq. (4.7) proves the validity of

Proposition 4. HR has a unique self-adjoint extension.

It is useful for physical considerations to analyze the type of interactions corre-
sponding to the potential V(n\ One easily derives

ijk ' (4.15)

Therefore F(n) involves non-trivial two-body

and three-body interactions

v. =-r»Jfc 12 V • cydic Perm

(4.16)

(4.17)

Summarising, the unique self-adjoint extension of HR defines a time evolution in
). By means of U±(R) this evolution can be equivalently transferred to J
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and in the n-particle spaces ^± gives rise to the hamiltonian H^n\ The explicit form

of H(ri) (see Eqs. (4.13, 15-17)) shows that due to the non-trivial exchange properties
(encoded in the projection P^ in Eq. (4.9)), the time evolution corresponding to the
free one-particle hamiltonian (4.5) is in general a complicated dynamical problem for
n > 2. In this respect the appearance of three-body interactions is worth stressing.

Along the above lines one can treat also the problem with external potential,
namely

h= --Δ + W(x). (4.18)

The one-particle hamiltonian (4.18) gives rise to

where Wk = W(xk).
In conclusion we consider as examples two particular exchange factors which lead

to relatively simple hamiltonians. For factorizable exchange factors (2.5) one obtains
from Eqs. (4. 13, 14)

- n . n

fi(n} = - 2 Σ Δk + 24 (n' " 1} Σ<Vί*x*»2 (4'20)

fc=l fc=l

Therefore, in this case the two- and three-body interactions give rise to a sort of
effective external potential.

An exactly solvable example with non-factorizable exchange factor is the following
one. Let Ω be an antisymmetric real s x s matrix. Take

r(xl,x2) = ΩμisXfx%+πkr, μ, v = 1, . . . , s, kr £ Z , (4.21)

where hereafter the summation over repeated upper and lower indices is always
understood. Inserting (4.21) in (4.16, 17) one finds

\ (4.22)

In this case the three-body potential is actually a superposition of two-body interac-
tions and H^ takes the form:

1 n 1 n

HM = -- Vz\ - - V
2 2_—ι k 2 -̂—^

with
I 7 (n — 1) if ^ — 7

(4.24)

Being symmetric, M can be diagonalized by an orthogonal matrix; the relative
eigenvalues are:

2n - 1 n2 - 1
, n (4.25)
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Consequently, the hamiltonian (4.23) describes sn harmonic oscillators with the
frequencies l^ly/ra", where ωμ are the eigenvalues of Ω.

5. The Leίnaas-Myrheim Anyon

We already mentioned in the introduction that braid statistics are incorporated in the
above general framework as particular cases. As an example we consider in this
section the Leinaas-Myrheim (L-M) anyon field. In order to make contact with the
L-M approach [30], we set 5 = 2 and consider the relation between two-anyon L-M
wave functions ψ(xl,x2) and two-boson wave functions ψ(xl,x2) G 3^. Neglect
for a moment the center of mass coordinates and introduce in the relative space polar
coordinates (ρ,φ). Then, according to reference [30], one has

, φ) = exp(-itf0W(ρ, φ) , (5.1)

where 7? is called statistical parameter.
Let us denote by arg(ar, u) £ [— π, π) the oriented angle between x and an arbitrary

but fixed unit vector u. Usually one takes u = (1,0). Restoring the coordinates xl

and x2, Eq. (5.1) reads

<ψ(xl , x2) = T+(XI , x2)
lφ(xl , x2) (5 2)

with
T f(x1,x2) = exp[-^arg(x! - x2,u)] . (5.3)

Now, using Eq. (2.13), one obtains for the exchange factor of the L-M anyon field

x2)μϋ]) , (5.4)

where "sgn" is the sign function and u = εμvu
v is the vector dual to u. In deriving

Eq. (5.4) we have used the identity

arg(x; u) — arg(— x; u) = — π sgn(xμύμ) . (5.5)

The expression (5.4) defines a piece wise-constant admissible exchange factor which
is already familiar [31, 32, 34]; in 2 + 1 dimensional gauge theories it describes
the exchange properties of charged fields localized on strings. So, one can apply
our general procedure and reconstruct the L-M anyon fields a(f\u) and α*(/;w) as
operators acting in the Fock space J^(L2(R2)). In particular, using Eq. (3.19) one
obtains in explicit form all equal-time anyon correlation functions.

Let us consider now the time evolution of L-M anyons associated with the one-
particle hamiltonian (4.18). Strictly speaking, one can not apply directly the results
of the previous section, because R is discontinuous on

7i2 = {χι >X2 Ξ R2 : (χι ~ xι)μuμ = 0} . (5.6)

In order to avoid this difficulty we introduce the space D7^ of C£° -functions in
which vanish with all derivatives on the union of 7^ with 1 < i < j < n. Employing

Eq. (5.3) for constructing U^\R\ from Eq. (4.19) one derives the following n-particle
anyon hamiltonian:

fj(n) = _^

k=\ I ι=ι I fc=ι
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which is Hermitian on D™. This domain is invariant under the conjugation operator
C+ (see Eq. (2.19)), which in the case under consideration takes the form

= <exp (5.8)

One can also verify that the hamiltonian (5.7) commutes with C+ and therefore admits
self-adjoint extensions. It is known [26, 38], that there is actually a whole family of
such extensions. The physical meaning of this phenomenon has not been however
fully clarified.

Introducing the potential

Eq. (5.7) can be rewritten in the form

^

fc=l fc=l

This is precisely the expression one usually encounters in the physical literature.
Notice that the operator (5.9) is actually well defined on the symmetric Cfi° -functions
on R2n\<5, where δ is the subset of points (x l 5 . . . , x n ) in which two or more
coordinates xτ coincide. Recently, there is some interest in the spectral problem
associated with the hamiltonian (5.9). The case n — 2 (with W = 0 and a harmonic
potential in \xl — x2\) is solved exactly in the L-M pioneering work [30]. Non-trivial
three-body interactions appear for n > 3 and the derivation of an exact solution is
problematic in that case. Some partial results [5, 8] and perturbative (in the parameter
$) computations [33] are however available. A rigorous analysis of the spectral
problem on bounded domains in R2 has been performed in [2].

6. Multicomponent Fields

Along the same lines, though with slight modifications, one can treat the Fock
realization of Λf -component fields satisfying Eq. (1.1). As one-particle Hubert space
we take

TV

^ = Q)L\Rs,dsx). (6.1)
α=l

The elements / G .%% will be represented as columns with TV components. The scalar
product is

NΓ f
, g)= dsxf^(x)ga(x) = Σ

^ ^where f stands for Hermitian conjugation. In this notation an n-particle wave function
φ G J^n is a column whose entries are φaι...an(xι, - - ?#n)
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The main ingredient in constructing -ί̂ (^f) is the exchange factor which for TV-
component fields is an N2 x TV2 matrix-valued function on Rs x Rs. We assume that
the entries of R(xl,x2) are measurable functions and impose the following additional
requirements:

- %\δ% , (6-3)

2,*ι)> (6.4)

, X2) (6-5)

The first two equations are the natural generalizations of Eqs. (2.1, 2) and imply that
R(xl,x2) is a unitary matrix. Equation (6.5) is the spectral quantum Yang-Baxter
equation [3, 43], where Rs plays the role of spectral set. The counterpart of Eq. (6.5)
for N = 1 is always satisfied and for this reason has not been mentioned in our
previous discussion. On the contrary, for multi-component fields Eq. (6.5) is a crucial
constraint which has its origin in the associativity of the operator algebra generated
by αα.

The system (6.3-5) admits non-trivial solutions, but it is a hard task to solve it
in general. Since a complete description of all solutions is presently lacking, it is
instructive to give some explicit examples. One particular solution, which can be
interpreted as a generalization of Eq. (2.3), is

TV

R(xl , x2) = Σ Gxp[iraβ(xl , x2^
Eaβ ® Eβa > (6 6)

a,β=l

where Eaβ are the Weyl matrices and rα/3 are real-valued functions obeying

τθLβ(χ\^ + rβot(
χ^xύ G 2πZ (6 7)

Another solution R(x{,x2) = 3%(xγ — x2) of Eqs. (6.3-5) for x{, x2 £ R1 is given by

where q G R1. The exchange matrix (6.8) stems from the quantum deformation [7, 23]
of the affine Lie algebra A^ and has an obvious generalization to Rs by replacing x
with the scalar product xμuμ, u e Rs being an arbitrary but fixed (unit) vector. Notice

also that for generic q G R1 the entries of 3B(x) are smooth functions of x. Using the
results of reference [23], it is not difficult to see that the quantum deformation of the
remaining types of affine Lie algebras give rise to solutions of Eqs. (6.3-5) as well.
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Given any admissible exchange matrix, we introduce for n > 2 the operators
{Si'.i — 1, . . . , n - 1} acting on J%n according to

where

Employing Eqs. (6.3-5), one can prove the TV-component analog of Proposition 1,
namely

Propositions. {Si:i = 1, . . . , n — 1} given by Eq. (6.9) are bounded (||5J| = 1)
Hermitian operators on 3$n and the mapping S :στ ι— » 5^ w # representation of the
permutation group &n in 3$n .

At this point, the projections P^\ the n-particle spaces .3%^ and the Fock space
.^R(M) for multicomponent fields are introduced exactly as in Eqs. (2.8, 9, 11). The
creation and annihilation operators are defined by Eq. (3.1); α(/) and α*(/) satisfy
Eq. (3.2) and act on .̂ °(J*0 as follows:

(6.11)

k=2

The multicomponent counterpart of Proposition 2 reads

Proposition 6. TTze operators αΰ (/) defined by Eqs. (6.11, 12) satisfy (3.10) z

/ / 0 (6.13)

for any gα, ha e BQ(RS).

The proof of this statement is an obvious generalization of the argument implying
the validity of Proposition 2.

Introducing the operator- valued distributions aa(x) and α*α(x) defined by

a(f) = I dsxf^(x)aa(x) , α*(/) = j dsxfa(x)a*a(x) ,

from Eqs. (6.11, 12) one gets:

aa(xl)aβ(x2) - RSf?a(x2, Xι)aΊ(x2)as(xί) = 0 , (6.14)

α*α(a;,)α^(x2) - (^.x^^ί^K^x,) = 0, (6.15)

- x2). (6.16)
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The J?-algebra (6.14-16) should not be confused with the so-called quon algebra [16].
The conditions (6.3-5) imply in fact that, apart from bosons and fermions, the set of
.R-fields and the set of quon fields do not intersect at all.

Applying the general formalism developed in this section to concrete exchange
factors, one obtains explicit realization of the corresponding Fock representations.
Take for example Eq. (6.6) with N = 2 and

r\\(x\i xl) = r22(^l •> Xτ) ~ r\x l >

where r satisfies (2.4). Then the algebra (6.14-16) can be expressed entirely in terms
of R(xl,x2) given by Eq. (2.3) and as generators one can take the Wightman-type
fields

</>(/) = _ [ a J f ) + α*2(/)], φ2(f) = 4= [a#1(/) ~ %(/)], (6-17)
V2 V2

* 1 *ι - * -« - *2

Differently from the Segal operator (3.17), the fields (6.17, 18) are by definition linear
functionals in /. Assuming that R(xl,x2) is continuous for xλ = x2, one derives the
exchange relations

φl(xl)φl(x2) = R(x2,xl)φl(x2)φι(χι),

if R(x, x) — 1,

and similar equations involving also φ2(x) and φ2(x). The resulting algebra gener-
alizes the known equal-time commutation relations of boson (R = 1) and fermion
(R=-l) Wightman fields.

Analogously, the matrix (6.8) leads to an explicit Fock representation for the
quantized field associated with the quantum deformation of the affine Lie algebra

7. Conclusions

We have analysed in the present paper some aspects of generalized statistics in
quantum field theory. In particular, we have demonstrated that a quantum field can be
associated with any solution of the spectral Yang-Baxter equation (6.5), satisfying the
supplementary conditions (6.3, 4). The field in question admits a Fock representation
with positive metric. We have explicitly constructed the underlying Fock space ̂ R and
have studied its main features. The set of all admissible exchange factors gives rise to
whole family of fields with various statistics; piecewise-constant (constant) ^-matrices
lead to braid (permutation) group statistics, but the family in consideration involves
also fields corresponding to more general space-dependent exchange factors. The
physical interpretation and possible applications of the latter need further investigation.
Another point, which also deserves a more detailed analysis is the implementation of
space-time symmetries in the above framework.

It is worth mentioning that the explicit realization of the algebra (6.14-16) provides
a new insight into the ^-matrix theory of integrable quantum systems (see e.g. [37]).
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In fact, replacing the coordinate x G Rs by the rapidity, one can apply our technique
for reconstructing the scattering states of 1 + 1 dimensional integrable models from
their iS-matrix.

Finally, the Fock representations introduced in this article suggest some new and
interesting areas of research. Among others, we have in mind the study of concrete
hamiltonian systems on 3FR and the associated quantum statistical mechanics. This
subject is currently under investigation.
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