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Abstract: Let Qf be the law of the n-step random walk on Z¢ obtained by weight-
ing simple random walk with a factor e=# for every self-intersection (Domb-Joyce
model of “soft polymers”). It was proved by Greven and den Hollander (1993)
‘that in d = 1 and for every f € (0,00) there exist 6*(8) € (0,1) and us € {ne

I"(N) : ||lullj= 1,4 > 0} such that under the law Q,!f as n — oo:

(i) 6*(p) is the limit empirical speed of the random walk;
(ii) pj is the limit empirical distribution of the local times.

A representation was given for 6*(f) and pp in terms of a largest eigenvalue

problem for a certain family of N x IN matrices. In the present paper we use this
representation to prove the following scaling result as f | 0:

(i) ﬁ-%le*w) —b
(i) B 3T B3 =4 (- ).

The limits b* € (0,00) and #* € {n € L'(R™) : ||n||;1 = 1,n > 0} are identified in
terms of a Sturm-Liouville problem, which turns out to have several interesting
properties.

The techniques that are used in the proof are functional analytic and revolve
around the notion of epi-convergence of functionals on L2(R*). Our scaling result
shows that the speed of soft polymers in d = 1 is not right-differentiable at = 0,
which precludes expansion techniques that have been used successfully in d = §
(Hara and Slade (1992a,b)). In simulations the scaling limit is seen for f < 1072,

0. Introduction and Main Results

0.1. Model and Motivation. A polymer is a long chain of molecules with two
characteristic properties: (i) an irregular shape (due to entanglement); (ii) a certain
stiffness (due to sterical hindrance). One way of describing such a polymer is the
following model, which is based on a random walk with self-repellence.
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Let (S;)i0 be simple random walk on Z9(d = 1), starting at the origin. Let P,
be its law on n-step paths and let Ep, be expectation w.r.t. P,. Define a new law

Qf on n-step paths by setting

ol . 1 n

ap ((S)o) = 7B exp | —f Zol{si =8}, (0.1)
n A 1=
i+

where Z,’f is the normalizing constant

ZF =Ep, [exp [-B 3 1{S, = 5;} 0.2)
1y=0
1%y

and B € [0,00] is a parameter. The law Q,’f is called the n-polymer measure with
strength of repellence B.!

Equations (0.1-2) define what is called the Domb-Joyce model of “soft poly-
mers,” where the weight factor gives a penalty e™# for every self-intersection. The
limiting cases f =0 and = oo correspond to simple random walk, resp. self-
avoiding random walk. For a recent guide to the literature on this model the reader
is referred to Madras and Slade (1993) Sect. 10.1.

It is generally believed that for § € (0, co] the mean-square displacement behaves
like

E gy [14*] ~ Dn® (n — 00), (03)

where D = D(f,d) > 0 is some amplitude and v = v(d) is a critical exponent. The
latter is believed to be independent of B and to assume the values?

v=1 d=1
2 d=2
=0.588... d=3
=3 dz4. (04)

Note that v = % is the exponent for simple random walk (f=0) in any d = 1
(with D = 1). Apparently, the repellence changes the qualitative behavior when
d < 3 but not when d = 4.3 The fact that v is the same for all B € (0,00] says
that soft polymers are in the same universality class as self-avoiding walk.

So far a rigorous proof of (0.3—4) has only been given for d = 5 (Hara and
Slade (1992a,b)*) and for d = 1 (Greven and den Hollander (1993)). In the latter

I Note that if 8 > 0 then (Q,/,i Jnzo is not a consistent family, i.e., Qf is not the projection on
n-step paths of the law of some process evolving in time (like P,).

2 The value in d = 3 is well below max{ 35, 3}, the so-called Flory value (Madras and Slade
(1993) Sect. 2.2).

3 Actually, d =4 is a critical dimension where it is believed that E o [IS,,IZ] ~Dn(logn)%,

containing a logarithmic correction to (0.3—4).

4 The proof in Hara and Slade (1992a,b) is for f = co. However, the technique that is used
(the so-called “lace expansion”) easily implies the same result for all f € (0,00]. Brydges and
Spencer (1985) earlier used the same technique to prove (0.3—4) for d = 5 and f sufficiently
small.
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work there is also a recipe for evaluating the amplitude D(f, 1) as a function of f,
which we next describe.

0.2. Speed and Local Times in d = 1. Define the random variables

1

0, = ;lSnl, (0.5)
- L 36 (0.6)

Hr IRnlxeR,, ) '

where

R, = ( min §,, max S,) NZ,

0<ign 0<i<n
() =#{0<i<n:S=x}. 0.7)

In words, 0, is the empirical speed and p, is the empirical distribution of local
times after n steps. Theorems 1-3 below are taken from Greven and den Hollander
(1993) and are the starting point of the present paper.

Theorem 1. For every B € (0,00) there exists 0*(B) € (0,1) such that
lim 0F(|6, — 0*(B)| < &) =1 for every ¢ > 0, (0.8)

with B — 0*(B) analytic, limg o0*(B) = 0 and limg_, ., 0*(B) = 1.5

Theorem 2. For every p € (0,00) there exists p € {p € PN : |jullp = 1, > 0}
such that
lim OF (||un — upllp <€) =1 for every ¢ > 0, 0.9)
n—oo

with B — pg analytic, limgopg = 0 and limg_oo pg = 01 pointwise.

The limits 0*(f) and pp in Theorems 1 and 2 can be found in terms of the
following largest eigenvalue problem. Let A5 (r € R, > 0) be the matrix

Ay p(i,j) = eHD=BE=1" p; iy (i j € N, (0.10)

where P is the Markov matrix

. . i+j—1
ran=("0(3) (0.11)

Let (A(r, B),7,5) be the unique solution of the largest eigenvalue problem®

Appr=2t(L > 0,t € P(N)),
7]l =1,7 > 0. (0.12)

5 Note that (0.5) and (0.8) imply (0.3) with vw(1) = 1 and D(B,1) = [0*(B)]*.

8 4,5 : I*(N) — [*(N) is positive, self-adjoint and compact for all » € IR, § > 0. Both (r, 8) —
A(r,B) and (7, B) — 1,4 are analytic. Moreover, r — A(r, ) is strictly increasing and log-convex,
2(0,B8) < 1 and A(o0, ) = oo for every f > 0 (see Greven and den Hollander (1993)).
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Theorem 3. Fix B € (0,00). Let r*(f) € (0,00) be the unique solution of

W) =1. (0.13)
Then
1 0
Aer s — _i B ’
0*(B) [ar - ﬁ)] r=r*(f)
ug(k) = ZE:[N Tr,g()Arp (0, 7 )1r,8(J) (ke N). (0.14)
Hj—l:k r=r*(B)

The representation in Theorem 3 is not easy to manipulate, which is why precise
analytical estimates of 6*(f) and ,ul’§ are hard to get. For instance, the intuitively
appealing conjecture that § — 0*(f8) is increasing still remains open (see Greven
and den Hollander (1993)). However, it is easy to get numerical estimates (see
Sect. 0.3). Moreover, we shall see that (0.13-14) provide a good starting point for
carrying out a scaling analysis as § | 0 (see Sects. 0.4-5), which is the main topic
of the present paper.

0.3. Numerical Estimates of r*(B) and 0*(f). Table 1 below lists some numerical
estimates of »*(f) and 6*(f) obtained from (0.13-14), based on a 300x300 trunca-
tion of 4, 5 defined in (0.10). We have used a standard iteration method to estimate
the largest eigenvalue and corresponding eigenvector for a range of r, f-values.

Table 1.
B B5r(B) B30%(B)
2 1.696 0.793
0.5 1.730 1.055
102 2.011 1.10938
103 2.098 1.10930
10— 2.144 1.10886
10~3 2.168 1.10910
10~° 2.179 1.10924

There is ample evidence for the asymptotic behavior r*(f) ~ a*f§ 5 and 0*(B) ~

b*B3(B | 0), with estimates a* = 2.19 £+ 0.01 and b* = 1.109 = 0.001.
The value of 6*(f) has been computed by making use of the identity

0 = @)

=2 [ Zirf*(ﬂ),ﬂ(i)] -1 (0.15)
i€EN

(Greven and den Hollander (1993)). Since 7, is easier to estimate than %l(r,ﬁ),
the relation in (0.15) allows for better accuracy than (0.14).

0.4. Main Results. The goal of this paper is to turn the numerical observations
in Sect. 0.3 into a mathematical statement. Our results are formulated in
Theorems 4-7 below.
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1. Our main scaling theorem reads:

Theorem 4. There exist a*,b* € (0,00) and n* € {n € L\(R*) : ||n||, = 1,n > 0}
such that as f§ | 0,

Fir ) —a,
B30%() — b,
B - B3 = ). (016

2. The limits a*,b* and n* in Theorem 4 can be identified in terms of the following
Sturm-Liouville problem. For a € R, let #* be the differential operator defined by

(Lx)u) = Rau — 4u*x(u) + x' (1) + ux" (1) (x € C°(R")) . (0.17)
In Sect. 5 we shall show that the largest eigenvalue problem
P% =px(p e Rx € P(RT)NC®(R")),

@ |xlpez=1Lx>0,
(i) [{ePx@)] + ulx' (@)]*}du < oo, (0.18)
0
has a unique solution (x?, p(a)) with the following properties:

(i) a — p(a) is analytic, strictly increasing and strictly convex on R,
(i) p(0) < 0,limyre0p(a) = oo and lim,) _oop(a) = —oo,
(iii) a — x“is analytic as a map from R to L?(R*) . (0.19)

The main part of our analysis to prove Theorem 4 will revolve around the following
theorem, which is proved in Sects. 2-5:

Theorem 5. Fix ac R. 4s |0,

B3 [Mapt. By~ 1] = pla),

Fie s (1B =F ). (0.20)
We shall show in Sect. 6 that (0.20) identifies the limits in Theorem 4 as follows:

Theorem 6. a*,b* and n* are given by

a” is the unique solution of p(a) =0,

1,
§=P(Q),
() =3P (0.21)

3. The analysis in Sect. 5 of the Sturm-Liouville problem will lead to the following
additional properties:

Theorem 7. (i) u — x4 (u) is analytic and strictly decreasing on R} = [0, 0).

*

.. * . - . . .
(i) u — u%x“ (u) is unimodal with a minimum at u = %a .

(i) lim w3 logx®" (u) = —+ | (0.22)
Uu—00 3
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1 %
(iv) 3= 2 [ulx® () du . (0.23)
0

Theorems 4—7 are proved in Sects. 2-6. Section 1 contains preparations.

Our result 6*(f) ~ b* B% implies that the speed is not right-differentiable at
B =0. Thus the limit of weak repellence cannot be treated by perturbation type
arguments (i.e., by doing an expansion of (0.1-2) for small f).

0.5. Numerical Estimates of a*,b* and n*. Let y* be the unique power series
solution of £°y = py with y*(0) = 1. We shall see in Sect. 5 that this power
series has infinite radius of convergence and has coefficients which satisfy a simple
recurrence relation (see (5.23) below). Moreover, we shall see that:

(i) p(a) is simple,
(i) Fa={peR:y*” e L*(R*)} is a countable set which has p(a) as a maxi-
mum,
(iii) p ¢ Lo limy ooy (u) = o0,
(iv) p € La,p*pla): y**(u) < 0 for some u > 0,
(v) y*@ = x?, the monotone solution of (0.18).

Properties (i)—(v) give us a way to estimate a* and x". Namely, put p = 0 and
consider 0, the unique power series solution of £“y =0 (a € R). Since a* is
the unique value of a for which y*° € L*(R*) and y*° Z 0, we can vary a and
tune into a* by looking at the tail behavior and the sign of y%0. It turns out that this
method is very sensitive indeed and that a* can be estimated by a* = 2.189 £+ 0.001.
For a outside this interval it was found that either y*°(u) < 0 for some u € [0,3],
or u — y*(u) not monotone on u € [0, 3].

Figure 1 compares x¢" with the numerical estimates in Sect. 0.3. The solid line is

u — y*O(u)/||y*°|| 2 for @ = 2.189. The dots are the values of B—%‘CV*(/;),[;( [uﬁ’ﬂ)

1.0

0.8

0.6

04

0.2

0.0

Fig. 1.
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for f=10"* and [uﬁ_%] =1,...,64, with *(f) as in Table 1. The agreement is
excellent. (For = 107° and = 107 all dots were found to lie on the solid line
within printing precision.)

Pick a = 2.189. Since y*? is an approximation of x%", we can estimate Zl; by
the integral 2 [~ u[y*°(u)I’du (recall (0.23)). However, we have only computed

y%0(u) for u € [0, 3] and it turns out that this is not enough to get a good estimate
of »* up to the third decimal. A better way is to use (0.15) and estimate

1 2 i
— 23 Y[y B3 — B3 (0.24)

b* N
This gives b* = 1.109 & 0.001.

0.6. The Edwards Model. Westwater (1984) studies Brownian motion on IR with
self-repellence, i.e., the Edwards model where (0.1) is replaced by

dve | T
dur (Wiosisr) = 77 €XP —gfds[dts(Ws —Wy)| . (0.25)
T o 0

Here pr is the Wiener measure on Brownian motion paths (W;)o<,<7,0 the Dirac-
function, g € [0,00) the repellence parameter and ZJ the normalizing constant.” We
give two properties showing that the Edwards model arises as the weak interaction
limit of the Domb-Joyce model.

Property 1. For every g € [0,00),
-3 .
oy ((n‘me)og,gl € - ) = V‘{((Vl’t)0§,§1 € - ) asn—oo. (026)

Proof. See Brydges and Slade (1994) Theorem 1.3. The double sum in (0.1)
equals —(n+1)+> ¢ 2(x) (recall (0.7)), of which the first term may be absorbed

into the normalizing constant Z¢ in (0.2). The key point is that n=3 > £2(x) un-

der the law P, converges to flR ff(x)dx under the law p; (see footnote 7). This
immediately implies (0.26). The analogous statement for 7'+ 1 is obvious. [

Westwater (1984) proves the following result which is analogous to Theorems 1
and 3:
For every g € [0,00),

1 Ak
Tlim vy (ITIWTI -0 (g)l < 8) =1 forevery ¢ > 0, (0.27)

where

% 0
0= [5E@D] (0.28)

7 The double integral in (0.25) should be read as fR 22T(x)dx, where Z7(x) = f OT dt (W, —x)
is the density of the occupation time measure w.r.t. Lebesgue measure.
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with E(g, A) the smallest eigenvalue in L2(IR*) of the operator jg"{ given by

(7)) =

1 1
gt + w2 — Ev“ (ﬁ + Zv‘2> v"‘} y(v). (0.29)

(The term between round brackets equals U%Aﬁ‘)jv_z with Aﬁz, the 2-dimensional
Laplace operator.)

Property 2. For every g € [0,00),
E(g,0)=a’g%
3 *« 1
[$E@,1)],_,=bd" (0.30)

with a*,b* the same constants as in Theorems 4 and 6.

Proof. Take the eigenvalue problem

(£"7) 0) = E@.25(0). (031)
Substitute into (0.31) the following change of variables:
() = vix(jg70?),
u=1g3". (0.32)

Then, after a small computation, we obtain the Sturm-Liouville problem in
(0.17-18),

(,f"x)(u) = px(u) , (0.33)
with
a=g 3E@g4),
p=g il (034)

Think of (0.34) as a parametrization of the curve a — p(a) in terms of 1. Recalling
the definition of a*,5* in (0.21), we now get from (0.34) that

p(a*) =0 & a* = g~ 3E(g,0) (0.35)
and

[2E(9, )], = 973 [£E(9.p9%)] _,

- )]

=g3b*, (0.36)

where p — a(p) is the inverse function of a — p(a). O
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Properties 1 and 2 show that Theorems 4 and 6 connect up nicely with the
Edwards model.

We close this section with a heuristic explanation of the power 1

3
0*(B) ~b*B %(ﬁ 1 0). First, by Brownian scaling (see also footnote 7),

in our result

1
2y _F, 2
EVM%(WI )= 75w wr). (0.37)
1
Since, according to (0.27)
ok 1
2 __ 1 2
[0 (@) = lim - Ey(W7), (0.38)

2
it follows, by using (0.37) with g,T resp. 1,937, that

0"(g) = g50°(1). (0.39)

Next, according to Theorem 1,
1
* 2 1 2
[0 () = lim —Eg(S?) - (040)
Moreover, by Property 1 we know that for g, T fixed,

1
~E 3 (SH~E (W) (n—o0). (0.41)
n Qng<7)2 vlg”

Now, if we assume that (0.41) continues to hold for g fixed and T = n, then by
using (0.40—41) resp. (0.37-38) we arrive at

[0*(9)F ~ LE(SD)
~ L 2
LG

~ 0" (P (T =n— 00). (0.42)

The above argument has uniformity problems because (0.39) and (0.42) would

imply 6*(g) = g% 0*(1) for all g. However, this cannot be true because 0*(g) = 1
for all g. Nevertheless, it explains the power % without using the explicit solution.

1. Preparations

In this section we formulate the functional analytic framework in which we are going
to approach our scaling theorem. Section 1.1 shows that our key result, Theorem 5 in
Sect. 0.4, is equivalent to convergence of a variational problem involving a certain
functional Fj; to a variational problem involving a certain limit functional F*¢
(Lemma 1 and Proposition 1 below). Section 1.2 shows that this convergence
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holds when Fj epi-converges to F° and certain compactness properties are sat-

isfied (Proposition 2below). In this section we also formulate the main steps that
have to be checked in order to prove these facts (Proposition 3 below). In Sect. 1.3
we collect some properties of the matrix P, defined in (0.11), that will be needed
in the proofs.

1.1. A Variational Representation. Rayleigh’s formula for the pair (A(r, f),7,p)
defined in (0.12) reads

i) Arp)= max ,c2(nyyzo, (3. A4rp¥)i2 5

lI¥ll,2 =1

(ii) 7,4 is the unique maximizer . (L.1)

In anticipation of the scaling suggested by Table 1, we pick r = af§ %(a € R) and
rewrite (1.1) in the following form. Define the functional F' 5 L2(RT) — R as

Fix) =3 :f dufdv xtu, g (p~ 41, [0p77) = g3l (12)

Lemma 1. For all § > 0,

() B3[MaB3, ) — 1] = max,comes,rz0 Fi(¥) ,

Il 251
(i) ﬂ_%r o /}([ . B—%]) is the unique maximizer. (1.3)
Proof. (i) Fix B > 0. For x € L*(R*) define
1 'ﬂ%
i) =p"% [ x(wdu (icN). (1.4)

1
(i—1)p3

Then the first term in (1.2) equals ﬁ_% (x,4 r ﬂ)@)lz. Hence using (1.1) (i) we may
a, >

write l ,
[f‘?[/l(aﬁi,ﬁ)—l]: max max  Fi(x). (1.5)
yEI2(N),y20, x€L2(RT),x20,
Ipll2 St il o =limy

Note that, by Cauchy-Schwarz, we have ||£]|,2 < |||,z and so the restrictions
17l £ L|[x||,2 =1, =y in (1.5) are compatible. Interchange the two maxima
in (1.5) to get the claim.

(i) Use that |[£|lp = ||x|| iff x(u)= B £() for ue ((i—1)B3,ip3] and
ieN.

In Sect. 2-5 we shall prove:
Proposition 1. 4s f | 0,

b a a
(i) max. g2 g+) 0 Fp(X) — Max, cpogey (20 F(x)
Il =1 Il 21
12

(ii) unique maximizer l.h.s. —" unique maximizer r.h.s., (1.6)



Scaling for a Random Polymer 407

where the limit functional F® : L*(R*) — R is given by
F(x) = T{(zau — 4P x(w)]? — ulx'(w)) }du (1.7)
0

with the understanding that F®(x) = —oo if the integral is not defined.

Note that F?(x) = (x, £°x);» for all x where both sides are finite, with #? as
defined in (0.17).

Lemma 1 and Proposition 1 imply our key result, Theorem 5. To prove Propo-
sition 1, we shall need the notion of epi-convergence, which we next explain.

1.2. Epi-convergence. Let (X,t) be a metrizable topological space and let ¥ C X
be dense in X. Let

Gp: X >R (f>0),
G:X—R. (1.8)
Definition 1. The family (Gg)p>o is said to be epi-convergent to G on Y, written

e—1limGg=Gon Y, 1.9
it (1.9)

if the following properties hold:
(i) Vxg—="xinY :limsupg (Gp(xp) =< G(x),
(i) g —="xin Y : liminfg)oGp(xg) = G(x) . (1.10)

The importance of the notion of epi-convergence is contained in the following
proposition:

Proposition 2. Suppose that
(1) e — limﬁloGﬂ =GonY,

(2) VB > 0: Gg is continuous on X and has a unique maximizer X3 € X,
(3) 3K C Y such that

(i) K is t-relatively compact in X,
(ii) G has a unique maximizer X € K,
(iii) 3(xp)p>0 C K such that xp —Xg —* 0 and Gg(xp) — Gg(xp) — 0 as
Blo.
Then as ] 0,
sup Gg(x) — sup G(x) , (L.11)
xeX xeX

Xp o' % (1.12)

Proof. See Attouch (1984) Theorem 1.10 and Proposition 1.14. O

Remark. Epi-convergence differs from pointwise convergence: limgoGp(x) = G(x)
for all x € Y. Namely, (1.10) (i), (ii) are weaker in the sense that they require only
inequalities, but stronger in the sense that they involve limits in neighborhoods
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rather than single points. Epi-convergence is a unilateral notion. We have chosen
the direction that is suitable for suprema rather than infima.

Fix a € R. We are going to apply Proposition 2 with the following choices:
X ={xeLXR"):x 2 0|jxllz =1},
Y=XNC'(RY),
7 = topology induced by || - |2,
K=K{={xeY:Fx) =z —C},
Gg=F ; ,
G=F", (1.13)
with Fig and F* defined in (1.2) and (1.7) and with C large enough so that K& #0.
Our main result is:
Proposition 3. Assumptions (1)—(3) in Proposition 2 hold for the choice in (1.13).

We prove Assumption (1) in Sect. 2, (3)(i),(ii) in Sect. 5 and (3)(iii) in Sect. 3.
We already know (2) to be true because of Lemma 1(ii).
Proposition 3 proves Proposition 1 in Sect. 1.1.

1.3. Properties of P. We list a few identities and estimates for the matrix P, defined
in (0.11), that will be needed later on.

Lemma 2. For every i = 1,k 2 0,

Z(i+j+k—2)! . i+ k—=1)!

= G+j-2) PG.j)y =2 (=1 (1.14)

Proof. Elementary. Use that the summand in the Lh.s. can be rewritten as P(i + £, )
times the r.h.s. Then use that -, P(i+4j)=1 0O

Lemma 3. (i) For i,j — oo such that i — j = o((i +j)% ),
. 1 1Gi—j)

P 1, )= —————=€X —— =

-/ {,/——znaﬂ) P { 2+ )

(i1) There exist 0 < c; < ¢; < oo such that

(i—j)
i+j

}[1+(9((i+j)'%)]. (1.15)

exp [—cz ] < P(i,j) < exp [—cl (li +jj) ] forali,j=1. (1.16)

Proof. Via Stirling’s formula. See also Révész (1990) Theorem 2.8. O

Lemma 2 allows us to compute the following moments, which we shall need in
Sect. 2:

2 (47— 1)'Pi,j) =2i (n=1)
/2! 4% 42 (n=2)
8i° + 12i% + 6i (n=3)

16i* + 48 + 72> +32i (n=4). (1.17)
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Lemma 3(i) is a Gaussian approximation of P, while Lemma 3(ii) shows that P(i, j)
is small away from the diagonal.

Lemma 4. For all i,j = 0 with (i,j)=+(0,0),

PG+ 1,))+PG,j+1)—2P(i+1,j+1)=0 (1.18)
with the convention P(i,0) = P(0,j) = 0.
Proof. Elementary. [J

Lemma 4 will be needed in Sect. 2 and 3 to obtain monotonicity properties and

estimates of 7 , , the eigenvector of 4 , .
ap3.p ap3.p

2. (Fp)p>o is Epi-Convergent to F*

In this section we prove Assumption (1) in Proposition 2 for the choice in (1.13).
This section is technically somewhat involved, as it consists of a chain of esti-
mates and inequalities that are needed to handle the epi-convergence. The proof is

contained in Lemmas 5-8 below. Throughout Sect. 2 and 3 we fix a € R and we
write the abbreviations Fg = Fjg, F = F%, 43 = 4 ey MP) = A(a/i’%,ﬁ),r,g =1 5 .
a Q,

We begin by splitting Fs, F' into two parts, narflely (recall (1.2) and (1.7)) ’
Fg= Fé + Fl% s

F=F+F, @.1)

with
Fiw) = =45 Jauf dolx —x)P4p (up 1. 1o874) - @2)

and

Fl(x)= Tdu Qau — 4*)x*(u) ,
0

F(x) = —ofodu ulx’()? . (23)
0

Lemma 5. Vxg —*

Proof. Abbreviate

‘xin X lim suppg 0F 3(xp) = F'(x).

.. 2. . . .
ep(i,j) =aps(i+j—1)—pl+j-1), 24)
which is the exponent appearing in Ag(i, ), i.e., Ag = e P (see (0.10)). We note
that eg has the following properties:

(i) ep(i,j) SO forizaf™3,j 21,
(ii) ep(i,j) < 1a®B3 for ij = 1. 2.5)
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Hence, for small enough f and large enough N,
1 R
Fy(xp) =B 30fdu0fdv xg(u)

x {ep(Tup=31,10847) + e (Tup 41, Top=47) } P(rup=31. [op41)
(2.6)

(use that ¢/ < 1+1¢+¢ for t < 1 and ¢ < 0). The integral over v can be trans-
formed into the following sum:

ﬁ%gjl{e,,(i, J)+ €36, )}PG, j) with i = [up™3] . 2.7)
Using (1.17), we can carry out the summation. Namely,
Tent PG = ap(2i) — P(ai® +2i),
;} €3(i, ))P(i,j) = @ B3 (4% + 2i) — 2aB3 (83 + 1212 + 6i)
J=
+ B2(161* + 487 4+ 722 + 32i) . (2.8)

Since i = [uﬁ”%l =W+ 1),3"%, the contribution to (2.6) of the second sum can
be estimated above by

B3 (6a%(N + 12 + 168(N + 1)4)fdux§(u) = (9(/3%) , (2.9)
0

where we use that ||xg||,2= 1. The error term is uniform in x4 for fixed N. Hence
we get

Fjxp) < ﬂ‘%;fvdux,%w)
x {ap? (2lup=31) - p(aTup=412 +2up=41) } + 0(B)
- ;fduxf,(u)(zau — 4P+ OB . (2.10)
Now let # | 0. Then we obtain, recalling that x; —%" x,
lim supy (Fj(xs) < limsupg lO;fva,ru xp(u)(2au — 4u?)
= zdu ¥ (u)(2au — 4u?) . (2.11)

Finally, let N — oo and note that the r.h.s. of (2.11) converges to Fl(x). [J
Lemma 6. Vx € X: liminfgoFj(x) = F'(x).
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Proof. Estimate
Fix) = ﬂ*%fdu:fdv e ([up=37, [op$)P(up=$1.T0p~41)  212)

(use that ¢ = 1 + ¢ for all ¢). The integral over v is B% times the first sum computed
in (2.8) with i = [uf~3]. Hence

Fi) 2 B4 Jdu 2(w)
0
x a3 (2up™3) — B(aGuB™ + 12 +2p5 + D)}
= Ofodu () 2au — 42) + O(B3) . (2.13)
0

Now let | 0. Then the claim follows. O

Lemma 7. Vxg - x in X with x € ¥ : lim supg o F5(xp) < F2(x).
Proof. The proof is in Steps 1-3 below.

Step 1. For every ¢ > 0 and N,M finite,

LN M L 12
F3(xp) < —4(1 + O(BY)) [du {ldw[ﬁié{xﬁ(u)—xp(wwm)}] Nau(w), (2.14)

where N, is the Gaussian with mean zero and variance 2u.
Proof. Pick ¢ > 0 and N, M finite. Then

1
2 2 u+Mp6 1 i
Fi() < —1pTe V0 fdu [ dv bp(u) = xp(0)PP([up ™31, [o~37)
u— Mﬁ%
(2.15)
where we use that Ag = e/ P with ep( [uB~37,[vB~3]) = —9N2B3 on the integra-
tion area (see (2.4)). Put w = ﬁ—%(v — u). Then by Lemma 3(i),

2 —; — %N M 1 1.2
Fi(xp) = — 173N [du {ldwﬂﬁ[xﬁ(u)—xﬁ(wrwﬁﬁ)]

x {—L—exp[-g— }(1+(9(ﬁ%)), (2.16)
\/ 2n2uﬁ_%

where the error term is uniform on the integration area. Collecting all the powers
of B, we get the claim. [

To investigate the limit of the integral in (2.14) as f | 0, we proceed with a
technical fact contained in Steps 2 and 3 below. Let Tj, be the translation operator
defined by Tjxp( - ) =xp( - +h).
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Step 2. For every 0 < a < b < o0,

b (] 2 b ,
}m% af{z[rhxﬁ—x,;](u)} = af[x w)Pdu. 2.17)

Proof. Since (2.17) is trivial when the liminf is infinite, we may assume that the
liminf is finite, say L. Pick any subsequence 4,, , along which the liminf is reached,
and put y, = 5-[Th,xp, — xp,]. Then, because ||yull2p7 < L+ 1 < oo for n large
enough, it follows from the Banach-Alaoglu theorem (Rudin (1991) Theorem 3.15)
that there exists a subsequence (y, ) and a y € L?*[a, b] such that

Y, — y weakly in L*[a,b] (k — 00). (2.18)

Thus, for any ¢ € Cl(a,b) = {¢ € C(a,b) : supp(¢) C (a,b)},

b
[ ym Wdu)du — [ y(u)p(u)du (k — o). (2.19)

Next, the Lh.s. of (2.19) can be rewritten as

b b
Jyn )p)du = [ LT, xp, — xp,1(w)P(u)du

bthal (1,503

= [ xp,@AT-4,¢ — $lw)du

“+h"1{h,,<0}
b
= [xp, (W) [T-n, ¢ — $)w)du + o(1) (n — 00) . (2.20)

The last equality holds because ||xg,||;2g+) =1 and [L[T-4,¢ — ¢]| < max,cg+
[¢'(u)] < oo. Let n — oo and note that by the latter property,

1
h—[T @ — ¢] — —¢' pointwise and weakly in L*[a,b] . (2.21)

Together with xg, P x, (2.21) implies that the integral in (2.20) tends to
2 x(u) [~ ¢/ ()] du = [ x'(u)p(u)du (recall from (1.13) that x € ¥ C C'(R})).
Since Cl(a,b) is dense in L?[a,b] in the weak topology, we thus have from (2.19)

y=x"ae.onla,b]. (2.22)
The claim in (2.17) now follows by combining (2.18) and (2.22), and noting that
Il * lz2(apy is lower semicontinuous in the weak topology: L = 1imy— oo | Yy Il 120ap; 2
||y”L2[a,b] = “'x/“LZ[a,b]' 0

Step 3. For every ¢ > 0 and N finite, every [ : RY — R™ bounded and contin-
uous, and every w € R,

2
lirllillg)nflfvdu f(w) B_lf{xﬂ(”) — xp(u + wﬁ% = ffvdu fa)wx' . (2.23)
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Proof. Pick any sequence (f,) of functions on R™ such that

(1) fo(u) = fog for cop—1 <u S cpp (k=1,...,05¢n0 = &,Cpp = N),

i fus /.
(iii) f, T f in sup-norm on [¢,N] as n — 00 . (2.24)

Then, by (i) and (ii),
N 1 i 2
Lhs. (223) 2 liminf [ du f,(u) {—l{xﬁ(u) — xp(u+ wpe )}]
Blo % ﬁE

n Cnk 2
2 3 fuliminf [ du [L.{xﬂ(u)—xﬁ(wwﬁ%)}]
k=1 [ 3

g1 o
n Cn,k )
/
Z Y fok [ duwx'(w)]
k=1 Cnk—1

du fu(w)wx' W), (2.25)

Il
m%z

where in the third inequality we use (2.17) with &= wﬂ% and a = cpp—1,
b=cu (k=1,...,n). Now let n — oo and use (iii) together with Fatou to get
the claim in (2.23). O

Using (2.23) we can now finish the proof of Lemma 7. Indeed, continuing with
(2.14), we get

M N
limsup Fj(xp) < —1 [ dw [du Ny(w)[wx'(u)?
BLO M

&

= —%} du [x'(w)} 7 dww?Na(w) . (2.26)
€ —-M

Finally, let M — oo and note that [*°_dw w?Na,(w) = 2u. Then let N — oo and
¢ | 0 to get the claim in Lemma 7. O

Lemma 8. Vx € Y such that [J° w’x*(u)du < oo: liminfgyo F3(x) 2 F2(x).

Proof. The double integral defining F' f;(x) is split into three parts, which we estimate
separately in Steps 1-3 below.

Step 1.
lim =473 Jaufdo L |y et 10 @ ApC[up =51 [0~ =0

(227)
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Proof. First consider the part where u > ﬁ_%, v = 0. By (2.5)(ii) and Lemma 3(ii),

—ypt °f° duffdv [e() — x(0)PAg([up~31, [0p~41)
[3—3

1
6

> - 1pieies §{ [ du f dv [x(u) — x(0)PP([up~31, [op~31)
8

21
6 §ﬂ

[ers) B é —~3l(u._v)2
+ f du f dv [x(u) x(v)] e —afb (u+v) }
1 0
6

=—%/3_% i’ 5{ [ du f dv [x(u) — x(v)*P([uB™ 3] [vB~ 3])
B

21,
s 1p7%

~1
+ O(e~129F 2)} , (2.28)

where c¢; is the constant in Lemma 3(ii). To get the error term we have used that

(u— v)*/(u+v) = L(u— v) on the integration area. The double integral in the r.h.s.
of (2.28) can be bounded above by

f du f dv [x(u) — x(0)PP([up~31, [0B~37)

Nol—
"Q:o
O\l—
N
ﬁ
O\I—

s % Lo
<28 [ dux(u). (2.29)
b7
Hence
rhs. (228) = — [1+<9(13 )] VT dux)
17
A vegh] T avee
b
=o(1). (2.30)

By symmetry, the same estimate holds for the part with u = 0,v > ﬂ_%. O

Step 2.

lim — 63 [ du dv ) = x(0)P Ay ([up ™31, [08731) =

2.31)

_1 L
{upsp 8 Ju—v|>p24}
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Proof. By (2.5)(ii) and Lemma 3(ii), the integral in the Lh.s. of (2.31) can be
bounded below by

=
N—
O~I—

1 —‘ (u—r)2
i3 a1 o] > B ) - xep e S
0

o~|—-
O\l'—

eropt f du f dv [¥(u) + ()]

= (e 39F )y, (2.32)
where ¢; is the constant in Lemma 3(ii). O
Step 3.

1
6 6

[ du Ofdvlﬂu oyt 0 = 30 g ([ ™31, [0 47)

Z
lim inf 3
Blo

Nl'—

= liminf 3
n}llz)n 5(x)
> F2(x). (2.33)

Proof. By (2.5)(i1) and the mean value theorem we have

_l _l
6 6

1 _% — 3 3
S ARE Of oyt 00 X0 5 (Tup =31, [0B47)
_; 12 %°° oo o 2
2 —3p e { ‘Ofdvl{lu—-vléﬂﬁ} [(” v)x (éuv)]
xP([uﬁ“ﬂ,[vﬁ"i) (2.34)
for some &,, between u and v. Let
27 _1

e=ptfan u—oyP (Tup~41,7op~41) . (235)

Then, because x € C'(R{), it follows that

1

rhs. (234) = —led® %T du Ig(u) [x'(é,,)]z (2.36)
0

for some &, € [u — ﬁﬁ,u +ﬁ715] OIRBL.
Next, using (1.17) we can estimate

Tp(u) = ﬂ_%ofodv (u — v)’P ([uﬁ_%], fvﬂ_ﬂ)
0
= '3% 2P (fuﬁ~%1,1) {(uﬂ—%)z — (uﬂ“%)(2j_ 1)+ (12 i+ %)}

ﬁ%{

(p3)" = (up=3)[up3] + 1) + <(uﬁ‘%12 +3[up™3] + %) }
2u+ B3,

13
3

Il

A
=

(2.37)
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Combining (2.34) and (2.36-37) with the estimates obtained in Steps 1 and 2, we
now have

F3(x) = Lhs. 234) +o(1) 2 —(1+ 0(83)) Tdu (u+ 25X ENP +0(1).
0
(2.38)

Finally, pick 6 > 0 and define

2= sup ulx@P k=1). (2.39)
(k—1)d<u=<kd

Since &, € [u—f QI?,u +p 2L4] NIR{, it follows that for B small enough,
Jdu e+ 5B P
¢S] 9
< (1+90) [du &lx' (GOF +20 fdu [xX' (&)
5 0

s
SA+6)> (62,‘(S + 2ﬂ2l4 max {z,‘?,z,er,}) +26[du sup , <50 (V)
k=1 0 -

< (1+6)1+4571p%) S 8zf + 287 sup 55 [x ()1 . (2.40)

k=1

Now let B | 0 followed by J | 0. Because x € C!(IR), we have

oo
lim 3620 = [ulx' ()] du = —F*(x), (2.41)
lim sup [x'(0)]* = [¥'(0+)P < oo, (2.42)
010 y<25
and so '
lirl?l an rhs. (238) = F(x). (2.43)
O

Lemmas 5-8 show that F# epi-converges to F on Y. To see why, recall (2.1) and
note that if [ u?x*(u)du = oo then F(x) < F'(x) = —ooc. This proves Assumption
(1) in Proposition 2 as was claimed in Proposition 3.

3. An Approximate Maximizer of F §

Again we fix a € R and suppress it from the notation. Like Sect.2, this section is
technically somewhat involved, as it consists of a chain of estimates and inequalities
that are needed to handle the approximation.

Define the scaled form of the eigenvector 74 of Ap as

Tp(u) = B op(i) for (i— )BT < u < if3 (i 2 1). (3.1)
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By Lemma 1, 7y is the unique maximizer of Fg. However, T4 is a step function and
therefore F(7) is not defined, i.e., 7s ¢ K = {x € X : F(x) = —C} (recall (1.13)).
Thus, to apply Proposition 2, we must find an approximation of 7 that lies in K
and approximates Fg(7g) (i.e., we must prove Assumption 3(iii) in Proposition 2).

Proposition 4. 3(73) C K such that as B | 0,

@) liTp = Tpll2 = 0,
(ii) 0 = Fp(Tp) — Fp(i5) — 0. 3.2)

The proof of Proposition 4 is contained in Lemmas 9-13 below. We shall see that
it suffices to pick for 7 the following /inear and renormed interpolation of Tp:

tp = tllEll ' s
R _1 . L . .
#p(u) = B~ {p(0) + WB™F = Dei) = 74ti = 1)}
for (— DS <u<ifi (=1). (3.3)
(put 74(0) = 74(1)).
We begin with two lemmas showing what is needed about 74 in order to prove

Proposition 4. Abbreviate Atg(i) = (i) —15(i — 1) (i = 1).

(ii) 0 < Fy(tp) — Fy(ip) < AB)B~ 3| Angl%[1 — Ll Acll% + L300
Proof. (i) From (3.1) and (3.3) we compute

Lemma 9. (i) |75 — Tsll,2 < || 474ll,2 + 75(0) .

[T — 2612, = Ll dzpll%, (34)
I£al72 = llgllZ — (zp. Atp) 2 + 1| At (3.5)

Using the relation (tg, A7), = 4| Azg]|7, — %12(0), together with (3.4-5) and
lltpllz = 1, we get

T — Toll2 = 11Tp — Tsll 2 + 1155 — Tl 2
= [T — Tgllz2 + lI1Epll2 — 1
= (414tpl2)% + (1 — Ll dzgl% + 13012 — 1
< (D 5ll + Ll zgls + 4250
< (DF + Dl + 473(0) (3.6)

where we use that [|474)/. < 2,73(0) < 1.
(ii) From the definition of Fj in (1.2) we get, after substitution of (3.1) and (3.3),

_ _1 1
Fy(tp) = B3 (tp, Agtp)p — B3 ||7pll%

Fy(tp) = B3 {(vp — Y Avp), Ag(tp — 1Atp))p — B3 |1esll% (3.7)
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It follows from (3.7) that

Fg(Tp) — Fp(tp) = Fp(Tp) — 5 Fp(Tp)

II H
where in the second equality we use the symmetry of A4z and the relations

Aptpg = AM(P)tp and (3.5). Finally, observe that |(dtp, Agdtg) 2| < (|A1p|, Ag|ATp) 2
< APl Azl to get the claim. O

Lemma 10.

F(ip) 2 = 2v5lal (B2 Loz P5D) " 11 = gyl + 45300

{20;33 S 2G3) + p3 szﬁ(z)} [1 — | des]% + 450"

=
(3.9)
Proof. According to (2.1) and (2.3)
F(ip) = jdu {(2au — 41y i (u) — ulEy(w)) } (3.10)
Use (3.3) to obtain the estimates
[ ) < 3 ¥ Pmax(zi0). 5 - 1}
:fodu Wiy < B3 Yiddi) . (3.11)

izl
1
2

Sir;ce Jo7 duuty(u) < ( [y du i) ? |22, we get the claim because F (%) =
WFﬁ(Tﬁ)- O

Lemmas 9 and 10 set the stage for the proof of Proposition 4. Namely, we now
see that it suffices to prove the following estimates:

Lemma 11. There exist Cy, Cy, C3, C4 such that for [ small enough,

(i) ;z’%ﬁ(i) <cp i,

-

(i) YLidey(i) < Cp3
i>1

(iii) 73(0) < C3p° log} ,
. 2
(iv) [|4tp]l} < Caf5 log . (3.12)

Indeed, Lemmas 11(iii-iv) and 9(i—ii) imply (3.2), while Lemmas 11(i—ii) and
Lemma 10 imply that F(fg) = —C for f small enough and C sufficiently large,
which guarantees that 75 € K(= K2).
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In the proof of Lemma 11 we shall make use of the following two additional
lemmas, the proof of which is deferred to Sect. 4:

Lemma 12. Vf > 0: Acg(i) = t4(i) — tp(i — 1) < 0 for all i = 1o .
Lemma 13.

limsup B3 [A(f) — 1] < 1,
Blo

1 1 2
. 1 _ > 2~
lnpl})nfﬁ 3 [l(ﬂ) 1] > 2na p (a>1)
1 1
—a———-2(@=1). (3.13)
s 2n

Proof of Lemma 11(i).

Step 1. For every ¢ > 0 small enough there exists Cs such that

> izrf;(i) < Csﬁ'% for B small enough . (3.14)

i<ef”

Nl—

Proof. We start with the trivial inequality
1 . 12 -
53 [ep(D) = ()] Ap(i) 2 0. (3.15)
Lj

The Lh.s. of (3.15) can be written out and estimated from above as follows:

[1— AP + S550) [Ap(ie ) — PG )
L)

SN-API+ Iré(z‘); [es®) — 1] P(i, j)

i<ef 2

-+ X

i<ef

()Y [ep(i,)) + €50, j)] PG j) - (3.16)
J

N~

For the two inequalities we refer to (2.4-5) (use that ¢ < 14 ¢+ % for t < 1 and
t < 0). The sum over j has been evaluated in (2.8). Using that i < eﬂ“%, we get

r.hs. (3.16)
<[ -XBN+B 5 ) {2alpt) — (4 — 1682 — 6ap )it 7}

D=

i<ef
(3.17)
Combining (3.15-17) we arrive at the following inequality:
(41688 — 6ap)pi Y o)
t§sﬂ_%
< I - AP +2apF T i) . (3.18)

A
o™
=
Nl

i
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Now, ﬁ"% [1 — A(B)] = C¢ by Lemma 13. Moreover, by Cauchy-Schwarz

1

2
> ir%(i)§< > izrz(z‘)) :
igeﬂ_% isef

Hence the claim in (3.14) follows for ¢ such that 168¢? < 4. [
Step 2. For every ¢ > 0 small enough there exists C; such that

rol—

> ‘Tfy(i) < C1B3 for B small enough .
i>ef” 2
Proof. Rewrite (3.15) as (recall also (3.16))
z r,;(z)Z[ — e PG, j) <

1>¢f 2
[1-ap1+ X r,;(z)z[ WD — 1] PG, j) -
isop™3
Since ep(i,j) < ‘a2,83 for i,j = 1 and ep(i,j) < —1¢® for i > ef2

(2.4-5)), we get

1
(1—e™4) T 36) < Gt + (37 - 1),
1>ef” 2
This implies the claim in (3.20). O
Step 3. For every ¢ > 0 there exists Cg such that

> isz;(i) < Csﬂ—%fOF B small enough .

~1
i>eff 2

(3.19)

(3.20)

(3:21)

=1 (see

(3.22)

(3.23)

Proof. Pick i > 8,3—% and § > 0 arbitrary. Then, using (2.4) and Lemma 3(ii), we

see that there exists C(5) > 0 such that
(i) = l(ﬁ)zAﬁ(lj)Tﬁ(])

= =3P PG, j)rp(j)

/1(13
1 8
= T5¢ 4 ;P(t ()
< (4078 T PG + 0.

7>(1-0)i

(3.24)
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Using (3.24) we get

Y PO S (40 T 2T gi)PG))0) +o(l)

i>ep 2 isepm 3 IO
((1+55))2 -3¢ Zlf(l HITPTR([(1 = 8)i]) + o(1)
i>ep 3
= ((1‘_*5‘3))3 DY 0 Fo(h)
1>(1—8)ef ™ 2
= ((1Ij§))3€'%82 > lizr,zg(i)+szﬁ“c7/3% +o(1).

i>ef” 2

(3.25)

The second and the third inequality use Lemma 12, the fourth uses (3.20) with ¢

replaced by (1 — d)e. Now pick ¢ so small that (1+§))3 < e%. Then we obtain
(1—e3) 3 233) < e i RGBT +o(1). (3.26)
z>eﬂ_%

This proves the claim in (3.23). O

Steps 1-3 complete the proof of Lemma 11(1). O
Proof of Lemma 11(i1).

Step 4. For all B

'ZliArfj(i +1)= /1(/3) Zl(z +j—-1) [ eeli(i+1J)—€/I(l,j)] t5()Ap(i, j)Tp(j) -
iz ijz
3.27)

Proof. Write out
;Mﬁ;(i +1)= zz [epi + 1) — t4(0)]

e 2 2itp(i)Ag(i + 1, /)()) -

(3.28)

= Zi:i [t5G + 1) + 13()] — ,1(/3)

Now substitute the relation (see (0.10-11))
Ap(i +1,j) = e TDPG + 1, )

o
= L pg, )

_ peplitl— e,;(u)‘_ié_Aﬁ(, 0. (3.29)
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This gives

SiATh(i+ 1) =rhs. (3.27) + Zi[r%(i + 1) + 13(i)]

X(ﬂ)

Ty 2+ 7 = Drp(D)Ap(i, j)ep()) (3.30)

Both sums in the r.h.s. are equal to ) ,(2i — l)ré(i) and therefore cancel out. [J

Step 5. For B small enough

1
)'(ﬂ)z,)>l

S i+ — D[ — eI 0p(i)Ap(i, j)Tp(j) < Cofi5 . (3.31)

Proof. By (2.4) we have ep(i + 1,j) — ep(i,j) = aﬁ% — B(2i +2j — 1). Hence

lhs. (331) < —L— S GE+j-1 [e,;(i,j) —ep(i + l,j)} 15(1)Ap(i, j)Tp(j)

/1(13)1;1'21

< x ﬂ)ZﬁZ(I + ) p() A, )tp(S)

8[1;:’%%(1')

IIA

(332)

(use that ¢ = 1 +¢ for all ¢). In the third inequality we use the symmetry of Ag
and the fact that ||4p]|, = A(B). The claim now follows from Lemma 11(i). O

Steps 4-5 complete the proof of Lemma 11(ii). O
Proof of Lemma 11(iii).
Step 6.

1%(0) < Cmﬁ% log% for B small enough .

Proof. By Cauchy—Schwarz, we have for every N,

N
15(0) = 15(N) — ;A‘fﬁ(i)

N 3 N2
r,;(N)+(Z;) (;:Arﬁ(z))

i=1

lIA

(3.33)

(3.34)

Pick N = [/3_%1. Lemma 11(i) gives 'c,g(l’ﬂ"%]) < Clﬁ%, Together with Lemma

_1
11(ii) and the estimate Z!ﬁl 21 % < log —15, the claim follows.

Step 6 completes the proof of Lemma 11(ii1). [

Proof of Lemma 11(iv).

0
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Step 7. For all

Z}AT/;(I +1) —-(75 So (1= eI 1 (i)Ap(i, f)Tp( )
1> 1]

(1)=# (1)

— 1 = Zdp(1, )] (335)

Proof. By Lemma 4 we have the following relation:

Ag(i,)) — Ap(i = 1,j) = Ap(i,j — 1) = Ag(i, ) + 24p(0, j) [1 — e =s)]
note that eg(i — 1,7) = ep(i,j — 1)). Hence (3.36)

ZAT;‘U + 1) :Z [f/i(i + 1) - T/;(i)}z
=15(1) + 221,;(1') [ep(i) — T — 1)]

=)+ 5 ;( 7 S (4 )) = Agli = L)) ()
=t(1) + 5o m % Xoep(i) [Ap(i.] = 1) = ApCi )] 24()
x [,) T (1= e 1y yen() -

122 ]

(3.37)

The third term in the last expression is twice the sum in the r.h.s. of (3.35) except
for the part with i = 1,j = 2. The second term, on the other hand, can be rewritten
by carrying out the sum over i, namely (use that A(i,0) = 0)

j =1: A(ﬁ)Z‘E/g(l)A/;(l 1)1,'/;(])

= —2t5(1) + ——=13(dp(1, 1),

(/f)
j=2 (ﬁ)zfﬁ(l) Ap(iyj — 1) — Ap(i, j)]tp(j)

=2tp(Dep(J = D) = 1p()] = 575 1p(DIAp(1L ) = 1) = Ap(1, DIep(f) -

(3.38)

(ﬁ)
Thus, after also carrying out the sum over j, we see that (3.37) becomes
S AT+ 1) = = S AT+ 1)

i ]

+ 2{r hs. (3.35) — — O] (1) Ap(1, j)Tp())

2
(ﬂ)/>2 [1
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424
(3.39)

+r},(1)[1 l(ﬁ)Aﬂ(l 1)]}
=250 tp(1) [Ap(1,) = 1) — Ap(1,))] ©5())

z(B)”*(”A”“ 1) - A(ﬁ)

Now, by (3.36) for i =1
—ep(1 . .
WO~V ) = —[Ap(1,7 — 1) — Ag(1, /)] + Ag(1, ) (3.40)

201 —

Hence (3.39) simplifies to
me,(j +1)+2 rhs. (3.35)

me,(iﬂ):—

i J

{ZT;;(I) A(ﬁ)r/;(l)A/s(l 1) - Z(ﬁ)zfﬁ(l)Aﬂ(lj)Tﬁ(])}
(3.41)

But the term between braces is zero. [
(3.42)

Step 8. For f small enough
rhs. (335) < Cups log%.

Proof. The first term in (3.35) is easy to bound. Indeed, we have ep(i — 1,/) —

ep(i,j) = —aB% + B(2i +2j — 3), and hence we get
2 . .. .
aP3tp(i)Ap(i, j)ep(S)

1¥ term in (3.35) <
B z;:
(i, )y+(1L1)
< 2ap? (343)
(in the first inequality use that ¢’ = 1+ ¢ for all ¢). For the second term in (3 35),
L and eg(1,1) = ﬁ% B. Together with A(f) = 1 — C6[33 (see
(3.44)

use that P(1,1) = 3
below (3.18)) we get
2" term in (3.35) < 21%;(1)C6ﬁ% for f small enough

Finally, use Step 6 to get the claim (recall that 74(0) = 14(1)). O
iv). O

Steps 7-8 complete the proof of Lemma 11(iv)
Lemma 11 completes the proof of Proposition 4. Lemmas 12 and 13 will be

proved in Sect. 4.
Proposition 4 shows that Assumption 3(iii) in Proposition 2 holds. We shall

prove Assumptions 3(i), (i) in Sect. 5
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4. Proof of Lemmas 12 and 13

4.1. Proof of Lemma 12. Let (e;);>1 be the canonical ++base of I>(N). Let
s = (s(i))iz1 be any sequence of numbers in (0,00) and let # = (#(i));> be given
by #(1) = 1,2(i) = [J._} s(k) (i = 2). Define

By={xe P(N): x 2 0,x(i + 1) £ s(ix(i)},

B? ={x=3"¢jfj:¢; 2 0,¢c;+0 finitely often} , 4.1)
J
where f; € [*(N) is defined by

J
fi= 2t(i)ei . 4.2)
Lemma 14. (i) B; is a closed convex cone.
(ii) By is the closure of BC.
Proof. Elementary. [

Recall footnote 6. Since, for every f > 0, A4 is a continuous operator on /2(N),
we have from Lemma 14(ii) that

ApB, C By < Apf; € B, forall j 2 1. (43)

Since, for every f > 0, Ag is symmetric and has a spectral gap, we also know that
MB)~"Apx P (x, 78215 (n — 00) for any x € I*(N). Pick any x € B with x30
to get that
ApB; C By = 13 € B . 44)

Below we shall prove the following:
Lemma 15. If s satisfies

. . .~1—

M > eaﬁ%—ﬂ@l‘“f“)for alli21,j=0, (4.5)
i+ - - -
then Agf; € By for all j = 1.
Lemma 15 combined with (4.3—4) shows that

ye N B. (46)
{s: s satisfies (4.5)}

The r.hs. of (45)is = 1 wheni+j = § /3‘%. One therefore easily sees that the
following choice of s satisfies (4.5):

s =1 for i > gﬁ—%
] 1 (4.7)
=Np~3 fori < §B73,N large enough.

This proves Lemma 12. O
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Proof of Lemma 15. We must show that for all i,j = 1,
0 < s(i)(A4pfi)(i) — (Apfi)(i+ 1)

= l?;[s(i)Aﬁ(i,k)t(k) — gl + 1k = Dik = D] = 4gli + 1)) (48)

(recall from Lemma 4 that Ag(i + 1,0) = 0 by convention). In order to do so, define

D) = 3 [sMp R0 = Apti + 1k = Ditk = D] = 2456+ 1L)i() - (49)

The following lemma gives a sufficient criterion for ;(j) = 0, which implies (4.8):
Lemma 16. If

s()Ap(inj + 1)+ —=Ap(i +1,j) = 24p(i + 1,j+ 1) 2 0 forall i 2 1,j 2 0,

( )
(4.10)
then
(1) j — ¥i(j) is nondecreasing for all i = 1,
@y (1)=0foralli=1. (4.11)

Proof. (i) By (4.9-10),
Yi(j+ 1) — ()
= s(i)Ap(i,j + 1)t(j + 1)+Aﬂ(i+ Lt(j) —24p(i + 1,7+ 1)(j+ 1)

:t(j+1)[s(i)A,;(i,j+l)+ ()Aﬁ(z+1,1) 2A,g(i+1,j+1)] >0. (4.12)

(ii) Similarly (since #(1) =1 and 4(i +1,0) = 0)
Yi(1) = s(i)A4p(i, 1) = 24p(i + 1,1) =2 0. (4.13)

O

To complete the proof of Lemma 15, it remains to rewrite (4.10) in the form

of (4.5). Abbreviate f(i) = exp[aﬂ%i — Bi®]. Then we have Ag(i,j) = f(i+j—1)
P(i,j). Use Lemma 4 to write

Lhs. (410) = f(i +)) [s(z)P(z j+ D+ —%P(z + 1,])]

—2f(i+j—-DPGE+1,j+1)
=P@0,j+ D@+ 7)) = fE+)+1)]

+P(z+l,j)[ﬁf(z+j)—f(l+j+l)} (4.14)
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Next use that P(i,j + 1)/P(i + 1,j) = i/j. Then (4.10) is seen to be equivalent to

BOYH L fatity
i+j = f+))
Substitute f to get (4.5). O

(4.15)

4.2. Proof of Lemma 13. To prove the upper bound in (3.13), use (2.5)(ii) to get
MB) = 3 _p(D)Ap(i j)Tp())
ij

= Y rp()e P PP, j)ep( )
l’j

e%azlﬁ Zﬂcﬂ(i)P(i,j)T[}(j)

i,J

IIA

W

e

I\

, (4.16)

where the last inequality follows from ||P|| < 1. This immediately gives the claim.
To prove the lower bound in (3.13), use (1.3)(i) to get that for any x € L>(R*)
with ”x”LZ = 1,

BT3B ~ 1] 2 Fix) . (4.17)
Pick for x

2 \% _2
xo(u) = (;‘—2> e 42 (0 >0). (4.18)
Now, we know from Lemmas 5-8 that
ll}g)ng(x,,) = F%x;) . (4.19)

Hence liminfgof~3[A(B) — 1] = F4(x,). Compute

Fi(x) = <>fo{(zau — 4o () — ulxp(w)) Ydu
0

1
2 2 % w i
={— 2au — 4% — — 202 ¢
(n02> of ( au — 4u 464> e u

1
8 2
z(_> a0 — 4ot — 1 (420)

n (27‘5)%0'

Pick 0 = g(a) = 2L to get the claim. O
(8m)2

5. Analysis of the Limit Variational Problem

Recall the notation in (1.13):
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X={xel’ (R"):x = 0,|x[l2 =1},
Y=XnCY(RY),

K=K¢={xeY:F(x) =2 —-C}. (5.1)
In this section we analyze the limit variational problem appearing in (1.6), i.e.,
sup F4(x). (5.2)
XEX

In Sect. 5.1 we show that x — F“(x) is upper semicontinuous and K¢ is relatively
compact in X (in the L?-topology). This implies that 7 achieves a maximum in
K¢ ={xeX :F(x) Z —C} (+0 for C large enough). In Sect. 5.2 we show that
all maxima of F* in X are solutions of the Sturm-Liouville problem

P = px (p € R,x e XNC®(R")), (5.3)

where #“ is defined in (0.17). In Sect. 5.3 we analyze (5.3) and show that it
has a unique solution x? satisfying F?(x*) > —oo and x? > 0, with corresponding
eigenvalue p(a). This identifies x* as the unique maximizer of (5.2) and p(a) as
the maximum. We also study a — x* and a — p(a) to prove the claims that were
made in (0.19).

5.1. Existence of a Maximizer of F° in K&. It will be expedient to transform
Fe, % K¢ as follows. Define (recall (1.7))

2
Fag) = —F) + (5 +1) Il

= :fo {9 x@)T + pw)lx'(w)) }du (54)
with
pu)=u,
1 \2
q(u) = <2u — 5(1) +1. (5.5)

F4 is the “energy” functional corresponding to the Sturm-Liouville differential
operator #“ defined by (recall (0.17))

R 2
(L)) = ~( L)) + (G +1)x@)

= q(u)x(u) — [p(u)x' )]’ . (5.6)
Define (recall (1.13))
ke= KZ—(%H)
={xeY:Fix) £ C}. (5.7)

Lemma 17. For every a € R,

() K&#0 for C large enough,

(i) K% is relatively compact in L*(R™*) for all C € R,
(iii) x — F%(x) is lower semicontinuous on L*(R*).
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Proof. Standard.

(i) Trivial.

(i1) We check the conditions in Dunford and Schwartz (1964) Theorem 1V.8.20.
(a) K& is bounded in L*(R™).

(b) By Cauchy-Schwarz,

oo o0 u+v 2
[ Ge(u +v) — x(u))du = [ < fx’(t)d:)
0 0

u

< T du [log(u +v) — logu]fdt tIx' ()P
0
sz 1 (OPI ) 50y (5.8)
0
where v ;
1(4,0) = (1 + v) log (1+;)+(t—v)log (1~;) . (5.9)

Since t — I(t,v) is decreasing and I(v,v) = 2vlog2, it follows that
o0
li}'{)l Jxe(u+v) — x(u))*du = 0 uniformly for x € I&“C . (5.10)
vi% 0
(¢) From p(u) =z 0 and lim,_,o g(u) = oo follows (see (5.4-5) and (5.7))

(o0}
lim [x*(u)du = 0 uniformly for x € K& . (5.11)
N—)OON

Conditions (a)—(c) imply that K ¢ is relatively compact.
(iii) Define .

Ve ={x e L*(R"): F%x) < oo} . (5.12)
On V' define the inner product

CRNTES f{lI(u)x(u)y(u)+p(u)x(u)y(u)}du (5.13)

Then, because p(u) = 0 and g(u) = 1, (V% ( -, + )ya) is a Hilbert space, |||y« =
|Ix|l;2 and

Fox) = (x)pa = [[x]17a - (5.14)
Thus we must prove that liminf, o ||x,||ya = ||x||y« for any x, —

Let L = liminf, 0 ||Xs]|ya. The case L = oo being trivial, assume L < oo.
Then, by the Banach-Alaoglu theorem (Rudin (1991) Theorem 3.15), there
exists a subsequence (x,, ) and a y € V* such that L = limy_, o0 ||Xp, ||y« and x,, —
weakly in V* (k — c0). Hence L = ||y||y« by fatou. But, by (i1), weak conver-
gence in V* implies strong convergence in L*(R*). Hence Xn, b y. Together
with x, — x this implies y = x and hence the claim follows.

Incidentally, note from (5.4-5) that V¢ does not depend on a, because it
is nothing other than the collection of x € L2(R*) for which [~ {?[x(u)]* +

ulx'(w)*}du < oo (recall (0.18)). O

Lemma 17 implies that F achieves a minimum in K'_Té (for C large enough).
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5.2. Characterization of the Minimizer(s) of F°

Lemma 18. Any minimizer ¥ of F® in X is a solution of Pox = px for p=
p(a) € R, the minimal eigenvalue of £° in V*°.

Proof. Standard.
Define p(a) by A
pla) = rréi)x(lF”(x) . (5.15)

Let X € V* be any minimizer. Then for any 4 € L>(R*) and ¢ > 0,
Fo(x + ch) = p(a)||% + eh|2, . (5.16)

Writing out both sides of (5.16) and using that F9(%) = j(a), we obtain (see
(5.13-14))
26T, hyya + Al Z pla){2e(Fh)p2 + A5} - (517)
Let ¢ | 0 to obtain
(X, hyye = pla){x,h)2 for all he V. (5.18)
Replace 4 by —h to get the reverse inequality. Thus
(X, h)pa = p(a)(x,h);2 for all he Ve . (5.19)
Now note that we have from (5.6) and (5.13), after partial integration,
(% h)pa = (%, L?h) 2 for all h e C3(RY). (5.20)

It follows from (5.19-20) and the symmetry of £ that  is a weak solution of

Py

&% = p(a)x. This in turn implies that X is a strong solution.
To see that p(a) is the minimal eigenvalue of £¢ in V¢, note that if ¥“x = px,
then by (5.6), (5.13-14) and integration by parts,

Fox) = (6, x)pa = (6, LX) 2 = plxllz = p - (521)
O
5.3. Analysis of the Sturm-Liouville Problem. Lemmas 17-18 show that F¢ has a

maximizer in K—g and that each maximizer is a solution of #“x = px for p = p(a),
the maximal eigenvalue of .#% in V* (recall (5.4-7)).

Lemma 19. (i) A/l solutions of ¥*x = px are of the form
x*P(u) = [*(u) + g™ (u)logu , (5.22)

where % and g** are power series with infinite radius of convergence.

(i) F(x*) = —oo if g** 0.

Proof. (i) Formally substitute f**(u) = Z@ o fntt" and g**(u) = Zn;o gnu". Then
the coefficients are found to satisfy the recurrence relations

1
gn = ;i(pgn—l —2agy_» +4gn—3) (n = 1) s

fu= 0 fus —2afu 4 s~ 2ng) (12 1) (5.23)
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(with f_; = f_, =¢g_1 = g_ = 0). Note that also g** is a solution of ¥*x = px
and that f“# depends on g*’. By induction on n, (5.23) is easily shown to give
the following bounds:

1ful S KJt)3 (n 2 1),
lgn] < K(n1)"3 (n 2 1), (5.24)

with K;,K, large enough (depending on p,a and fy,go). This implies that the
formal solution exists everywhere.
(ii) Trivial, since %x“”’(u) ~gou~'(u | 0) with go+0 implies that F9(x*F) =
—o0, while gg = 0 implies that g, =0. O
At this stage we know from Lemma 19 that all maximizers of F“ are of the form
x*(u) = f*(u) and, in particular, are analytic on IR{.

Our next step is to find the asymptotic behavior of the solutions of (5.3) as
u — oo. This will be needed to get uniqueness of the maximizer.

Lemma 20. %“x = px has two independent solutions x* and x%* satisfying

4
lim u~ 2logx®(u) = £~ . (5.25)
U—00 3

Proof. We use Coddington and Levinson (1955) Theorem 2.1 on p.142-143. Define

wi(u) = x*(u)

(5.26)
wa(u) = u 2w (u) .
Then (5.3) can be written as
w(u) = u""B(u)w(u) (5.27)
with » = 2 and
w(u) = (:;EZ;) ,
B(u):<?6_3_‘2,+4_$42 1_%> (5.28)

Note that B(u) =, sot "By (Bo#0) is a convergent power series in u~!, with By
having eigenvalues 4;, = £4. Therefore (5.27) has a formal solution of the form

w(u) = P(u) ufel™ | (5.29)

where P(u) =Y o u""P, (det Py+0) is a formal power series in u~!, R is a

complex diagonal matrix and Q = %Qe + ...+ uQ, is a matrix polynomial with
Q, diagonal and Qy = diag{4, A;}. From the proof of the cited theorem it follows
that P, 0, R can be chosen to be real because B, 1), are real. On p. 151 of Codding-
ton and Levinson (1955) there is the further remark that for every formal solution
there exists an actual solution with the same asymptotics. [J

We see from Lemma 20 that x%* ¢ L>(R") and so (5.3) has a unique solution

in L2(R™) up to multiplicative constants.
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Lemma 21. Define
Fa={peR: f* € [*(R"), f**(0)=1}. (5.30)

Then

(i) &, is countable, bounded from above and has a maximum,

(i) p(a) = max S, is geometrically simple,

(iil) f**@ > 0,

(iv) Vp € L4, p < max &, : f* changes sign in R,

Proof. Standard Sturm-Liouville theory.

(i),(ii) By Lemma 17(ii), ¥* is compactly imbedded in LZ?(IR*) (compare (5.7) and
(5.12)). Therefore the eigenfunctions of .#* in V¢ form an orthogonal basis of V.
Since V¢ is separable, this in turns implies that #, is countable. We know from
Lemmas 19-20 that .#* has a unique eigenvector in V¢ with eigenvalue p(a), i.e.,
p(a) is geometrically simple. Since p(a) = maX,ecy« F%(x) = max &? by Lemma
18, we also know that &, is bounded from above and has a maximum.

(iii) From (1.7) one sees that Fo(|f**(@|) = F?(f**@). Therefore it follows
from the uniqueness of the maximizer that f* = |f*?| = 0. Let ug = inf{u >0:
Fo"@(u) =0} > 0.If uy < oo, then we must have L f47@ () = 0 and j‘%f""’(”)
(uo) > 0. However, this contradicts (£°f*®)(u) = p(a) f**@(u) at the point
u = uy (see (0.17)).

(iv) This follows from (iii) and the fact that the eigenfunctions of #? in V* form
an orthogonal basis. [

Lemmas 17-18 and 21 show that Assumptions 3(i),(ii) in Proposition 2 hold.
5.4. Dependence on a. The maximal eigenvalue and eigenvector of (0.17-18) are

p(a) =max ¥, ,

“_ fa,p(a)
[l f4r@]| 2

We can now prove the following properties:

X

(531)

Lemma 22. (i) a — p(a) and a — x* are analytic.
(i) a — p(a) is strictly increasing and strictly convex on IR.
(>iii) p(0) < 0, limgjop(a) = 0o and lim,)_oop(a) = —oo.

Proof. (i) We give the proof by applying Crandall and Rabinowitz (1973) Lemma
1.3 in the following setting. Pick a € R and consider the Hilbert space (V,( -, - )»)
with ¥ = V9. Then, from (5.5-6), (5.13) and (5.21),

2

(% Pypa = (L% y) 2 = p@)(x, y)2
a
( y)ve = (& yhy = 2ab(, y) + 75 3) e (532)

where b: V x ¥V — R is the bilinear form defined by

b(x,y) = ?ux(u)y(u)du . (5.33)
0
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For every x € V' the functional y — b(x, y) is continuous and linear. Hence it
follows from the Riesz representation theorem (Rudin (1987) Theorem 6.19) that
there exists a unique linear operator B : V' — V such that

b(x,y) = (Bx,y)y forall x,y € V. (5.34)
B is symmetric because b is. B is bounded because

[|Bx||} = b(x, Bx)

o0 :
< (fuzxz(u)du) (| Bx|| 2
0

lIA

3l B

I\

1
§||XHV||BJC“V (5.35)

(see (5.5) and (5.13)), so that ||Bx||y < 1|lx||ly. To see that B is compact, let (x,)
be a bounded sequence in V. Then, by Lemma 17(ii), there exists a subsequence

(xn,) and an x € V such that x,, P x (k — o). Hence, as in (5.35),

1B

X”k

— By||} = b(xn, —x,B(xs, — X))

IIA

1
[Peng. = 26llz2 5 1B Ceng. = 20)ll
1
= Hxnk —xHLZZHxnk “x”V
— 0 (k—00). (5.36)

In the same manner we can prove that there exists a unique linear, symmetric and
compact operator C : V' — V such that

(x, )2 = (Cx,y)y forall x,y e V. (5.37)

Now rewrite (5.32) as follows, using (5.34) and (5.37),

(b o)
Id — 2aB — p(a)—z C

Hence, (¥,( +, - )y) being a Hilbert space, we have

x“,y> =0 forall yeV. (5.38)
v

2
x% is a C-eigenfunction of Id — 2aB with (largest) eigenvalue p(a) — % . (539)

Next note that a — Id — 2aB is analytic in the operator norm. Therefore, to get the
claim in Lemma 22(i) from Crandall and Rabinowitz (1973) Lemma 1.3, it suffices

a

to check that p(a) — 72 is a C-simple eigenvalue of Id — 2aB, i.e.,
(a) dim(N(A%)) = codim(R(4%)) =1,
(b) Cx* & R(A“),
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where 4% = Id — 2aB — (p(a) — %)C and N(4%), R(4%) denote the null space, resp.
the range of A°.

We have dim(N(A4%)) = 1 because of Lemma 21(ii). Moreover, because 2aB +
(p(a)— é)C is compact we have dim(N(4%)) = codim(R(A*)) (Rudin (1991)
Theorem 4.25). This proves (a). To prove (b), first use that 4% is symmetric and
bounded to get that N(4%) = R(4%) (the orthogonal complement of R(4%)) and
R(4%) = R(4%) (Rudin (1991) Theorems 4.12 and 4.23). Since R(4%) = R(4%)*+,
it follows that N(4%)! = R(4%). Hence (b) is equivalent to (Cx%x?)y+0. But
(Cx*,x%yy = (x%,x%) 2 = 1 by (5.37).

(i1) Because

p(a) = sup F?(x) (5.40)
xeX
with unique maximizer x = %%, we immediately see from (1.7) that

ﬂa_ﬂ%ﬂ > T2ulf*@(u)Pdu > 0 (541)
0

(pick || f**@||,2 = 1). This demonstrates that p’(a) is everywhere strictly positive.
Moreover, since a — F%(x) is linear for every x we have from (5.40) that a — p(a)
is convex. Because of analyticity, it follows that either a — p(a) is strictly convex
or p(a) = Cia + C,. However, the latter is impossible because of Lemma 13.

(iii) Trivial. Let ¢ — £o00 in (5.41) or else see (1.7). O

6. Proof of Theorems 4-7

We can now collect the results from Sects. 2-5 and give the proofs of our theorems
in Sect. 0.4.

Proof of Theorem 5. Combine Propositions 1-3 with (1.13). The proof of Propo-
sition 3 was given in Lemma 1 and in Sects. 2, 3 and 5. O

Proof of Theorems 4 and 6.
1. »*(B) ~ a*ﬁ%. According to (0.13), »*(f) is defined as the unique solution of

Ar,p)=1. (6.1)
From (0.20) we know that for every a € R,

Bi[A(aB3,B) — 11— p(a) as B 0. (62)

Let a* > 0 be the solution of p(a) = 0 (see Lemma 22). Now, because » — A(r, )
is increasing (as is obvious from (0.10)), we have for every ¢ > 0,

A B) = 1+ B3p(a® +¢&)+o(B3) for r = (a* + )3 ,

A B) < 14 B3p(a* — &) +o(B3) for r < (a* —&)f . (6.3)
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Since p(a* —¢) < 0 < p(a* + ¢) for every ¢ > 0 (see Lemma 22(ii)), (6.1) com-
bined with (6.3) implies

(@ — &)B5 < r*(B) < (@ +¢)p} for f small enough . (6.4)

Let ¢ | O to get the claim.
2. 0*(B) ~ b*B3. According to (0.14), 0*(B) is defined as

1 0
0*(ﬁ) - [E:A(r’ﬂ)] r=r*(B) ' (65)
Define 5
gl(r, ﬂ) J
&rp) = B log A(r, B) . (6.6)

Because » — A(r, f) is increasing and log-convex (see footnote 6), we have that for
all A, > 0 and a € R,

Hapl,p) < ;l%[logz((a +mpLp) — logiapi,p]
Sapt,p) = — [logiapt.p) ~ logita—mB3B)] . (67)
hp3

Together with (6.2) this gives

limsupy o c(apt, p) < O ZP@
liminf 08} &3, B) = W . (6.8)
Let 2 | 0 to get (see Lemma 22(i))
lim 3 £(af*, ) = ' (a) . (6.9)

Next, because r — &(r, ) is increasing we have, via (6.4), that for B small
enough

Er*(B), B) < E(a" +e)B5,B) = B p'(a" + &)+ o(fF),
Er (B B) 2 &(@* —e)B3. By =30/ (@ —e)+o(BF).  (6.10)
Since (recall that A(7*(f), ) = 1)

1 *
TG GNP (6.11)

it follows that

pla@ —e) =

; < p/(a* +¢) for B small enough . (6.12)
B736+(B)
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Let ¢ | 0 to get the claim with bi* = p'(a*).
3. B 5t pp([ - B37) =L x9°( ). Put @*(B) = B~ 3r*(B). Then, similarly as in
Lemma 1,

B_%Tr*(/i),ﬁ(( . ﬁ_ﬂ) is the unique maximizer of Fg*(’” , (6.13)

where the parameter a is replaced by a*(f).
Lemma 23. Assumptions (1)~(3) in Proposition 2 hold for the following choice
replacing (1.13):

K= Kg* (C sufficiently large) ,

G 5 = Fg*(ﬁ)

G=F". (6.14)
Proof. The point is that limgjga*(f) =a*. It is trivial to check that all esti-

mates in Sects. 2 and 3 remain valid when the fixed parameter a is replaced by
a—+o(1) (Bl 0). See, in particular, the proofs of Lemmas 5, 6, 11-13. I

The claim in 3 now follows from Proposition 2.
4. ﬁ‘%ug([ g3 ot L[x® (L - )PP The proof is in Steps 1-2 below. Abbreviate
Ap = A+p)p and 1 = T,+(g)5. According to (0.14),

pptky = 32 1p(DApGLDTp()) - (6.15)

L)
14— 1=k

Step 1. There exists ¢ such that

f|/j—§uﬁ([uﬁ 3]) —1[x (;u)]zldu < cN72 for B small enough .  (6.16)

Proof. Estimate (recall that A(r*(f),8) = 1)

TB g4 = £ o)

k=Np %
_ > () Ap(i, j)Tp(j)

1
ij 1+j—1=Nf 3

2 Z (i)

lIA

IV
wl—

NI'—‘

< 8N“2B5 ¥ P()

izl
< 8CIN7%. (6.17)
The last inequality is Lemma 11(i). Furthermore,
S (bu) du < INT2 [P [x* (Su) | du. (6.18)
N N

Since x* € K"*, the integral in the r.h.s. is finite and so the claim follows. [
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. 2
Step 2. limpg), fON |ﬁ_%,u2§([uﬁ_%]) -3 [x" (%u)] |du = 0 for every fixed N.

Proof. Use the triangle inequality to split the integral into three parts:
_1 2
flﬂ Sup(fup=31) = 16 (3u) Pldu < 1N + 12V + 1V (6.19)

with (recall (6.15))

NoBh S RaBT) — x (B )| Al (B

,j: i+j—1<NB™ 3

BY=B T B IEGE) —x (BY)

iji i+j—1<NB™3

Nop—

N
By = fl S O B — 1 (

0 _
Lji ity —1=[uf 31

(6.20)
Here 74 is the scaled form of 74 given by the same relation as (3.1).
For I E’N use Cauchy-Schwarz and (2.5)(ii) to estimate
i
2
I < g S [ =GB i)
ij: i+1'—1§Nﬁ'%
%
ol ..
x > T UBHPARG))
iji i+j—1SNB
142 % - .l & aplq2 :
< e (g3 Z I[Tﬁ(1ﬂ3)—x (ip3))]
1
2
1 * 192
x| B5 X [ (B . (6.21)

1
JENB 3

Define fz* by JE‘[;(u) = x“*(iﬁ%) for (i — l)ﬂ% Suc= ,B%( = 1), in analogy with
(3.1). Then (6.21) becomes

1
LN 1. 2p7 . _ * —a*
Ip7 < ed” P 1% - 5 z2o,m 1% 1z2g0,m - (6.22)

Now let | 0 and use that 7y L xa* and JE;}* S 6 o get limsupg,o II;’N =0.
The same argument gives that limsupg,o Ié’N =0.
To estimate I;”N , we use the mean value theorem to expand x"*(iﬁ%) and

x4 ( jﬂ%) around 1u. Namely
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I R RO E )
B 2 2 du

0 _1
b itj—1=[uf 3]

i) {3 () + U8 = 1) o @ f = 1 (1))

(6.23)

with &7 between 1u and iﬁ%, resp. j/33l. Next note that x“*(u),|%x“*(u)| SM<
oo for all u € R*. Hence

N
Y §M2f| S AgGg) ~ bfdu

_1
ij:i+j—1=[uf 3]

N 1 1
o] st = it - Al

0 -1
bhji itj—=1=[up 3]

(6.24)
Next we insert Ag = e“#P and use that (recall (2.4) and (0.11))
lep(i, /)| < (lal +NNB? for i,j < NB~3, (6.25)
S PG)=5 k21, (626)
1+/'I;]1=k

1\° 1/1
» (i— —k) P(i,j) = = (—k+ 1) k=1). (6.27)

- 2 2 \4

1+)— 1=k

Then (6.24) yields (recall (2.5)(it))

1

1 LN
% 5 MG (T b2 ] (gt 4z} (628)
0

where
2 . N2, 1
zg(u) = B3 > , (i — tup™3)"P(i,j) = O(B3) . (6.29)
i,ji 14y~ 1=[up” 3]
Let f | 0 to get lim supmolé’N =0. O

Steps 1-2 prove the claim in 4.
Results 1-4 complete the proof of Theorems 4 and 6. O

Proof of Theorem 7. The asymptotic behavior of x4 in (iii) was proved in
Lemma 20 (pick a =a* and p =0). To prove (i) and (ii), we recall that x&
solves (see (0.17))

0 = (L x)u) = Qa*u — 4 x(u) + [wx'T (), (6.30)
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and has a power series representation (see (5.23))

x“*(u) =Y x,u",

n=0
1 x
Xy = n—z(—2a Xp—2 +4xn—3) (n g 1) ’

X_1=x_,=0. (6.31)

We observe that u — 2a*u —4u®> changes sign from positive to negative at
u= %a*. Since x4 () > 0 for all u = 0, it follows from (6.30) that u — ud%x"* (u)
is unimodal with a minimum at u = 1a*. It is clear From (6.31) that u£x% (1) — 0
as u | 0. On the other hand, by the unimodality we must have that uj";x“* w)—c
as u — oo. However, ¢ must be 0 otherwise fooo u[%x"*(u)]zdu = 00, which is
impossible since F' “*(x“*) = p(a*) =0 > —oo (see (1.7)). Thus we conclude that
u%x“* (1) < 0 for all u > 0, which implies that u — x* () is strictly decreasing.
To prove (iv), use (0.15) to write

B3
0+(B)

= BEE = DT s ()

= :foZu{,B—%tr*(mﬁ( [uﬂ*%])}zdu. (6.32)

As ] 0 the Lhs. tends to b—l*. Thus we must show that the r.h.s. tends to
fooo 2u[x"* (u)]*du. To prove this claim, first note that

ZOZu{ﬂ“%fr*w),ﬁ(fuﬁ‘%] )Yodu = 3 T - 1)2 ),5(0)

1
1ZNp 3

IIN

2 2 . .
Nm > lsz*(ﬂ),ﬂ(l)

iZNp

I

IIA

2
N—C; for f sufficiently small, (6.33)

where we use Lemma 11(i). Similarly, [°2ux*" (0)PPdu < 2 [7 u’[x* (u)Pdu =

o(N~') as N — o0o. Next, recall 3 in the proof of Theorems 4 and 6 to see that

N N .
1}1101 fzu{ﬁ—%r,*(,;),ﬁ([ up=3)du = J2u[x* (w)Fdu for all N . (6.34)
0 0
Let N — oo to get the claim. [
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