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Abstract: We study the infrared behaviour of the Euclidean Gross-Neveu-Model
with discrete chiral symmetry. Imposing a suitable UV-cutoff we prove that for
a large (but finite!) number of fermion components the model has (at least) two
pure phases, realized by suitable boundary conditions and that the fermion two-point
function decays exponentially.

I. Introduction

We want to study the infrared behaviour of the two-dimensional Euclidean Gross-
Neveu model [1] which is formally given through the Lagrangian

for TV ̂ > 1. Here TV is the number of fermion flavours, i.e.

The coupling λ is supposed to be a constant of order 1. Since we will study the
model with an UV-cutoff, it does not make much sense to choose λ > π: we will
show that the model is massive and that the mass approaches the size of the cutoff
for large λ > π. If λ <C π there arises a technical difficulty: the mass decreases as
£~π/;°, and the correlations decay more and more slowly. But the cluster expansions
can only be shown to converge for TV >> m~l. So small λ requires (very) large N.

Our aim is to show that the mechanism of mass generation discovered by Gross
and Neveu and analyzed by them to first order in I/TV persists in the full model for
TV sufficiently large. Being mainly interested in the IR behaviour of the model we
will therefore study the model with an UV cutoff, the scale of which is put equal
to one.

The UV limit will be postponed to another paper, and one should note in this
respect that the UV limit of the two-dimensional massive (by hand!) [2,3]
and of the three-dimensional large TV [4] Four-Fermion-Models have already been
constructed.
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Fig. 1. Form of V(σ) to leading order in l/N

In our study we will present the model in terms of an auxiliary bosonic field σ.
Its action is obtained by formally integrating out the fermionic fields ψ, φ. This rep-
resentation while providing the same perturbative expansion as the original fermionic
one is better suited to the large N behaviour of the model. The thermodynamic limit
and the Green functions of the model will be controlled in this paper with appropri-
ate cluster expansion techniques and bounds to estimate its (nonlocal) interaction.
Our main interest is to show that the model is massive, i.e. that the two-point
function falls off exponentially

\S2(x,y)\ ^Ke-m'\*-y\

with some (in principle calculable) mf > 0 (see (209)), and that it has two phases
at 0 temperature1 which can be realized by imposing suitable boundary conditions
before taking the thermodynamic limit. In the language of the σ field these 2 phases
correspond to 2 opposite magnetizations (nonzero v.e.v. for the σ field). So the
situation turns out to be quite analogous to that of the asymmetric φ4 theory with
an interaction λ(φ2 — /I"1)2, λ <C 1 presented in [5], ch. 16.

As long as we don't take the UV limit the additional difficulties are mainly
stemming from two facts:

1) Our model is massless in the beginning and the mass is physically present only
for σ field values close to the minima of the action (depending in sign on which
vacuum state is chosen) so that the treatment and the expansions depend on the
"size" of the σ-field. If σ is close to one of the minima a local translation of the
field variable σ will be performed.
2) The interaction of the model is non-polynomial and non-local in the σ-field. The
analogy with λ(φ2 — λ~1)2 implies that the model is indeed qualitatively well re-
presented for large N by the "effective potential" V(σ) which has been calculated by
Gross and Neveu [1] (by effective potential we mean the value of the σ-Lagrangian
as a function of σ for constant σ), see Fig. 1.

1 Strictly speaking we prove the existence of at least two phases. In Ising models more than
two phases can be ruled using correlation inequalities which, however, have not been established
for our model.
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II. Presentation of the Model

The aim of the paper is to show the existence and to derive bounds for the fermionic

two-point function (ψ(x) ψ(y)) The treatment of N point functions will be in
obvious analogy. Our heuristic starting point is thus

S2(x9y)<-

where

g2 — A ? ^ — pQyQ _j_ p1y1 . yQyyl are the two dimensional Euclidean y matrices

with

{yμ, 7v} = ~2δμv , y+ = -yμ, e.g.

On introducing formally the σ field through

S2(*,;;)~/DOA,^)£σ^ , (3)

we may integrate out the fermions arriving at

1/2/σ2 , (4)

where I —> — } - )(jc, v) is the position space kernel of —> — f - sandwiched be-
V > +0σ/ > +^σ

tween projectors on the /th flavour subspace. Expression (4) is still highly formal
since the infinite-dimensional Lebesgue measure Dσ is ill-defined and since the
terms written are plagued with infrared (IR) and ultraviolet (UV) divergences. We
therefore introduce the following regularizations :

UVL Let u(p2) be a smooth nonnegative function with w(0) = 1, l/u G =Sf2(IR2)
(viewed as a function of p). To be definite we set

u(pi) = e^2, (5)

ύrg — ^u — φ u(p2) (and analogously for functions of ^) , (6)

u will thus regularize the fermion propagator. We have not explicitly introduced
a cutoff scale in the definition of u which means that the cutoff scale is chosen
equal to one.

Contrary to perturbation theory where the regularization of the fermion propaga-
tor suffices to regularize all diagrams since any σ-propagator is sandwiched between
fermions, we also need a regularization of the σ-field here. Otherwise we would
encounter (at least) considerable technical complications, in particular we could not
prove Lemma 3 below.

The σ-field appears as an ultralocal field in (3), (4), but the σ-cutoff will be
a new source of nonlocality which in turn leads to difficulties when the translation
of the σ variable is performed. To minimize those we impose some conditions on
the cutoff.
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UVIL The regularizing function will be called f p ( p ) and will depend on p2 only.
We write it in the form

fp=afpa p ^ l , ( 7 )

where a(p2) is a smooth bounded strictly positive function of p2 which will be

specified later (a(p2) = ^/μ2 + πren, see (83))

Q< μ ^ a(p2) ^ 0(1) . (8)

We first define f\. Apart from Euclidean symmetry we demand

i) /i €C°°(IR2).
) = 0;/1(p)^^|/;|2L, |/7| < 1;

A(p2)\\p\ > 1. 2 (9)

iii) With g(p) = ^ + \(p) we also demand that #(*) = fβ(P) ^7^^ has

compact support, i.e. g(.x) = 0 for |jc| ^ C.

Here C, α, ̂  > α are suitable positive constants. They may be chosen (arbitrarily)
small. L G N has to be fixed for later purposes not too small, to be definite we set

1 = 32. (10)

Lemma 1.

(i) There exist functions f\ fulfilling (9).

(ii) Iff, fulfills (9), then, for p > 0 9 f p ( p ) := /i (|) fulfills (9) OΛ

\p\ ^ \ by \p\ ^ p in (9 n) αwrf C by C/p in (9 MΪ).

Remark. We will fix p > 1 as a function of N for some given / later on (see
(61)).

f 1 |jc| < 1
Proof, (i) We start from G(x) = <

( 0 M Ξ> 1

Its Fourier transform is G(p) = J d2xe~lpxG(x) = 2π J0 Λ: Jjc Jodpl ^)? where the

Bessel function JQ(Z) is bounded by const z"1/2 so that

Note that G depends on p2 only. Choose an even integer M ^ 4L + 20. We have

I

and the Fourier transform of GM is in CM//2~3(IR2) and supported in x\ < M.
GM(p) is analytic in p and may be expanded around 0 as

oo

G (/O — / J f l f t ( p ) ,
«=0

where α0 = f(GM)(x)d2x > 0, and all coefficients are real.
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We now set

o

where bo = 1, and bn , 1 ^ n < L are inductively fixed such that G\(p) has vanish-
ing derivatives up to order 2L at zero (b\ = —a\/ao, b^ — — I/ΛO (β2 + b\a\ ) , . . .); &ι
is chosen sufficiently small (possibly < 0) as follows: G\(p) may be Taylor
expanded at 0 as

n=L

and we choose bL such that CL < 0 and so small that

G!(0)> GiGO V / 7 Φ O .

This is possible, since GI has a local maximum at 0 and by decreasing bι it
decreases strictly for any finite p (note GM ^ 0).

The next step is to build G2(p) with

G2(0) > \G2(p)\, / > Φ O . (11)

If (11) is fulfilled for GI with suitably chosen bL, we set G\ = G2. If it is not
fulfilled for any bL, we assume OL has been chosen so small that

GI > 0 for \p\ < PQ , GI ^0 for |/?| ^ /?0

 wim some /?0 > 0 .

Then (11) is violated for those p for which

Gι(p)^ -1.

Since
C"

this will happen only in some compact region. Set

= -inf Gι(p) .
p

We have 1 g d < oo. Put

Then
., , d

and still

G > 0 for |p| < p0 , G 1 ^ 0 for \p\ ̂  Po .

If GI^ does not fulfill (11), we may continue until after j steps

G\j} > -— > -1 for some j > 1 ,
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where inductively G(,"+1) = G^ + J- (G^)', dn := -i

We then set
G2 = G\j) .

Equation (11) stays also true for

^ 0 .

Since G^ is a nontrivial analytic function, it has only finitely many zeroes in any
compact region of space. We may thus choose μ ^ 1 such that

Choosing B ^ 2 we thus have for 1 ̂  q ^ q\ (where qι — |/?z |)

—4 < 00(p)> --4 = 9o(pι) for some ^ > 2 .

Let

Then

^—4 < flΊ(^), ^-4 = 9\(Pι) for 1 ̂  ^ ^ ^2 with ^2 > q\ .

Defining inductively #π such that gn_ι(qn} — —±-τ and

^^«

— +9n-ι(p) qn
Qn

we find that

- for

By standard uniform convergence arguments it is also smooth and has vanishing
derivatives up to order 2L at 0 and it fulfills the analogue of (11). Its Fourier trans-
form still vanishes for |jc| > (l/μ)2J'+l M. We also have an upper bound on g^ :

Choose b < (A ) such that

9o < -j-τ V q > 1 .
b(f

We then find for qn ^ q < qn+\ (with q0 = 1)

q +
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We finally set

/. — - I -
g

Then all estimates on f\ are immediate consequences of the established properties
of g. On making once more a scale transformation of g, f\ with a scale parameter
μ > 1 one finds that the constants may be scaled as (α, A) — » μ~4(α, >4), C — > 1/μC
and thus may be chosen arbitrarily small.
(ii) is trivial. QED

As was already mentioned we also have to introduce an infrared (IR) regularization
to make the expressions we handle meaningful. This regularization will be removed
later on with the help of the cluster and Mayer expansions. There is, of course,
a lot of arbitrariness in introducing such a regularization, in our case even more
than e.g. for a P(φ)-theory, since our det-interaction is highly nonlocal. Roughly
speaking the system will be enclosed in a (large) box: We choose a square

centered at the origin with volume

More details will be given below (see (25), (26)).
We now use the UV regulator fp to define a regularized cr-covariance. We will

fix the choice of the parameter p in (7) later (see (61)) and call the functions fp, f

with that choice simply /,/. We shall then denote by

dμf (σ)

the Gaussian measure with mean zero and covariance

-y). (12)
!+// V 1 + /

For shortness of notation we understand Fourier transform to position space when
writing arguments x or y. dμf(σ) will replace in the rigorous definition of #2 the

term f Dσe~l/2fσ from (4). Since we will always keep the UV-cutofΓs the σ field

may be viewed as an element of &*2(Λ) [6] (or even as a differentiable function
if we restrict g(p) in (9) to fall oίf more rapidly for large p. If we want to take
away the cutoff, σ should be viewed as a distribution).

We now look at the determinant

in (4). Formally

det (> + gσ) = (det » det 1 + -gσ
ff

We define χΛ to be the characteristic function of A and set σ = σχA = σΛ. Replacing
also $ —> ι/>u (6) -¥- is trace class, and the second determinant makes sense. The

ffu
first will be omitted since it is a global normalization factor which drops out on
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dividing by the partition function or vacuum functional. (It may be interpreted as

det"1 ( (-57) ) •) It turns out, however, that for our purposes it is advantageous to

rewrite

det (l + l-gσ} , (13)
V > /

where $ from now on always is $ u - in a different form, namely as a determinant of
a Hermitian operator, which is more suitable for the subsequent estimates. We will
then restrict this operator to the volume A, which frees us from certain annoying
boundary terms (the reader will realize that there are still enough terms of that sort
left). We think this justified since one volume cutoff is in principle as good as
another, and simplicity is a reasonable criterion.

We proceed as follows. Introducing

τ(jc) = σ(x) - σ0(:c) with 0 ^ σ0(x) ^ σ0 G IR , (14)

we may rewrite (13) as

det l + 0<τ -det 1 + -- (#τ -h#σ0) J . (15)
V ff J \ ff

To make everything in (15) well-defined we suppose

We also suppose σ$(x) to be constant in A with value σo and smoothly decreasing
with |jc|. We call

. (16)

Under the preceding assumptions we now prove the following

Proposition 1.

det (\ + -(gτ + m)} = det1/2(l +!+£) det ( 1-f -. } , (17)
V ff J \

where

Here and in the proof m stands for m(x\ the associated operator on &2.

Proof. Our assumptions guarantee Λ(^τ-hm) to be trace class. We first assume
a

g to be so small (for given τ and σo) that

Trln
ff
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has a convergent expansion in g. Then

/ I λ °° 1 / 1 \n

det l + -(0τ + w) = expTr^C-lΓ" 1- (-(gτ + m)} . (19)
\ P ) n=ι n \p J

Since det is an entire function of g [7] one may then convince oneself that (17) also
holds for arbitrary g by analytic continuation, once it is established for sufficiently
small g.

We find for g sufficiently small (remember m =

det
\ ff n *

1
ff J n * \ff

2"

(— 2n

-det ( H h ( ^ τ H - m ) - - . (20)
V -ffj

Here we used the fact that the trace of an odd number of Λ's vanishes. The last
π

det is that of the adjoint of the first. We therefore know for g small and real

det ( 1 + (0T + W ) ) > 0 . (21)
ff

This together with (20) and

(and similarly for the adjoint) now tells us

det (1 + 1 (gτ + „)} = det1/2 (l±^} det1/2 (^L
\ ff J \ ff J \ -i

x det1/2 (1 + -1— gτ + gτ—±— + gτ—±— -j^—gτ} . (22)
\ ff H- m — ff H- m — ff + m p + m J

The first two det1/2's give the second term on the r.h.s. of (17). The last determinant
may be reexpressed in terms of σ as

det1/2 ί 1 -h -Γ7—(9° - w) + (gσ ~ mϊ_J+
\ Ji ' Jr '

+ (9σ - m"> u . ... -TTΠ (^σ - w>



130 C. Kopper, J. Magnen, V. Rivasseau

This establishes (17) for g small and real.

To establish the relation for any real and positive g note that det (1 +A + B)
is analytic in g and that for g real,

1 +yί+5 = ( l+F*)( l +F) ^ 0 with F = - - ατ . (24)
> + w

Therefore det (1 -h^4 -Kδ) ^ 0, and any zero on the positive real g-axis has to be

of even order. Then det1/2(l +A +B) is also analytic in a neighbourhood of the
positive real axis and (17) holds for any g > 0 by analytic continuation, thus in
particular for g=^/λ/N (which, in fact, is very small !). QED

With the aid of the proposition we now come to the definition of the
IR-regularized determinant. We set

(25)

Here and from now on m denotes w(0) = gσo, i.e. we have taken the limit of
constant mass, which is possible after introducing the χ^. The value of m will be
fixed later.

The support of the field variable σ in the interaction determinant is restricted

to A. At a later stage we will take A —> oo. Denoting/1 — IR2\/1 we include (for
technical simplification later on) also a term

r(σ) := e~
R^Λσ2^d\ R > 1 , (26)

and take R —> oo once we have performed the expansion. Equation (26) makes

explicit that interactions with A are suppressed. (Absorbing (26) in the covariance
would replace, for R —» oo,

1

\ + f
Having fixed the way in which we introduce the finite volume we also have to say
a word on the boundary conditions (b.c) on dA: According to the Peierls argument
[8] the b.c. are decisive for the realization of one of the two phases in the two
phase region. To fix them-and for later use-we introduce a lattice of (closed) unit
squares with corner coordinates in Z2, called

2) or Δj or Δ
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with A C /t, Uj — A and demand:
If ΔndΛ*0:σ(Δ):= fAσ ^ 0.
More precisely, all σ-functional integrals in the following will contain a term b(σ)
(b for boundary)

*(*):= Σ θ(σ(Λ)-l/4), (27)
ΔΠdΛ*0

where θ(x) is (for technical reasons) a smoothed step function

θ(χ) = < = ' , monotonic and smooth. (27')

Of course we could equally well study the case with opposite sign of σ(Δ). And
we can also fix the value of σ near the boundary by different rules to obtain the
same result, but we do not intend to discuss this problem here in full generality.
Obviously the b.c. (27) favours positive expectation values of σ, and we shall indeed
find out

(σ) > 0 (see Proposition 4) .

Using the regulators and the b.c. we may now make an attempt to define the two
point function $2(x, y) in a rigorous way. For technical reasons it will be sometimes
helpful (but not very important) to smear it out with test functions /ι,/2 We assume
them to be real J*f2 -functions and (without restriction) to have their support only
in a single square J(/ι)(resp. ^(^2)) which are of course arbitrary and may be
varied. Since we are working in a 2 x TV-component space they strictly speaking
will be assumed to be of the form

where the entries are in position 2 i— 1, 2/ of the 2N -vector. Finally we assume
(again without restriction) that

We thus now define the unnormalized UV-regularized two-point function in the
volume A and the respective partition function as

Ό/1,/2) = fdμf(σ) //i, — l— h } det1/2(l +A + B)b(σ)r(σ) ,
\ P + 9σ I

ZA = fdμf(σ) det1/2(l +A +B)b(σ)r(σ) (29)

(we used (12), (17), (25)-(27), formally starting from (4), and we formally divided
S,Z by det(> + ffi)).> denotes >M(6), p2 = (->„)>„.

To estimate the finite volume quantities and to be able to take the infinite vol-
ume limit later on we have to perform the usual cluster and Mayer expansions.
Since the regions where σ is far from either of the minima of the potential, are
highly suppressed in probability, we shall estimate them directly without expand-
ing the couplings between squares within a given connected component of such a
region. This means that our expansion will be defined differently for different sets of
σ-configurations. The Hubert-Schmidt norm of the operator A (25) restricted to a
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given square A turns out to be an appropriate criterion to distinguish between the
small field (near the minima) and large field (highly suppressed) regions. Thus for
every square A in A we shall introduce in the functional integral a factor

(see (270)
and then expand the product over the A's (see (47)). We use the following

Definition. Given any σ -configuration with σ e J£2(Λ) we call A C A a large field
or l-square if it carries a factor

(30)

| |Λ^||2 — H&j^&ilh (Hilbert-Schmidt-Norm), (in contrast to the operator norm
I M z i l l X and we call it a small field or s-square, if it carries a factor

θ» = 1 - 0 (M4Jk _ ιj = i _ 0> (σ) . (31)

Note that if the Hilbert-Schmidt-norms \\A^\\2 in (30), (31) are bounded by
0(l)7Vα, then the corresponding operator norms are bounded by 0(l)7V^α~1//2) due
to the N-fold degeneracy, i.e. they are much smaller than 1 with the choice (34).

For any square A we write

(32)

where σ(A) = fA σ(x)d2x.
And we call an s-square or an /-square a ±-square (s±, /±-square)

if it carries a factor θ(±σ(Δ)) . (33)

α in (30), (31) has to be chosen between 0 and 1/6, for definiteness

« = 1 L . (34)

For technical reasons it is (unfortunately) necessary to define several kinds of large
field regions by successively enlarging the region of /-squares:

Definition. Let I and s be the set of large and small field squares for a given σ(x)
(see (30)-(33))

l\Js = Λ lns = Q

0 in set-theoretic relations always denotes a set of measure 0 w.r.t. to the standard
Lebesgue measure in R2. The next step is to define l\ D / through Δ G l\, if A G /
or if A e s± and there exists A1 G s^,Δ' ή=A such that A and Δ' have a common
edge.

Accordingly

s\ = Λ\l\ , s\ — s\+ (Js\- , s\± C s± . (36)
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Then we define /2 D l\ through:

A e /2, if A e /i or if dist(zl, /O = 0 ,

and accordingly

^2 = A\Ϊ2 •> $2 — ^2+ U 52— , $2± C 51-^ . (37)

Now we define L D /2,

J e £, if J e /2 or if dist(/d, /2) = 0, (38)

and correspondingly S, S+ and 51-.
For given l\ we define

Γ = {A C A\ dist(A, / i ) g M} , (39)

where we choose (for definiteness)

Af = - log # > 1 . (40)

The set /i is also split into connectivity components as follows:
For At, Ajr G l\ we say there is a connectivity link between zlz , Aj if there exists
A C A such that

J)+ dist (z!7,zl) ^ 2M. (41)

By /π, . . . , I in we denote the maximal subsets of / i , connected by connectivity links,
and call these connectivity components. This splitting induces a corresponding one
of /2 and L into /2ι, . . . , /2« and LI, ... ,£„.

There is a one-to-one relation between / π , . . . , / ι « and the corresponding subsets
of Γ, called connectivity components of Γ:

ha C ΓaC Γ,with

so that
n

ΓaΓ\ Γb = 0 , a=^b, \J Γa — Γ . (42)
α=l

Finally we introduce

U

7 = Ib-a (43)
a

so that

M r-
dist (7,Γ;) ^ — -Λ/2, (44)

where we always denote for any set E C R2,

^ - Λ\E , S = 1R2\E . (45)
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The full hierarchy of large field regions is thus

/ C / i C /2 C L C (7 Π A) C Γ , lla C La C ya Π A C Γa . (46)

All squares A fulfill A C A. A will be viewed as a single (large field) block.
Now we go back to (29). We reexpress

SL= Σ /Φ/(σ)//,,— — f2}detl/2(l+K)b(σ)r(σ)
ί,s+CΛ \ ff + 9σ I

χΓK(*)Π0jV)Π θj"(σ) (47)

(see (27'), (30)-(31)).
(The sum is over subsets of squares /,s+ with / Π s+ — 0,5 = Λ\{/ U σ+} (as

set of J's)).

K = A+B (see(25)). (48)

As mentioned above AT can be viewed as an Hilbert-Schmidt-operator on
In the following we will use the same symbol for an operator and its position space
kernel, indicating arguments explicitly if necessary (K(x,y ),...).

The subsequent treatment of (47) will depend crucially on whether we are in
the regions L or S. The representation in terms of K (48) is suited for L, but not
for S. We therefore rewrite det1//2(l + K) in an (unfortunately) more lengthy form.

We introduce the operators

K+ = P+KP+ , K. = P-KP- , ALa = PLaAPLa , (49)

where the P's denote the projections on S+,S-,La, i.e. in position space multipli-
cation by χs+,Xs_,XLa Going back to F(τ) (24) and defining

F+(τ) := FP+ = L-^ , F_(τ) := FP_ := ,τ_ (50)

(τ± :=(σ
we have, (see (24)), using the cyclicity of the trace,

(51)

= Tr

(analogously for H — > — )

and

(52)
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From this we obtain (using ΊrF = TrF*, TrF2 = TrF*2 (20))

det1/2(l + K) =

χ e

χ

xdet 1 / 2(l + K). (53)

The last two terms may be rewritten as

-\/2 Ίr(F2

+ F;

del1/2

= Π det'/2(l +ALa) det|/2(l +K+) det^/2(l + K-) det'/2(l + β), (54)
a

where we set

^ 1

In (54) we used cyclicity and the pairwise orthogonality of the AL(l,K+ and
A'-. Q is well-defined since ALG > — 1 (see Lemma 17 below), and since \\K±\\ <C 1
due to the small field condition. We also introduced the (standard) definition [7]

n=l n

So far we have only introduced the auxiliary covariance (12) made up of the
ultralocal σ2-term and the regulator. The true covariance should contain (up to
corrections, which are small in the expansion parameter N) all terms quadratic in
σ. Otherwise the expansion with respect to the covariance will not converge (or
cannot be shown to do so). This does not apply to the large field region, however,
since this region can be shown directly to be highly suppressed in probability.

As a first step towards the new covariance (which obviously then will depend
on the configurations l,s) we define a new variable ζ instead of σ which is shifted
by =pσ0 in the regions S±. A suitable choice for <TO then guarantees that we expand
around the minima of the interaction in both regions 5+ and 5_, i.e. small ζ implies
small deviations from the minima.

Due to the cutoff for the σ-field we have, however, to smooth this shifting of
variable, since otherwise we get hardly controllable contributions from the cutoff.
We therefore introduce smoothed characteristic functions of the squares A through
the following steps:

α) Choose in one dimension a smooth function φ(x\) with

0 g φ(xι) g 1,

1/4 ^xi ^ 3/4
*ι ^ -l/4,*ι ^ 5/4 '

l)=l9 -1/4^*! g 1/4,

*i), (56)
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and set

Φ/ι,(*ι) = φ(x\ ~ HI), ni^Z. (57)

/?) Then we define for the square A with lower left corner XΔ — (n\ >n2) — n the
smoothed characteristic function

(58)

From (56)-(58) we find

<P*(x) = 1 (59)

By construction we have for the Fourier transforms

We now go back to (7)-(9) and Lemma 1. We choose f p , f p with (7)-(9) such

that/Up) :=φΔ(P)fp(p) fulfills

1 \ 2

—2) N-^ (60)

This is possible as will be shown now:
Assume f\ to be given as in (9), (10). Choose C^,C^(L} ^ 1 such that

Since

we have for p1/2 ^ C4,

From this we find (60) to be true if

if 2 A is chosen smaller than 1 and C^1.
The important result is

Lemma 2. The cutoff function for σ, / := fp is fixed as follows:
(i) Choose some f\ according to (9)
(ii) Define f(p) = fp(p) = Mp/p) (see (61)).
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Then we have the estimate (60) and

"'"- (62)

Here and in the following O(l) always denotes an TV-independent constant (which
also does not exceed 1 by orders of magnitude...)

Remark. The x-space support of (9) will decrease with TV proportional to

TV~1//2° so that we may safely assume

^ ' :,j;) = 0 \f\x-y\>\. (63)

Proof. Equation (60) has just been established, (62) is a consequence of the lower
bound on fλ in (9) and (61). QED

Now we define ζ(x) as

ζ(x) = σ(x) - <7o</>2+ + σo</>2- =: σ(x) ~ 002+00 + σ<)2-(*) > (64)

where (see (37))

φ2±(x) := £) ΨΔ(X) (multiplication operators in position space). (65)

So φ2± are not projectors as P+5 P_, PI (49). But due to (56)-(59) we have

x € S± (66)
^ v/ Λ y: o-t-

so that

with ζ± = ζ±P±, Ci — ζ?L and similarly for σ, τ.
The relation between C^ and σ^ is then

- </>2-)Λ: - (68)

Here the second term is sort of a boundary contribution which vanishes in / i , but
not in L\/I.

We may now reexpress φ/(σ) in terms of

dμf(σ)=dμf(ζ)exp (

- σ02-)) . (69)
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Due to (64,65) we find

\ rr\
- 002-), jί) = i

/ \
(70)

As a result of (60) we find:

7 (C, C } 7 (71)

The second term in (69) gives

= σ2Jφ2+-φ2-, Eh- Σ M . C 7 2 )

and using (60) and the definition of φ2± we estimate

^0(1)H7V-3/2. (73)

Since σo ̂  TV 1/ 2 (see (76)) this implies that the perturbations caused by / are
small; and this also ends the deviations necessitated by the σ-cutoff.

We noted before that, for the expansions to converge, it is necessary to include in
the integration measure for ζ all those terms of the interaction which are quadratic
in ζ and not suppressed by a negative power of TV—as long as we stay in the
small field region. We therefore include the terms from (53) giving an interaction
quadratic in C in the S region. The parameter m will be fixed such that the terms
linear in ζ from F± cancel with the /-independent linear terms from the r.h.s. of
(69). The higher order terms in ζ± turn out to be small for large TV (in the small
field region!) since they involve at least three powers of g and thus contain a factor
TV~1 / / 2 after taking into account the factor TV from the flavour trace.

We thus proceed as follows. For the first exponential in (53) which contains
the terms in question, we find

Tr F+ = Tr - - g ζ + = ΘN Tr2/

w "> μ \ r« j2

p2 + m2 (2π)2 '•x. (74)

(Tr2 is the trace in spinor space only.)
We fix m or σo such that (74) compensates with the term J σo+ ζ = / σoC+ fr°m

(69), i.e.

m d2p _ _ m
pi _j_ m2 (2π)2 g

W/^3^ —=- = - <75>
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Due to the fermion UV regularization u we find

m = (l+ δ)e~π/\ σ0 ** \^~lNl/2e-π/λ , (76)

(remember that λ < 1 is fixed, and g2 — — ).
N

For a sharp cutoff at p2 — 1 we find for 1 + δ the value (1 — e~
π/λ^~ι/2, jn Our

case δ cannot be calculated explicitly but easily estimated as \δ\ <C 1 for λ < 1.
Equation (76) shows that λ > π does not make much sense in the cutoff theory as
was mentioned in the introduction.

Doing the analogous calculation for the ζ_ -terms we find that (75) is also the
condition for

Tr J^n9ζ- + Sσϋζ~ = ° (77)

Now we come to the terms quadratic in ζ±:

= <C+X+>, (78)

where π denotes the fermion bubble

We then define

πΓen(p) := π(p) - π(0) (80)

and

The term 1 stems from the original ultralocal boson interaction which entered in
dμf(σ). The calculation for the £_ term gives as in (78) a contribution

^(C-X_). (82)

We will prove in Lemma 4 that

μ2 > 0 and μ2 + πren > 0 . (83)

This tells us that πren -f μ2 is a positive operator and thus may be legitimately
absorbed in the covariance for £, which we now define in a first attempt through
its inverse

C~L

l

s = +(πren -f μ2)+ + _(πren + μ2)- + / + έy , (84)
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where

s:=N l , εy := εχΛχy , έy = \/πτQn + μ2εy\/πrQn + μ2 . (85)

__
The indices ZS indicate that C depends on the regions L,S+,S_. The first two

__ i
terms are those isolated above (78), (82). The ε term ensures positivity ofC also
in the large field region Ley (38), (43) (/(/?) vanishes for p —* 0). The ε-term
then has to be compensated by adding it to the y-region interaction terms. That
it is sufficiently small so as not to deteriorate the large field bounds given below,
Prop. 2,(ii), follows from Eq. (129) below. We can afford values up to ~N~4/5.

__ j
Starting from Cis we will now define the final covariance by setting

C~l = vV + πren(l ~ Xy'+ ^ + /)Vμ2 + πren . (86)

The difference

contains a lot of terms which, however, are all easy to control. We find

Cu - cy~l = ΣC, , Q = Q(y), with
/=!

Cι= (vV + πren) (Vμ2 + πren) + _

C2 = ( vV + πren) ( λ/y"2 + πren ) + ( Vβ2 + πren ) ( Vv* + ^ren ) ,
— \ / y \ /+ + \ ^ y ^ / —

πren) A 4-

πren)

(87)

Here we set + (^/ μ2 + πren J Λ - χs+ (\/^2 + ^ren) X y etc. (see (43),(45)), remem-

ber that χy = 1 — χy, and we put

i=2

We now write the expression for the two-point function using dμy(ζ) defined as the
Gaussian measure with mean zero and covariance Cy, normalized according to

fdμ, = 1 . (88)

In writing £2 we may dispose of a global normalization for iS^un and Z. We choose
it such that for y = 0 the normalization factor equals 1 . Then for y φ 0 we get a
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factor Zy due to the change of covariance from C0 (for y — 0) to Cy which is
([5],Ch.9)

Zγ= Det1/2(CyC0). (89)

(We write Det instead of det since according to our rules det involves a flavour
and spinor trace, which is absent here.)

We would be satisfied if the attentive reader had become curious after all these
preparations, what we are going to write for £2(/i 5/2)5 the normalized two-point
function:

we get

(90)
Zw^+^yJ "W^^yVW 2-,/s+^Vί"'

with

and

Gy(ζ) = Gλ.^)G'2(y)(ζ)G^ζ)G'^(^G^)G6,,(ζ) (92)

with

G,.. = b(σ)l\θ'Δ(σ) Π θf(σ)el/2^'c^r(σ) (where σ = σ(ζ))
"de/ jes±

(see (27), (47), (48)),

G2y = Π det1/2(l +^Iβ)e-^2<<τ^> (93)

(see (47), (53), (54)).
The last term stems from the original ultralocal interaction. In S± the analogous

contributions have been absorbed in the definition μ2 (81), (84) and thus in the
measure dμy. The relation between ζι and σι (for which the large field condition
was formulated) is in (68).

Gj, = det1 / 2(l+β) (see (54)), (94)

G'Λy= exp j-i&d

x exp ~({σo+,σo+} + (σo-,σo-)) (see (69), (87)), (95)

= exp < - -{ζ, δLS,ζ) - {σ02+ - σ02- ,/C) - (σ02+ - σ02-

(96)



142 C. Kopper, J. Magnen, V. Rivasseau

(see (85)-(87),(69))

r , , i , lI -(Tr (F F; + F+F;2 + -(F+F^)2 + (+«_> _uG6y = exp

x det3(l+,£+) det3(l+#_) (97)

(see (52)-(54)).
We have thus separated Gy into 6 parts. The first collects restrictions on σ or C,

the second the essential part of the large field contributions. G^y contains the terms
coupling the small and large field contributions. G5y contains terms which are small
in TV (see Proposition 2). The second part of G'4y is a normalization term (note

that the contributions of the form (σo2+,0"o2-) vanish due to (37),(55), (65) since
dist (s2+,S2-) ^ 1). G f

2 y , G f

4 y carry a prime since their definition will be changed
later (see (151), (152)). Finally G6y contains the interaction terms in the small field
region.

As a last preparation for the expansions we want to show that the covariance
Cy(86) can be written as a sum over terms Cyα centered in the different connectivity
components of y. To do so we write the resolvent expansion for Cy

Cy — C0 -f C0(C(Γ ~ Cy" )Cy

— CQ H- CO(CQ — Cy )Co H- CO[(CQ — Cy )Co] H- ... . (98)

Using

C^1 - C~l = v/μ2 + πrenχy(l - ε)vV + πren (99)

we deduce

x (100)
V 1 + / V M2 + Tϋren

Note that the expansion converges in norm and that the lowest order term equals

+ /

Since ( J (x, y} = 0 for \x — y\ > I and due to the definition of the con-

nectivity components yα of y(43) we find from (100),

1 1

(101)
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which we write as C0 + Cω = C0 H

143

+ πren

^
Cv-

πren

1 1

/
l̂ - β) - (102)

As a first application of this result we find that the normalization factor Z7(89)
factorizes over the connectivity components of y

Z - Dety~-
 1/2 - 1/2

~ - Det \ + —

= D e t 1 / 2 l +

= ΠDet1/2

(103)

(where we used the cyclicity of the determinant and the orthogonality of the

χya- 7). Now we bound Zya

Lemma 3. 1 ^ Zya S

Proof. = Det1/2

1 \

1 +
, /•

!-(!-.

exp U - ) t r l n ( l - (1 -

(104)

(tr denotes a flavour and spinor singlet trace).
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/ 1 Y
The lower bound follows from the positivity of the trace of I - -χya 1 .

Furthermore we have

Lemma 3'. For any positive Hermitίan trace class operator A and (orthogonal}
projector P the following inequality holds:

Tr(PAP)n ^ TrPAnP.

Proof. The inequality follows inductively from

ΊrPAr(PAP)s ^ TrPAr+l(PAP)s~lP. (105)

To prove (105) evaluate the trace in an eigenbasis {φt} of PAP with eigenvalues
λi ^ 0. The difference between the r.h.s. and the l.h.s. is given by

ΎrPAr(l -P)A(PAP)s-lP = Σλs

i~
l(Pφi,A

r(l -P)APφi).
i

We rewrite Ar =AAr~\ move A to the right and use A = (1 -P)A + PA. Then
the last expression equals:

ΣK Λφί, Ar'1 φ'i) + λi(φh A
r-\\ - P)Aφ,y\ .

i

Note that we used the fact that P φ/ = φ/, if A/ φO, and we set φ = (1 — P)AP φif

Then the first term in the last sum is manifestly nonnegative and the second is
so by induction on r, noting that Λ."(φ/, (1 — P)A φz) — 0 for n ^ 1, to start the
induction. QED

Applying (Lemma 3') to (104) we obtain

1
fr I _ v 1 <Γ
tr a =

The last inequality follows from the lower bound on /(9), (63) and from

so that

^ exp E ---0(l)N^\ya\ ϊ e<XWM . (106)

QED

Remark. On inspection one finds that the constants may be arranged such that

Zya ^ X 7 1Vl . (1060

III. Estimates

In this chapter we want to collect estimates which are independent of the cluster
expansion techniques. They are required for the construction of the thermodynamic
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limit and for the proof of the exponential fall-off of the two-point function in the
next chapter.

First we establish estimates on the fall-off of all non-local kernels and of the
covariance. Then we present bounds on the Fredholm determinant and on the field
variable in the small and large field regions. Using these bounds we show how to
control the terms Gιy from (90).

7/7.7. Fall-Off Properties of Nonlocal Kernels and Consequences thereof.
We start by establishing properties of n(p) appearing in (79), ____ These properties
imply that Cy is positive and has exponential decay.

Lemma 4.
(i) μ2,μ2 + πren(^) > 0 .
(ii) The position space kernel of πren (p\ denoted πren(jc — y} decays as

Proof.
(i) For μ2 we find from (81), (75) ,

= -( l+0(m 2 ))>0. (107)
71

The correction term O(m2)^ e~2π^A <C 1 stems from the fact that the propa-
gators are UV regularized (see (5), (6)). Note that the first integral in (107) is
exactly ± (75).

Now we introduce the operator V with kernel

(io8)

We find

{CV + π r e n ) 0 = Λ T r 2 (F2 + FF*) + (μ 2 -2m 2 )(C,C). (109)

Since μ2 $̂> m2 the second term is positive, and the first is nonnegative (note that
Tr2 V2 is real since ζ is a real function), which proves

μ2 + πren > 0 . (110)

(ii) πren(/0 and thus also πTQn(x - y) are in the Schwartz space ^(1R2) due to the
UV cutoff.

Our specific choice of cutoff even assures analyticity of πren (p) for

(Imp)2 g 4m2(l + m2 + O(m4)) , (111)

where the correction terms come again from the cutoff.
This implies the assertion. QED
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Lemma 5.

2) \(μ2 + π^)(x,y)\^0(\)e-2m\χ-y^ (x*y). (112)

3) Kμ' + πre

(where again all propagators are regularized :

Proof. 1) The upper bound follows again from the analyticity of (p2ep H-m2)"1

in the strip (Imp)2 ^ m2 (1 + m2 + O(m4)). The lower bound says that the kernel

of (p2ep + m2)~l is pointwise positive. To prove this we expand

— m

-TTϊ and e p and thus also products of both have pointwise positive kernels in

position space (for -j-γ note that

Finally we may write

Both terms have manifestly positive kernels in position space for m2e < 1 (which

is assumed).

2) was proven in the previous lemma. The third statement follows from the fol-

lowing observations, a) First regard the unregularized expression for πren (which is

given by a well-defined absolutely convergent integral). Using Feynman-parameters

one gets

πren,unreg (p) = ~ΓP^]~9 7-7; \^x ' (1 1 3)
4 7i Q m -\- p x(l — x)

From this expression one reads off

Re πren,Unreg (p) ^ Re πren,unreg 0>2> (for p = pi + ip2 , P2 = Im/?) . (114)

And for \p2\ ^ \f2rn we find

Reπren,unreg (ίpl) ^ ~T~ (115)
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From these statements we find that ^/μ2 -f πren? unreg is analytic for \p2\ ^ V2m,

since μ2 = |(l-hO(m2)).

b) Now since for \p\ ^ O(\)m

πren (p) = πren,unreg (p)(l + O (m2)} , (116)

due to the quadratic convergence of the renormalized integral we obtain for |Imp| ^

v/2/w using also (114)

Reπren(/?) S; -^-(1+0(OT

2)), (117)
3π

and therefore statement 3) (where, of course, \f2rn is not optimal). QED

Using the fall-off properties established in Lemma 3, Lemma 4 we can now prove
estimates on the terms in SLS from Gsy (96), (87).

Lemma 6. For the operators Ct with kernels Q(x9y)9 i = 1,...,5 defined in (87)
we have the following estimates:

(i) Ci ^ 0 as operator on J*?2(R2) .
(ii) \Cj (x,y) I ̂  0(1) inf (e-V2m\x-y\ ^-Vϊ^ y = 2, 3, 4 . (118)
(iii) ||C5|| ^

(i) follows from the positivity of μ2 + πren (Lemma 4) ,
(ii) follows from Lemma 5 and the definitions (35)-(43) which imply (for C3,C4)
dist (γ,L) > f -2 (see (43)).

For C2 we proceed as follows: If x G S+ and y € S- (or vice versa) we have either
dist(%, y) ^ y or dist(x, y) < y. In the second case there exists some A G l\ such
that dist (jc,J) 4- dist (7, J) ^ f (see (36)-(38)).

This implies

M
dist (x,y) + dist (y,f) ^ — . (119)

Collecting the distance factors in €2 — €4 we obtain (118) using M = ^ log TV.
(iii) is trivial. W QED

Lemma 7. J^or //z^ covariance Cy - CQ + C(y) (101) w Aβϋe the following esti-
mates: For ή=0

y)\ ^ O ~NI/W expί-^"2 (dist ̂ > + dist to))> . (120)

// x, y G Γ or x G Γβ, j G A, αφZ? we ^nrf \C^(x,y)\ ^ O(N~2) .

«^ . (121)

Proof. (120) follows Lemmas 5,4 and from the properties of /(63) which im-
ply that Cy is supported in {(x,y) |dist (j,y), dist (y,γ) ^ 1} and from a calculation
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similar to that in the proof of Lemma 3. Let A\,Aι be two squares in γ with
characteristic functions %ι>#2 Then

\(lι,Cyl2}\ ί (χ

and

χ,

On summing over the squares from γ and using the fall-off of ί ^/ μ2 4- πren )

this leads to (120). The subsequent statements follow from the fall-off of

ί \/μ2 -f πren J and the definitions of y,Γ. Equation (121) follows using Lemma

5 and the properties of / (9), (63). QED

7/7.2. Estimates on the Fredholm Determinant in the Small and Large Field
Blocks

III.2.1. The large field region.
A large field square (Ifs) Δ was defined in (30), (31) to be one carrying a factor

which vanishes unless

\\AΛ\\2>ΪN<, α = ^ . (122)

\\AΔ\\2 was defined as the HS norm of the operator AΔ. Let U be a union of squares
Δ. Define |Mί/||2,^t/ analogously to

Lemma 8. In del (1 +AV) g ΊτAv - \Ίι 0 .υ

λ g ΊτA
L ~

Proof. Since AU is traceclass, selfadjoint and > —1, the last inequality is true and
we may write

oo

lndet(l +Au)= Tr In (1 +Au) = £ln(l +λ, ) , (123)
/=!

where Λ,/ = λ j ( σ u ) are the eingenvalues of Au,λ\ ^ λ^ ^ ... (which are (at least)
2Λf-fold degenerate). Note that σu as usual may be assumed to be in <£2(U). Then

1 x2

the assertion follows from \n(l +x) -^ x — for x > —I. QED
.Z Z ~r Λ^

Now we regard U = / (30), (35).

Lemma 9. If\\AΔ\\2 >

Proof. To evaluate the trace we choose the following complete orthonormal system:
In any square Δ we choose a complete system of orthonormal eigenfunctions of AΔ

with eigenvalues λiΔ(σΔ).
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We find

2 / 2

l _ > ;Λ _, ^ ^ ΛιJ [

The last inequality is true for a single A, if the first sum in the brackets does not
vanish, due to the 2N fold degeneracy. If it vanishes, the second sum fulfills this
bound due to (122). QED

At a late stage of our estimations we shall also require a distinction between the
Ifs. A Ifs is called a very large field square (vlfs) if

(9Δ,AΔφΔ) > 1 , (126)

where for given σΔ we define

(127)

Lemma 10. For any set V of vlfs Δ we have

f v Λ Λ ^ v Π O S λ\x)a x . ^ izδj

If A £ l/V we have
ί W 2 \

(129)
A

Proof. As in the proof of Lemma 9 we have

Tr ^ ~ Σ Σ (<PIΛ,ΛΛ φz^} , (130)
2+Av 1 Δ^v i

where Σ, is over a normalized basis φ/zj of that subspace of J^2(zl), where
A A ^ j. By assumption then

(1) ( \\

where φΔ is the projection of φΔ onto that subspace. Now

. 1 1 1
(φΔ,A φΔ) - - = 2.-(φΔ,A φΔ) - -

3 2 3

= o + OΓ~^ / {^2W(* - ^)^(^) - ™2 σ(x)F(^ - ^)σ(^)} - -2 λ \\σΔ\\ ΔxΔ 3
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with the following explanations: we set F(x — y) = / ~τ~^τ~2 /f^

F(x) is smooth, F(0) = ± (75) and F(x) ^ ̂  for |jc| ^ Λ/2, since m2 <C 1.
Furthermore

. (133)
ΔxΔ /

From this one directly verifies (128) for £ — ~ > η (which we assume). The same
estimates as used previously then show that (φ^9Aφ^) < 1 implies

<134)

which is (129). QED

From Lemma 8, 9, 10 we find directly

Lemma 11. (i) For a set of Ifs I we have

d e t ( l + Λ ι ) ^ e x p / T r Λ ι - \\l\N1'5 } . (135)
V 8 /

(ii) For a set of vlfs V we have

\V\N-^-fσ2(x)d2x] . (136)
\ JV 4\J Y J

IΠ.2.2. The small field region.

Δ is a small field square (sfs) if it carries a factor 1 — Θ(^J2 — l), which vanishes
unless

\\Ad\\2 < \N^ΰ . (137)

We want to show that this condition implies bounds on the field variable itself if
integrated over small regions. First we prove

Lemma 12. For a sfs Δ with JA σ > 0 we have

0 < gfσ ^ gf\σ\ < V2m\Δ'\ (138)
Δ A

for any rectangle A1 e Δ with \Δ'\ ^ (5,0 < δ <C 1 suitably chosen, and the cor-
responding statement for JΔ σ < 0.

Proof The proof is by contradiction.
(α) Assume g fΔ, σ ^ \/2w \Δ'\ for some suitable Δ'. Then with Δ+ = {x G
A'\σ(x) ^ 0},J_ = Δ'\Δ+ we find for

°39)

έTπVr h »̂M'l -^VMΊ^T (HO)
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(see (132), (133) for the first inequality and note m <C 1),
so that

\\A.\\l ^2N(l-j] , (141)
v * Λ /

which contradicts (137) for τV4/5 ^ 8^ (which we assume). The bound on f \σ\

is proven analogously by changing φ+ —> .^n^X^

(/?) assume fA/σ^O for some suitable A'. Since fA σ > 0 there exists some

zl" C A, A' C A" such that fΔ,f σ = 0; and we can find (possibly new) squares
Δ',Δ" with arbitrarily small sidelengths such that all relations still hold. Calling
9 := ilΔ" we estimate

^ \Δ"\—(\ -3|/d"|) . (142)

In the first inequality we used

/ σ(x)F(x-y)σ(y)= / σ(x)(F(x - y) -
Δ"xΔ" Δ"xΔ"

g sup^\F(X-y)-F(Q)\^J\σ\J

(143)

using that \F(x - y) - F(Q)\ ^ \Δ"\ for x,y G ^/x and |^/7| < \ (which in turni
^x.

follows by inspection of F). This again contradicts (137) if

which we assume to be true for j > \Δ"\ ^ <5 > 0. QED

With the aid of Lemma 12 we can show now that the mean of the translated field
variable ζ in a sfs is small when multiplied by g.

Lemma 13. For a sfs A with fA σ > 0 we find

Γm 151 2
9 j \ ζ \ = ~^ —N 5 > where gζ = gσ-m

A Z m

92f? £ O(^-}N-W (144)
A \m /

(similarly for fΔ σ < 0 and gζ — gσ + m).

Proof. l f g f A \ζ\ > f ±N~l = a, then

1 1
(i) gf C+ > -a or (ii) gf/ζ_ > -α,

4 2 4 2
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where ζ(±} = sup (0, (±)ζ(jc)). Set also A+ = {x e A\ζ(x) > 0}, A- = A\A+. We
assume (ii) to be true ((i) is simpler). We have

3 9 . -\ vc/ sp2 -f mL

Choosing φ_ = τ~^γ/τ we obtain from (137) (See (132) pp.)

(145)

- - (146)

This implies

S = " <147)

which contradicts (ii) and thus proves (144), first part. The second inequality is
r

proven similarly on replacing φ_ by π ζ π .
Then we obtain instead of (146)

which implies

or

'4τ V~4/5 QED

mz )

Now let A+ and Zl_ be two small field squares (sfs) with a common edge
belonging to s+ and s- (35) respectively. Equation (33) then implies that there
exists a square A C A+(J A_ such that

/σ = 0 (148)
j

(since J^v σ changes continuously from negative into positive values, if we move

continuously A(s) from zl_ into A+ (A(0) = /d_, J(l) — J+)). Now

Lemma 14.

2 ^ 2 4

Proof. The proof is identical to the reasoning in the proof of Lemma 12 (/?): one
shows (142) (with a small correction ~ TV"1/2 if J^ σφO) to be true for a subsquare
A' of A which implies the statement.

QED

Taking together Lemma 8,9,14 we easily find for two squares A+9A- as above,
i.e. belonging to /ι\/,

det(l +AA+^Δ_) ^ rTrAA+UA_ - Nl5 . (150)
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7/7.3. Bounds on the Interaction Terms in the Functional Integral
We bound the interaction terms present in (90). First we perform a change of
normalization. As can be seen in (95) the interaction in the small field region is
normalized such that it does not vanish for ζ = 0, but is of order — Λ/XIS+I 4- |S_|).
Our presentation, hinging on the fact that the large field region is suppressed in
probability, would thus go completely astray if such a term were not present in L.
But we have

Lemma 15.
e^rAL-±(σL,σL) _ e-^(oQL^Ql) (151)

Remark. Equation (151) shows that exactly the same normalization factor as in
(95) is also present per large field square. It just drops out if we divide numerator
and denominator in (90) by this factor so that we may redefine

(note that ΊrAL = Y^rAL(l} , (152)
a

and we use henceforth G2y,G47 instead of G'2rG\y.

Proof.
ΊrAL = 2Nf(iσL(x)F(Q) σL(x) - m2χL (*)F(0)) d2x

QED

Now we bound G^y:

Lemma 16.

det(l + β) = det(l + β*) - det1/2(l + β + β* + ββ*), (153)

0 < det(l +β) ^ 1 .

Proof. Q = ^Kf

9 where K = ΣaAL(l +K++K_ (see (55)).

By cyclicity we find

1
det(l + β) = det(l + β*), noting that β* = K'-

l+K

so that
det2(l + β) = det(l + β + β* + ββ*).

Since Tr Q2n+l - 0, we also find

det(l + β) = det1/2(l - β2) - det1/2(l - β) (154)
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with
1

Q is selfadjoint and positive. det(l + Q) does not vanish, since det(l +K) does
not either (see (53)-(55)). QED

Going back to (90) (after the change (152)), we can show now (for TV sufficiently
large):

Proposition 2.

(i)

(ii) |G2y| ^ exp ~(\l\ + l / i Vl)#1/5 ^ exp(-b\Γ\N1'5)

and also

\G2y\ ^ exp - | / \ F | 7 V ' / 5 - \V\N - fσ2(x)d2

X . (155)

(iii) |G3y| ^ 1

(iv) |(?4y| g 1

(v) \G5y\ gex

(vi) |G6y| ϊ

(vϋ) \Zy\ ^ eMN>/{° .

Remark. It is important to note that all these bounds also hold, if we restrict the
support of the appearing operators to some subset of squares Y C A (of course then
l 9 y Γ \ A etc. . . , have to be restricted to Y too). And they still hold when we will
have introduced the cluster expansion parameters h in the next section, which leave
invariant :

1. kernels restricted to a single square or block (see (165), (168)),
2. fall-off properties of all kernels (Lemma 5),
3. Positivity properties of all kernels (see (166)).

1.3. imply the previous assertion.

Proof, (i) is trivial, (ii) follows from Lemmas 11,14 and from (35)-(43) and
simple geometric considerations which also show that b can be chosen much larger,
apart from the case, where / consists of widely isolated Ifs.
(iii) follows from Lemma 16.
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(iv) follows from Lemma 6.
(v) From the bounds in Lemmas 5,4, and Lemma 6 as well as Lemma 13 we find
for C3,

1

m m

£Ol^\N-}*\L\l/*\\ζL\\2 ^ — U C L l h (156)

€4 is positive. Similarly we find for €2

|{C,C2C}| ^ O(l) ^N^N-^^\S\ ^N~l\S\ . (157)

This implies (v) on using C7 ^ OJ^H ^ 0(1)£ and (70)-(73).
(vi) Using again the Localization Lemma 13 and Lemma 4 we obtain

\Tr(F2
+F*+ +F+F*+

2)\ ^ O

|Tr(F+F;)2| ^ O Nl~s/5\S+\ , (158)

, . _ . (159)

and similarly for the expansion terms in det3(l -f K±)

Σ '

which implies (vi)
(vii) is Lemma 3. QED

The following corollaries will be useful in the next section.

Corollary 1. Restricting the volume A in the functional integral to consist of a
single small field square A in s+ (or in S-) we find

fdμ$(ζ)Go(ζ)=l+o(N-τ*). (160)

is the normalized Gaussian measure with coυariance CQ restricted to A.

1 An additional factor of m may be gained on writing

and using (145), the sf condition and Lemma 13 to estimate

g 0(l)NO -
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Proof. Statements (i), (iii)-(iv) and in particular (vi) of Proposition 2 serve to
bound G0(ζ) in Δ. GIQ = G^ = 1 in our case. The integration in (160) is restricted
to ζ's fulfilling the small field condition. The remaining £'s for which (in case
of s+)

fulfill

which implies the assertion.

Corollary 2. For a given large field block Γa we have

\Gy(ζΓa)\ ί β-»/2|r.μ.'/5 _

Proof. The statement follows from (i)-(vii) : Using (ii), (vi) and assuming

In

QED

we have to show in la!Va

This follows from (v) on using (129), (144) to estimate ||ζ|| in la/Va or S. In Va

we are safe due to (136) anyway (note σ = ζ in Va). QED

Using the bounds of this chapter we can show in the next that the cluster expansion
of our model converges for large N. The restrictions on N come essentially from
the structure of the previous bounds: N has to be such that the small field quantities
(e.g. (158), (159)) give a small factor per volume unit A which has to be small
enough to beat all combinatoric factors of the cluster expansion. As we mentioned
in the beginning of the paper, N has to be chosen sufficiently large for given m.
From (159) we have e.g. to demand

which is true if

1 (163)

Going through the previous lemmas we see that (163) is the most restrictive con-
dition on N and will be assumed true henceforth (see also (207)).

It goes without saying that we did not optimize our expansion techniques with
respect to the conditions on TV for the sake of (relative) simplicity.

IV. The Expansions, Proof of Mass Generation

We come now to the description of the cluster expansion which allows to control the
spatial correlations of the model, and combined with a subsequent Mayer expansion
permits to take the thermodynamic limit and to bound the decay of the two point
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function. For earlier references on similar low-temperature expansions applied to
different models see [20,21]. A pedagogical introduction to the subject can be found
in [5]. [9,10] are closest to the present adaptation.

I V.I. The Cluster Expansion. The cluster expansion is a technique to select explicit
connections between different spatial regions. The best formulas for the clusters
involve trees, which are the minimal way to connect abstract objects together. Tree
formulas such as those of Brydges, Battle and Federbush used in [9] still rely on
some arbitrary choices. A conceptual advance was achieved in the tree formulas of
[23,24] (which we prefer to call "forest formulas"), since no arbitrary choices were
involved.2 The original argument of Brydges and Kennedy is based on a Hamilton-
Jacobi equation, but equivalently one can derive them in an inductive algebraic way
[25]. Let us start with an abstract introduction to these forest formulas and their
proof.

Let / be a finite index set and P(I) the set of all unordered pairs (ij) E
I x /, zφy. A forest 2F on / is a subset of P(I) which does not contain loops
(i\J2)'-(inJ\) Any such forest splits as a single union of disjoint trees, and it
gives also a decomposition of / into |/| — \3F\ clusters (some of them possibly
singletons). The non-trivial clusters are connected by the (non-empty) trees of the
forest.

Let H be a function of variables #/;, (ij) e P. A typical example for a forest
formula is

Lemma 17. (The Brydges.2 forest formula)

^-)^)(*y(*))9 (164)
& /eJ^o / \\ie&dχι/ /

where
hfj(h) = mf{hι9leLr(iJ)}9 (165)

and L^(iJ) is the unique path in the forest ^ connecting i to j. If no such path
exists, by convention hfj(h) = 0.

Proof A detailed proof of (164) and various extensions or applications will appear
elsewhere [25]. Here we sketch how these formulas can all be proven by induction
on the number k of elements in the forest; it seems to us slightly more transparent
than the differential equation (Hamilton-Jacobi) originally used in [23] to prove a
similar formula

//dλ/)eΣ ( I ')eP h*Wu» (164b)
o /

(Eq. (164) corresponds to (164b) but with -^- formally substituted to utj).

To prove e.g. (164) one considers the symmetric matrix X — (#/_/), with xa = 1,
and the function H(X) (so that //(!,...,!) = //(!)) and one interpolates repeatedly.
The first interpolation is

V. Rivasseau thanks D. Brydges for introducing him to this type of formulas.
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where in XD, \ we suppress all the non-diagonal terms in X. Then we perform one

Taylor step H(X) = H(X(hλ = 0)) + /J dhιH'(X(hι)). The first term corresponds
to the (completed) empty forest. Expanding the error term H1 we generate a link
Σ/ =(/ j )ep(5Γ#)(^(Λι)) Then we interpolate again the first part of the matrix
above (not the second part)

h,X = (h2X + (h, - h2)X%$)\h2=hl ,

where in X^ we suppress all the non-diagonal terms in X coupling clusters, which
are defined as the previous single indices plus the union of i\ and j\ from now on
considered as a single cluster. Then we rewrite a Taylor expansion step for A2,
and we iterate, until all indices are exhausted. At step k we have completed forests
with less than k links, and "forests in being" with k links, hence |/| — k clusters.
We apply a new interpolation, and in the remainder term a new link is expanded
between two indices; it must link together two different clusters, hence it reduces
by one unit the total number of clusters.

In the end we have naturally a decomposition of the whole space of indices as
a union of clusters. The function //(!,...,!) is written as a sum of integrals over h
parameters but with a natural ordering h\ ^ ... ^ hn, and there is an attribution of
a pair of indices to each such parameter, such that all pairs form a forest. Now we
fix this forest structure on P and group together all corresponding orderings, and
we rename the parameters, attributing to them the index of the line in the forest
that they created. This reindexing is the main subtlety: we call /// no longer the
parameter with number / in the decreasing list h\ ^ ... ^ hn, but the parameter
whose Taylor expansion creates a given line / of the fixed forest. This reconstructs
a sum over forests, and an integral for parameters hi associated to the forest lines all
from 0 to 1 (because all orderings are possible and strictly equivalent for building
the forest). It remains only to check the formula (165) for the interpolated matrix
X. However remark that our inductive interpolation rule is such that the coefficient
xι of the matrix X, where / is a link / = (/,./), becomes an element of the diagonal
matrix XDtk for the first time when / and j get first connected by the forest; after this
time the parameter h which multiplies it is no longer changed. Since our parameters
h are ordered so that the first line created has highest value, and so on, it follows
that the parameter h multiplying c/ is the smallest parameter on the path in 3F from
i to j. This property is intrinsic, so when we regroup all orderings creating a given
forest to reconstruct the full range of integration from 0 to 1 for each /?/, it remains
true. This achieves the proof of (164)3.

We start from a given large field region / with Γ(l) = \JaΓa, and a fixed set of
closed connected contours C = IΛC&. These contours are made of all edges between
pairs of squares (A, A') which carry a factor Θ(σ(A)) and Θ(—σ(A')) (33). We
recall that these contours are known from the decomposition (32), performed for
each square, and that by rule they are entirely imbedded in the large field region, so
for every connected CJ, there is a single large field connected component Γa such
that Cb C Γa.

3 It is also easy to check that these inteφolated matrices preserve positivity if X is positive;
the key is to check that in this case for any ordering of the h parameters the inteφolated matrix
is a positive combination of positive matrices of the type PXP, where P is a projector, but this
combination varies with the ordering.
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Given these data, we perform a cluster expansion in three steps, which constructs
connected sets of squares. The outcome is a forest formula with three different kind
of links. This forest formula can be made totally explicit.

- The first cluster expansion links together all the squares in each connected
component Γa of the large field region by drawing explicit trees made of "neigh-
bor" links. It is a kind of symmetric solution of the "Kόnigsberg bridge (should it
rather be Brydges?) problem," and leads to a first forest formula which depends
on Γ.

- The second cluster expansion links together the previous clusters by interpo-
lating all the non-local kernels in the theory. It gives a forest formula which is an
extension of the first one.

- The third cluster expansion introduces a constraint on the links of the second:
If two squares are (directly) linked by the second cluster expansion and if the
distance of their centres is bigger than 2kM, k e N, then we add inductively as
many intermediate squares as necessary so as to diminish this distance below 2M.
A precise rule is given below. This ensures that the clusters that are built, although
not connected in the ordinary sense of the word, cannot "jump" over contours.
This is due to the fact that the length of a link jumping over a contour must be
at least 2M + 2 (see (42)). Without this last expansion there would be "non-local
sign constraints" when a cluster jumps over a contour, hence the sum over sign
assignments for σ(Δ) would not factorize into subsums associated with each cluster.
The third cluster expansion gives a final forest formula which is an extension of
the second one. In fact even in this final third formula, sign assignments for σ(Δ)
do not completely factorize; there is a single global sign per cluster which does not
factorize, but disappears thanks to the ZΊ invariance of the theory. The rest of the
sums and factors which make up the cluster amplitudes do factorize.

At the end of the cluster expansion we can perform a standard Mayer expansion,
which frees the clusters from their hard core constraints. It is again given by a forest
formula of the same type (187).

The First Cluster Expansion . Let P(L) be the set of all pairs (ij) of distinct
squares in Γ. We define εzy =0 if ΔI Π Δj is empty (not even a single point),
ε/7 — 1 otherwise, and r\ij — 1 — ε/7 . Hence ε/7 = 1 means that ΔI and Δj have a
common edge or point, and ηtj = 1 means the contrary.

Our first forest formula is simply

1 = Σ Π

Proof. Apply the forest formula to H({XIJ}) = Π(z 7)e^ (*l7ε<7 + %) (an(* remark
that //(I,...,!)= 1).

The only non-zero terms in this formula are those for which the clusters as-
sociated to the forest ^\ are exactly the set of connected components Γa of the
large field region. Indeed they cannot be larger because of the factor Π/GJF ε /> nor

can they be smaller because of the factor Π/£JF, (nι + ε/^f (λ)) which is zero if
there are some neighbours (for which ηtj = 0) belonging to different clusters (for
which hfj(h) = 0). Therefore this formula simply associates connecting trees of
"neighbour links" to each such connected component, but in a symmetric way with-
out arbitrary choices.
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The Second Cluster Expansion . We consider all non-local kernels in our theory,
that is if we remember that Cy = CQ + SCyS (see (101-102)),

Co , S = , vV + πren , -7—- and

 2 -U 2 ' (167)2 2

Note that we need not introduce the decoupling parameters h# 2-#r} in Cy due to
our definition of the "blocks" Γa, ja and the compact support of γ^y (63). But
they are introduced in each S(h) and also in each square root in (87). Otherwise
we would not achieve factorization for the amplitudes of the clusters in ^2 which
could be coupled to different clusters via the inner kernel Cγ.

All kernels in (167) are generically called R. We apply a cluster expansion
to the vacuum normalization or two point functions that we want to compute in
the thermodynamic limit. This second expansion takes into account the connections
built by the first, i.e. it interpolates only the links.

Rι(x,y) = Rij(x,y) = Ai(x)R(x9y)Aj(y) (168)

for squares which belong to different clusters of the first forest. At this stage we
add to the list of squares A also A — R2 — A.

Let Z(R,Γ) be a generic name for the quantities we want to compute. Then the
second forest formula gives:

Z(R,Γ) = £ Π (εiSdhi) Π (lι +

Σ Π fdh, Π -z(R({h^^}), (169)

where Z(R({h&2-&}})) is a functional integral with interpolated kernels
R({h^2-^}). These interpolated kernels are defined by R({h& 2-& } } ) ι ( x 9 y ) —

h?l'*2(h)Rι(x9y)9 where h?l'*2(h) is the inf of the h parameters of the lines of
^2 — ̂ i on the unique path in ^2 joining AΪ to Aj (if / = (i9j)) If no such path

exists, by convention hf]'^2(h) = 0, and if the path exists but is made solely of

lines of J^i, by convention hfl'^2(h) = 1. In other words the path is computed with
the full forest, but only the parameters of the forest ^2 — « ι̂ are taken into account
for the interpolated non-local kernels.

The product Π/e^-^ί^") ^s a s^ort notati°n f°r an operator which takes
derivatives with respect to a parameter */ multiplying all of the nonlocal kernels RI
and then takes xι to 1. Therefore the action of Π/e^ -& (^") creates the product

Π/G^ -& RI (w^m summation over the finite set of possible TΓs). In Sect. IV.3 we
give a list of possible contributions generated this way. The important fact to be
shown is that to each of these derivatives is associated a factor which tends to zero
as 7V —» oo.

We remarked already that it is a crucial property of the forest formulas of
this type that they preserve positivity properties, so that in the sense of operators
if R is a positive operator, R({h^2-^}) is also positive. Recall that this is not
obvious at first sight from the infimum rule of (165), but it is true [23-25] because
for any ordering of the h parameters (say Λ I rg ^ hn) there is a way (which
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varies with the ordering) to rewrite the interpolated R(h) as an explicit sum of
positive operators: R(h) = Σp(hp - hp-ι)Σ%=\ XP,qRχp,q (the functions χpfq being
the characteristic functions of the p connected clusters built with the part of the
forest made of lines p, /? -f 1, ...,«).

The Third Cluster Expansion . In this last cluster expansion step we "hook" all the
non-trivial contours C& crossed by the links of the second expansion to the endpoints
of these links. This is not automatic because in the second cluster expansion the
kernels can "jump" far away, in contrast with the "Erice" type of cluster expansion.
This last step is absolutely necessary for the sign assignments in a cluster to become
completely local except for one global sign.

To implement this last step in a way similar in spirit to the first step,
we introduce a factor which is equal to 1 and we interpolate it inductively
again according to the same forest formula. We consider any link / G J^2 — ̂ \ -
Let the coordinates of the two squares A» Aj, i < j linked by / G ̂ 2 — <^Ί be

(/ 1 ?/ 2) and (/W2). If 2k M < v/OΊ - *ι)2 + (h ~ h)2 ^ 2(*+ 1)M, we call // -
{A( = Al,A

/

2,...,A'nι = Aj}the set of squares with centre coordinates (/ι,yΊ),

OΊ + [^Ih + [yi^f]),...,(/i + ί[*^jL],i2 + Hίf]), 02,J2), on which there is
a natural ordering induced by the link (since the link is an unordered pair, we order
it arbitrarily as an ordered pair (ίj) so that Δl = Δ\ is the first square).

Note that our prescription is not minimal from the point of view of adding
only the minimal number of squares. For avoiding jumps over contours it would
be sufficient only to add squares if some ΔΪ has distance > 2M from all squares
within its 3Fι -cluster.

Remark then the following trivial inequality:

ά i s t ( A ' j , , A f . , + l ) g 2M . (170)

We define the index set /' as the union for all the links / G J^2 ~ ̂ \ of all the
squares in //. Then we consider the set P(I') of all pairs built on this index set;
on P(If ) we define the function ε 7 = 1 if the squares A l and Aj have consecutive

indices on // for some / G J^2 ~ ^"iXy = 0 if they don't, and we put η' = 1 — ε^ .
Then we apply the forest formula to

1- Π (</ + <?> (171>
(ι,y

just as in the first cluster expansion, but taking of course into account the con-
nections of the previous forest J^ We obtain a third forest formula which is an
extension of the second one. It is equal to (169) except for addition of a third factor

Σ Π Ufdh^ Π (I't + e'tf^W), (172)

where again //f2'^3(/z) is the infimum of the h parameters of the lines of ^3 - ̂ 2

on the unique path in ^3 joining Δl to Aj (if / = (/,/)) (hf2'^3(h) = 0 if no such

path exists, h^2^3(h) — 1 if such a path exists but contains no lines of J^). In
other words the path is computed with the full forest, but only the parameters of
the forest ^3 — J^2 are taken into account for the interpolated εj links, / G /*(/')•
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The clusters deduced from this third and final forest formula are not connected
in the ordinary sense, but they satisfy some geometric constraints (otherwise their
contribution is zero). This constraint is expressed by the rule that no link / of
the second type in a cluster Y can cross a distance > 2M without enforcing that
all squares in // belong to that same cluster. Indeed if such a situation occurs,
there must be a first pair Δf.t, Af

jf in // such that Δ(, G Y , A'Jf e 7'ΦΓ. Then the
qz or:

contribution contains the factor (η'lf -hεj,/^,2' 3(λ)) f°r I' — (*'>/) £ P(!'\ which

is zero because η'v = 0 and h^,2>^(h)) = 0.
Therefore, combining with the first rule that each large field connected compo-

nent Γα is contained in a single cluster and with the fact that any contour lies entirely
in the large field region, hence in a single Γα, which has "thickness" ^ 2M + 2,
we obtain that each cluster of ̂  which has squares both in the interior and the
exterior of any contour completely contains this contour. This is crucial to factorize
the cluster amplitudes as shown below.

We remark finally that in formulas (166) or (172) the interpolated factors

Π/^^ + ̂ fW) and Πιep(Ir)ti£p3(η'ι + ε'ιhf2'*3(h)), after βivinβ the neces"
sary constraints on the clusters used below (each Γα included in a single cluster,
no jump over contours) can be bounded simply by 1.

The Cluster Amplitudes. Factorization. The result of the cluster expansion is a
formula for e.g. the two point function (90):

Σ,JLA, Σ Λ' vi./i.

Δ^S,sllaZγa Z^

(173)

Remark.

1 ) The amplitudes for the clusters depend on the choice / of the large field region,
and the choice of all sign assignments, which we denote as 5. They include a sum
over the choices as to which kinds of links may connect the squares within a cluster
through a tree. Choices not fulfilling the above mentioned constraints are dismissed
(give 0).

2) The difference between the numerator and the denominator in (173) is that
in the numerator there is one external polymer depending on the sources f\ and
/2. Since by the rule of our cluster expansion, each connected component Γfl of
the large field region is contained in exactly one cluster 7, we may absorb each
normalization factor Zla into its cluster, defining

A(Y):=A(Y) Π Zya. (174)
a/yaCY

3) The simplest possibility for a cluster is the case of a single small field square
A in s+ or s~. By Z^ in variance and (160) we find that the amplitude is the same
in the + and — case, and is
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Therefore it is convenient to cancel out the background of trivial single square small
field clusters, hence to introduce for a polymer Y the normalized amplitude

Then we obtain the usual dilute polymer representation:

(176)

To get factorization we must analyze how the choice of t and the sign assign-
ments s affect the cluster amplitudes.

The choice over large field regions is clearly a local one that can be factorized
and absorbed in the value of each amplitude. Indeed we can replace the global sums
over ( and 5 by local ones:

Σ Σ ^Wι,/2)7-
/,5 qjί,s W - [)'i=

YjΠYj=0

= Σ *fi(7l'''- 'y«'̂
W - l ) !/=

(177a)

Σ Σ = Σ

^

y,ny, =o

' '

(177b)

with the explanations:
(i) The right sum is over all sets {Yι,...,Yq}, where the Yl are sets of A's, a

single A being excluded (except if it were an external square containing the sources
/i and /2). One has the disjointness or hard core constraints Yt Π Y} r = 0 for /φy.
(One Yj contains A).

(ϋ) feeσι,*ι,..,V*)(y) is computed from a(Y) through

^(7b5lv..,y^)(7)= ^ 0Λ s(7), (178)
(Λ*)cr

where the sum is over all assignments of large field regions included in 7 and
all sign assignments restricted to the squares of 7, subject to certain constraints
of compatibility. The sum over large field regions is submitted only to local con-
straints. More precisely by choosing the factors (30)-(33) we define /ι(7) as in
(35)-(36) but with A replaced by 7. Then any assignment for which there exists
some A e /ι(7) with

dist(A,(dY-dΛ)) ^ M

is forbidden. For the sign assignments, hence the contour assignments, this implies
that all closed contours lie entirely within 7 since they are enclosed within one large
field connected component. In particular these contours cannot touch the border of
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Y as expressed by the previous inequality. Since we know that links from Y cannot
jump over contours disjoint from Y we know that once a local configuration of
closed contours is chosen entirely within 7, there remain exactly two assignments
compatible with it. Now only one of them is compatible with the rest of the contour
configurations that surround 7 and with our + boundary condition. The amplitude
ff(γ\,s},...yq,sq}ζγ^ jg defied wjm this particular sign assignment. Because this global
sign choice is non-local and depends on all the contour assignments within the other
clusters we write it as ε ( Y \ 9 s \ 9 . . . 9 Y q 9 S q ) = ± (indeed it does not only depend on
the supports Y\9...9Yq of the other polymers but also on the contour assignments
Sι,...,sq within them).

We conclude that the only non-factorized dependence for the cluster amplitudes
in formula (178) is through this global sign ε(Yι9s\9...9Yq9sq) affecting each clus-
ter, which measures the parity of the number of contours crossed from the global
boundary condition to say the outermost point in the cluster. However thanks to the
Z2 invariance of the theory and of all our expansion steps we have

(179)

This sort of "discrete Ward identity" allows complete factorization:

Σ
Y Γ\Y =0

' <180)

The Mayer Expansion. Convergence. Equation (180) has now the form required for
the application of the Mayer expansion in a standard way. The hard core interaction
between the clusters or polymers 7 is V(X, F) = 0 if X Π 7 = 0, and V(X, 7) =
+00 if X Π 7φO, and the disjointness constraint for the polymers can be replaced
by the inclusion of an interaction e~v^YltYJ^ between each pair of polymers. We use
the notations of [9], ch.IΠ.l. A configuration M is an ordered sequence of polymers.
We define bτ(M) by

(181)

where the connectivity factor T(M) is defined by

T(M)=
G connected on M ij^G

Then we can divide by the vacuum functional to obtain (in the notation of [9])

Wι,/2)= Σ bτ(M), (183)
M (f i , /2 ) — configuration

where M is a sequence of overlapping polymers Y\9...9Yq9 the first of which con-
tains the support of f\ and /2 and includes the factor F2(Q from (90).

The sufficient condition for the convergence of ( 1 83 ) in the thermodynamic limit
is well known: it is a particular bound on the sum over all clusters containing a
given square or point to break translation invariance. We state it as

Proposition 3.
7|| £ 1/2 (184)Σ

for N sufficiently large, uniformly in A, \Y\ being the number of squares in Y.
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For N large enough, Proposition 3 in fact holds if one replaces the number e
in (184) by any other constant.

To deduce convergence of (183) under condition (184) is standard but requires
to reorganize the connectivity factor T(M) according to a tree formula. In [9] this is
done by choosing the tree in a particular algebraic way, but we can also use again
the forest formula (164) to obtain a more symmetric sum over all trees. We define
vtj — (e~v(Y»YJ^ — 1) for iή=j. We call P the set of pairs 1 ^ / < j ^ q. Expanding
Π(ί/)epO +%) with the basic forest formula (164) one gets still another forest
formula, on which one can read the connectivity factor

//<*Λ/) Π
o

where hτ(ij} is the inf of all parameters in the unique path in the tree T joining /
to j. This formula is then used e.g like in [9] to derive the convergence of (183).
(Remark that every tree coefficient forces the necessary overlaps and is bounded
by 1.)

It remains to prove Proposition 3. This is done in Sect. IV.4, using the results of
Sect. IV.3, but let us now reduce the proof to certain bounds on functional deriva-
tives generated by the links of the second forest J 2̂ — &'\ - Because the amplitude
b(Y) is given by a tree formula (which is a piece of the forest formula) we will
sum over all squares in Y by following the natural ordering of the tree, from the
leaves towards the root (the particular square containing 0). The factorial of the
Cayley theorem is compensated in the usual way by the symmetry factor 1/|7|!
that one naturally gets when summing over all positions of labelled squares. Then
the only requirements to complete the proof of (184) are

(i) summable decay of the factor associated to each tree link. This is obvious
for the εl} links of 3F\ because these extend only over neighbours, so have (very)
bounded range. For the links of J 2̂ — ̂ \ , it follows from the decay of the corre-
sponding kernels (167) (see Lemmas 5, 6 and 7). For the links of 3̂ — ̂ 2 the
situation is similar as for 3F\ . The ε'7 exactly prescribe the positions of the Aj in
//, once those of Δt, Aj linked by / G ̂ 2 — ̂ \ are known. So there is no more
freedom left and for the new squares there are no independent sums over their po-
sitions. (It does not matter whether a link prescribes the position of the new square
as being that of an adjacent neighbour or whether it keeps it at a prescribed distance
and direction).

(ii) A small factor for each tree link, or equivalently for each square of Y.
This will compensate for lazy bounds, for factors to choose whether a square is
large field or not, etc.... For tree links of 3F\ this small factor comes from the one
associated to the large field squares, hence from Proposition 2, namely we have a

factor e~bN per square in Γ. For the tree links of ^2 ~ ̂ ι» it comes from the
small factors attached at the ends of these links ("vertices"), and these small factors
are described in more detail in the following section. Remark that these two types
of small factors tend to zero as N — > oo.

Finally the links of ^3 — J^ join together clusters of the J^ forest. Per such
link / we have at our disposal a distance factor from the exponential decay of the
kernels in ̂ 2 - ^i bounded by

e-m2M =N-4 ?
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since otherwise these links are not introduced. On replacing m —> m(\ — δ) in the
exponential we therefore gain

e-mδ2M = N-l/5 for δ = j/20 . (187)

This factor is smaller than what we obtain in the worst case for the links in ^2 ~ ^\
(see (202) below). Remark that this last argument would fail if we were to add all
squares along / £ 3Fι — 2F\, hence if we wanted to build clusters connected in the
ordinary sense.

Therefore to complete the proof of Proposition 3 we have simply to look in
more detail at the outcome of the cluster expansion derivatives generated in the
functional integral by the second type links (of 2Fι — 3F\), to extract from them a
small factor. This is the content of the next sections.

IV. 3 The Outcome of the Derivatives. From now on all /z-parameters and links
will be exclusively those associated with ̂  — ^Ί The derivatives w.r.t. the h-
parameters generated by the non-local kernel links may apply to dμy(h) or to
F2(h)Gγ(h). Application with respect to dμy(h) is evaluated by partial integration
([5], chap. 9):

. . (188)

The supports of the derived kernels, here d^Sty), are by construction restricted
to the squares linked by the hi derivative (which as we recall adds a link to the
previous forest). Therefore the ζ functional derivatives are either directly localized
in these squares (in the case where e.g. dh, applies to the first kernel S(h) in C(y),

and we consider the Jl derivative on the left, or they are essentially localized (when

e.g. dh, applies to the first kernel S(h) in C^ and we consider the Jj derivative

on the right). In this last case this means that the Jj functional derivative is linked

to its localization square by the second kernel S(h) in C(y), which has exponential
decay. To fix the language we say the Jl derivative is

(i) strictly localized (first case) or (ii) essentially localized (second case) (189)

in its localization square. In the second case summation over all squares linking to
the localization square costs (at most) an additional 0(l/w2), using the exponential
decay of S(h).

We apply the h- or ζ- derivatives to the various Gy from (90). We first shortly
comment on G\y, G$y, G5y, which are relatively simple to handle and of a technical
nature. The remaining terms are treated more extensively.

Glγ. We start with the boundary terms which factorize over the squares Δ and are
therefore independent of the /z-parameters. Applying ^-derivatives we find

(i) for b(σ) a factor θf($Δσ) which is bounded by 0(1) if ζ is an /-square and
vanishes for s-squares due to Lemma 14.
(ii) Deriving

ll̂ lb" I ' I I U' I " — i i — i 1 Λ / "<* l l / f II *T / W I \ Λ / 1Λ l Γf

δζ(x) \ N« ) V N" Ί K " = "' V 10
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(The first factor restricts A to have 3/4 7Vα ^ ||̂ ||2 ^ 5/4 Nα. So by Lemma 13
the last factor is easily bounded by (9(1) if the first does not vanish.)

Now we come to r(σ)e~2c. These terms may be replaced by 1 unless the

polymer Y contains A. In the latter case the h- or ζ- derivative(s) associated to

A will always produce at least one (-field "localized" in A. At this stage we may
then take the limit R — > oo (26) to see that such a polymer gives a vanishing
contribution, and we therefore assume from now on

Y CA.

€5 restricted to Y then vanishes as does the restriction of (0"^)2> and we may from
now on forget about these terms.

G4γ,G$γ (95,96, 152). Both terms are at most quadratic in ζ. Derivatives of the
quadratic terms with respect to h or ζ generate at most two (-fields and a distance
factor. This factor is bounded by N~~l for G$y due to Lemma 6. We also get TV"1

for G4γ if the derivative is associated to a small field square A since (see (44))

dist ( A , γ ) ^ y. Only if a (-derivative ΐ s associated to some A G Γa this distance
factor may be 0(1). The (-fields generated by the derivatives are linked to the
squares of the corresponding derivatives by exponentially decreasing kernels, so
again are (essentially) localized in these squares. If δζ(x) hits the linear term in G5

it generates σ0/Jj(x), which on integrating over the respective square is bounded
by ~N~l\D\ (see (60), (70), (71)). (hj(jc) should not be confused with the cluster
expansion /z's). Successive (-derivatives may also hit (-fields already descended by
derivation. This leads to a factorially increasing number of terms, even more so
when treating the subsequent G^s(see below). This problem is already present in
/)(φ)-theories. It is solved by the so-called local factorial principle (LFP) : the
descended ('s are essentially localized in their squares. These squares have to be
different from each other, apart from the case where the derivatives are associated to
links in the respective tree which all join the same square. So the maximal number
of derivatives localized in the same square is given by the coordination number
d of the tree at that square. This implies that the distances to be covered by the
subsequent links from this square to their new endpoints have to grow more and
more for large d, in two dimensions up to O(Vd), so that the distance factor of
order

O(Vd) . ?

Π e-
ηmι~e-°(l)ηmd (190)

ι=l

becomes smaller than any power of (d\\ even if we use only a fraction η of the
decay of the kernels. If d is not large many ('s may still accumulate in one square
different from their localization squares, namely if they are only essentially localized
there. Then a factor as (190) arises from the exponential decrease of S(h) (167)
between these squares and the former one. This latter case, technically not much
different from the first, appears only due to our twofold expansion of the covariance
C(y) in case of nonempty large field contributions.

If a (-derivative hits some already descended (-field from £4 or (75, the new
derivative does not generate a new small factor. So the net small factor per small
field derivative is not ~ TV"1 but ~ TV"1/3 (one h and two subsequent (-derivatives
in the worst case). This is similar as in gφ4, where the gain per derivative is not
9 but 01/4.
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Among the remaining terms we now look at

exp -lτr(F2F;+F+F;2 + (F+F;)2 + (+^-)(see(52)) : (191)

A (- or h- derivative will bring down a factor ^ O(^)N~l/5 = o(N~l/w) (see
(158)). All descended (-fields (ζ = τ in S±\) are joined via exponentially decreasing
kernels to the respective square of the derivative. So the LFP works as before. New
derivatives hitting descended ('s generate an additional TV"1/10 on replacing (in the
estimates) JA g\ζ\ ̂  O(±)N~2/5 by g - N~l/2. The term (F+F^)2 is suppressed

by an additional N~2/5 (see (158)).

Now it remains to discuss the determinants det3 (1 4 ^±), det1/2 (1 -h β),

det^2 (1 +ALa) (see (50)-(55), (94), (97), (152), (155)). For the two det3-terms
we have in principle two choices for the treatment: since the (-fields are in the
small field region we may expand in powers of Tr K±, n ^ 3 and then perform the
derivatives. The outcome can be estimated using (159), Lemma 13 and the LFP.
This does not work for the other terms since K1 ', Aιa are not bounded. So we use a
different method. We will first deal with det1/2 (1 -h Q\ since this is the most com-
plicated term. As remarked above we introduce the ^-parameters for every nonlocal
kernel and thus also for those appearing in Q (see (167)).

det1/2 (1 + Q). Using Lemma 16 we write det1/2 (1 + Q) = det1/4 (1 + β)det1/4 (1 +
Q* ) and apply the /z-derivatives generated by the second step of the cluster expan-
sion to the r.h.s. Note that the organization of the expansion terms in trees requires
that the derivatives are always applied to symmetric expressions (here the product
of the two determinants). Once this is assured there is however no difference in the
discussion of Q and Q*9 so we only look at det (1 + Q) and we also forget about
the power 1/4, for simplicity. It only corresponds to replace N — > TV/4 in the fol-
lowing. (If 2N does not divide by 4 the purist might treat the remaining fractional
power separately...).

Applying the h- and (-derivatives to det (1 + Q) reproduces a determinant struc-
ture which may also be written using antisymmetric tensor products [13, 14, 15,
4]. This structure, which allows for improved estimates, traces back to the anticom-
muting fermionic variables or the Pauli principle.

We first regard the case where only h- derivatives are applied, (-derivatives are
more difficult to describe though obeying sharper bounds. We find

det(l+β) (192)

with the explanations :

(i) A denotes the antisymmetric tensor product.
(it) Qi := Sh, Q.
(iii) rd stands for rederived terms, i.e. where 3^, j > ί applies again to Ql produc-
ing Qij = dhj dhj Q etc. These terms may also be written as antisymmetric tensor
products with less than n entries. A term as in (192) may be estimated as in [14] :

) d e t ( l + β ) £ (ft ( l + λ / Γ ' f t Tr ia l ) det(H-β),
/ V=ι ί=ι /

(193)
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where

and λj, I ^ j ^ n, are the n smallest eigenvalues of Q (due to the antisymmetric

product we do not get the nih power of the smallest eigenvalue). Then we find

n oo

7=1 j=n+l

Note that λj > —1 in finite volume, but the estimate also holds on passing to the
infinite volume limit. The last bound in (194) is proven on noting that ]ζ/Ξι A/ = 0

so that Σ/Sn+i ^/ < w> an<^ usmg In (1 -hjc) ^ x, x > — 1. The fact that Tr Q = 0
was already used in Lemma 16.

Now we look at the expressions for the Qt. In particular we have to verify that
a small factor per small field derivative (sfd) is generated, dh applied to Q does

not act on the term (1 -f K)~l unless h connects squares within S+ or S_, and it
acts only on K' if h connects different regions. ]Γfl Aιa is /z-independent. So if h
connects two S+ -squares we have

1 1

, (195)

due to the support properties of dhK+ and K' '. Thus K1 has to bridge the gap
between -f and - or between + and La, which is at least of size M. The exponential
decay of K then produces a small factor N~2 = e~mM through K1 . This together
with O(^)N~2/5 from (144) leaves a net ~ JV~4//3 on taking into account TV from
Tr \Qi\. If dh acts on K1 we get the small factor directly from dhK1 '. We need
however the decay of dh K' also to sum over the (squares of) 7 for given tree T.
It is therefore essential that we keep a factor

where 0 < η < 1 and

/ = Σ dist(4 , 4 ) > (197>
O'j)

the sum being over the links (ij) of the tree linking the squares from Y. The
simplest way of doing is thus to keep only N"1/3 per small field derivative and
choose η ^ 1/2, e.g. η = 1/3, so as not to use up the decay twice. The reader
should note that the factor (196) can always be extracted to wherever the derivatives
apply (and always by the same reason). But we only mention it here when treating
det (1 -f Q). Another fraction of the decay is used up on application of the LFP (see
(190) and below). Whereas the latter comes into play for all parts of the interaction,
the previous splitting is only necessary in those cases, where the small factor per
sfd is generated by the large gap between different regions (see G^y G$y above).

Now we look at the rd-terms: the (severe) restrictions on the supports of the
(derived) kernels already effective in (195) will force many of these rd-terms to
vanish (a fact which do not exploit completely). Any new sfd produces a new
0(^)7V~2/5 as before (and maybe further small factors). Note that there is no new
Tr Iβ/l ~ N to beat! Still one realises that the number of terms, when taking into
account all rd-terms, may grow as

- Cnn\
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Again we prepare to use the LFP noting first

(i) the support restrictions.
(ii) the exponential decay of the kernels of (1 +K±)~l. This decay is due to
the small field condition (Lemma 13) which enforces rapid convergence of the
geometric series. The decay constant is of order m — O(^)N~2/5.

(iii) the kernels .^ . reduce to * if joined to some dhK with support in La
l +2-^a ALa ^ La

(to 1 otherwise).

Taking this into account one realizes that the sum over all possibilities of rederiving
propagators is controlled by increasing distance factors as in (190). The situation
is exactly the same as in (190) if we neglect the terms (1 + K)~l in a first step.
Rederiving also those we even get a factorially increasing number of non-vanishing
contributions when the coordination numbers of T do not grow large. Then (ii), (iii)

come into play: If (Shl+l K± ) is to be grouped together with dh} K± ,..., d^. K±
from previous derivatives, its support has to be more and more distant from that of

most of the d^ K±\...9dh{K±^ from previous derivatives for / large, and we get
again an estimate as in (190).

We shortly mention that derivatives linking to Ifs and thus applying to K' may
generate large numbers of (-fields in Ifs. These are estimated with the help of (129),
or with (136) and the LFP, if they accumulate in a single square. A finer analysis
would also display improved estimates due to the inverted operators, compensating
effects of these fields.

The last point to mention concerns the complications caused by the (-derivatives.
They give a smaller contribution per sfd, since O(^)N~2/5 may be replaced by

g ~ N~1/2. The complication comes again from the fact that they are attached to
the derived covariance dh C^ (see (167)). Since

Cy jj- (198)

(restricted to the polymer Y in question) we get two terms if the derivative is
associated to large field squares, i.e. to the suppressed region. Regarding e.g. the
first we thus have to replace the kernels Qt(y,x) from (192) by

§ </,^V. (,99)

The kernel (CT5(/z))(zz, w) is then taken out of the respective tensor product which
now depends on the parameter z/. The integration over the z\ may be performed
later using the exponential decay of S(h). The second (-derivative -J^— may apply

again to det (1 + Q) or to any other G>y a fact which admittedly makes it hard to
present the expansion terms by explicit expressions. This does not alter the bounds,
however, or change the mechanisms by which we control the expansion and which
were described when treating the /z-derivatives.

To resume we get from deriving n times det (1 + Q) an expression which may
be bounded by

(i) a factor ^ O(l/m)N~2/5 per sfd.

(ii) a factor e^'ml(T\ηf ^ 1/2, e.g. η' = 1/4.
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(iii) a (large) constant (0(w~2))" generated by the integrations over kernels and
from the LFP bounds and which also contains the combinatoric and all other m-
independent constants, (ζ-fields from the F-region generated by derivatives are also
included in this bound once they have been integrated with the aid of (136).)
(iv) a factor of 1 + δ(δ <C 1) per sfd and a factor of 1 -f O(m2\La\) per large field
block La.

These factors come from bounding the terms generated by (1+K++K- +
Σα^fl)"1 on iterated application of derivatives, taking into account support restric-
tions (see above (195)). The bound on the operator norm ||(1 +^±)~"1|| follows
from the small field condition, the other one from

Lemma 18. 0 g (IH-^)"1 ^ 1 + O(m2\La\) in the operator sense on &2 (La).

Proof. We have

now one verifies
p2 + m2 £ m2 + 0(l)\La-

1 (200)

on E, where E is the space of smooth functions with support in La\dLa. E is dense

in £e2(La) as is Έ := ((p2 + m2)(E)) C E, and on E (from (200))

0(l)\La\

which then holds by continuity on &2 (La).
Therefore

PL PL <
i>2 + m2 La =

and

For (very) large \La these factors are easily controlled by (135), (136). QED

1/7
det3 (I -{- K±). The essential modification comes from the det3. Taking one h-
derivative we obtain

dh det3 (l+K) = Tr (-±-K2dhκ} det3 (1 + K) .
V 1 +A /

Furthermore n derivatives produce

et 3 ( l+^), (201)

to be compared to (192) (see also [4]).
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So the essential modification is the replacement dh K — > K2dhK. The small factor
per sfd is now again O (m~3) N~1/5 (see 158), (192)) ((-derivatives produce an
additional Λf"1/10). Note that the small factor would not have been produced on
expanding det or det2 but comes from the third power of K, each power contributing
Λf~2/5. The remaining terms βrt' from (201) either stem from rederiving the K2dh
K which is now possible at most once with respect to h (using support restrictions)
or five times with respect to ζ. Each (-derivative produces a new 7V~1//10 whereas
a second dh2 applied to K2dh{ K does not bring down a new small factor (unless
it vanishes). Thus in the worst case we only get

O(m'3)N-l/s = o(N~l/l°) (202)

per 2 /^-derivatives. These terms, however, are not accompanied by large combina-
toric factors and have additional distance decay due to the trace conditions.

Among the rt-terms we also count the correction terms appearing when we
derive again (1 -f K)~l and then want to bring the result back into the form
(l+KΓlK2dhK, e.g.:

(dkl *)) = -Tr (̂  dh2 K ̂  (K28h]

2

}
~ K2 (dh2 K) K2dh] K - Tr (dh2 K) ~ K2dh

Tr K(dh2 K) — — K2dhl

The first term is of appropriate shape to be grouped together with the term where
the derivative applies to det3 (1 + K). The other terms are estimated separately and
contain one or two supplementary O (TV"2/5).

We note that it is not really necessary to perform this regrouping of terms and to
use the antisymmetric tensor product structure here, since (the kernel of) (1 -f^)"1

is bounded (and exponentially decreasing) in the small field domain. So the LFP is
sufficient to estimate the sum of all terms. The rest of the discussion is analogous
as (but somewhat simpler than) that of det (1 + Q). So we stop here.

det2 (1 + ALQ). The treatment is as before, but the Aιa are independent of
/z-parameters. (-derivatives produce antisymmetric tensor products of

*• Λ V^La s^f\~> \

1 . A AL« ~IΓ (2°3)l+ALa δζ

joined to dh C^ 's, which always have to bridge a large gap, producing an 7V~2,

which we do not really need, however, in the large field domain. One ALa -<&- may
be rederived at most three times, any rederivation being accompanied again by a
negative power of N through the distance gaps. Lemma 18 can be used to bound
(1-h^)"1 as before.

IVA. Results. Now we come to the

Proof of Proposition 3. We have to bound a (77^) for given Y1^ consisting of ns

small field squares Δj and of n large field blocks Γz with fixed assignments s and
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UΓZ = Γ C 7, UΔj = SCY,Y = SUΓ (204)

(i.e. all regions are restricted to 7 = Yl's). From the previous sections a(7/r*) is
bounded by a product of factors:

(1) (i) a small factor ^ (w~3 AM/5)"5/2 (see (202)).
(ii) exp (O(l)N~l/l°ns) (see Proposition 2, Corollary 1) from the small field

region.
(2) a(Yl's) contains a sum over trees T. For given tree we have in the bound a
factor

exp (-ηm I (T, 7)) with (e.g.) η = 1/3

(see (196)).
(3) In the large field region we get a bound

(205)

which may be deduced as follows:
From Prop. 2 and (136) we have a bound in the large field domain of

1 W 2 1 2\\

N) \ 60 / / '

Here we used only a fraction of (136). The rest is used to integrate and then bound
the contribution of the ζ-fields descended by derivatives in the F-region. ζ-fields
descended in l\V region are bounded by (129). From those and from Lemma 18
we get factors ~ O(\La\) per La. All those contributions are easily incorporated in
(205) since we have replaced b —> |.
(4) Finally we have a product of R\nsR2

nι with TV-independent constants R\,Rι^
These terms take care of all combinatoric factors from the choices onto which Giy

to apply the h- and C-derivatives and how to apply them within each Gίy. They
take into account the negative powers of w2, generated by applying the LFP in its
possible forms. This also includes the integration of the descended C-fields in the
(highly suppressed) F-region. Finally estimates of the type (194) and the bounds
on the kernels in Lemmas 5 and 7 contribute to R\^- Just taking maximal values
everywhere leads to tremendous constants ^1,^2- For simplicity and laziness we
do not optimize them. Note, however that any constant generated per Ifd can be
easily absorbed in the strong bound (205), contributions from V are really tiny.
Finally putting w3/2TV~1//10 per sfd in (1) corresponds to the worst case, appearing
only in (202) for a single choice of applying the derivatives (and which for many
trees is only allowed much less than ns times). All other choices imply additional
suppression factors of TV~1/2°, TV~1 / 1 0, TV"1/2, ... per derivative which then beat the
contributions to Rf completely.

To pass from a(7/vS) to b(Y) we have to sum over the admitted assignments
/, s for 7. By bold overestimation this leads to an additional 3'FL

In fact, however, picking any square out of 7 and assuming that the assignment
of all other squares is fixed-no matter how-there is at most(!) one assignment

for this square such that it is in 7 \ Γ. If it is in Γ we have the factor e~bN at
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our disposal and may assume that the change b —> b/2 in (205)-(206) also involves

taking away δ <C 1 from e~bN (i.e. add In δ\Γ\ in the exponent of (206)). Then
we may replace 3 by 1+2(5 and include this factor in R below (207).

Collecting everything we thus find

Σ

^ Σ (s'N-ύm-l} g 1/2 (207)

for TV sufficiently large, with the above remarks on R(~ R\) and Rf — O(\) eR.
The sum over the trees Γ is performed as in [9], Lemma III. 1.4, using Cayley's
theorem. QED

As noted in Sect. IV.2, the bound of Prop. 3 is sufficient to prove the convergence
of the series (184) for S2(fι , f2) in the infinite volume limit. Our aim is now to
prove also that this series decays exponentially with the distance of the supports of
fi and Ϊ2.

Our main result is

Theorem. The infinite volume two point function decays exponentially:

IWι,/2)| ^ 0(l)exp{-m'dist(/1?/2)} , (208)

where

m' = 7 w ( l + | 0 ( l ) / n | + o(N~l/l0)) (209)

dist (/i, /2) = inf {|xι —X2\\x\2 6 supp/i^}. 0(1) w #w N-independent number.
The estimate on m' is (of course} not optimal The term proportional to m2 is
due to the UV-cutoff (Lemma 5).

Proof. When treating external polymers we have to apply the cluster expansion
also to

/ 1 \

There is a slight technical nuisance with this term, since the cluster-expansion as
applied here requires the expanded kernels to be symmetric in (x,y).

Remembering that 1 + K = 1 + gτ ^— 1 1 + -rL Q t ) (24), we therefore write:
\ ^ J \ J

{/!' j^ ^2) = (r' ΓT^ ̂ 2) + (SW> ΓT^ ̂ 2) » <21°)

where
i , , Λ i i ,

r=— / i , s(τ)=—. gτ—: j\ ,
— f f + m f f + m — f f + m
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so that (210) equals:

ΔΆ"

with

and the sums are over all squares which form A.
From the exponential decay of (db^-hw)"1 (and the established estimates to

bound τ'Δ) it is then obvious that the Theorem holds for F2(ζ) if it holds on replacing
F2 by

since the sums in (211) are easily estimated. So we replace F2 —> F in the following.
As we know from Sect. IV.3, 1 + K may approach 0 for large volume. We therefore
group together

F(C)detf (1 +*) =: F(ζ)det2(l +i), (213)

where det2 (I + K) may be isolated from (53), thereby replacing TV —> TV — 2 in
the following. The power I/TV just means that we do not take a flavour trace. For
an external polymer we now get also contributions from applying derivatives to
(213). The treatment is analogous to that of the determinants in Sect. IV.3. But
the contributions due to sfd are now much smaller since we do not have a factor
TV from the traces to beat. Bounding the expression analogous to (192) we find
(see also [14, 15])

oo _yoo

i=n+l

— exP Σ On(l + κ ί ) ~ κl)e~^''=^κ' < en , (214)
ί=n+l

where KJ are the eigenvalues of κ (C), ordered as κ\ :g κ2 ^ ..., and we used K >
— 1 (in finite volume).

To prove exponential decay we have to look at the external polymer Y con-
tained in bτ(M) (184). We have Δ(fι\Δ(f2) C 7, where Δ(fλ\Δ(f2) contain
the supports of /ι,/2 By definition of Y there is for any tree T a sequence of
links joining the two squares which contain these supports (in any assignment Yl>s

of Y). We first suppose Y to be assigned such that / is empty, which is the domi-
nant contribution. The problem consists in putting aside the distance decay between
A (/i), A (/2) without invalidating the convergence proof. We proceed as follows:
For any tree T we split up

r = rur", (215)

where T' is made of a minimal number of links in T joining Δ(f\),Δ(f2\ Thus
the tree T' has at least one link, and all of its coordination numbers d( fulfill:
d'i ^ 2. Corresponding to T' we put aside a factor

ε | Γ / l Π Pι'(xι'>yι')> (216)
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where |Γ| is the number of links /' in Γ', and ε = O(l}m~3N-1/5 = o(N~l

(One realizes that the special choice of derivatives (202) does not have to be
taken into account here. Otherwise we had to replace ε — > ε1/2). P//(x//,j;//) is a
shorthand notation for the kernels associated to the links /' e T' and generated
by the respective derivatives. All these kernels decay at least exponentially with
constant m (even with m -f- |O(l)m2 |) according to Lemma 5. And so the product
in (216) is bounded in modulus by

Π -TT-l (dist (.V),^)) £ (0(Oβ)|Γ/l Π β-^VH /') , (217)z L

where Aay/),Aι/ are the squares linked by /', and we used the kernel of (p2 -f

tf*2)"1 : ( 2 l

m 2 ) (x ~ y)' For shortness we call a'(Y,T,T') the remainder of the

amplitude of Y for given T.
The important point is that the LFP may still be used to bound the remainder of

a(Y, T) without using up (217): the LFP is only needed (in a small field polymer),
when the tree T has large coordination numbers dj ^> 1. But since d\ ^ 2, the
coordination numbers of T" fulfill d' ^ dj — 2, and the reduction by at most 2 is
unimportant in (190). So the LFP works as before. We estimate

/ ι \ |r ' |
^Σε |7Ί sup 2 . 2 (x-y)\a'(Y9T9Γ)\ (218)

T Y
vezK/2)

a'(Y,T9T') is the rest of α(F,Γ) after taking out the P/. It thus includes also all
choices as to which the kernel PI may be. All these kernels are bounded in modulus
by the one of (p2 +m2)-1 (Lemmas 5,7). Finally we used in (218) the pointwise
positivity of the kernels of (p2 4- m2)~n to estimate for any O C IR2,

O

(219)
etc.

Using (219) the kernel in (218) has already been freed from the positions of
the intermediate squares between A(f\),zl(/2).

When summing over \T'\ we obtain for (218) the estimate

£sup |α'(7,7;r)lΣ sup ^ - ^ ( x - y ) , (220)
T'(T} L

and the right sum satisfies by geometric expansion and pointwise positivity

sup ( — ̂ - r --- x - r ) (x — y)
2 2 - 2 2

^ O(ε) sup exp(-mfl - -) (j-j)) . (221)
.rezK/), I V m / J
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We note at this stage that if some of the links of T1 come from the third cluster
expansion the small factor associated to them is taken from the exponential decay
(see 187)). Since the position of the respective squares is fixed, however, we do not
need their small factors ε and take out the distance factor directly without integrating
as in (219). n in (220) is then the number of second kind links in Γ', and the result
remains unaltered.

(When taking into account the effect of the UV regularization we may replace
m — > m (1 -f |0(l)w2|). The bound on the first sum in (220) is then achieved as that
of Proposition 3, by our previous discussion - with one more explanation: if any of
the zl α (//),zl//, linked by /' G T', appears only in links of Γ', but not in Γ"-so that
no decay is available to sum over its position in the first sum in (220), then we
do not sum over its position in (220): this sum has already been taken account of
by the bound (218). Instead of summing we only take the sup over all possible
squares. (If there are additional links we may or may not sum.)

It is of course not true that 62 vanishes for ε —* 0 (N —> oo). The dominant
contribution comes from (211)

= Δ' .
Δ'

This contributes

<222)

Finally we consider the case when Y contains also large field squares. Δ(f\\
may now be contained in two blocks Γi φΓ2, where at least one is large field, or
in a single field block Γ. For large field blocks

sup -γ~ — 2 0 -2

or

sup ( — - - } (x - y)
xJr\P2 + miJ^

need not decrease. But in this case we may take the missing decay (and much
more) from

exp

i.e. from the large fields suppression. The large field suppression also is (more
than) sufficient to make the LFP work in the situations which only appear in large
field polymers (Sect. IV.3). The essential reason that large field polymers do not
pose any problem, is in the fact that the large field suppression exponential has
not only a much larger coefficient than m, but is also proportional to |Γ|, and
I/Ί > sup dist(jc — y). So we stop here.
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After extracting the exponential decay from a (F, T) the convergence proof for (184)
follows from Proposition 3 as in [9], ch. III.l. QED

We finish with the promised statement on the expectation value of σ.

Proposition 4. ( σ A ) = - Π + o(N~l/2°) j .
y \ /

Proof. We proceed as before. An external polymer is now one containing the (fixed)
square A. If Δ is in S+ and Y consists of Δ only, we have for the amplitude (see
(160))

since σΔ={*\ + ζj, and (ζj) - (9(1) in j+.
Δ

For larger polymers we may gain as before o(N 1//2°) per sfd, large field polymers
are exponentially suppressed. The crucial point is the following: If Δ G S-, the
boundary conditions imply ΓΦ0. So this assignment, which potentially would give
~ — -, is always exponentially suppressed. QED

Conclusions

The Gross-Neveu-Model plays a prominent role in the program of constructive field
theory. The reason is that it shares two important features with four dimensional
gauge theories, though being technically much simpler. These are UV asymptotic
freedom and a nonperturbative mechanism of mass generation. Gauge theories could
so far only be studied in the UV regime by constructive methods (and this only
near the edge of the region where technicalities become prohibitive) [16]. This
paper starts the analysis of the Gross-Neveu-Model with discrete chiral symmetry
from the IR-viewpoint. Constructive methods presently require a small expansion
parameter which is here ^ and which has to be unfortunately unrealistically small,
but nevertheless finite! We prove the exponential decay of the two-point function
and the existence of (at least) two pure phases.

As regards the UV part of the problem, the massive Gross-Neveu-Model (on
introducing a bare mass by hand-also called Mitter-Weisz-Model [17]) has not only
been constructed for an N > 2 and small renormalized coupling [2, 3], but also an-
alyzed in more detail. Thus the Wilson-Zimmermann short-distance expansion and
asymptotic completeness in the two-particle region have been established [18]. For
(again very) large N the UV analysis even includes the perturbatively nonrenormal-
izable three-dimensional model [4]. As regards the future, it remains to close the
gap between the UV and IR constructions by taking away the UV cutoff from the
latter.

We also intend to analyze the model with continuous chiral symmetry whose
infrared structure is certainly richer and more complicated. To go even further
one would hope to get a complete picture of the phase structure of the large
N models and to make contact with the results obtained using the so-called
complete integrability of the Gross-Neveu Model. These results, while based on
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a certain number of unproven assumptions, provide a rich amount of informa-
tion [19]. From the technical point of view the methods are completely separate
from ours.
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