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Abstract. We present analytical results about a generalization of the variational
problem of Levitov and the experiment of Douady and Couder. We show that the
hierarchical selection of noble numbers in these systems occurs with a precision
depending on the range of the interaction. This precision can be infinite if the
interaction is scale invariant.

1. Introduction

1.1 Phyllotaxis, or the Enigma of Botanical Patterns. Let us first of all give a
brief survey of a problem of growth and form in botany known as phyllotaxis. It
is in fact the starting point of the problematics discussed below.

If one looks at the seeds of a sunflower, the florets in a daisy or the scales of
a pineapple, one is struck not only by the regular lattice they form, but also by the
nearly systematic appearance of Fibonacci numbers in these patterns (try counting
the number of spirals connecting nearest neighbours in the spiral lattice shown in
Fig. 1).

Early botanical observations showed that the regularity of the phyllotactic pattern
is directly related to the cellular differentiation process [1,2]. Each budding leaf (or
scale, or floret) appears on a ring shaped region (the meristem) surrounding the
top of the stem. As the plant grows, the leaves are advected away radially from the
meristem. The macroscopic structure of the leaves is therefore determined by this
initial microscopic process.

Elementary geometry and number theory show that a regular lattice of leaves is
created if the angular distance 2πθ between two consecutive leaves on the meristem
is approximately constant, θ G [0,1] is called the divergence of the lattice. More-
over Fibonacci numbers arise when the divergence is a good approximation of the
Fibonacci or golden divergence [3-5]:

= 0.381966...
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Fig. 1. One can distinguish two families of spirals (left-hand and right-hand) connecting adjacent
scales of this fir cone. The numbers of spirals in each family turn out to be two successive integers
in the Fibonacci sequence:

1,1,2,3,5,8,13,21,...

Here τ is the famous golden mean, defined as

τ =

The fascination exerted by this irrational number and its remarkable arithmetical
properties dates back to antiquity. In particular, the continued fraction expansion of
ΘF is extremely simple:

o
2 + 1

1+-

Generally speaking the divergences whose continued fraction development finishes
with an infinite sequence of units are called noble numbers. They are of special
interest in phyllotaxis.
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A first question to ask is whether the appearance of Fibonacci numbers or, more
generally, of noble numbers as divergences, is due to some geometrical constraints.
For if we represent the set of leaves by a lattice of points, it is possible to centre non-
overlapping tangent circles at each point only if the lattice fulfills some conditions.
Let us represent for instance cylindrical phyllotactic patterns by a two-parameter
family of plane periodic lattices. The set of lattices for which the construction of a
lattice of tangent circles of constant radius is possible corresponds to a tree in the
parameter plane (see Fig. 2). We will describe later the remarkable properties of
such a tree, first obtained by Van Iterson [7]. Let us mention however that there is
exactly one path in the tree leading to any irrational divergence on the axis G = 0.
In this sense all divergences are equally possible and the question of the appearance
of Fibonacci numbers in nature still remains unresolved.

What happens if the hard-core interaction between leaves introduced by tangent
circles is replaced by an arbitrary repulsive potential? How can we modify in this
case the geometrical constraint of tangency of circles?

Recently Levitov [8,9] and Douady and Couder [10] gave an answer to these
questions. They studied two physical systems, either theoretically or experimentally,
whose main characteristic, as they emphasize, is a hierarchical selection of noble
numbers. As a matter of fact, each bifurcation in the tree of Fig. 2 is replaced by
a quasi-bifurcation, so that only a countable set of paths is left. Levitov as well
as Douady and Couder pointed out the analogy of these systems with phyllotaxis.
The aim of this paper is to give some theorems concerning the selection of noble
numbers in these problems.

1.2 The Flux Lattice of Levitov and the Experiment of Douady and Couder.
Inspired by geometrical models of phyllotaxis, Levitov considered a flux lattice
pinned by superconducting layers [8]. Both the magnetic field and the vortices are
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Fig. 2. Packing of tangent circles on a periodic lattice (or along a logarithmic spiral) corresponds
to a purely geometrical constraint. The subset constituted by the lattices for which this construction
is possible, is a tree in the parameter plane (reproduced with permission from [6])
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parallel to the layers. Since the vortices interact repulsively at all distances, the
lattice is assumed to be simply periodic. In the model proposed by Levitov, the
energy of a flux lattice is

)= Σ Σ«(l|r™ll)> (i i)

where
τnm = (nθ - m)ex + nGey (1.2)

and u is some repulsive potential. G is a control parameter which can be made to
vary by changing the applied magnetic field, θ is the analogous of the divergence
in a phyllotactic pattern.

Levitov tackled the mathematical problem of describing the set of couples (G, 0)
such that 0 is a relative minimum of E(G, 0) for a fixed value of G (we will refer
to this set later as the divergence spectrum). The numerical plots he presented show
a remarkable tree structure, each branch approaching a noble number 0 on the axis
G = 0 according to the hierarchical rule of Farey1 (see Fig. 3). In his analysis,
Levitov brought to light the hidden symmetry of this particular problem [9]: if one
puts τnm/y/G in place of rnm in (1.1), then E(G, θ) = E(Gf, θ'\ where (G', 0')
is the image of (G, 0) by some homographic transformation. These transformations
form the group SL(2, Z)®Z2-

Levitov does not set a theorem specifying the class of potentials u{r) for which
the divergence spectrum has this remarkable structure. Nevertheless he develops a
very nice argument which rests on the symmetry of the problem and must therefore
be valid for almost any smooth potential.

Many authors also developed a dynamic approach to phyllotaxis [1,10-17]. In
order to account for the appearance of the new leaves on the meristem, they pos-
tulated a simple discrete-time mechanism: suppose that each existing leaf exerts an
inhibiting action on the meristem. The older the leaf is, the weaker its action is. The
new leaf is positioned on the meristem at the minimum of the resulting inhibiting
action. This mechanism produces stationary solutions; in other words, the angular
distance between two consecutive leaves can stabilize after some time.

A physical realization of this mechanism has been made by Douady and Couder
[10]. In their experiment, particles interacting through a repulsive potential u(r)
periodically fall on a cone situated at the center of a dish. The particles are then
advected away radially in the dish, which is filled with a viscous fluid. Insofar as the
interaction between the advected particles is negligible, this is exactly the dynamic
scheme defined above: a new particle (representing a leaf) reaches the boundary of
the central cone (the meristem) at the minimum of the repulsive potential created
by previous particles.

In order to simulate numerically this experiment, Douady and Couder defined an
iterative dynamical system which incorporates the typical features of the physical
system. Lay N particles on the plane outside of a unit disk centered at the origin,
and associate to each of them a repulsive potential u(r). Let r i , . . . ,r# be the position
of the particles, and let U(φ) be the resulting potential energy on the unit circle,
φ being an angular coordinate. A new particle is placed on the unit circle at the

1 The physical meaning of this problem is not very clear. Levitov claims that if one varies G
adiabatically from -foo to 0, the divergence θ will follow the continuous line of the spectrum
that starts at (G = -foo, θ = 0.5) and ends at (G = 0, θ = 0.382..). However, the condition "0 is
a relative minimum of E(G = const, 0)" is not a criterion of stability of the lattice (G, θ).
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Fig. 3. Showing a typical solution of the problem of Levitov. Compare its structure with the Farey
tree below. The Farey tree is a systematic way of constructing real numbers, that is the closure
of the set of rational numbers. A partition Pn of [0,1/2] in 2" intervals is obtained from Pn-\

by associating a regular interval -, ^j and a singular interval -^V, -̂  to each interval

'-, Y I G Pn-i (q > q'\ The thick lines lead to regular intervals.

In the spectrum of Levitov, each branch oscillates so that θ belongs to successive regular
intervals of the Farey tree when G decreases

absolute minimum of U{φ), then the N -f- 1 particles are shifted radially away. The
choice of this radial displacement is arbitrary. For example if r̂  is transformed into
r'k, Hr̂ ll is defined as ||r^|| + G (linear), or as βG||r^|| (exponential). In both cases,
G is a parameter taking real positive values.

Iterating this process, one may reach a stationary regime: if U(φ) takes its
absolute minimum at φk at time k, (φk+\ — φk)/2π (mod 1) may tend towards a
fixed value θ; in that case the particles form a spiral lattice. This asymptotic angle
θ corresponds to the divergence characterizing a phyllotactic pattern. In their paper,
Douady and Couder present a numerical plot of all possible values of θ versus G,
for two interaction potentials. This plot looks entirely similar to the one obtained
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by Levitov, although the analysis of the last-mentioned can not apply to this case
(disappearance of the symmetry).

The work of Douady and Couder contains the basic arguments to explain this
hierarchical selection of noble numbers. In what follows we will prove some precise
results concerning such situations, to which the analysis of Levitov can not apply on
account of the absence of symmetry. Unlike what happens in the case of Levitov,
the nature of the potential plays a crucial role: as the numerical counterexamples will
show, noble numbers are selected insofar as a nearest neighbours approximation is
valid. The tree structure of the spectrum then appears as the solution of a perturbed
geometrical problem. This was implicitly included in the qualitative arguments given
by Douady and Couder. A similar line of argument is found in earlier works (see
for instance [12,14]).

1.3. The Divergence Spectrum. Both Levitov and Douady - Couder systems in-
clude a control parameter G associated to the compression of the lattice. Such a
parameter is common in models of phyllotaxis; Richards [12] introduced the term
"plastochrone ratio" for the ratio of the distances of two successive leaves from the
center of the botanical pattern. The divergence spectrum is the set of all possible
divergences for every value of the control parameter. The explicative value of a
model of phyllotaxis may be related to the properties of this spectrum; the distri-
bution of divergences should notably present a peak around the golden mean and
perhaps around other noble numbers. It is not easy to give a more precise criterion
that is not controversial as far as biological realism is concerned. Let us say how-
ever that the tree structure of the spectrum of Levitov and Douady - Couder suggests
a selection of the golden mean by an adiabatic decrease of G. Although this is a
central idea in references [8-10,14,18], we will not discuss it here but simply focus
on the mathematical problem. A general study of the divergence spectra in models
of phyllotaxis, including such questions, is made in reference [19,20].

As Guerreiro remarked [19,20], there exists in some sense a formal equivalence
between the problems of Levitov and Douady - Couder. This idea will be specified
in what follows. Let us begin with the model of Douady and Couder. Suppose that
the system has reached a stationary regime, characterized by a divergence θ. If the
particles are given an uniform radial speed, then they form a linear spiral lattice
defined by the set:

Sl(G, θ) = {rn = (1 + nG)l2πnθ9n G N} . (1.3)

where

Iα = cosα ex + sinα e^ . (1.4)

Now this state is compatible with the dynamical rule defined in 1.2 if and only
if the last particle is placed at the absolute minimum of the potential U(φ). This
condition will be discussed in the limit of infinitely short-range interaction in Sect.
3.3. Let us consider here the weaker condition2:

^ ( 0 ) = 0 , (1.5)
dφ

2 Guerreiro [19,20] studied the relationships between divergence spectra defined by different
conditions (0 is the absolute minimum, local minimum, or extremum of U) in a very general
framework. His analysis applies of course to our case.
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where
U(φ)= Σu(\\lΦ-rn\\) (1.6)

and define the sequence of vectors

R π = r r t - r o , n ^ \ . (1.7)

Equation (1.5) is equivalent to:

^ e , = o . (1.8)

From now on we will mainly be concerned with this last equation, which gives an
implicit condition on G and θ. It is worthwhile to write it in a slightly different
way. To that end we classify the vectors Rn according to increasing modulus; this
defines a permutation σ such that

||Rσ(n)|| ^ llR^oll if n£n'. (1.9)

Rσ(i), for example, is the vector connecting r0 with its nearest neighbour in the
spiral lattice. Let us also write:

/(>•) = - — ( > • ) . (i.io)

r dr

Thus Eq. (1.8) takes the following form:

H{G, θ) = Σ/(l|Rσ(*)(G, θ)\\)Rφrey = 0 . (1.11)

Definition. The divergence spectrum is the set

Δ = {(G, θ) : H(G, θ) = 0} (1.12)

Consider Eq. (1.11); we can guess that if / ( r ) decreases very sharply, the geo-
metrical properties of the lattice Sl(G, θ) will be determinant in the analysis of this
equation. In fact a crucial role is played by the nearest neighbours of ro whenever
H can be approximated in the following way:

H(G, θ) ^ Σf(\\Rσ{n)(G, θ) \\)Rσ(nyey . (1.13)
n=\

If f(r) decreases abruptly enough, one has

/(l |Rσ ( 1)ll)»/(l |Rσ(2)| |) (1.14)

and h(g, θ) can not cancel, unless

l |R σ ( 1) i l«l |R σ( 2) l l (1.15)

or
IRαίO e,! < |Rσ(2) e,| . (1.16)

These simple remarks lead to an analytical understanding of the results obtained by
Douady and Couder. In fact it is already clear that whenever f(r) decreases sharply
enough, the divergence spectrum Δ will not be much different from the set defined
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by the geometrical conditions (1.15) and (1.16). Notice that (1.15) is analogous to
the condition of tangency of circles discussed in Sect. 1.1. As we will see it defines
a tree in the (G,θ) plane completely similar to the one of Fig. 2.

As regards the model of Levitov, the divergence spectrum is the set of couples
(G, 0) such that θ is a minimum of the function E(G9 Θ)G = const? where E is the
energy of a flux lattice (see 1.1)). Here we will simply describe the larger set3

A' = {(G, θ) : H'(G, θ) = 0} , (1.17)

where

H'(G, 0) = - ^ ( G , 0) (1.18)

or, more explicitly

# ' = E Στr-1-π^(llr^ll> r ^ eχ O 1 9)
Z_-/ Z—/ i V11 nm \ \ j nm x \ /

mEΈn^ 1 11*/i/w 11 u r

In complete analogy with the previous case, let us classify the vectors Rnm = xnm —
roo = *nm according to increasing modulus. That defines two permutations, σ and (,
such that

||Rσ(£χ(&)ll = IIRσ^oc^oll tfk tί k . (1.20)
Rσ(i)C(i) i s thus the shortest vector in the lattice. For the sake of simplicity, we
will simply write Rσ(£) instead of Rσ(k)ζ(k) m what follows; it is to be inferred that
the second index is always present. The formal analogy between H and W now
becomes clear:

t)\\)σ(nyRσ(nrex . (1.21)

The only significant difference with (1.11) lies in the fact that there is now an
additional factor σ(n); its presence does not require any fundamental change in
the analysis.4 The same reasoning can therefore be followed and it leads to the
same geometrical problem as in the case of Douady and Couder. Of course such
an analysis is not only useless, since the question has been solved by Levitov,
but it is unsuitable too, seeing that it is unaware of the symmetry of the problem.
Nevertheless if one puts the problem in a different geometry, or if one removes the
factor σ(n) from (1.21), thus returning to Douady-Couder problem, the symmetry
is destroyed. It is then necessary to go back to our analysis.

In the case of the periodic lattice, the geometrical problem has been solved and
its solution possesses the Farey tree structure [6,7]. Our purpose here is to solve
it in the case of a general class of spiral lattices (Sect. 2.3); as for the analysis of
the spectrum A, some results will be proved that are closely akin to the conclu-
sions drawn by the above-mentioned authors on the basis of qualitative arguments
(Sect. 3.1,3.2,3.3). The effects of lattice compression and scale invariant interac-
tions will be discussed. More precisely, if u(r) is scale invariant (w(r) = r~κ\ it
will be shown that if K is great enough, there exists a continuous line in A con-
necting a rational divergence and the corresponding noble divergence on the axis
G = 0 (Sect. 3.2).

3 In this case it is easy to deduce from Δ' the spectrum defined by the minimality condition
(just take into account the sign of | | ( G , 0)).

4 A change would be necessary if σ(l)<Cσ(2) for example. This occurs only if a partial
quotient in the continued fraction of θ is very large.
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2. The Geometrical Problem

2.1. The Set Σ. Consider a spiral lattice in the plane which may be linear (see
(1.3)) or exponential:

Se(G, θ) = {xn = eGnl2πnθ,n e N} . (2.1)

Imagine as well a periodic lattice on a cylinder, which is another classical repre-
sentation of phyllotactic patterns. Unrolling the cylinder on the plane, one obtains
the simple periodic lattice of Levitov:

W(G, θ) = {xnm = (nθ - m ) e x + nGey, « 6 N and m e 1} (2.2)

For any of these lattices, we can define5 the permutation σ and the sequence of
vectors Rσ{k), k ^ 1 (see (1.9) and (1.20)). Recall that in the case of W(G, θ), a
second index ζ(k) is understood.
Now our problem is to describe the set

Σ = {(G, θ) : | |R σ α ) (G, 0)|| = | |Rσ(2 )(G, 0)||} . (2.3)

In other words, Σ is the set of couples (G, θ) for which r0 has two equidistant
nearest neighbours in the considered lattice. As was discussed in Sect. 1.3, Σ is
directly related to the divergence spectrum A.

It is worth noting that in the case of W(G, θ) this problem is equivalent to the
construction of lattices of tangent circles [6,7]; as a matter of fact, the properties
of W(G, θ) are well known and it is useful to relate the study of spiral lattices to
that of W(G, θ). This is best done through the following definition:

TΦ : IR/Z x IR -+ R 2

f Φ(y)cos2πx\
I Φ(y)ύn2πx) ' y }

This transformation maps W(\, θ) on a spiral lattice S<p(θ) (see Fig. 4). If Φ(y) =
1 + Gy, then SΦ(Θ) = Sl(G, θ) and if Φ(y) = eσ>\ then SΦ(Θ) - Se(G, θ). General
conditions on Φ are discussed below.

2.2. The Farey Tree Structure of Σ in the Case of the Simple Periodic Lattice.
The set Σ is completely described in references [6,7] in the case of the periodic
lattices W(G, θ). Its structure, that will be analysed in this section, is encountered
in many other cases; we will therefore refer to the definitions introduced hereafter
in the whole text. We have defined Σ as:

Σ = {(G, 0) : ||Rσ(i)(G, θ)\\ = | |R, ( 2 )(G, 0)||}

(see (2.3)). Here G E]0, + oo[ and θ e [0, 1/2]. Recall that R σ ( 1 ) and R σ ( 2 ) are the
shortest vectors in the lattice.

I1 is a Cayley tree with branching number 3. It can be described as an union
of continuous lines (branches); every branch is of finite length and is connected to
two other branches at each of its ends (see Fig. 5). Moreover there is a one-to-one

5 Several definitions of σ are of course possible whenever two vectors Rtt have the same
modulus.
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sφ(θ)

Fig.4. The spiral lattice Sφ(θ) is the image of the periodic lattice W(\,θ) by the transformation
TΦ

σ(l) = 1

— I —
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Fig. 5. The set Σ for the family of spiral lattices Se(G, θ). Notice that the regular branches
(1,2),(2,3),(3,5),... lead to ΘF = τ~2 =0.381966...

correspondence between couples of coprime positive integers (n, m) (n < m) and
the set of branches, each branch («, m) being defined as:

(/i, m) = {(G, θ): 3 /, j such that x2

ni = r2

mJ S 4h V*, 1} . (2.5)

An (n, m)-branch is called regular if In ^ m and singular if In < m .
There is in fact a systematic way to construct Σ: if one goes along a branch

(ft, m) in the appropriate direction, one comes to a bifurcation point where (n, m)
is connected to (w, n + m) and (m, « + m). (n, n + m) is a singular branch and
(m, n + m) is a regular branch (recall that n < m). The type of a branch is easily
determined since crossing a branch (n, m) by decreasing G always corresponds to
a transition of first neighbour

n —* m (n < m) .
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In other words, σ(l) is always a decreasing function of G. This simple rule gives
a universal structure to the bifurcation point (look at Fig. 5: there is always a bend
if one follows the regular branch).

The set Σ not only has this simple tree structure but it is closely related to
number theory too. Suppose that (G, θ) G (n, m) and write θ as a continued fraction

= [au a2, a3, ...] . (2.6)

Then there exists a positive integer k such that

n = qk, m = qM or qk+2 , (2.7)

where q^ is the denominator of the kth principal convergent of θ, that is

^ = [al9a2,...9ak]. (2-8)
ak

An immediate consequence of this fact is that a branch (n, m) never contains a point
(G, - ) , where - is an irreducible fraction, with q < m. Σ has indeed an important

property: every singular branch (n, m) contains a unique point (G, ^ ) , where ^ is
an irreducible fraction, while a regular branch (n\ m) never contains such a point.

Definition. If a set Σ has all the properties listed above, we say that it has the
Farey tree structure.

Its construction is indeed equivalent to the construction of the Farey tree
(cf. Fig. 3). The most interesting consequence of its properties is the following:
let (G, θ) G Σ. There exists an unique path on Σ connecting (G = +oo, θ = 1/2)
to (G, θ). The continued fraction of θ is partly determined by the sequence of reg-
ular and singular branches constituting this path: at — 1 is the number of singular
branches preceding the zthregular branch in the path6. Thus if the path finishes with
an infinite sequence of regular branches, it cuts the axis G = 0 at a noble number θ.

Further results and proofs can be found in references [6,7]. For an introduction
to the Farey tree and continued fractions see references [21,22].

Observe that the complementary set of Σ in ]0, oo[x[0, 1/2] is a countable
union of open sets; each of these sets is a connected domain, in which the function
σ(l)(G, θ) is a constant. It is convenient to define the closure Σp/q of such a
domain, such that (0, p/q) G Σp/q (Fig. 6). A branch («, m) can thus be defined as
the intersection of two sets Σt/n and Σj/m,

2.3. The Farey Tree Structure of Σ in the Case of the Spiral Lattices. The purpose
of this section is to prove a theorem concerning the Farey tree structure of Σ for
a wide class of spiral lattices. The fact is that the distortion of the periodic lattices
W(G, θ) into spiral lattices does not induce a deep change in the structure of Σ.

6 If we agree upon the following understanding: the first regular branch is (1, 2) if θ G]l/2,1[
and (Λ, n + 1) (n ^ 2) if 0 e]0, l/2[ .
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Fig. 6. Showing a set Σp/q. Any line θ = constant intersects at the most twice the boundary of

Σ n/a

We have defined in 2.1 the transformation

TΦ : IR/Z x R -> R 2

( Φ(y) cos2πx\
\ Φ(y)sin2πx I

which maps W(l, θ) on the spiral lattice SΦ(Θ). Let us consider one-parameter fami-
lies of differentiable functions ΦG,G G [0, oo[, which verify the general conditions:

dΦG

dx

dΦG(x)

(x) > 0, Vx ^ 0 and VG > 0 ,

> 0, Vx ^ 0 and VG ^ 0 ,
dG

φG(0) = 1, VG ^ 0 ,

Φ0(x) = 1, Vx ^ 0 ,

lim
G-^+oo

lim ΦG{x) = +oo, VG > 0 .
x—>-+oo

To each of these families of functions is associated a family of spiral lattices

(2.9)

SΦG(Θ) = {rn = ΦG{n)l2πnθ, n G N} . (2.10)

These lattices are a simple generalization of the special cases Sl(G, θ) and Se(G, θ) .

Theorem 1. Let ΦG, G G [0, oof, be a one-parameter family of differentiable func-
tions verifying the general conditions (2.9). Suppose further that:

d\o%ΦG{n) d\ogΦG(m)

dG dG
-, V/i < m, VG ^ 0 , (2.11)

-(x) Z 0, Vx ^ 0 , VG > 0 . (2.12)
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Then the restriction of the set

Σ = { (G, θ) : | |Ro(i)(G, θ)\\ = | |R σ ( 2 ) (G, θ)\\}

to the region ||Rσ(i)(G, 0)|| ^ 1 has the Farey tree structure.

Before proving this theorem, let us mention an important corollary:

Corollary 2. The set Σ related to the lattices Sl(G, θ) and Se(G, θ) has the Farey
tree structure.

Proof of the corollary. Since ||Rσ(i)(G, 0)|| g 1 if G < 0.05 (see the remark after
Proposition 6), it is enough to compute numerically the restriction of Σ to the region
G > 0.05. In fact in this region σ(l) can take only a finite number of values, so
that a computer proof is possible.

Let us now come to a series of propositions that lead to the proof of Theorem 1.

Proposition 3. σ(l)(G, θ) is the denominator of a principal convergent of θ. It is
true even in the degenerate case | |Rσ(i)|| = ||Rσ(2)|| = = ||Rσ(m)|| {that is, it is
true for any choice of σ{\)).

Proof Let qr be the greatest denominator of a principal convergent smaller than
σ(l). Suppose that σ(l) itself is not the denominator of a principal convergent. This
implies:

cos(2π^β) > cos(2πσ(l)0) (2.13)

(it is a direct consequence of the properties of principal convergents). Thus

R]r - R2

σ(1) = Φ\qr) - Φ\σ{\)) + 2(Φ(σ(l))cos(2πσ(l)0) - Φ(^)cos(2τ^Γ0))

S Φ2{qr) - Φ2{σ{\)) + 2cos(2π$r0)(Φ(σ(l)) - Φ{qr)) < 0 , (2.14)

which is a contradiction.
The following lemma sums up some important facts concerning the lattice
h θ).

Lemma 4. Consider a lattice W{\, 0), and write Θ as a continued fraction:

1
= [au a2, a3, ...] .

The rational fractions

Pk,r Pk + rPk+\ Λ Λ

— - =: — — , r = 1, ..., ak+2 - 1

are called the intermediate convergents of θ. We construct two broken lines P-
and P+ which are the convex envelopes of W{1, θ) Π 1R_ x IR+ and W{1, Θ)Π
R + x R + respectively. Now P_(P + ) goes through points *qkPk and *qkrPkr, where
r — 1, ..., «£+2 — 1 and k is oddieveή).

Proof See [23,24].

Definition.

Ωt = {r e ΊR2 : \\r\\ > 1 and ||r - ex|| < t} . (2.15)
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Remark. It directly follows from this definition that σ(l) = k and only if Ω\Rk\ Π

SΦ(Θ) = 0 or, equivalently, Tφ ι(Ω\Rk\)Π W(l, θ) = 0. This brings us back to

the study of Tφl(Ωt) and W{\, 0).
Significant properties of Sφ(θ) can be deduced from the hypothesis that
T~ι(Ω\Rσ(ι)\) is a convex set.

Proposition 5. Consider a lattice Sφ(θ); suppose that Tφ{(Ω\Rσ{ι)\) is convex. Then

||Rσ(4)|| > ||Rσ(i)||. Moreover if | |R σ ( 1 ) | | = | |Rσ(2)| | - ||Rσ(3)||, then {σ(l),σ(2),
Φ)} = {qki qk+u <lk+2}, where qk, qk+u qk+2 are the denominators of three suc-
cessive principal convergents of θ,and ak+i = 1.

Proof. Suppose that ||Rσ(i)|| = ||Rσ(2)|| = ||Rσ(3)||; this amounts to saying that
Tφl(Rσ(i)l T-{(Rσ(2)) and Tφl(Rσ(3)) all lie on the boundary of Tφ 1(ΩIK(])1).
By Proposition 3 and Lemma 4, these points also belong to the convex envelopes
P- and P+. Now suppose that two of them belong to JP_. Because of the con-
vexity of Tφl(Ω\R j) and P_, these must be two successive points of P- (other-
wise some lattice point would lie inside Tφl(Ω\R \)). They correspond therefore
to two successive denomiators q^, qk+2 with ak+2 = 1. A similar reasoning shows
that the third point lies on P+. Let us prove that it corresponds to qk+ι- Since
γ<ikPv γ<ik+2Pk+2> r^+i,i^+i,i a r e t h r e e a l i g n e d points,only two can lie on the bound-
ary of a convex set: thus τqk+ι ιPk+ι { (and any point of P± above it) is strictly

outside of Tφl(Ω\R \). A similar reasoning shows that rqk_{ a _ιPk_{ a _, (and

any point of P + below it) is also situated strictly outside of Tφl(Ω\R \). Con-

sequently the only point of P+ that can be on the boundary of Tφl(Ω\R |) is
Y(lk+\Pk+\ '

Proposition 6. Suppose that j^(x) ^ 0, Vx ^ 0. If t S 1, Tφl(Ωt) is a con-
vex set.

The proof of this proposition is given in Appendix A.

Remark. It is obvious that ||Rσ(i)(G, 0)|| tends towards zero in the limit G —• 0. It
is nevertheless useful to have an estimate of ||Rσ(i)|| that is independent of θ.
If G S G0,where ΦGo(7) = y/l, then ||Rσ(i)(G, θ)| | ^ 1, Mθ e [0, 1/2]. To
prove this inequality, first notice that ||Rjfc(G, θ)\\ rg 1 if and only if

2cos(2π£0)

One has therefore to prove

min ΦG^k]ΩΛ ^ 1, Vθ G [0, 1/2], VG S Go . (2.16)
k>\ 2cos(2πA:t/)

Now a stronger inequality holds

max cos(2πkθ) ^ -^,MΘ e [0, 1] . (2.17)

It is necessary to be more specific about ΦQ in order to describe the set Σ.
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Proposition 7. Suppose that

dlogΦG(n) <d\
< ^ ύ n < m ^ G ^ 0 . ( 2 . 1 8 )

dG dG
Consider the function

Anm(G, θ) = R2

n(G, θ) - R2 (G, θ),n<m. (2.19)

For any fixed value of θ it has at the most one zero Go; it is negative for G > Go
and positive otherwise.

Corollary 8. Suppose that

d\ogΦG{n) <d\ogΦG{m)>V1^W<W)VG^O

dG dG

Consider the function σ(l)(G, θ) defined on ( R + x [0, 1/2])\Σ. It is a decreasing
function of G. Moreover σ(l) cannot be constant in an open neighbourhood of a
point of Σ.

The proof of Proposition 7 is given in Appendix A.

Remark. One may point out that

dlogΦφ) < dtogΦcJm) ^ ^ < ^ y g Q

flG αG

if and only if
d ( Φr(n) \

— - ^ - 4 < 0, VI S n < m, VG ^ 0 . (2.20)
ί/G \ΦG(m)J

It implies that

is an increasing function of G. The reciprocal is not true.

Proposition 9. Suppose that

dlogΦojn) < d\ogΦG(m)^ ^ ^ < ^ Q

αG αG

Γ(G0) = {(G, 0 ) : (G, θ) € Σ, G > Go} . (2.21)

For any Go > 0, Σ(Go) is connected. It is a finite union of continuous lines in the
(G, θ) plane, each line being an implicit solution of:

R2

n(G, θ) - R2

m(G, θ) = 0 (2.22)

for given values of n and m.
Let us call these lines («, m)-branches (we always assume n < m).
A branch is connected to two other branches at each of its ends (or more, but

this is not generic), and it is generίcally not connected elsewhere to any branch.
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The (l,2)-branch is the only branch that crosses the symmetry axis θ = 1/2. If
(G*, 1/2) is the intersection point, then G* = max G.

Proof. It is shown in the proof of Proposition 7 that the implicit solutions of (2.22)
have no singular points. Furthermore it is clear that for any Go > 0, Σ(Go) is a
finite union of such solutions, since

lim ΦG(x) = +oo, VG > 0 . (2.23)
x—»+oo

It is easy to prove now that Σ(Go) is connected. It is impossible indeed to
construct a continuous path in ]0, oo[xIR that encloses a point of Σ and does
not intersect Σ (see Corollary 8). It is also impossible to construct a continu-
ous path in ]0, oo[xIR that connects two points on the axis G = 0 and does not
intersect Σ. To see this observe that the function σ(l)(G, 0) is constant along
such a path. Suppose σ(l)(G, 0) = q. The path must then cut the axis G = 0 at
two rational values θ — p/q and 0 = p'/q. Now there exists a rational number
p"Iq', q' < q, such that p/q < p"/q' < p'/q. This contradicts Corollary 8 since
σ(l)(G, 0 = p"/qr) = qf < q if G is small enough.
Generically a branch is connected to two other branches at each of its ends, and
it is not connected elsewhere to any branch. To prove this, let us examine all the
other possibilities.

A (/?, m)-branch can not end at G = 0. For if this branch contains the point
(G = 0, 0 = 0), then cos(2πnθ) = cos(2πm0) = 1, so that 0 = p/q and q\n,q\m.
Therefore m = kq, where k ^ 2. Now V& ^ 2 there exists ε such that
VG > 0, V|0 - p/q\ < e, ||Rty(G, 0)|| > ||R9(G, 0)||. This is a contradiction.

A branch can neither cross the axis θ = 0 (mod 1) nor continue up to G = +oo.
This is easily deduced from the following inequalities:

)|| - ΦG(1) - 1 > Φ c(2) - 1 = | |Rσ(2 )(G, 0)| |, VG > 0 , (2.24)

The right-hand side of Eq. (2.25) is strictly positive when G is great enough, since
Φ2

r(l)
2) Λ is a decreasing function of G.

Now we have proved in Proposition 7 that a branch can be described as the
plot of a continuous function G(0); the discussion above shows that this function is
defined on a closed interval in ]0,1[ and it has a finite upper bound and a positive
lower bound. That amounts to saying that an (/?,m)-branch has two ends in the
(G, 0) plane.

It is impossible that a branch has an isolated end. If it were so, one could
construct a path enclosing this end and intersecting Σ at one point only. This would
contradict Corollary 8.

Therefore a branch is necessarily connected to one or two other branches at
each of its ends (if it were connected to more than two branches, there would be
four equidistant nearest neighbours of the origin in the lattice; this is not generic).
Now if it were connected to one branch only, one could construct a closed path
cutting both branches and intersecting Σ at two points only. This is impossible (see
Corollary 8).
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Suppose that a branch is connected to another one at a point not coinciding with
an end; these branches must be tangent to each other, unless there are four nearest
neighbours of the origin in the lattice. This is obviously not generic.

Finally it is not difficult to see that the axis 0 = 1 / 2 intersect the set Σ at a point
(G*, 1/2) belonging to a (l,2)-branch. If G > G*,then (G, 0) £Σ,\/θe [0, 1],
since V£ ^ 2,VG > G*,

||R*|| ~ ||Ri II ^ Φc(k) - Φ σ ( l ) - 2 ^ ΦG(2) - ΦG(1) - 2 > O . (2.26)

Proposition 10. Suppose that

dG dG

A regular (n, m)-branch contains no point of type (G, p/m), p G N.
4̂ singular (n, m)-branch that is connected to an (n, n + m) α/2<i απ (m, n + rn)-

branch at one end, and to an {n, m — n) and an (m — «, m)-branch at the other
end, contains a point of type (G, p/m), p G N.

Proof If 2« ^ m it is not difficult to verify that

| | R m ^ ( G , θ = p/ι»)|| < ||R«(G, 0 = jVOll, VG > 0 , (2.27)

thus a regular («, m)-branch can not contain a point (G, p/m), p G N.
Suppose that In < m and that («, w) is connected to (n, n + rn) and (m, n + rn)
at one end, and to (n, m — n) and (m — n, tn) at the other end. We want to prove
that Rw e 7 does not have a constant sign along the («, m)-branch. Clearly R^ e^
can not change its sign along (n, m). Now R^ e^ and Rm-ey have opposite signs at
the bifurcation point | |Rn | | = \\Rm\\ = ||R«+m|| (otherwise nΛ-m would not be the
denominator of a convergent) and they have the same sign at the bifurcation point
||R«|| = ||Rm-»|| = ||R«|| (otherwise | |RM_Λ | | > | |RΛ | |).

Let us proceed to the proof of Theorem 1. It is composed of several steps.

1) In the region {(G, θ) : θ G [0, 1/2], ||Rσ(i)(G, 0)|| ^ 1}, there is at the most
one point (Go, 0O) such that | |Rσ (i)(G0, θ o) | | = I|R,JI = \\*qk+ι II = I I ^ + 2 I | , for any
fixed values of qk,qk+ι, qk+2- Suppose in fact that there exists two such points
(Go, 0o) and (G'o, Θ'O),G'O < Go, 0O < 0o It follows from Proposition 7 that at

It is quite clear that cos(2π^+i0) and cos(2π^+20) can not cancel in [0O, 0Q], since
<lk-> qk+\τ qk+i must be denominators of convergents of 0o and 0O (cf. Prop. 5). This
implies that either | |R^ + 1 1| - | |R^ + 2 | | or | |R^ | | - | |R^ + 1 1| increases from (G'o, 0O)
to (G'o, 0Q). This is of course impossible.

2) In the region {(G, 0) : 0 G [0, 1], ||Rσ(i)(G, 0)|| g 1} an («, m)-branch is
connected to an («, n + m) and an (m, n + m)-branch at one end, and to an
(m — n, n) and an (m — «, w)- branch at the other end. It is not connected elsewhere
to any branch. Each («, m)-branch is unique in this region.

This is a direct consequence of 1) and Propositions 5 and 9.
3) Consider an («, m)-branch whose ends both belong to the region ||Rσ(i)|| ^ 1.

If it is a regular branch, that is In ^ m, it contains no point of type (G, p/m),
p G N. If it is a singular branch, that is 2n < m, it always contains such a point.

This is a direct consequence of 2) and Proposition 10.
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4) The restriction of Σ to the region ||Rσ(i)|| ^ 1 is the part of a Cayley tree
with branching number 3. It is in fact impossible to construct a simple closed path
in this restriction of Σ.

This follows from 2.

This completes the proof of the theorem.

3. An Analysis of the Divergence Spectrum

3.1. Short Range Interactions and Noble Numbers Selection Rule. We want to
show in this paragraph that a sharp decrease of f(r) (see (1.10)) induces a hierar-
chical selection of noble numbers in the spectrum Δ. An explicit family of functions
is considered here

= e~κ\ KER*+9 (3.1)

but the results are easily extended to other profiles. The important thing is that
fκ(r) decreases exponentially with a characteristic length l/K.

Our aim is to describe the set

Δκ = {(G, θ): HK(G, 0) = 0} ,

where (cf. (1.11) and (1.12))

HK(G9 θ) = ΣM\\*σ{n)(G9 θ)\\)Rσ{nyey = 0

in the case of linear or exponential spiral lattices, or any lattice family such that
Σ has the Farey tree structure. Some additional definitions are necessary. Consider
the set

Σ* = ΣU {(G, θ): Rσ(i)(G, θ)-ey = 0} . (3.2)

Since Σ has the Farey tree structure, Σ* is simply obtained by drawing segments
θ — % connected to singular branches (n, m) (Fig. 7). These rational divergences
will play an important role in the following; their relevance to the geometrical or

Fig. 7. Σ* is obtained by constructing the intersection of the line
QΠ [0,1/2]

θ — p/q with the set Σp/q,Vp/q G
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dynamical problem was pointed out by many authors (see e.g. [5,15,19,20]). Let
us construct successive approximations of Γ*:

Σ*(fi) = {(G, θ): 3δ such that |5| < εand(G, θ + δ) G £*},ε > 0 . (3.3)

This allows us to give a precise statement about ΔK in the limit ^ —• +00.

Theorem 11. Vε > 0 , 3 ^ 0 such that for any K > Ko,

Δκ C Σ*(ε) .

Proof. We consider here the general case of a lattice family given by a one-
parameter family of functions ΦG,G G [0, oo[. To each function is associated a
spiral lattice

SΦG(Θ) = {rn = ΦG(n)l2πnθ,n e N} .

Some general conditions on ΦG are listed in Sect. 2.3. Here we also assume that

d2ΦG

d2x = '

so that
2 • (3.4)

Let us define the set A =]0, +oo[x[0, l]\Γ*(ε). If K is great enough, then

inf |Rσ(1)(G, 0)^1 > sup | ^ Z ^ | ^ R σ ( / ) ( G , θ>e,| . (3.5)

The left-hand term is indeed strictly positive and independent of K, and the right-
hand term tends towards zero as K tends towards infinity. This follows from (3.4)
and from the fact that

inf (||Rσ(2)(G, θ)| | - ||Rσ(i)(G, 0)||) > 0 . (3.6)
(G,Θ)£Λ

This proves the theorem. Notice that (3.6) holds because /tn]O, G] x [0, 1] is a
compact set (the different branches of Σ*(ε) must overlap).

Theorem 11 shows the connection between ΔK and Σ. As for Theorem 12, it
can be seen as a consequence of the essential difference between Δκ and Σ, that
is the existence of an infinity of bifurcation points in Σ and their absence in ΔK.
Near each bifurcation point of Σ we will construct a line Γ that crosses the singular
branch and divides Σ*(ε) in two parts (see Fig. 8). The theorem says that no point
of ΔK lies on Γ.

Theorem 12. Let KQ be such that Δκ C £*(ε) if K > Ko. Let (y, q) be a singular
branch of Σ. One constructs the broken line Γ illustrated on Fig. 8: Γ is included
in Σ*(ε), crosses (/, q) and divides Σ*(ε) in two parts. If ε is small enough and
if K > Ko is great enough then

Proof Let {(Go, p / q)} = Σ Π Γ. One has:

O, (3.7)
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Fig. 8. Γ is the union of two perpendicular segments one of which is parallel to the line θ = p/q.
The length of Γ can be made as small as possible

so that if ε is small enough

(G,
inf r(| |Rσ (3)| | - ||R*(2)||)(G, 0) = c > 0 . (3.8)

Let us prove that if K is great enough,

inf
(G, Θ)eΓ

Rσ ( 2 )(G, θ)-ey

sup
(G, Θ)£Γ

Σ Rσ ( / )(G, (3.9)

The right-hand term tends towards zero as K tends towards infinity. Now the left-
hand term is always greater than sin(2π/^). To see this observe that if (G, θ) G Γ,
then {σ(l), σ(2)} = {j, q}. Moreover R^ e 7 and R e^ have the same sign, and
\ \

By definition ΔK is an union of continuous lines (implicit functions). Theorems
11 and 12 show that if K is great enough, each line must be contained in a set of
tongues of width ε7. Each tongue follows a half-loop that goes from (G = 0, θ =
p I q) to a singular branch (y, q) and then along successive regular branches of
Σ (Fig. 9). In other words, a half-loop connects two points on the G = 0 axis;
one is a point with a rational ordinate θ = [a\,...9an] (an > 1) and the other is a
point whose ordinate is a noble number θ = [a\,... ,α«, 1,1,1,...]. Of course these
tongues overlap when G is too small, so that noble numbers are approached with an
accuracy of order ε (the accuracy is necessarily finite because of the characteristic
length of the interaction).

This situation is illustrated in Fig. 10; the structure of this spectrum can be
directly compared with the solution of the geometrical problem (Fig. 5).

Fig. 11 shows how this structure disappears when K is too small. This contrasts
with the special case considered by Levitov: the spectrum is not modified by the
range of the interaction (Fig. 12).

7 Conversely, there must be a line in most tongues: in the limit K —> -hoo, G
must change its sign around θ = p/q. We will return to this point in section 3.2.

> 0, HK(G, θ)
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G

Fig. 9. A continuous line of Δ can not follow the singular branches of Σ that are crossed by
broken line Γ

0.0 0.1 0.2 0 3 0.4 0 5 0 6 0.7

Fig. 10. The divergence spectrum A with the condition of Douady-Couder. The family of spiral
lattices is Se(G,0) and -\ψr = e~K\K = 10

If K is large enough, the structure of the spectrum remains essentially unchanged
if one considers the periodic lattice instead of a spiral lattice, or the variational
problem of Levitov instead of the condition of Douady-Couder (see Fig. 13).

3.2. Scale Invariant Interactions. If the potential u is a power law, that is

(3.10)

the question of whether noble numbers are exactly selected naturally comes to
mind. In this case in fact there is no characteristic length of the potential, so that
the nearest neighbours approximation (1.13) may be valid for all values of G.
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0.4 0.6
G

Fig. 11. The spectrum A with the condition of Douady-Couder. The family of spiral lattices is
Se(G,0) and -\fr =e-

Kr,K = 0J

0.00 0.05 0.10 0.15
G

Fig. 12. The spectrum A with the condition of Levitov. The family of periodic lattices is W (G, θ)
and -\fr =e~Kr,K = 0J

The following discussion shows that the answer to this question is positive;
nevertheless all noble numbers can not be considered equivalent.

The first step in the analysis is the construction of the set Σ*(α, jS), such that
Hκ(G, θ) can not cancel outside of Σ*(oc, β). The rest of the argument closely
follows the reasoning of the previous section.
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0 0 0.1 0.2 0 3 0.4 0.5 0.6 0.7
G

Fig. 13. The spectrum A with the condition of Levitov. The family of spiral lattices is Se(G, θ)
and -\fr =e~Kι\K= 10

We will restrict ourselves to the case of linear spiral lattices but the results can
be generalized to other cases. Sometimes constant factors will be omitted in the
formula and some calculations will not be made, in order to lighten the exposition.

Let us recall that HK(G9 θ) = ΣΛs>i M\\Rσ(n)(G, θ)\\)Rσ{nyey and Δκ =

{(G, θ) : HK(G, θ) = 0}. If fκ(r) = r~κ, one has

Lemma 13. Let 0 < μ < 0.1 and define

G^±G\:0<G<-^

There exists Ko such that MK > Ko, V | G Q

±HK{G, θ) > 0, V(G, θ) G Ω± (~

Lemma 14. Consider the set

U

(3.11)

(3.12)

(3.13)

where
2Γ(α)= U B«G,θ);aG)

(G,θ)ζΣ

Xp/q(β)= U
\

(3-14)

(3.15)

β((G, θ);ί) is the open ball of center (G, θ) and radius t.
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Σ * ( α , β ) n Σ p / q

Fig. 14. Σ*(a.,β) is obtained by constructing an open ball on every point of Σ*. α and β can be
chosen so that Ω + ( | ) and Ω_(f) cross the boundary of £*(α,0),V/?/tf e QΠ]O,1[

If α, β > 0 are sraa// enough, then
1) Vp/g G QΠ]O, 1[, the boundary of the set

Σ*(a,β)nΣp/q (3.16)

is the union of the boundary of Σp/q and two simple closed curves. These two

curves intersect the segments Ω+ ί | J and Ω_ ί | J of Lemma 13.

The situation is illustrated in Fig. 14.

2)

3)

sup 1. (3.17)

(3.18)

The proofs of Lemma 13 and 14 are given in Appendix B. The following
theorem is the analoguous of Theorem 11:

Theorem 15. Vα, β > 0 there exists Ko > 0 such that if K > Ko,

Δκ C Σ*(α, β) .

Suppose that (G, θ) ^ Γ*(α, j8). Let us prove that if AT is great enough,

But

Σ

Rσ(«)'e>

Rσ(n)J
(3.19)

Rt'<±i\κ <
n^2 Rσ(l)#e.y \Rσ(n))

\Rσ(2)J

The conclusion follows from Lemma 14.

(3.20)
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γG

Fig. 15.

0 G

is included in an open ball of radius yG and center (G, p/q) £ Σ

In the next theorem one constructs a set of lines Γjiq; each line T^q crosses a
singular branch (j\ q) in Σ, divides Σ*(α, j?) in two parts and contains no point of
ΔK. The main difference with Theorem 12 lies in the fact that this construction is
done for an infinity of singular branches.

Theorem 16. Let C e]l, 2[. Let Ko be such that Δκ c Σ*(α, 0) z/ K > Ko. If
(j, q) is a singular branch of Σ, one constructs the broken line Γj^q in exactly the
same way as Γ (cf Theorem 12 and Fig. 8): Γjiq is included in Σ*(oc, β), crosses
(j, q) and divides Σ*(oc,β) in two parts.

If a, β are small enough and KQ is large enough, then

> C.for any K > KQ and any (j, q) such that

Proof Let (j, q) be a singular branch such that 2 ^~ y ) > C. There exists a constant

7, independent of j and g, such that Γ^q is included in a ball of radius yG and center

(G, p/q)eΣ (see Fig. 15). To see this observe that $ψ- π βG near of (G, /?/#);

moreover in the neighbourhood of (G, p/q) the slope ^ of the singular branch
(y, q) is uniformly bounded (direct calculation). Now if α and j? are small enough,
y can be chosen small enough for Proposition 20 of Appendix B to be applied:

> VC - y > 1 on Γjtq.

Let us prove that Hκ can not cancel on Γ7; q if K is great enough. On one hand

= 0

and on the other hand

ίR^ΛK

]

\Rσ(\)J
> sin

2π

(3.21)

(3.22)

(cf. Theorem 12). The conclusion follows.
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Let us examine the consequences of Theorems 15 and 16. Consider a singular
branch (y, q) containing a point (G, p/q = [a\,...,an])(an > 1). The condition
2 ^~ y ) > C is equivalent to

0n-2 +

Consider now the path in Σ* that goes from (G = 0, θ = p/q = [a\9...,an]) to
the singular branch (y, #) and then along successive regular branches of Σ. This is
the unique path in Σ* crossing Σp/q and connecting (G = 0, θ = [a\,...,an]) with
(G = 0, θ = [αi, . . . ,0 r t , 1,1,1,...])• Let C, α, j8, £ 0 be such that Theorem 16 holds.
It is possible to make the construction of Theorem 16 on each singular branch
connected to this path if

2 1 2 - C 1 . _ .
< -^—z Ϊ (3.24)2 - C , 1 n 2C - 2

" " ' fln-2 + .. ««-2 + ...

(this can be directly verified using (3.23) and the properties of Σ). Equation (3.24)
has no solution if C > 1.17.. .But if C > 1 is taken small enough, the condition
(3.24) reduces to an upper bound on an and an upper bound on an-\ if an = 2.
These bounds tend towards +oo as C tends towards 1.

If the condition (3.24) is fulfilled one can therefore construct a tongue along the
half-loop in Σ* connecting (G = 0, θ = [a\, ..., an]) with (G = 0, θ = [a\, ..., an,
1, 1, 1, ...]); the continuous lines of Δκ are contained in such tongues and in the
rest of Σ*(oc, β). This enables us to prove the following:

Theorem 17. Let C G]l, 1.17..[. Let α, j8, KQ be such that the conditions of
Theorems 15 and 16 are satisfied. If p/q = [a\, ..., an](an > 1) satisfies (3.24),
then \/K > Ko there exists a continuous line belonging to ΔK and connecting
(G = Q,Θ = [au ...,an]) with (G = 0,θ = [au • ••,«„, 1,1, 1, •••])•

Proof Consider as above the unique path in Σ* crossing Σp/q and connecting (G =
0,0 = [a\,...,an]) with (G = 0, 0 = [a\, ..., an, 1, 1, 1, ...]). By virtue of Lemmas
13 and 14 and Theorems 15 and 16, there exists two continuous lines on each side
of this path, connecting the same points on the axis G = 0, on which Hχ(G, θ)
does not cancel (see Fig. 16). By Lemma 13 the sign of Hκ(G, θ) is different on
each line. This proves the theorem.

3.3. The Absolute Minimality Condition in the Geometric Limit. We have de-
scribed so far a spectrum defined by an extremality condition instead of the original
minimality condition, which greatly simplified the matter. The problem becomes es-
pecially difficult if one considers the absolute minimality condition of Douady and
Couder (see [19,20]). However a simple result can be obtained for the simple
periodic lattice W(G, 0) in the limit of infinitely short-range interaction.

Consider for instance the interaction

uκ(r) = e~κ\ K ^ 0 (3.25)



Two Physical Models of Phyllotaxis 287

[a ,an,1,1,..]

Hκ(G,θ)<0

G

Fig. 16. By virtue of Lemmas 13 and 14 and Theorems 15 and 16, one can construct two con-
tinuous lines connecting (G = 0,0 = [au...,an]) and (G = 0,0 = [au...9an, 1,1,1,...]) such that
Hκ(G,θ) has a different sign on each line

and construct the resulting potential (cf. (1.6))

Uκ(x)= Σ uκ(\\xex - rnnι

In the limit K —• +oo the minimality condition

Uκ(x) - Uκ(0) ^ 0, Vx

reduces to

where

| |xex - rnm{G, θ)\\ .

(3.26)

(3.27)

(3.28)

(3.29)

It is not difficult to convince oneself that the spectrum defined by (3.28) is a
subset of Σ. Moreover there is always a part of the singular branch («, n + m\
connected to («, w), that is not included in this spectrum. The following theorem
completes its description.

Theorem 18. If (G, θ) belongs to any regular branch of Σ, then

dG,θ(0) ^dG,Θ(x)9Vx.

Thus in the limit K —> -foo, the spectrum defined by the extremality condition of
Douady and Couder is basically the set of the regular branches of Σ. It clearly
shows the expected selection of noble numbers.

Proof of Theorem 18. Suppose that (G, θ) belongs to a regular branch of Σ. This
implies

(Rσ ( 1 ).ex)(Rσ (2) ex) < 0 . (3.30)
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Assume that σ(2) > σ(l). We will prove that if

dG,0(x) > \\Rσ(l)\\ = dGJ(0) (3.31)

for some x, then σ(2) > 2σ(l), which is a contradiction.
There exists a G W(G, 0) such that the unit cell

{a, a + Rσ ( 1 ), a + Rσ ( 2 ), a + R σ ( 1 ) + Rσ(2)} (332)

contains the point xe*. One can distinguish three cases:
1) (a + R^i))-^ > 0 and a-ey ^ 0 .

In this case it is easy to see that dG Q(X) ^ ||Rσ(i)||.
2 ) ( a + R σ ( 2 ) ) e 7 ^ 0 .

Idem.
3) (a + Rσ (i)) e y ^ 0 and (a + R ^ ) ) . ^ > 0 .

dβ,θ(x) takes its greatest value if (a + R<j(i)) e y = 0. Without loss of generality,
one can therefore assume that a + Rσ(i) = 0. One seeks x such that dGyo(x) >
| |Rσ(i)||. The function do,θ(x) has a maximum that can be greater than ||Rσ(i)|| at
x = JC, where:

||xe, - (a + R σ ( 2 ) ) | | = \\xex - (a + R σ ( 1 ) + R σ ( 2 ) ) | | . (3.33)

Suppose that

l|Rσ(.)ll < dG,θ(x) ύ \\x*x - (a + Rσ ( 2 ))|| (3.34)

Combining (3.33) and (3.34) with the hypothesis | |Rσ(i)|| = ||Rσ(2)||> one obtains

K(i)
2K(2)2 > 4((R σ ( 1 ) e>,)(Rσ(2) e>,) - (Rσ(i) e,)(Rσ ( 2 ) e x)) . (3.35)

In other words, if α is the angle between Rσ(i) and (~Rσ(2) ex, Rσ(2) e>;), one has

α > π / 3 . (3.36)

Consequently

^aye σJ2) sin(/> + »/3) =

SlϋjD

which had to be proved.
Adler [18] and Levitov [8] obtained an analogous result with the relative min-

imality condition for the variational problem (in the paper of Adler the role of
energy is played by contact pressure).

4. Conclusion

Following [8-10], we have studied systems of particles interacting repulsively
through a potential u(r) and arranged in a periodic or a spiral plane lattice. We
considered families of lattices depending on two parameters, G and 0, G is re-
lated to the vertical or radial compression of the lattice θ is called the divergence
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of the lattice. The divergence spectrum A was defined as the set of couples (G, θ)
which satisfy the extremality condition (1.5) or (1.17). The first one corresponds
to the dynamical condition of Douady and Couder (one seeks the lattices that are
the stationary solutions of a discrete time dynamical system) while the second
one is the variational problem of Levitov. Formally both conditions are essentially
equivalent.

Levitov solved the variational problem for the periodic lattice. He showed that
this particular problem possesses a hidden symmetry, so that the spectrum is usually
constituted of a set of branches arranged in the Farey structure; each branch cuts the
axis G — 0 at a noble number. Using the dynamical condition, Douady and Couder
obtained numerically a similar spectrum for spiral lattices.

We addressed the following question: apart from the case treated by Levitov,
where the noble numbers appear a consequence of some symmetry, under what as-
sumptions can one prove that the spectrum A(G, θ) shows the hierarchical selection
of noble numbers put forward by Levitov and Douady and Couder?

As these authors indicated, the selection of noble numbers is due to two main
facts:

- there is an underlying geometrical problem, which is in a way the unperturbed
problem. Its solution possesses the Farey tree structure. This establishes a direct
connection between the spectrum A and the continued fraction representation of the
divergence θ.

- the physical extremality condition results in the choice of the so-called "regular
branch" at each bifurcation in the Farey tree. Thus ideally every possible path in the
perturbed tree leads to a noble number. The tree structure organizes noble numbers
into a natural hierarchy.

In Sect. 2.3 we dealt with the geometrical problem in the case of a class of
spiral lattices (the case of the periodic lattice being well known). We proved that
the solution has basically the Farey tree structure: there is at the most a finite
number of defects in the tree. In the special case of a linear or an exponential
spiral lattice, a numerical calculation shows that there are no such defects.

In Sect. 3.1 we considered the divergence spectrum A in the case of an expo-
nential interaction u(r) ~ e~Kr. We proved that the branches of the spectrum are
included in tongues of width ε(K). These tongues follow the paths in the Farey tree
that lead to noble numbers (more precisely, they connect a rational number with
the corresponding noble number on the axis G — 0). ε(K) tends towards zero as
K tends towards infinity, so that noble numbers are approached with an increas-
ing accuracy if the range of the interaction is decreased. On the other hand, this
structure of the spectrum is destroyed when G is smaller than some characteristic
value, that is when the shortest distance between two lattice points is much smaller
than the characteristic length of the potential (the nearest neighbours approximation
(1.13) loses all its relevance in this case). One can thus construct counterexamples
in which this structure of the spectrum entirely disappears.

If the interaction is scale invariant (u(r) = r~κ), no characteristic value of G
can be defined. In this case, we proved in Sect. 3.2 that there exists a Ko such
that if K > Ko, a class of noble numbers is exactly selected. A similar result must
be obtained for other potentials if the density of the lattice is kept constant (or is
increased) when G is decreased.

These results contrast with the situation analysed by Levitov, where the structure
of the spectrum is essentially independent of the potential. The following table shows
the accuracy of the selection of noble number according to the different cases:
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u(r)

Spiral lattice

Douady-Couder
condition : finite accuracy

depending on
infinite accuracy

K if K > Ko

Levitov
condition : finite accuracy infinite accuracy

depending on K if K > KQ

u(r) -Kr u{r) -K

Periodic lattice

Douady-Couder
condition: finite accuracy infinite accuracy

depending on K if K > KQ

Levitov
condition : infinite accuracy infinite accuracy

VA: \/K

It is well worth noting that spectrum originally considered in [8,9] and [10]
was defined by a minimality condition (instead of an extremality condition). It is
therefore a subset of the spectrum we studied, from which the plateaus around
the rational divergences usually disappear; the branches may also become discon-
tinuous [19,20]. In Sect. 3.3, we examined the spectrum defined by the absolute
minimality condition of Douady and Couder in the geometric limit (for instance
u(r) = e~Kr,K —> +oo). In the case of the periodic lattice, it is constituted by the
same hierarchical set of branches leading to noble numbers.

Ultimately, then, the hierarchical selection of noble numbers in these problems is
closely linked to the two-dimensional geometry of the system. This fact is interesting
as regards the problem of phyllotaxis. The systems we studied were proposed as
possible examples of the mechanism controlling the appearance of new leaves on
the stem. Equivalent mechanisms can indeed be associated with one-dimensional
systems (for instance reaction and diffusion of chemical substances on the meristem
[13,16,17,25]). In this more general framework, Guerreiro [19,20] showed that the
mechanism itself fails to explain the universality of noble numbers in nature, unless
it is considered in an appropriate limit.

Acknowledgements. The author wishes to express his thanks to F. Rothen for his critical reading
of the manuscript. He is also indebted to J. Guerreiro and G.P. Bernasconi for many valuable
suggestions.

APPENDIX A.

d2Φ
Proposition 6. (Sect. 2.3). Suppose that yyOO ^ 0, Vx ^ 0. If t<, 1, T~\Ωt) is

a convex set.

Proof. The boundary of Ωt is the union of two arcs of a circle. One is an arc of
the unit circle and it is mapped by Tφl on a segment lying on the x-axis. The other
arc is described in polar coordinates (r, φ) by:

r(φ) = cosφ + yt - sin2φ, -<pm a x ύ Ψ ύ ψn (A.I)
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where

φ m a x = a r c c o s ( l - f 7 2 ) . (A.2)

T~x maps this arc on a curve described in cartesian coordinates (x, y) by :

x = φ, y = h(φ), - φ m a x S ψ ύ </W , (A.3)

where
(A.4)

We have to prove that

°Kφ)-Λφ)^W)} = ° (A 5)

It is enough to verify that rn(φ) < 0, which is easily seen if t^l.

Proposition 7. (Sect. 2.3). Suppose that

dG dG = '

Consider the function

Anm(G, θ) = R2

n(G, θ) - R2

m(G, θ),n<m.

For any fixed value of θ it has at the most one zero Go', it is negative for G > Go
and positive otherwise.

Proof Let us show that if Anm(G,θ) = 0, then δGAnm(G,θ) φ 0. First notice that

Anm = Φ2

G(n) - Φ2

G(m) - 2(ΦG(n) cos (2πnθ) - ΦG(m) cos (2πmθ)) . (A.6)

Thus if n<m and Anm(G,θ) = 0, one has

ΦG(m) cos (2πmθ) - ΦG(n) cos (2πnθ) > 0 . (A.7)

Now if Anm(G, θ) = 0 and dGAnm(G,θ) = 0, the following equality would hold:

dΦG(n)
dG _ φGJn) ΦG(m) cos (2πmθ) - ΦG(n) cos (2πnθ)

dΦG(m) ~ ΦG(m) ΦG(m){ΦG{n) - cos (2πnθ))

It would clearly contradict the assumption

^ogΦa(n) < dlogΦoim)^ w < m W ^ 0 ( A 9 )

Consequently, the sign of 3GAnm(G, θ) does not change along an implicit curve
defined by Anm(G, θ) = 0 in the (G, θ) plane. In fact if n < m, dGAnm(G, θ) < 0
along such a curve, which demonstrates the proposition. To prove this last inequality,
notice that such a curve necessarily cuts the axis G = 0; now at this point

dGAnm(0,θ) = 2(1 - cos(2πnθ))d(ΦG(n) ~ Φ g ( m ) ) ) < 0 (A.10)
dG I

by hypothesis.
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APPENDIX B.

Lemma 13. (Sect. 3.2). Let 0 < μ < 0.1 and define

± \q) v\ <i

There exists Ko such that VK > Ko, V - G Q
q

±Hκ(G,Θ)>0,V(G,Θ)eΩ±(?-

Proof Let us write

Hκ(G,θ) = Σfκ(\\Rnq\\)Knq-ey+ Σ Σ^(ll»^+ill)»^+i ^ . (B.I)

If (G,θ) G Ω±(-), it is not difficult to convince oneself that the second sum be-
comes negligible if K is great enough. As a matter of fact, the leading term of the
second sum is approximately equal to qκ~ι, whereas the leading term of the first
sum is approximately (qG)ι ~κ > (1 Oq ) κ ~ ι .

Lemma 14. (Sect. 3.2). Consider the set

f€Qn[o,i]

where
Σ(a)= U B((G,θ);aG)

(G,Θ)EΣ

ΛT ί n\ I j

(G,0)e(Σ*\Σ)ΠΣ

and B((G,θ);t) is the open ball of center (G,θ) and radius t.
If a,β > 0 are small enough, then
1) \fp/q e QΠ]0,1[, the boundary of the set

Σ*(a9β)ΠΣp/q

is the union of the boundary of Σp/q and two simple closed curves. These two

curves intersect the segments Ω+ ί - j and Ω_ ί - j of Lemma 13.

The situation is illustrated in Fig. 14. of Sect. 3.2.

2) sup -r

3) sup

Proof Let us choose G' such that if G < ( J ' , ! ^ ! ) , ^ ) , . . . , ^ ^ ) } C Sl(G,θ) is a
part of a simple periodic lattice as slightly distorted as we need.
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One can always construct the restriction of Σ*(α,/i) to the region Gf <G<
G" <oo (the complementary set is compact, so that it is easy to satisfy 2) and 3)).
Let us then restrict our attention to the region G<G\ and assume that Sl(G,θ) is
a periodic lattice around ΓQ.

1) Consider a set Σp/q as illustrated on Fig. 17. As G tends towards zero, Σp/q

is adjacent to sets of the type Σ p+kP, k —-> oc. One can deduce from this fact that
q+kq

δ(G) « f as G -* 0 (if (G, f±g e Γ, then Gkq « ± and <5(G) = f - f

if A: is large).
It can be verified directly that the restriction of the boundary of Xp/q{β) to the

region G < < \ is the set of points

(B.2)

As for the boundary of Σ{μ) Π Σp/q, it is the union of the boundary Σpjq and a

simple closed curve. If G < < \ and α < < 1, this curve behaves basically like

δ(G\ so that it intersects the boundary of Xp/<q(β) at a point (G,0), where

r β

G « —-,
4 ^ 2

(B.3)

If /i2 << μ the boundary of Σ*(θί,β)nΣpιq must therefore intersect i2+(j)

and Ω _ ( | )

2) If (G,0) ^ Σ(α), then dist((G,0),Γ) > αG. By Proposition 19 of this ap-
pendix, we know that

G > αG . (B.4)

In other words, B\ =

Fig. 17. The thick curve is the boundary of the set Σp;q
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3) One can easily see that if (G,0) G Σp/q\Σ*(aL,β), G fixed,

\Rσ(ιrey\ ^ βVG. (B.5)

If G is fixed, ||Rσ(i)||(G, Θ) is maximum on the points of Σ. One can deduce from

this that | |Rσ (i) | | = O (y/G). Hence

IIRσίnll O(y/G)
" σ ( 1 ) " = κ } = 0 ( 1 ) . (B.6)

Proposition 19. Let W(Go,θo) be a simple periodic lattice and suppose that

σ-(l) = n,σ(2) = m and R

σ ( 2 ) < A < 2. There exists x = (δG,δθ) such that

| |R Λ (G 0 + (5G,θo + δo)\\ = | |R W (G O + ^ G , ^ o -

where C is some constant (C depends on A and C « 1).

Proof. Let us agree upon the following understanding:

| |Rπ | | = ||RΛ(Go,θo)H

(idem for m). We look for a solution x of minimal norm to the problem:

(R«+/2x)2 = ( R m + m x ) 2 . (B.7)

One obtains

where
b = \\mRm - nRn\\ , (B.9)

Since | |RΛ - R m | | > | | R w | | and ||RΛ + R W | | > | |R Λ | | , one can verify that

b + b' > s u p ( | m - n | | |R n | | , | /w- \rn - n\\-\\Rn\\,\n - |/w - « | | . | |RW | | )

> C(m + n)\\Rn\\ (B.ll)

and
||Rrt | | < C'(n + rn)G , (B.12)

where C,C; are some constants.

Proposition 20. Consider the lattice family Sl(G,θ). Let (Go,p/q) £ Σ, and
σ(l) = q, σ(2) = n. If 2{q — n)/q > C, where 1 < C < 2, one can construct a
ball B of radius | G 0 and center (Go,p/q), where y < \/~C — 1, such that:

/or any (G,θ) € B.
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Proof. One can deduce from the equality

that
R K] 2(q-n)

R 2

Kσ(2)

2(qn)

a ^ }

Let x = (δG,δθ). One has:

V Λg + ^llxll /ίπ + w||χ||

if 11x11 < IGπ. In fact

iixii < \G0 < -L A < v ^ : ^ (B.16)
" " 3 1 + V C - y <7 ( ? - n) + (>/C - y)<?

(idem for the other term).
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