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Abstract: Let Qn be the law of the «-step random walk on Έd obtained by weight-
ing simple random walk with a factor e~$ for every self-intersection (Domb-Joyce
model of "soft polymers"). It was proved by Greven and den Hollander (1993)
that in d = 1 and for every β e (0,oo) there exist θ*(β) e (0,1) and μ*β G {μ €

: ||//||/i= ί,μ > 0} such that under the law Q% as n -> oo:

(i) θ*(β) is the limit empirical speed of the random walk;
(ii) μ*β is the limit empirical distribution of the local times.

A representation was given for 0*(j8) and μ« in terms of a largest eigenvalue
problem for a certain family of N x N matrices. In the present paper we use this
representation to prove the following scaling result as β J 0:

The limits b* € (0,oo) and η* £ {η G L 1 ( R + ) : \\η\\L\ = l,η > 0} are identified in
terms of a Sturm-Liouville problem, which turns out to have several interesting
properties.

The techniques that are used in the proof are functional analytic and revolve
around the notion of epi-convergence of functionals on L2(1R+). Our scaling result
shows that the speed of soft polymers in d — 1 is not right-differentiable at β = 0,
which precludes expansion techniques that have been used successfully in d ^ 5
(Hara and Slade (1^92a, b)). In simulations the scaling limit is seen for β ^ 10~2.

0. Introduction and Main Results

0.1. Model and Motivation. A polymer is a long chain of molecules with two
characteristic properties: (i) an irregular shape (due to entanglement); (ii) a certain
stiffness (due to sterical hindrance). One way of describing such a polymer is the
following model, which is based on a random walk with self-repellence.
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Let (Si)i^o be simple random walk on Έd{d ^ 1), starting at the origin. Let Pn

be its law on «-step paths and let Epn be expectation w.r.t. Pn. Define a new law
Qn on w-step paths by setting

dPn

Ji)"=θ) = T « e x P
l,j=0

(0.1)

n

where Z« is the normalizing constant

ι,J=0

(0.2)

and β G [0, oo] is a parameter. The law Q% is called the n-polymer measure with
strength of repellence β}

Equations (0.1-2) define what is called the Domb-Joyce model of "soft poly-
mers," where the weight factor gives a penalty e~$ for every self-intersection. The
limiting cases β = 0 and β = oo correspond to simple random walk, resp. self-
avoiding random walk. For a recent guide to the literature on this model the reader
is referred to Madras and Slade (1993) Sect. 10.1.

It is generally believed that for β £ (0, oo] the mean-square displacement behaves
like

E β [\Sn\
2] ~ Dn2v (w -» oo) , (0.3)

where D = D(β,d) > 0 is some amplitude and v = v(d) is a critical exponent. The
latter is believed to be independent of β and to assume the values2

v = 1
_ 3
~ 4
= 0.588.
_ i
~ 2

d= 1

d > 4 (0.4)

Note that v = \ is the exponent for simple random walk (β = 0) in any d ^ 1
(with D = 1). Apparently, the repellence changes the qualitative behavior when
d ^ 3 but not when d ^ 4? The fact that v is the same for all β e (0, oo] says
that soft polymers are in the same universality class as self-avoiding walk.

So far a rigorous proof of (0.3-4) has only been given for d ^ 5 (Hara and
Slade (1992a,b)4) and for d = 1 (Greven and den Hollander (1993)). In the latter

1 Note that if β > 0 then (Qh)n^o is not a consistent family, i.e., gf is not the projection on
rt-step paths of the law of some process evolving in time (like Pn).

2 The value in d — 3 is well below m a x { ^ , j}, the so-called Flory value (Madras and Slade
(1993) Sect. 2.2).

3 Actually, d = 4 is a critical dimension where it is believed that ^ ^ [ l ^ l 2 ] ~Dn(\ogn)ΐ,

containing a logarithmic correction to (0.3-4).
4 The proof in Hara and Slade (1992a, b) is for β = oo. However, the technique that is used

(the so-called "lace expansion") easily implies the same result for all β G (0,oo]. Brydges and
Spencer (1985) earlier used the same technique to prove (0.3-4) for d ^ 5 and β sufficiently
small.
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work there is also a recipe for evaluating the amplitude £>(/?, 1) as a function of βy

which we next describe.

0.2. Speed and Local Times in d = 1. Define the random variables

θn = -\Sn\, (0.5)
n

βn = T^-ΊY δs (x), (0.6)
Γ^n I n / J V fl\X) 5 \ /

w h e r e

R n = ( m i n Sl9 m a x S t ) Π Z ,

ίn(x) = #{0 g / < /i : 5, - x} . (0.7)

In words, 0Π is the empirical speed and μn is the empirical distribution of local
times after w steps. Theorems 1-3 below are taken from Greven and den Hollander
(1993) and are the starting point of the present paper.

Theorem 1. For every β G (0,oo) there exists θ*(β) e (0,1) such that

lim QβΛ\θn - 0*(j8)| S ή = 1 for every ε > 0 , (0.8)

with β -» θ*(β) analytic, lim^ioθ*(j8) = 0 απdlim^oo 0*()8) = I.5

T h e o r e m 2 . F o r eί e r y jϊ 6 ( 0 , o o ) there exists μ*β e {μ G ^ ( N ) : 11/^||7i = l , μ > 0 }
such that

Λlim βf (||μrt - μ^lbi ^ ε) = 1 /or eι*ry ε > 0 , (0.9)

with β -^ μt analytic, lim^jo^ = 0 and l im^oo μ*β = δ\ pointwise.

The limits $*(/?) and μ^ in Theorems 1 and 2 can be found in terms of the
following largest eigenvalue problem. Let Arβ (r G IR, β > 0) be the matrix

W+J-rtpVJ) (i,j € N), (0.10)

where P is the Markov matrix

Let (λ(r,β),τrβ) be the unique solution of the largest eigenvalue problem6

0,τ<Ξ/ 2(N)),

. (0.12)

5 Note that (0.5) and (0.8) imply (0.3) with v(l) = 1 and D(β,l) = [θ*(β)f.
6 A,.φ : /2(N) H+ /2(N) is positive, self-adjoint and compact for all r e R,^ > 0. Both (r,β) ->

λ(r,β) and (r,β) —> τr>^ are analytic. Moreover, r —> λ(r,β) is strictly increasing and log-convex,
λ(Q,β) < 1 and Λ(oo,/?) = oc for every β > 0 (see Greven and den Hollander (1993)).
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Theorem 3. Fix β e (0,oo). Let r*(β) e (0,oo) be the unique solution of

λ(r,β)=\. (0.13)

Then

μ*β(k) =

r=r*(β)

Σ τr,β(i)Arφ(Uj)τr,βU

mi+j-\=k

(0.14)

r=r*(β)

The representation in Theorem 3 is not easy to manipulate, which is why precise
analytical estimates of 0*(/?) and μt are hard to get. For instance, the intuitively
appealing conjecture that β —• θ*(β) is increasing still remains open (see Greven
and den Hollander (1993)). However, it is easy to get numerical estimates (see
Sect. 0.3). Moreover, we shall see that (0.13-14) provide a good starting point for
carrying out a scaling analysis as β | 0 (see Sects. 0.4-5), which is the main topic
of the present paper.

0.3. Numerical Estimates of r*(β) and #*(/?)• Table 1 below lists some numerical
estimates of r*(/?) and θ*(β) obtained from (0.13-14), based on a 300x300 trunca-
tion of Arβ defined in (0.10). We have used a standard iteration method to estimate
the largest eigenvalue and corresponding eigenvector for a range of r, β-values.

Table 1.

2
0.5
10-

2

lo-
3

lo-
4

lo-
5

10~
6

1.696
1.730
2.011
2.098
2.144
2.168
2.179

0.793
1.055
1.10938
1.10930
1.10886
1.10910
1.10924

There is ample evidence for the asymptotic behavior r*{β) ~ «*/?3 and θ*(β) <

b*βHβ 1 0), with estimates a* = 2.19 ± 0.01 and b* = 1.109 ± 0.001.
The value of θ*(β) has been computed by making use of the identity

1

X αw(0j - 1 (0.15)

(Greven and den Hollander (1993)). Since τrφ is easier to estimate than -^λ(r,β),
the relation in (0.15) allows for better accuracy than (0.14).

0.4. Main Results. The goal of this paper is to turn the numerical observations
in Sect. 0.3 into a mathematical statement. Our results are formulated in
Theorems 4-7 below.
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1. Our main scaling theorem reads:

Theorem 4. There exist a\b* G ( 0 , o o ) and η* G {η G Lι(Wi+) : \\η\\Lι = l,η > 0 }

such that as β j 0,

/HD-^yί ). (0.16)
2. The limits a*,b* and ?/* in Theorem 4 can be identified in terms of the following
Sturm-Liouville problem. For a G R, let =£?α be the differential operator defined by

(J2**)(κ) = {lau - 4u2)x(u) + x'O) + ux"(u) (x G C°°(IR+)) . (0.17)

In Sect. 5 we shall show that the largest eigenvalue problem

5£ax = px(pe R,JC G L2(1R+) Π C°°(IR+)),

(i) | |x | | l 2 = l , x > 0 ,

oo

u2[x(u)f(ii) J{u2[x(u)f + wtx^)] 2 }^ < oc , (0.18)
0

has a unique solution (xa,ρ(a)) with the following properties:

(i) a —> p(α) is analytic, strictly increasing and strictly convex on 1R ,
(ii) ρ(0) < 0,limαTooρ(β) = oo and limαi_oop(β) = -oo ,

(iii) a -> xfl is analytic as a map from 1R to L 2 ( R + ) . (0.19)

The main part of our analysis to prove Theorem 4 will revolve around the following
theorem, which is proved in Sects. 2-5:

Theorem 5. Fix a G R. As β [0,

We shall show in Sect. 6 that (0.20) identifies the limits in Theorem 4 as follows:

Theorem 6. a*,b* and η* are given by

α* is the unique solution of p(a) — 0 ,

>/*(•)=*[***(* )]2 (0.21)

3. The analysis in Sect. 5 of the Sturm-Liouville problem will lead to the following
additional properties:

Theorem 7. (i) u -^ xa (u) is analytic and strictly decreasing on IRj = [0, oo).

(ii) u —> Uj^xa*(u) is unimodal with a minimum at u = ^α*.

(iii) lim w~3 logxα*(w) = — . (0.22)
w-^oo 3
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(0.23)

402

1 °° *
(iv) -=2ju[xa (u)fdu.

ΰ 0

Theorems 4-7 are proved in Sects. 2-6. Section 1 contains preparations.
Our result 0*(j8) ~ b*β^ implies that the speed is not right-differentiable at

β = 0. Thus the limit of weak repellence cannot be treated by perturbation type
arguments (i.e., by doing an expansion of (0.1-2) for small β).

0.5. Numerical Estimates of a*,b* and η*. Let ya>p be the unique power series
solution of <£ay = py with ya>p(0) = 1. We shall see in Sect. 5 that this power
series has infinite radius of convergence and has coefficients which satisfy a simple
recurrence relation (see (5.23) below). Moreover, we shall see that:

(i) p(a) is simple,
(ϋ) <fa = {p e IR : ya'p e L 2 (R + )} is a countable set which has ρ(a) as a maxi-

mum,
(iii) p $ ^a : l im^oo/ '^w) = ±oo ,
(iv) p £ «$Vp*p(α) : ya>p(u) < 0 for some u > 0 ,
(v) ya>p{a) =xa, the monotone solution of (0.18).

Properties (/)-(t>) give us a way to estimate α* and xa\ Namely, put p = 0 and
consider /*'°, the unique power series solution of <£ay = 0 (a e R ) . Since a* is
the unique value of a for which ya>° e L 2 ( R + ) and ya>° ^ 0, we can vary a and
tune into a* by looking at the tail behavior and the sign of ya>°. It turns out that this
method is very sensitive indeed and that a* can be estimated by a* = 2.189 ± 0.001.
For a outside this interval it was found that either ya>°(u) < 0 for some u € [0,3],

ya'°(u) not monotone on u € [0, 3].

Figure 1 compares xα* with the numerical estimates in Sect. 0.3. The solid line is

ya>0(u)/\\ya>°\\L2 for a = 2.189. The dots are the values of β~6τr*(β)9β(\uβ~~ϊ])

or u
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for β — 10~4 and |~w/?~ 3 ] = 1,..., 64, with τ*(β) as in Table 1. The agreement is
excellent. (For β — 10~5 and β = 10"6 all dots were found to lie on the solid line
within printing precision.)

Pick a = 2.189. Since ya'° is an approximation of xa , we can estimate ^ by
the integral 2 Jo°° u[ya>°(u)]2du (recall (0.23)). However, we have only computed
ya'°(u) for u £ [0, 3] and it turns out that this is not enough to get a good estimate
of b* up to the third decimal. A better way is to use (0.15) and estimate

(0.24)

This gives b* = 1.109 ±0.001.

0.6. The Edwards Model. Westwater (1984) studies Brownian motion on R with
self-repellence, i.e., the Edwards model where (0.1) is replaced by

dvg T τ 1
-gJdsfdtδ(Ws - Wt)\ . (0.25)

0 0 J

Here μj is the Wiener measure on Brownian motion paths (J^/)o^ί^r?<5 the Dirac-
function, g £ [0,oo) the repellence parameter and Z9

Ύ the normalizing constant.7 We
give two properties showing that the Edwards model arises as the weak interaction
limit of the Domb-Joyce model.

Property 1. For every g e [0,oo),

Qf ~* ( V 3 S M ) o ^ < π e ) =* v ? ( ( ^ f ) o ^ ^ i G ) as n -* 00 . (0.26)

Proof. See Brydges and Slade (1994) Theorem 1.3. The double sum in (0.1)
equals — (n + 1) + Σx ^l(x) (recall (0.7)), of which the first term may be absorbed

into the normalizing constant Z% in (0.2). The key point is that n~2 Σx£l(x) un-

der the law Pn converges to jWiiι(x)dx under the law μ\ (see footnote 7). This

immediately implies (0.26). The analogous statement for Γ φ l is obvious. D

Westwater (1984) proves the following result which is analogous to Theorems 1
and 3:
For every g £ [0,oo),

lim v9

Γ (\hwΓ\ - θ\g) ^ ε ) = 1 for every ε > 0 , (0.27)
Γ-+00 \\ T )

where

Θ*(g)=\—E(g,λ)} (0.28)

7 The double integral in (0.25) should be read as f^fτ(x)dx, where ίτ{x) = f^dtδ(Wt -x)
is the density of the occupation time measure w.r.t. Lebesgue measure.
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with E(g,λ) the smallest eigenvalue in L2(1R+) of the operator JS? ' given by

1 " ' ( % + \v~2) v'x y { v ) ( α 2 9 )

(The term between round brackets equals v2~Aradυ~2 with A^ad the 2-dimensional
Laplace operator.)

Property 2. For every g e [0,oo),

(0.30)

(031)

with a*,b* the same constants as in Theorems 4 and 6.

Proof. Take the eigenvalue problem

Substitute into (0.31) the following change of variables:

(0.32)

Then, after a small computation, we obtain the Sturm-Liouville problem in
(0.17-18),

(&*x)(u) = px(u) 9 (0.33)

with

p = g~h. (0.34)

Think of (0.34) as a parametrization of the curve a —> p(a) in terms of A. Recalling
the definition of a*, 6* in (0.21), we now get from (0.34) that

(0.35)

and

Jp=O

p=0

i 1
= (73

p'{a*)

(0.36)

where p —> a(ρ) is the inverse function of a —> p(a). D
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Properties 1 and 2 show that Theorems 4 and 6 connect up nicely with the
Edwards model.

We close this section with a heuristic explanation of the power | in our result

θ*(β) ~ b*βϊ(β i 0). First, by Brownian scaling (see also footnote 7),

F ^ (W2Λ — —F a(W2Λ (0 Mλ
•LJ 3 I ' ' 1 / — v'' \ T J ' I u.J / J

vf2 T T

Since, according to (0.27)

[θ\g)]2= lim λ-Ev,{W2), (0.38)

T—> oo 1 T

2

it follows, by using (0.37) with g,T resp. 1,̂ 3 T, that
θ\g) = gH\\). (0.39)

Next, according to Theorem 1,

[θ*(g)f = lim \EQC,(SI) . (0.40)

Moreover, by Property 1 we know that for g, T fixed,

-E 3(S%)~E 3(W2)(n^oo). (0.41)

Now, if we assume that (0.41) continues to hold for g fixed and T = n, then by
using (0.40-41) resp. (0.37-38) we arrive at

[θ*(g)]2 ~ ^EQl{S2

n)

(Γ = / i->oo) . (0.42)

The above argument has uniformity problems because (0.39) and (0.42) would

imply 0*(#) = gϊθ*(\) for all g. However, this cannot be true because θ*(g) ̂  1
for all g. Nevertheless, it explains the power | without using the explicit solution.

1. Preparations

In this section we formulate the functional analytic framework in which we are going
to approach our scaling theorem. Section 1.1 shows that our key result, Theorem 5 in
Sect. 0.4, is equivalent to convergence of a variational problem involving a certain
functional F» to a variational problem involving a certain limit functional Fa

(Lemma 1 and Proposition 1 below). Section 1.2 shows that this convergence
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holds when Fn epi-converges to Fa and certain compactness properties are sat-
isfied (Proposition 2below). In this section we also formulate the main steps that
have to be checked in order to prove these facts (Proposition 3 below). In Sect. 1.3
we collect some properties of the matrix P, defined in (0.11), that will be needed
in the proofs.

1.1. A Varίatίonal Representation. Rayleigh's formula for the pair (λ(r,β),τr>β)
defined in (0.12) reads

(i) λ(r, β) = max;;G/2(JN)^o, (y^r9βy)ft ,
\\y\\μ^

(ii) τrφ is the unique maximizer . (l l )

In anticipation of the scaling suggested by Table 1, we pick r — aβϊ (a G IR) and
rewrite (1.1) in the following form. Define the functional Fo : L2(IR+) —> IR as

2 °° °° 1 1 1
$(x) = β-ϊfdufdvx(u)x(v)A 2 (\uβ-ϊl\vβ-ϊ])-β-ϊ\\x\\2

L2. (1.2)
0 0 aP3>P

2

0 0

Lemma 1. For all β > 0,

(i) j H [λ(aβKβ) - 1] = max ϊ 6 i2 ( R n j,0/?(x) ,
IWIz2=i

(ii) β~tτ g (\ β~ϊ~\) is the unique maximizer. (1.3)
aβz ,β

g
z ,β

Proof, (i) Fix β > 0. For x e I 2 (IR + ) define

J φ ) i t t ( i G N ) . (1.4)

Then the first term in (1.2) equals β~ϊ (x,A g x)μ. Hence using (1.1) (i) we may
β3 β

\λ(aβhβ) - ll = max max FaJx). (1.5)
L -J v€/2(N),;y^0, X G 1 2 ( 1 R + ) , . X ^ 0 ,

write

Note that, by Cauchy-Schwarz, we have ||f||/2 ^ ||̂ Hi2 and so the restrictions
11.y11/2 ^ IJIMIL2 = ^'^ ~ y m (l ^) a r e compatible. Interchange the two maxima
in (1.5) to get the claim.

(ii) Use that ||JC||/2 = ||x||L2 iff x(u) = β~^x(i) for u e ((/ - l)βKiβh and

/ G N. D

In Sect. 2-5 we shall prove:

Proposition 1. As β I 0,

(i)

(ii) unique maximizer l.h.s. —>L unique maximizer r.h.s., (1-6)
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where the limit functional Fa : Z2(IR+) —> 1R is given by

oo

Fa(x) = J{(2au - 4u2)[x(u)f - u[x'(u)f}du , (1.7)
0

with the understanding that Fa(x) = — oo if the integral is not defined.

Note that Fa(x) = (x,^ax)L2 for all x where both sides are finite, with <£a as
defined in (0.17).

Lemma 1 and Proposition 1 imply our key result, Theorem 5. To prove Propo-
sition 1, we shall need the notion of epi-convergence, which we next explain.

1.2. Epi-convergence. Let (X,τ) be a metrizable topological space and let Y cX
be dense in X. Let

Gβ:X-+WL(β > 0),

G:X^W. (1.8)

Definition 1. The family (Gβ)β>o is said to be epi-convergent to G on F, written

e-\imGβ = G on Y , (1.9)

if the following properties hold:

(i) Wxβ -*τ x in Y : \imsupβiOGβ(xβ) S G(x),

(ii) 3xβ -+ τ x in Y : l imin% 0 ^(x^) ^ G(x) . (1.10)

The importance of the notion of epi-convergence is contained in the following
proposition:

Proposition 2. Suppose that

(1) e - lim^oCfy = G on 7,
(2) VjS > 0 : Gβ is continuous on X and has a unique maximizer Xβ G X,
(3) 3K C 7

(i) K is τ-relatively compact in X,_
(ii) G has a unique maximizer x G K,

(iii) 3(xβ)β>0 C K such that xβ - xβ ->τ 0 and Gβ(xβ) - Gβ(xβ) -> 0 as
β 10.

αy jff j 0,

i, ( M l )

(1.12)

/ See Attouch (1984) Theorem 1.10 and Proposition 1.14. D

Remark. Epi-convergence differs from pointwise convergence: lim ĵoG^OO — G(x)
for all x e Y. Namely, (1.10)(i),(ii) are weaker in the sense that they require only
inequalities, but stronger in the sense that they involve limits in neighborhoods
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rather than single points. Epi-convergence is a unilateral notion. We have chosen
the direction that is suitable for suprema rather than infima.

Fix a G IR. We are going to apply Proposition 2 with the following choices:

τ = topology induced by || \\Li ,

K = K£ = {xeY: F\x) ^ -C} ,

Gβ=F*β9

G=Fa, (1.13)

with Fa

β and Fa defined in (1.2) and (1.7) and with C large enough so that ££ + 0.
Our main result is:

Proposition 3. Assumptions (l)-(3) in Proposition 2 hold for the choice in (1.13).

We prove Assumption (1) in Sect. 2, (3)(i),(ii) in Sect. 5 and (3)(Hi) in Sect. 3.
We already know (2) to be true because of Lemma l(ii).

Proposition 3 proves Proposition 1 in Sect. 1.1.

1.3. Properties of P. We list a few identities and estimates for the matrix P, defined
in (0.11), that will be needed later on.

Lemma 2. For every i Ξ> \9k ^ 0,

Proof. Elementary. Use that the summand in the l.h.s. can be rewritten as P(i + k,j)
times the r.h.s. Then use that Σj>\P(i + kJ) — *• ^

Lemma 3. (i) For ij —> oo such that i — j = o((i +j)ϊ),

(ii) There exist 0 < c\ < c2 < oo such that

0((ι+;)"*)] . (1.15)

exp L c 2 ^ ^ l ^ P(/,y) ^ exp L C l ^ ? l for all ij ^ 1 . (1.16)

Proof. Via Stirling's formula. See also Revesz (1990) Theorem 2.8. D

Lemma 2 allows us to compute the following moments, which we shall need in
Sect. 2:

%j) = 2/

5ι3 + 12ι2 + 6/

4/2 + 2/

ι (/i = 4 ) . (1.17)
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Lemma 3(i) is a Gaussian approximation of P, while Lemma 3(ii) shows that P(iJ)
is small away from the diagonal.

Lemma 4. For all ij ;> 0 with (ι',y)Φ(0,0),

P(i + l,y) + P{iJ - h i ) - 2P(i + \,j + 1) = 0 (1.18)

vw'ίΛ ί/ze convention P(/,0) = P(0,y) = 0.

Proof. Elementary. D

Lemma 4 will be needed in Sect. 2 and 3 to obtain monotonicity properties and
estimates of τ 2 , the eigenvector of A 2 .

2. (/^)/>o is Epi-Convergent to F α

In this section we prove Assumption (1) in Proposition 2 for the choice in (1.13).
This section is technically somewhat involved, as it consists of a chain of esti-

mates and inequalities that are needed to handle the epi-convergence. The proof is
contained in Lemmas 5-8 below. Throughout Sect. 2 and 3 we fix a £ 1R and we

write the abbreviations Fβ = F2,F = Fa,Aβ = A 2 ,λ(β) = λ(aβi,β),τβ = τ 2 .
aβ 3 ,β aβl ,β

We begin by splitting Fβ,F into two parts, namely (recall (1.2) and (1.7))

Fβ=Fι

β+F2

β9

F = Fι+F2, (2.1)

with

Fι

β(x) = β-^jdujdv x2(u)[Aβ - P](\uβ-^],\vβ-ϊ]) 9

0 0

2 OO OO .

F2

β{x) = -lβ-ifduJdυ[x(u)-x(υ)fAβ(\uβ-?l\υβ-i-\) (2.2)
0 0

and

Fι(x) = Jdu(2au - 4u2)x2(u),

= -Jduu[x\u)]2. (2.3)
0

Lemma 5. Vx̂  -^L x in X: UmsupβioFUxβ) ^ Fι(x).

Proof. Abbreviate

eβ(i,j) = aβki+J-Ό- β(i +J~V2, (2.4)

which is the exponent appearing in Aβ(i,j), i.e., Aβ = ee>sP (see (0.10)). We note
that eβ has the following properties:

(i) eβ(i,j) ί 0 for i ^ aβ-$,j ^ 1 ,

(ii) eβ(i,j) ^ \a2β^ for i,j k 1 . (2.5)
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Hence, for small enough β and large enough N,

2 N oo

0 0

(2.6)

(use that eι ^ 1 + 1 + 1 2 for t <C 1 and / ̂  0). The integral over v can be trans-
formed into the following sum:

β Σ {eβ(i,j) + 4(i,j)}P(i,j) with i = \uβ-l-\ . (2.7)

Using (1.17), we can carry out the summation. Namely,

/) = a

ιβϊ(4ΐ + 20 - 2aβτ(%Γ + 12r + 6/)

-I- jS2(16/4 + 48ί3 + 72i2 + 32/) . (2.8)

Since / = \uβ~ΐn\ ^ (N + l)β~5, the contribution to (2.6) of the second sum can
be estimated above by

N

βϊ(6a2(N + I)2 + 168(ΛΓ + \)4)Jduxj(u) = 0(03) , (2.9)
o

where we use that ||xβ||L2= 1. The error term is uniform in Xβ for fixed N. Hence
we get

F\{xβ) g β-ήdux%u)
0

= fduxj(u)(2au - 4u2) + ̂ (03) . (2.10)
o

Now let β I 0. Then we obtain, recalling that Xβ —>L x,

N

limsup^0F^(x^) ^ limsup^0/Λ xj(u)(2au — 4u2)
o

= /έ/i/ x2(u)(2au - 4u2) . (2.11)
o

Finally, let TV —> CXD and note that the r.h.s. of (2.11) converges to Fλ(x). D

Lemma 6. Vx G I : lir
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Proof. Estimate

F\{x) Z β-ϊ fdujdυ x2(u)eβ(\uβ-ϊl\vβ-ϊ])P(\uβ-il\υβ-i]) (2.12)
0 0

(use that e* ^ 1 + 1 for all t). The integral over v is /?3 times the first sum computed

in (2.8) with i = \uβ~%]. Hence

OO j

= Jdu x2(u)(2au -4u2) + Θ(βϊ) . (2.13)
o

Now let β I 0. Then the claim follows. D

Lemma 7. Vx/? —>L x m X wzY/z x e Y : limsup^0Fj(xβ) ^ F 2(x).

Proo/ The proof is in Steps 1-3 below.

Step 1. For every ε > 0 and N,M finite,

N M Γ l I 2

F2β(xβ) ^ -\(\ + Θ{β9))Jdu J dw\—{xβ(u)-Xβ(u + wβ*)}\ N2u(w), (2.14)

where N2U is the Gaussian with mean zero and variance 2u.

Proof Pick ε > 0 and TV, M finite. Then

i

F2

β(xβ) S -ίβ-h-9N2βί3jduU+J dv [xβ(u)-xβ(v)]2P(\uβ-^l [Ί>jHl) ,
ε i

u-Mβ6

(2.15)

where we use that Aβ = eeljP with eβ(\uβ~^], | "^~^]) Ξ> -97V2β^ on the integra-

tion area (see (2.4)). Put w = β~*(v — u). Then by Lemma 3(i),

, Ί I N M , ,
2 ^ v \ n — 9N /? 3 Γ J C i π— r / \ / o — \τ2

ε - M

1
(2.16)

where the error term is uniform on the integration area. Collecting all the powers
of β, we get the claim. D

To investigate the limit of the integral in (2.14) as β j 0, we proceed with a
technical fact contained in Steps 2 and 3 below. Let Th be the translation operator
defined by Thxβ( ) = xβ( + h).
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Step 2. For every 0 < a < b < oo,

liminf/{±[Γ^-*,](«)} ^ J[x'(u)f du . (2.17)

Proof. Since (2.17) is trivial when the liminf is infinite, we may assume that the
liminf is finite, say L. Pick any subsequence hn, βn along which the liminf is reached,
and put yn = γn[Thnxβn -XβJ. Then, because | b n | | L 2 [ α Λ ^ L + 1 < oo for n large
enough, it follows from the Banach-Alaoglu theorem (Rudin (1991) Theorem 3.15)
that there exists a subsequence (ynk) and a y G L2[a,b] such that

ynk -> y weakly in L2[a,b] (it -» oo). (2.18)

Thus, for any φ G C^(a,b) — {φ G C^α,^) : supp(φ) C (α,^)},

Jynk(u)φ(u)du -+ $b

ay(u)φ{u)du (k -+ oo) . (2.19)

Next, the l.h.s. of (2.19) can be rewritten as

ft ft

Jynk(u)φ(u)du = f-fc[Thnxβn -xβn](u)φ(u)du
a a

— J Xβn(u)-j}-[T-hnφ — φ](u)du
a+hnl{hn<0}

ft

T-hnφ - φ](u)du + o(l) (n -> oo). (2.20)

The last equality holds because ||^||^2(]R+) = 1 and \-j^[T-hnΦ ~ Φ]\ =
\φ\u)\ < oo. Let n —» oo and note that by the latter property,

— \T-hnφ - φ]-+ -φ' pointwise and weakly in L2[a,b] . (2.21)

Together with xβn -^ x, (2.21) implies that the integral in (2.20) tends to

j\{u) [-φ'iμ)} du = £xf(u)φ(u)du (recall from (1.13) that x G Y C C^IRj)).

Since Cι

c{a,b) is dense in L2[a,b] in the weak topology, we thus have from (2.19)

y = x'a.e.on[a9b]. (2.22)

The claim in (2.17) now follows by combining (2.18) and (2.22), and noting that
II * IL2[α,ft] i s lower semicontinuous in the weak topology: L = lim^oo \\yΛk \\L2[a>b] ^

I M L ] = ll*ΊL2[αft] •

Step 3. For every ε > 0 and N finite, every f : R + —» R + bounded and contin-
uous, and every w G 1R,

N

liminf jdu f{u)
Γ l . I 2 N

— {xβ(u) - xβ(u + wβe )} ^ Jdu f(u)[wx'(u)]2 . (2.23)
Je J
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Proof Pick any sequence (/„) of functions on IR+ such that

( i ) fn{u) = fnjc for Cnjc-x < u g cn,k (k = l , . . . , π ; c n , 0 = ε,cn/ι = N),

(ϋ) fnύf,

(iii) /„ f / in sup-norm on [ε,N] as n —> oo . (2.24)

Then, by (i) and (ii),

/As. (2.23) ^ liminf/</«/„(!/)

/ du

ΛΛ T

(2.25)

where in the third inequality we use (2.17) with h = wβ(> and a = cnjc-\,
b = crt>£ (A: = l , . . . ,n) . Now let « —»• oo and use (iii) together with Fatou to get
the claim in (2.23). D

Using (2.23) we can now finish the proof of Lemma 7. Indeed, continuing with
(2.14), we get

M N

l i m s u p F ^ ) ^ - I / dwfdu N2u(w)[wxf(u)f
βiO -M ε

N M

= -i

2Jdu [x'(u)f J dww2N2u(w). (2.26)
ε -M

Finally, let M —> oo and note that / ^ dw w2N2u(w) = 2u. Then let N -^ oo and
ε I 0 to get the claim in Lemma 7. D

Lemma 8. Vx € Y such that f™u2x2(u)du < oo: l iminfy i 0^(*) ^ F2(x).

Proof. The double integral defining Fj(x) is split into three parts, which we estimate
separately in Steps 1-3 below.

Step 1.

{u>β dor v>β 6}

(2.27)
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Proof. First consider the part where u > β~*,v 2: 0. By (2.5)(ii) and Lemma 3(ii),

- i / H / dujdv [x(u)-x(υ)]2Aβ(\uβ-ϊl Γ»/Hl)

^ ~ 6 I/?~ 6

_ i_
-β 6 1 2 ^

+ f du f dv[x(u)-x(v)]2e~C{β 3Ί^τ[

= -i2β-23el4a2^\ J du ] dv[x{u)-x(v)fP{\uβ^l\vβ-^)

+ Θ(e-T2c\βϊ)[ , (2.28)

where ci is the constant in Lemma 3(ii). To get the error term we have used that
(u — v)2/(u -ft?) ^ \{u — v) on the integration area. The double integral in the r.h.s.
of (2.28) can be bounded above by

oo oo
U r- i -

/ du J dv[x(u)-x(v)]2P(\uβ-il\vβ-i])

S 2βϊ J dux2{u). (2.29)

Hence

r.h.s. (2.28) ^ -

^ -4 [l + θφ )] / rf« Λ2(M)

= o ( l ) . (2.30)

metry, the same estim

Step 2.

By symmetry, the same estimate holds for the part with w ̂  0, v ^. β (>. D

, oo oo

Iπn-ίβ-ϊfdufdvl , , [*(«) -x(v)]2Aβ (\uβ~], \vβ-]) = 0 .

(2.31)
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Proof. By (2.5)(ii) and Lemma 3(ii), the integral in the l.h.s. of (2.31) can be
bounded below by

- i j H e W / du J dv\{\u~v\ > βT4}[χ(u)-x(v)]2e~CιΓli^T
0 0

^ -iβ-ϊe^vK-ϊaβ-Tϊ J du J dv [x2{u)+x2{v)}
0 0

= Θ(e~^r'π), (2.32)

where c\ is the constant in Lemma 3(ii). D

Step 3.

limjnf-JjH I du J dv 1 , Mu) -x(v)]2Aβ ί\uβ^l\υβ

^F2(x). (2.33)

Proof. By (2.5)(ii) and the mean value theorem we have

fdufdυλ ΛMu)-x(v)fAβ(\uβ-^,\υβ-^)

ex) 0

ΛJΛ1 , [{u-υ)x'{ζuυ)}2

o {|«-»l^2 4}

0 0

I oo ex)
— - -a2h

0 0

x P (\uβ~τ\\Όβ-τλ (2.34)

for some ξuv between u and v. Let

(2.35)
o

V

r.h.s. (2.34) = -\e\a1^ Jdu Iβ(u) [x'(ζu)]2 (2.36)
o

for some ξu € [u — /?24,w + y§24] π R+.
Next, using (1.17) we can estimate

Then, because x e Cι(ΊR$)9 it follows that

(2.37)
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Combining (2.34) and (2.36-37) with the estimates obtained in Steps 1 and 2, we
now have

= l.hjs. (2.34)
o

(2.38)

Finally, pick δ > 0 and define

zδ

k = sup u[x'(u)f (k ^ 1). (2.39)

Since £M e [ι/ - /?ά,w + /?ά] n RjJ", it follows that for β small enough,

δ o

l s s

 δ

ύ (1 + ί) Σ (**! + 2^^ m a x {zί^f+i}) + 2ί/rf« sup^2^y(z;)]2

4 + 2(52 supv<2δ[x'{v)f . (2.40)

Now let jβ I 0 followed by (51 0. Because JC e C^lRj), we have

lim Σ &ί ^ /w[^(ι/)]2 du = -F\x), (2.41)
<H°£^1 0

lim suptx'ίz;)]2 = [^(0+)] 2 < oo , (2.42)
<H0 v^2δ

and so

liminf r.h.s. (2.38) ^ F 2 (JC) . (2.43)

D

Lemmas 5-8 show that F$ epi-converges to F on Y. To see why, recall (2.1) and
note that if Jo°° u2x2(u)du = oo then F(x) ^ Fι(x) = — oo. This proves Assumption
(1) in Proposition 2 as was claimed in Proposition 3.

3. An Approximate Maximizer of F*

Again we fix a £ 1R and suppress it from the notation. Like Sect.2, this section is
technically somewhat involved, as it consists of a chain of estimates and inequalities
that are needed to handle the approximation.

Define the scaled form of the eigenvector Xβ of Aβ as

β-λ6τβ(ί) for ( i - I)j8? < u ^ iβτ (i ^ 1). (3.1)
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By Lemma l,τβ is the unique maximizer of Fβ. However, τβ is a step function and
therefore F(τβ) is not defined, i.e., τβ £ K = {x e X : F(x) ^ - C } (recall (1.13)).
Thus, to apply Proposition 2, we must find an approximation of τβ that lies in K
and approximates Fβ(τβ) (i.e., we must prove Assumption 3(iii) in Proposition 2).

Proposition 4. 3(τβ) C K such that as β j . 0,

(0 \\τβ-ΐβ\\L2^09

(ii)0SFβ(τβ)-Fβ(τβ)-*0. (3.2)

The proof of Proposition 4 is contained in Lemmas 9-13 below. We shall see that
it suffices to pick for τβ the following linear and renormed interpolation of τβ\

ΐβ = 'ΐβ\\τβ\\L2 >

τβ(u) = β-ϊ [τβ{i) + (KjH - ΐ)(^(0 - ^(/ - 1))}

for (i - l)jff J < u g i/?J (Ϊ ̂  1). (3.3)

(putτ / ϊ(0) =
We begin with two lemmas showing what is needed about τβ in order to prove

Proposition 4. Abbreviate Δτβ{i) = τβ{i) - τβ{i — 1) (/ ^ 1).

Lemma 9. (i) \\τβ - τβ\\L2 £ \\Δτβ\\μ + τ2

β(0).

(ii) 0 ^ Fβ(τβ)-Fβ(τβ) ^ λ(β)β-^\\Aτβ\\2

ι2[l - £ l l ^ | | J 2 + i ^ ( 0 ) ] - 1 .

Proof, (i) From (3.1) and (3.3) we compute

\\τβ-τβ\\2

L2 = i\\Aτβ\\2

2, (3.4)

||τ>||l2 = \\τβ\\2

2 - {τβ9Δτβ)fi -f $\\Aτβ\\2

2. (3.5)

Using the relation {τβ,Aτβ)ι2 = \\\Aτβ\\2

2-±τ2

β(0), together with (3.4-5) and

IMI/2 = 1, we get

\\τβ - τβ\\L2 S \\τβ - τ^ | | L 2 + \\τβ - τβ\\ι2

= l l ^ - τ > | | L 2 + | | |τ>||Z2 - 1|

= ( ί l l ^ l l ^ i + |[1 - \\\Aτβ\\]2 + ^ i

^ (3.6)

where we use that | M ^ | | / 2 ^ 2,τ^(0) ^ 1.

(ii) From the definition of Fβ in (1.2) we get, after substitution of (3.1) and (3.3),

- \Δτβ))fl - β^\\τβ\fL2 . (3.7)
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It follows from (3.7) that

Fβ(τβ) - Fβ(τβ) = Fβ(τβ) - — - j - F ^ τ / , )

L2

- \{Δτβ,AβΔτβ)fl} , (3.8)

where in the second equality we use the symmetry of Aβ and the relations
Aβτβ = λ(β)τβ and (3.5). Finally, observe that \(Aτβ9AβAτβ)μ\ S (\Aτβ\9Aβ\Aτβ\)μ
S λ(β)\\Aτβ\\*2 to get the claim. D

Lemma 10.

F(τβ) ^ -2V5\a\ ( f e ^ ^ ί O ) * [1 " B^βW'fi + i^(O)]-*

+ 120/?i ΣWβii) + β-i Σ^τjkO 1 [1 - ί IMτ/,̂  + i^(O)]-1 .

(3.9)

Proo/ According to (2.1) and (2.3)

F(τβ) = /dii {(2αa - 4t/2) τj(u) - u[τ'β{u)f\ . (3.10)
o L J

Use (3.3) to obtain the estimates

oo

/ Λ W

2τ^(W) g j53 X)i'2max{^(/),^(i - 1)} ,
0 Ϊ ^ I

oo

/Λ φ > ) ] 2 ^ β-τ ΣMήV) (3.Π)
o / ^ l

Since /0°° du uτ2β(u) ^ (Jo°° <iw u2τ2β(u))Ί ||τ^||L2, we get the claim because F(τβ) =

Lemmas 9 and 10 set the stage for the proof of Proposition 4. Namely, we now
see that it suffices to prove the following estimates:

Lemma 11. There exist C\, C2, C3, C4 such that for β small enough,

(i) Σ * 2 ^ ( 0 ^ Ciβ-i ,

(ii) ^

(iii) τ2(0) ^

(iv) \\Δτβ\\2

ι2 ^C4βhogί. (3.12)

Indeed, Lemmas ll(iii-iv) and 9(i-ii) imply (3.2), while Lemmas ll(i-ii) and
Lemma 10 imply that F(τβ) ^ — C for β small enough and C sufficiently large,
which guarantees that τβ e K(= K£).
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In the proof of Lemma 11 we shall make use of the following two additional
lemmas, the proof of which is deferred to Sect. 4:

Lemma 12. \fβ > 0 : Δτβ(i) = τβ(ί) - τβ(i - 1) ^ 0 for all i ^ \aβ~\ .

Lemma 13.

limsup/?~3 [λ(β) — l] ^ ±a2,

\ϊmmfβ^[λ(β)-\] ^ γ / ~ \ ( 0 > D

π 2π

Proof of Lemma 11'(i).

Step 1. For every ε > 0 small enough there exists C5 such that

Σ * 2 τβ(0 = Csβ1 for β small enough. (3.14)

We start with the trivial inequality

^ Σ [τβ(i)-τβ(j)]2Aβ(iJ) ^ 0. (3.15)

The l.h.s. of (3.15) can be written out and estimated from above as follows:

[1 - λ(β)] + Σφ [ }

τ2

β(i)Σ[eel'ω)-\]P(i,j)
J

• Σ τ jk0Σ [eβ(hj) + 4(z'^')] P(^J) (3 1 6 )
„-! i

For the two inequalities we refer to (2.4-5) (use that eι ^ 1 + 1 + 1 2 for t <C 1 and

ί ^ 0). The sum over j has been evaluated in (2.8). Using that / ̂  ε/?~~ 2 9 we get

r.hjs. (3.16)

^ [1 - λ(β)] + βϊ Σ τ ^(0 {2α(ϊJ?b - (4 - 168ε2 - 6aβ?)(iβ?)2} .

(3.17)

Combining (3.15-17) we arrive at the following inequality:

( 4 - 168ε2 _*-A^/?7
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Now, β~ϊ [1 — λ(β)] ^ Ce by Lemma 13. Moreover, by Cauchy-Schwarz

Σ tfβiO^ ί Σ

Hence the claim in (3.14) follows for ε such that 168ε2 < 4. D

Step 2. For every ε > 0 small enough there exists CΊ such that

i>εβ~2

τ}(i) S Cηp for β small enough . (3.20)

Proof Rewrite (3.15) as (recall also (3.16))

Σ
-1 j

ι>εβ 2

- λ(βy\ + Σ 4 ( 0 Σ [eeβ(iJ) -
- I j

i<εβ 2
(3.21)

Since eβ(i,j) ^ \a2βi for ij ^ 1 and eβ(i,j) g -\ε2 for / > εβ~τ,j ^ 1 (see
(2.4-5)), we get

K ^ ^ l ) . (3.22)

This implies the claim in (3.20). D

Step 3. For every ε > 0 there exists Cg such that

Σ i2ήί(ί) ύ Qβ-ϊfor β small enough . (3.23)

i>εβ~2

Proof Pick / > εβ~2 and δ > 0 arbitrary. Then, using (2.4) and Lemma 3(ii), we
see that there exists C(δ) > 0 such that

A\P)

(3.24)
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Using (3.24) we get

ϊ 2 Σ τβ(i)P(UJ

i>εβ 2 i>εβ 2

i>εβ 2

Σ

(l - sy
ι>(l-δ)εβ 2

=

(3.25)

The second and the third inequality use Lemma 12, the fourth uses (3.20) with ε

replaced by (1 — δ)s. Now pick δ so small that ^ * λ < e*ε . Then we obtain

ί2τ2(iί2τ2

β(i) ^e-^\2CΊβ-2ΐ +o{\). (3.26)

This proves the claim in (3.23). D

Steps 1-3 complete the proof of Lemma ll(i). D

Proof of Lemma ϋ(ii).

Step 4. For all β

(v)] τβ(i)Aβ(iJ)τβ(j).

(3.27)

Proof. Write out

= Σ ' bβ(' + 1) - τ/,(ι)]2

= Σ' P ^ L
(3.28)

Now substitute the relation (see (0.10-11))

LllAβ^J) . (3.29)
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This gives

ή r.h.s. (3.27) + £i[^(i + 1) + τj(i)]
i

ΣO' + J - Vτβ(i)Aβ(i,j)τβU) (330)

Both sums in the r.h.s. are equal to X^ (2/ - l)τ^(z) and therefore cancel out. D

Step 5. For β small enough

Σ 0 +j - 1)[1 - eel*i+1JΪ-e»^}τβ(i)Aβ(i,j)τβ(j) S C9iSJ . (3.31)

By (2.4) we have ep(i + l,y) - eβ(i,j) = aβi - β(2i + 2/ - 1). Hence

/.AJ. (3.31) £ _ L £ (/ +y - l) [e/J(/,y) - β/,(/ + 1J)] τβ(i)Aβ(i,jytβ(J)

4(i) (3-32)
I

(use that ^ ^ 1 + ί for all t). In the third inequality we use the symmetry of Aβ
and the fact that | |^| |/2 = λ(β). The claim now follows from Lemma ll(i). •

Steps 4-5 complete the proof of Lemma l l ( i i ) . •

Proof of Lemma 77(Hi).

Step 6.

τ2β(0) rg Cio/?3 log - for β small enough . (3.33)

Proof By Cauchy-Schwarz, we have for every TV,

= tβ(N) - ΣΔτβ(i)

Pick N = \β 2] . Lemma l l ( i ) gives τ^(|"jS 2]) ^ C\βi, Together with Lemma

11 (ii) and the estimate X f̂fj 2 7 S log | , the claim follows. D

Step 6 completes the proof of Lemma ll(iii). D

Proof of Lemma 77(iv).
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Step 7. For all β

i + 1) - T ^ Γ Σ [1 - ^ - ^ - ^ j τβ(i)Aβ(iJ)τβ(j)

(3-35)

( / , / ) * ( 1 , 1 )

Proof. By Lemma 4 we have the following relation:

Aβ{i,j) - Aβ(i - l,y) = ^ ( i J - 1) - Aβ(iJ) + 2Aβ(iJ) [l - e<7«('-V)-^)]

note that ê (/ — \J) = ββ{ίj — 1)). Hence (3.36)

ΣΣτ/KO [̂ /i(i.y) - /̂K' - 1,7)]
^ 2

- e^<'-'>"-^'^] τβ(i}Aβ(iJ)τβU) •

(3.37)

The third term in the last expression is twice the sum in the r.h.s. of (3.35) except
for the part with i — \,j ^ 2. The second term, on the other hand, can be rewritten
by carrying out the sum over /, namely (use that A(ί,0) ~ 0)

1 ^X2τβ(i)Aβ(i,\)τβ(\)

i,j - 1) - Aβ(iJ)]τβ(j)

= 2τβ(j)[τβ(j - 1) - τβ(j)] - j^τβ(l)[Aβ(\J - 1) - Aβ(l,j)]τβU) •

(3.38)

Thus, after also carrying out the sum over j , we see that (3.37) becomes

2{r.h.s. (3.35)- - ^ - Σ [l - e'^-'t™] τβ(\)Aβ(\J)τβ(j)
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τ2(ϊ)A(ι1)+W)τ2β(ϊ)Aβ(ι'1)~ W)Σj-2τβ(l) ^ ( 1 J ~ 1 } ~Aβ(ιJ)]τβij) • ( 3 3 9 )

Now, by (3.36) for / = 1,

Hence (3.39) simplifies to

~[i + 1) = - ΣΔ*βU + 1) + 2 r.hjs. (3.35)
i

(3.41)

But the term between braces is zero. D

Step 8. For β small enough

rJu. (3.35) £ Cnj jhogi (3.42)

Proo/ The first term in (3.35) is easy to bound. Indeed, we have ββ(i — \J) -

eβ(i,j) = -fljδ? -f j5(2/ + 2/ - 3), and hence we get

l5ί term in (3.35) S ^ z Σ aβhβ(i)Aβ(iJ)τβ(j)

(3.43)

(in the first inequality use that e* ^ 1 +1 for all ί) F° r m e second term in (3.35),
use that P(l , 1) = £ and ^(1,1) = aβi - β. Together with λ(β) ^ 1 - C6β^ (see
below (3.18)) we get

2nd term in (3.35) ^ 2τ2

β(\)C6β^ for j8 small enough. (3.44)

Finally, use Step 6 to get the claim (recall that τ^(0) = τ^(l)). D

Steps 7-8 complete the proof of Lemma 1 l(iv). D

Lemma 11 completes the proof of Proposition 4. Lemmas 12 and 13 will be
proved in Sect. 4.

Proposition 4 shows that Assumption 3(iii) in Proposition 2 holds. We shall
prove Assumptions 3(i), (ii) in Sect. 5.
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4. Proof of Lemmas 12 and 13

4.L Proof of Lemma 12. Let (e,-)/^i be the canonical -j-+base of / 2(N). Let

s — (s(i))i^\ be any sequence of numbers in (0,oc) and let t = (φ'))/^i ^ e given

by ί(l) = l,ί(/) = Π t l *(*) 0' έ 2). Define

ft = {jcG /2(N) : x £ 0,x(i + 1) ύ s(i)x{i)},

5 ? = {* = Σ>y// : CJ ^ 0,c/ Φ0 finitely often} , (4.1)
j

where /y G / 2(N) is defined by

fj = h(0eι . (4.2)

Lemma 14. (i) ̂  is a closed convex cone.
(ii) Bs is the closure of B®.

Proof Elementary. D

Recall footnote 6. Since, for every β > 0, Aβ is a continuous operator on / 2(N),
we have from Lemma 14(ii) that

AβBs CBS& Aβfj e Bs for all j ^ 1. (4.3)

Since, for every β > 0, Aβ is symmetric and has a spectral gap, we also know that

λ(β)-"An

βx ->/2 (x,τβ)ι2τβ (n -* oo) for any * G / 2(N). Pick any x e Bs with xφO

to get that

AβBs CBs=^τβeBs . (4.4)

Below we shall prove the following:

Lemma 15. If s satisfies

f o r all t ^ χ j ^ 0 ? ( 4 5 )

then Aβfj G ̂ 5 for all j ^ I.

Lemma 15 combined with (4.3-4) shows that

τPe Π Bs. (4.6)
{s: s satisfies (4.5)}

The r.h.s. of (4.5) is ^ 1 when i+j ^ f β ~ 5 . One therefore easily sees that the
following choice of s satisfies (4.5):

s(i) = 1 for i > U~\
(4.7)

=zNβ~{ϊ for z ^ f j?~5,7V large enough.

This proves Lemma 12. D
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Proof of Lemma 15. We must show that for all ij ^ 1,

= Σ\s(i)Aβ(Uk)t(k)-Aβ(i+ hk-l)t(k- 1)1 -Aβ(i+lJ)t(j) (4.8)

(recall from Lemma 4 that Aβ{i + 1,0) = 0 by convention). In order to do so, define

ΨιU)= Σ\s(i)Aβ(i,k)t(k)-Aβ(i+ l9k-l)t(k - 1 ) 1 -2Aβ(i+\J)tU). (4.9)

The following lemma gives a sufficient criterion for ψi(j) ^ 0, which implies (4.8):

Lemma 16. If

s(i)Ap(iJ+l)+-±-Aβ(i+l9j)-2Aβ(i+lJ+l) ^ Ofor all i ^ \J ^ 0,
S\J)

(4.10)
then

(i) y -* φi(j) is nondecreasing for all i ^ 1,

(ii) ^(1) ̂  0/or α// i ^ 1 . (4.11)

(i) By (4.9-10),

= s(i)Aβ(iJ

- t(j + l)[s(i)Aβ(i,j +1)+ ^γβ{i 4- IJ) - 2Aβ(i + I J + 1)] ^ 0 . (4.12)

(ii) Similarly (since ί( l) = 1 and Aβ(i + 1,0) = 0)

^•(1) = 5 ( 1 ^ ( 1 , 1 ) - ^ ( i + l, 1 ) ^ 0 . (4.13)

D

of (4.5). Abbreviate /(/) = exp[aβh - βi2]. Then we have Aβ(iJ) = /(ι +j - 1)

To complete the proof of Lemma 15, it remains to rewrite (4.10) in the form

(4.5). Abbreviate /(/) = exr
P(i,j). Use Lemma 4 to write

I As. (4.10) = / ( / +j) \s(i)P(i,j + 1) + -f-P(i + l,y) |

U+J)-f(i+J+l)]

(4.14)
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Next use that P{iJ + 1)/P(ι + IJ) = i/j. Then (4.10) is seen to be equivalent to

1
" ϊ 4 - ϊ + 1 \ ( 4 β l 5 )

i+j

Substitute / to get (4.5). D

4.2. Proof of Lemma 13. To prove the upper bound in (3.13), use (2.5)(ii) to get

λ(β) = Σ*β
Uj

UJ

* , (4.16)

where the last inequality follows from ||P||/2 S l This immediately gives the claim.
To prove the lower bound in (3.13), use (1.3)(i) to get that for any x £ I2(IR+)

with \\x\\L2 = 1,

Pick for x

Now, we know from

β

xσ(u)

Lemmas

ϊ[λ(β)- 1

1

/ 2 \ 4

\πσ2 J

5-8 that

] ^ Fβ(x)

> 0 ) .

(4.17)

(4.18)

β(xσ) = Fa(xσ). (4.19)

Hence \imm{βioβ~^[λ(β) - 1] ^ Fa(xσ). Compute

t - 4u2)[xσ(u)f - u[xf

σ(u)f}du
o

2 \2

ί

= ( - V aσ - 4σ2 ^ - . (4.20)
π (2π)2σ

Pick σ = σ(α) = ^ y to get the claim. G
(8π)2

5. Analysis of the Limit Variational Problem

Recall the notation in (1.13):
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Y =xnc 1 (R+),

K = K£ = {xeY: Fa(x) ^ -C} . (5.1)

In this section we analyze the limit variational problem appearing in (1.6), i.e.,

sup Fa(x) .
xex

(5.2)

In Sect. 5.1 we show that x —> Fa(x) is upper semicontinuous and KQ is relatively
compact in X (in the I?-topology). This implies that Fa achieves a maximum in
K£ = {x G X : Fβ(x) ^ - C } (Φ0 for C large enough). In Sect. 5.2 we show that
all maxima of Fa in X are solutions of the Sturm-Liouville problem

&ax = px (p e IR,x G X (Ί C°°(IR+)), (5.3)

where ^ Λ is defined in (0.17). In Sect. 5.3 we analyze (5.3) and show that it
has a unique solution xa satisfying Fa(xa) > — oo and xa > 0, with corresponding
eigenvalue p(a). This identifies xa as the unique maximizer of (5.2) and p(a) as
the maximum. We also study a —> xa and a —> /?(«) to prove the claims that were
made in (0.19).

5.1. Existence of a Maximizer of Fa in
F\g\Ka

c as follows. Define (recall (1.7))
It will be expedient to transform

oo

= J{q(u)[x(u)f + p(u)[x'(u)f}du
0

(5.4)

with

p(u) = u ,

?(«) = --a) + 1 . (5.5)

Fa is the "energy" functional corresponding to the Sturm-Liouville differential

operator Jίffl defined by (recall (0.17))

Define (recall (1.13))

Ka

c=Ka

c c
- { x G Γ : F * ( X ) ^ C} .

Lemma 17. For eϋery α e IR,

(i) Ka

c^r§ for C large enough,

(ii) £ £ w relatively compact in L2(WL+) for all C e IR,

(iii) x —> Fα(x) w fower semicontinuous on L2(IR+).

(5.6)

(5.7)
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Proof. Standard.

(i) Trivial.
(ii) We check the conditions in Dunford and Schwartz (1964) Theorem IV.8.20.
(a) Ka

c is bounded in I 2 (IR + ) .
(b) By Cauchy-Schwarz,

oo oo / u+v

f(x(u + υ)- x(u)fdu = / ( / x'(t)dt
0 0 V M

oo u+v

£ Jdu tlog(« + ι>) - Iog«] / dt t[x'(t)f
0 u

oo

= Jdtt[x'(t)]2I(t,Ό)l{t*ΰ}9 (5.8)
o

where

/(/,») = (/+ ») log( l + y ) + ( / - » ) l o g ( l - j ) . (5.9)

Since / —> I(t,v) is decreasing and I(v,υ) = 2υ\og2, it follows that

OO

lim Γ(x(w + ι;) - x{u)fdu = 0 uniformly for x e Ka

c . (5.10)

(c) From p(u) ^ 0 and limM_^oo q(u) — oo follows (see (5.4-5) and (5.7))

OO

lim fx2(u)du = 0 uniformly for x e Ka

c . (5.11)
Λ^-OOΛΓ

Conditions (a)-(c) imply that Ka

c is relatively compact,
(iii) Define

Va = {x e L2(R+) : Fa(x) < oo} . (5.12)

On Va define the inner product

CO

(x,y)Va = J{q(u)x(u)y(u) + p{u)x\u)y'(u)}du . (5.13)
o

Then, because p(u) ^ 0 and q{u) ^ 1, (F f l, ( , )γa) is a Hubert space, ||X||F« =
||x||L2 and

F«(x)=(x,x)Va = \\x\\2

Va. (5.14)

Thus we must prove that liminf^-^ooH^H^ ^ \\x\\va for any x« —>L x.
Let L = liminf^-^oo ||xw||^«. The case L = oo being trivial, assume L < oo.

Then, by the Banach-Alaoglu theorem (Rudin (1991) Theorem 3.15), there
exists a subsequence (xnk) and a, y e Va such that L = lim^—oo ||xWλ. || v

α and xWλ, —> y
weakly in Kfl (k —> oo). Hence L ^ HJIIF" by fatou. But, by (ii), weak conver-
gence in Vα implies strong convergence in L 2 ( R + ) . Hence xnk -*L y. Together

with xn -+L x this implies y — x and hence the claim follows.
Incidentally, note from (5.4-5) that Vα does not depend on α, because it

is nothing other than the collection of X G L 2 ( 1 R + ) for which f^°{u2[x(u)]2 +
u[x'(u)f}du < oo (recall (0.18)). D

Lemma 17 implies that Fα achieves a minimum in K^ (for C large enough).
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5.2. Characterization of the Minimizer(s) of Fa

Lemma 18. Any minimizer x of Fa in X is a solution of S£ax — px for p =
p{a) G IR, the minimal eigenvalue of ££a in Va.

Proof. Standard.
Define p{μ) by

x) . (5.15)

Let x G Va be any minimizer. Then for any h G Z 2 ( R + ) and ε > 0,

Fa(x + εh) ^ β(a)\\x + εhfL2 . (5.16)

Writing out both sides of (5.16) and using that Fa(x) — p(a), we obtain (see
(5.13-14))

2ε(x,h)Va +ε2\\h\\2

Va ^ p(a){2ε(x,h)L2+ε2\\h\\2

L2} . (5.17)

Let ε i 0 to obtain

%h)Va Z β(a)(x,h)L2 for all h e Va . (5.18)

Replace h by — h to get the reverse inequality. Thus

(x,h)Va = β(a)(x9h)L2 for all h G Va . (5.19)

Now note that we have from (5.6) and (5.13), after partial integration,

(x,h)Va = {x^ah)L2 for all h G CC

2(R+) . (5.20)

It follows from (5.19-20) and the symmetry of ££a that x is a weak solution of
<£ax — p{μ)x. This in turn implies that x is a strong solution.

To see that p(a) is the minimal eigenvalue of ££a in Va, note that if ££ax — px,
then by (5.6), (5.13-14) and integration by parts,

F\x) = {χ,χ)Va = (x,<?ax)L2 = p\\x\\Li = p . (5.21)

D

5.3. Analysis of^the Sturm-Liouville Problem. Lemmas 17-18 show that Fa has a
maximizer in Ka

c and that each maximizer is a solution of <£ax = px for p — p(a),
the maximal eigenvalue of ϊ£a in Va (recall (5.4-7)).

Lemma 19. (i) All solutions of ££ax = px are of the form

(u) = faφ(u) + ̂ («) log« , (5.22)

where fa>p and gaφ are power series with infinite radius of convergence.
(ii) Fa(xa>P) = - o c if ga>P φθ .

/ (i) Formally substitute fa*{u) = E ^ o / » « " a n d ^ ( " ) = Σ ^ o ^ " " - T h e n

the coefficients are found to satisfy the recurrence relations

( 2+4gn-3) {n ^ 1) ,

fn = \(pfn-ι - 2afn-2 + 4/Λ_ 3 - 2/1^) (π ^ 1) (5.23)
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(with / _ ! = / _ 2 = 0_i = 0-2 = 0). Note that also ^ is a solution of J2™x = px
and that / f l ' p depends on gaφ. By induction on n, (5.23) is easily shown to give
the following bounds:

\fn\ ύKΐ(n\)-ί ( n ^ 1 ) ,

\gn\ £Kζ(n\)-τ (n ^ 1 ) , (5.24)

with ^i,i^2 large enough (depending on p,a and /o,go) This implies that the
formal solution exists everywhere.
(ii) Trivial, since £xaψ(u) - QΦ~X{U j 0) with #o*O implies that F α ( x ^ ) =
—oo, while go — 0 implies that #„ = 0. D

At this stage we know from Lemma 19 that all maximizers of Fa are of the form
xaφ(u) — faφ(u) and, in particular, are analytic on R j .

Our next step is to find the asymptotic behavior of the solutions of (5.3) as
u —> oo. This will be needed to get uniqueness of the maximizer.

Lemma 20. i f ax = px has two independent solutions xalp and xa+ satisfying

lim u-hogxalp(u) = ± ί . (5.25)
u—>oo 3

Proof. We use Coddington and Levinson (1955) Theorem 2.1 on p. 142-143. Define

w\(u) = x2(u),

= u 2w[(u) .
(5.26)

[(u)

Then (5.3) can be written as

w'(u) - u~rB(u)w(u) (5.27)

with r = 2 and

( 5 2 8 )

Note that B(u) = X^> 0 w~"5rt ( 5 0 ΦO) is a convergent power series in u~ι, with BQ
having eigenvalues λ\£ = ±4. Therefore (5.27) has a formal solution of the form

w(u) = P(u)uReQ(u) , (5.29)

where P(u) — Y^L^u~nPn (det Po + 0) is a formal power series in u~ι, R is a
complex diagonal matrix and g = J^JQO + ... + uQr is a matrix polynomial with
gj diagonal and go = diag{λ\,λ2}. From the proof of the cited theorem it follows
that P,Q,R can be chosen to be real because B,λ\^ are real. On p. 151 of Codding-
ton and Levinson (1955) there is the further remark that for every formal solution
there exists an actual solution with the same asymptotics. D

We see from Lemma 20 that x+p £ L2(1R+) and so (5.3) has a unique solution
in L2(1R+) up to multiplicative constants.
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Lemma 21. Define

S?a = {p G R : fa* G L 2 (R + ) ,/^(0) = 1} . (5.30)

Then

(i) ^ is countable, bounded from above and has a maximum,
(ii) p(a) = max £f\ is geometrically simple,
(iii) fa^a"> > 0,
(iv) Vp G 5^α,p < max ^ a : /

α ' p changes sign in R + .

Proof Standard Sturm-Liouville theory.
(i),(ii) By Lemma 17(ii), Va is compactly imbedded in Z 2 ( R + ) (compare (5.7) and
(5.12)). Therefore the eigenfunctions of 5£a in Va form an orthogonal basis of Va.
Since Va is separable, this in turns implies that ίfa is countable. We know from
Lemmas 19-20 that <£a has a unique eigenvector in Va with eigenvalue p(a), i.e.,
p(a) is geometrically simple. Since p(a) = maxxeya Fa(x) = max £fa by Lemma
18, we also know that ίfa is bounded from above and has a maximum.
(iii) From (1.7) one sees that Fa(\fa^\) = Fa(fa>pW). Therefore it follows
from the uniqueness of the maximizer that fa>p = \faφ\ ^ 0. Let u0 — inf{u > 0 :

/ ^ ( M ) = 0} > 0. If w0 < oo, then we must have £fa>p(a)(u0) = 0 and j^faΛa)

(tt0) > 0. However, this contradicts (^afa^a))(u) = p{a)faΛa\u) at the point
u — wo (see (0.17)).
(iv) This follows from (iii) and the fact that the eigenfunctions of 5£a in Va form
an orthogonal basis. D

Lemmas 17-18 and 21 show that Assumptions 3(i),(ii) in Proposition 2 hold.

5.4. Dependence on a. The maximal eigenvalue and eigenvector of (0.17-18) are

p(a) = max ^ a

ra,ρ(a)

( 5 3 1 )

We can now prove the following properties:

Lemma 22. (i) a —> p(a) and a -* xa are analytic.
(ii) a —> p(fl) w strictly increasing and strictly convex on R.
(iii) p(0) < 0, limαfoop(α) — oo and \\maι^oop{a) — —oo.

/ (i) We give the proof by applying Crandall and Rabinowitz (1973) Lemma
1.3 in the following setting. Pick a G R and consider the Hubert space {V, ( , )γ)
with V = V°. Then, from (5.5-6), (5.13) and (5.21),

(xa,y)Va = (&axa,y)L2=p(a)(xa,y)L2 ,

(xa, y)Va = <Λ y)v ~ 2ab{x\y) + j(xa,y)L2 , (5.32)

where b : V x V —> R is the bilinear form defined by

b(x,y)=]ux(u)y(u)du. (5.33)
o
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For every x € V the functional y —> b(x, y) is continuous and linear. Hence it
follows from the Riesz representation theorem (Rudin (1987) Theorem 6.19) that
there exists a unique linear operator B : V —» V such that

b(x,y) = (Bx,y)v for all x,y e V . (5.34)

B is symmetric because b is. i? is bounded because

\\Bxfv = b(x,Bx)

/ o o

- (/'

1

Φ

ι2x2(u)du
j

\\v\\Bx\\v

I

)2pfc|li2

(5.35)

(see (5.5) and (5.13)), so that \\Bx\\y ^ ^\\x\\v- To see that B is compact, let (*„)
be a bounded sequence in V. Then, by Lemma 17(ii), there exists a subsequence
(xΠί) and an x € F such that xB/t —*£ x (k —• oo). Hence, as in (5.35),

^ IK-K- -
-^ 0 ( t -* oo) . (5.36)

In the same manner we can prove that there exists a unique linear, symmetric and
compact operator C : V —> V such that

(x,y)L2 = (Gc,;y)r for all x?3; G K . (5.37)

Now rewrite (5.32) as follows, using (5.34) and (5.37),

aId-2aB-\p(a)--\C x\y) - 0 for all ye V. (5.38)

/ v

Hence, (F,( , )v) being a Hubert space, we have

a2

xa is a C-eigenfunction of Id — 2α# with (largest) eigenvalue ρ(a) — — . (5.39)

Next note that a -^ Id — 2aB is analytic in the operator norm. Therefore, to get the
claim in Lemma 22(i) from Crandall and Rabinowitz (1973) Lemma 1.3, it suffices

to check that p(α) — ̂ - is a C-simple eigenvalue of Id — 2aB, i.e.,
(a) dίm(N(Aa)) = codim(R(Aa)) = 1,
(b) Of £ R(Aa),
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where Aa = Id - 2aB - (p(α) - ^ ) C and N{Aa\R(Aa) denote the null space, resp.
the range of Aa.

We have dim(N(Aa)) = 1 because of Lemma 21(ii). Moreover, because 2aB +

( p O ) - τ ) C i s compact we have dim(N(Aa)) = codim(R(Aa)) (Rudin (1991)
Theorem 4.25). This proves (a). To prove (b), first use that Aa is symmetric and
bounded to get that N(Aa) = R(Aa)^ (the orthogonal complement of R(Aa)) and
R(Aa) = R(Aa) (Rudin (1991) Theorems 4.12 and 4.23). Since R(Aa) = R(Aa)±JL,
it follows that NiA")1- = R(Aa). Hence (b) is equivalent to (Cxα,xα)Fφ0. But
(Cxa,xa)v = (xa,xa)L2 = l by (5.37).
(ii) Because

p(a) = sup Fa(x) (5.40)
xex

with unique maximizer x — fa^a\ we immediately see from (1.7) that

* a + 8 > - * g > ;> ]2u[f"'*°\u)fdu > 0 (5.41)
ε 0

(pick ||/α'p(α) | |^2 = 1). This demonstrates that p\a) is everywhere strictly positive.
Moreover, since a —> Fα(x) is linear for every x we have from (5.40) that a -+ p(a)
is convex. Because of analyticity, it follows that either a —» p(a) is strictly convex
or p(a) = C\a + Cι. However, the latter is impossible because of Lemma 13.
(iii) Trivial. Let ε —> ±oo in (5.41) or else see (1.7). D

6. Proof of Theorems 4-7

We can now collect the results from Sects. 2-5 and give the proofs of our theorems
in Sect. 0.4.

Proof of Theorem 5. Combine Propositions 1-3 with (1.13). The proof of Propo-
sition 3 was given in Lemma 1 and in Sects. 2, 3 and 5. D

Proof of Theorems 4 and 6.

1. r*(β) ~ a*βϊ. According to (0.13), r*(β) is defined as the unique solution of

λ(r,β)=l. (6.1)

From (0.20) we know that for every a G IR,

β~kλ(aβKβ) ~ 1] - P(a) as β 10. (6.2)

Let α* > 0 be the solution of p(a) = 0 (see Lemma 22). Now, because r —• λ{r,β)
is increasing (as is obvious from (0.10)), we have for every ε > 0,

λ(r,β) ^ l+βl3p(a* +ε) + o(βi) for r ^ (α* + s)β^ ,

λ(r,β) S \+βτp(a* -ε) + o(βli) for r ^ (α* - ε)βi . (6.3)
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Since p(α* — ε) < 0 < p(α* + ε) for every ε > 0 (see Lemma 22(ii)), (6.1) com-
bined with (6.3) implies

(a* - ε)βϊ ^ r*(β) ^ (a* + ε)βi for 0 small enough . (6.4)

Let ε I 0 to get the claim.

2. 0*(j8) - £*j8?. According to (0.14), θ*(β) is defined as

Define

Because r —> λ(r,β) is increasing and log-convex (see footnote 6), we have that for
all h, β > 0 and a € R,

ξ(a/l§,JS) ^ ^ j [logλ{aβi,β) - logλ((a ~h)βϊ,β)]. (6.7)

Together with (6.2) this gives

l,β) ^ P { a ) p

h

{ a h ) . (6.8)

Let /z I 0 to get (see Lemma 22(i))

k β ) = p'(a). (6.9)

Next, because r —> ξ(r,β) is increasing we have, via (6.4), that for β small
enough

ξ(r*(β),β) g ξ((fl + 8 ) ^ , j») = Γip'(β + e) + o ( Γ ί ) ,

ξ(r (̂ ),/?) ^ ξ((a* - ε)βKβ) = r^P'ίβ* " 0 + o(/H) (6-10)

Since (recall that λ(r*(β),β) = 1)

1

θ*(β)

it follows that

(6.11)

p'{a* - ε) g — j ^ p'(α* + ε) for β small enough . (6.12)

β-W(β)
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Let ε I 0 to get the claim with ^ = p'(a*).

3. β-*τr*ίβ)yβ(\ jff-*l) - ^ 2 *α*( ). Put a*(β) = β~^r*(β). Then, similarly as in
Lemma 1,

β~*τr*{β),β(\ ' β~^) i s t h e unique maximizer of Ff{β), (6.13)

where the parameter a is replaced by a*(β).

Lemma 23. Assumptions (l)-(3) in Proposition 2 hold for the following choice
replacing (1.13):

K = Kac (C sufficiently large),

G = Fa* . (6.14)

Proof The point is that \imβiOa*(β) = a*. It is trivial to check that all esti-
mates in Sects. 2 and 3 remain valid when the fixed parameter a is replaced by
a + o(l) (/? I 0). See, in particular, the proofs of Lemmas 5, 6, 11-13. D

The claim in 3 now follows from Proposition 2.

4. β-ΐμ*β(\ j H ] ) - + z l |[xα*(^ )] 2 . The proof is in Steps 1-2 below. Abbreviate
Aβ =Ar*(β)fβ and τβ = τr*(β)>β. According to (0.14),

= Σ τβ(i)Aβ(iJ)τβ(j) . (6.15)

7. There exists c such that

/|j8-3μ*([W j8-3]) - i [χα ( i w ) ] 2 μ w ^ c//-2 for β small enough . (6.16)
N

Proof Estimate (recall that λ(r*(β)9β) = 1)

OO j

fβ-ϊμ*β(\uβ-ϊ])du= Σ μ*β&)

= Σ τβ(i)Aβ(Uj)τβ{j)

ίj: ι+j-l^Nβ~3

^ 8CiiV-2 . (6.17)

The last inequality is Lemma ll(i). Furthermore,

Jί[x»* (±u)]2du Z iN-2Ju2[X«* (iu)]2du. (6.18)
N N

Since xa* € K^ 9 the integral in the r.h.s. is finite and so the claim follows. D
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Step 2. limwo fi |jH/#Γ«Ήl) - 2 [*"* (ί")]' \du = ° >

?roo/ Use the triangle inequality to split the integral into three parts

0

with (recall (6.15))

IlβN = j»* Σ IW* ) ~ *?Φ )\Aβ(iJ)xa\jβi) ,
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(6.19)

Σ

= / Σ
Ϊ,/: ί+/-l=["Mi» 3]

Here τ^ is the scaled form of τβ given by the same relation as (3.1).

For ll'N use Cauchy-Schwarz and (2.5)(ii) to estimate

rhN < Σ fowl) - *a*Φ)] 2Aβ(U)
3

(6.20)

\ί,j:

Σ W'UβhfMU)

< e4fl

Σ y\jβ (6.21)

Define xjf by xf (u) = xa\iβ^) for (/ - I)j8i ^ u S
(3.1). Then (6.21) becomes

i ^ 1), in analogy with

(6.22)

= 0.N o w let j8 I 0 a n d use that τβ ^ x a * a n d xf -^ x a * to get l i ^

T h e s a m e a r g u m e n t g ives that l im supβJO lfN — 0.

T o es t imate ll'N, w e u s e t h e m e a n va lue t h e o r e m to e x p a n d xa*(iβϊ) and

χύ (jβ1) a r o u n d \u. N a m e l y



438

N
j3,N _ r

0
Σ

ij: J+y-l = r«jS 3]

with ξ,η between \u and ι/?5, resp. y/?5. Next note that xα*(w), | ^

oo for all u G IR+. Hence

R. van der Hofstad, F. den Hollander

du ,

(6.23)

I < M <

- ίM)^*α*(«)} - i [*"* (i«)

Σ ^

N

0 . . . . 1

',• , \ _ i

Next we insert Aβ = eelsP and use that (recall (2.4) and (0.11))

\eβ(i,j)\ ί (\a\+N)Nβ? for i,y rg iV^i ,

(6.24)

(6.25)

^ 1), (6.26)

\i~\k

Then (6.24) yields (recall (2.5)(ϋ))

where

Σ

(6.27)

jdu{(zβ(u))* + zβ(u)} , (6.28)
Q

(6.29)

Let jβ I 0 to get lim sup^jo^'^ = 0. D

Steps 1-2 prove the claim in 4.
Results 1-4 complete the proof of Theorems 4 and 6. D

Proof of Theorem 7. The asymptotic behavior of xa* in (iii) was proved in
Lemma 20 (pick a = a* and p — 0). To prove (i) and (ii), we recall that xa

solves (see (0.17))

0 = (ifα χ)(u) = (2a*u - 4u2)x(u) + [uxf]\u), (6.30)
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and has a power series representation (see (5.23))

xa\u)= £*„«",

xn = -j(-2a*xn-2 +4x M _ 3 ) (n ^ 1) ,

x_l=x_2 = 0, (6.31)

We observe that u —• 2α*w — 4w2 changes sign from positive to negative at

u = \a*. Since xa\u) > 0 for all u ^ 0, it follows from (6.30) that u -> u£xa*(u)

is unimodal with a minimum at w = ^α*. It is clear From (6.31) that wj^xα (u) —> 0

as ι/ I 0. On the other hand, by the unimodality we must have that u£xa (u) —> c

as w —> oo. However, c must be 0 otherwise Jo°° u\j-xa (u)]2du — oo, which is

impossible since Fβ*(xα*) = p(a*) = 0 > —oo (see (1.7)). Thus we conclude that

wj^xβ (w) < 0 for all u > 0, which implies that w —> xβ (u) is strictly decreasing.

To prove (iv), use (0.15) to write

oo .

- J2u{β-6τr*{βιβ(\uβ-ϊ])}2du . (6.32)
o

As β I 0 the l.h.s. tends to ψ. Thus we must show that the r.h.s. tends to

/0°° 2u[xa*(u)]2du. To prove this claim, first note that

< m v ;2τ2

2
^ — C\ for j8 sufficiently small, (6.33)

where we use Lemma ll(i). Similarly, f™ 2u[xa\u)fdu ^ ^ / °̂ u2[xa\u)fdu =

o(N~ι) as TV —> oo. Next, recall 3 in the proof of Theorems 4 and 6 to see that

N ι ι N

Iimf2u{β-ττr*{βlβ(\uβ-ΐ])}2du = J2u[xa\u)]2du for all N . (6.34)
^ ° 0 ' 0

Let N —> oo to get the claim. D
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