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Abstract: We consider the canonical symplectic structure on the moduli space of
flat ^-connections on a Riemann surface of genus g with n marked points. For
0 being a semisimple Lie algebra we obtain an explicit efficient formula for this
symplectic form and prove that it may be represented as a sum of n copies of
Kirillov symplectic form on the orbit of dressing transformations in the Poisson-
Lie group G* and g copies of the symplectic structure on the Heisenberg double of
the Poisson-Lie group G (the pair (G,G*) corresponds to the Lie algebra «?).

1. Introduction

Being an interesting object of investigations, the moduli space of flat connections
on a Riemann surface attracted the attention of many physicists and mathematicians
when its relation to the Chern-Simons theory had been discovered [12]. By defini-
tion the moduli space (we shall often refer to the moduli space of flat connections
in this way) is a quotient of the infinite dimensional space of flat connections over
the infinite dimensional gauge group. It is remarkable that this quotient appears to
be finite dimensional.

The moduli space Jt carries a nondegenerate symplectic structure [3]. It implies
the existence of a nondegenerate Poisson bracket on Jt. Recently the combinato-
rial description of the moduli space has been suggested [5], The main idea is to
represent the same space Jt as a quotient of the finite dimensional space & over
the finite dimensional group action. The Poisson structure has been defined on 0>
and proved to reproduce the canonical Poisson structure on the moduli space after
reduction.

In the first part of this paper we give a combinatorial description of the canonical
symplectic structure on Jί (see Theorem 1, Sect. 3). This is a bit more natural
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object to consider because the symplectic form may be canonically mapped from
Jί to 3P by means of the pull-back, whereas the Poisson bracket may be defined
on & in many ways.

The nonabelian 3 -dimensional Chern-Simons theory has been solved because it
is related to the 2-dimensional Wess-Zumino model and to the Quantum Groups.
In particular, let us consider the Hubert space $? of the CS theory associated to
the simple Lie algebra v on an equal time Riemann surface Σ of genus g with n
marked points. By construction, there is a representation ll assigned to each marked
point. Then the Hubert space 2tf is isomorphic to the space of invariants

tf = Inυq(Iι®...®In®W®g) (1.1)

in the tensor product of the corresponding representations of the quantum group
Uq(y). In formula (1.1), we denote by 9ΐ the regular representation of Uq(v) cor-
responding to a handle. In this paper we prove a quasi-classical analogue of this
statement (see Theorem 2, Sect. 4).

The first attempt in this direction had been made in [4]. There the cases of torus
and a disc with one marked point had been considered. However, the key object
which will enter into the answer appeared quite recently [6,1]. This is the set of
symplectic forms associated to Poisson-Lie groups which replace quantum groups
in the quasi-classical limit. More precisely, there is a family of symplectic forms
$ on the orbits of dressing transformations [10]. They are naturally assigned to the
marked points. Besides we have a symplectic form θ on the so-called Heisenberg
double (analogue of the cotangent bundle) which is responsible for a handle. So,
we prove that the symplectic structure on the moduli space of flat connections on a
Riemann surface may be represented as a direct sum of n copies of ϋ and g copies
of θ:

The paper is organized as follows. For the convenience of the reader we collect
in Sect. 2 the information about the gauge field approach to the moduli space of flat
connections, symplectic structures associated to Poisson-Lie groups, dual pairs and
Hamiltonian reduction. Each of these subjects is considered in a separate subsection.
Section 3 is devoted to a combinatorial description of the symplectic structure on
the moduli space of flat connections. A new efficient formula is obtained for the
case of a surface with marked points. In our approach one gets a simple proof
of the fact that the symplectic form defined via finite dimensional construction is
closed. The main result of the paper is presented in Sect. 4. This is the relation of
the symplectic structure on the moduli space and Poisson-Lie symplectic structures.
Formula (1.2) is proved for any complex simple Lie group or its split real form.
With some minor modifications the same is true for compact forms of complex
simple Lie groups.

2. Preliminaries

This section includes a collection of facts which we shall use throughout the paper.
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2.1. Definition of the Symplectic Structure on the Moduli Space

Let Σ be a Riemann surface of genus g with n marked points. Consider a connection
A on Σ taking values in a simple Lie algebra 0. We denote the Killing form on e by
Tr. In order to make the construction of this subsection mathematically precise, one
should consider the compact form of % so that the Killing form defines a Euclidean
metric on the space of connections. However, we usually ignore subtleties of this
kind and pay more attention to the algebraic aspects of the construction.

There is a canonical symplectic structure on the space j/ of all smooth connec-
tions [3]:

Ω^ = —TrfδAΛδA. (2.1)
4TΓ y

Here we have introduced a coefficient ^ in order to make our notations closer to
the ones accepted in the physical literature.

The form (2.1) is obviously nondegenerate and invariant with respect to the
action of the gauge group Gj:

A»=g-lAg + g-ldg. (2.2)

We denote the exterior derivative on the Riemann surface by d, whereas the exterior
derivative on the space of connections, moduli space or elsewhere is always δ. The
action (2.2) is actually Hamiltonian and the corresponding moment mapping is given
(up to a multiplier) by the curvature:

F = dA+A2. (2.3)

Let us start with a case when there is no marked points.

Definition 1. The space of flat connections ζsg on a Riemann surface of genus g
is defined as a zero level surface of the moment mapping (2.3) :

F(z) = 0 . (2.4)

Definition 2. The moduli space of flat connections is a quotient of the space of
flat connections ^sg over the gauge group action (2.2) :

(2.5)

The curvature being the moment mapping for the gauge group, the moduli space
may be obtained by Hamiltonian reduction from the space of smooth connections.
General theory of Hamiltonian reduction [2,13] ensures that the moduli space car-
ries a canonical nondegenerate symplectic structure induced from the symplectic
structure (2.1) on si.

Now we turn to the more sophisticated case of the Riemann surface with marked
points. Among several possible approaches we choose the one which is more con-
venient for further consideration.

To each marked point z/ we assign a coadjoint orbit in the space ^* dual to the
Lie algebra «?. Having the nondegenerate Killing form on #, we can actually identify
^ and <?*. In this case the coadjoint orbit may be viewed just as a conjugacy class
in «?. Using a matrix realization of the Lie algebra we get

T G GD & T = v~lDv, v G G . (2.6)
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Here D is any element of 9 which belongs to the orbit &. For example, we can
choose it in such a way that it will be represented by a diagonal matrix. Any coad-
joint orbit GD carries a nondegenerate symplectic form [8] which is often called the
Kirillov form. Linear coordinates T on the orbit are not appropriate for description
of the Kirillov form. It is much more efficient to use v and D instead of T. Then
one can represent the pull-back of the Kirillov form to the group G parametrized
by the variable v as

WD = TrD(δvυ-1)2 . (2.7)
It is easy to check that formula (2.7) indeed defines the nondegenerate closed two-
form on the orbit ΘD invariant with respect to conjugations. It is worth mentioning
that Γ is a moment mapping for the group action

T' = g-lTg, v° = vg. (2.8)

Definition 3. A decorated Riemann surface with n marked points is a Riemann
surface and a set of coadjoίnt orbits &ι,...,&n assigned to the marked points

One can use the notion of decoration in order to describe possible singularities
which may be developed by connections at marked points. Let us introduce the
local coordinate φi in the small neighborhood of the marked point zl so that

= 2π . (2.9)

Here Si is a closed contour which surrounds the marked point. Apparently, the
coordinate φi measures the angle in the neighborhood of z, . On the surface with
marked points we shall admit connections which have singularities of the form

A(z)^Zι=Aid(^)+A(z)ί (2.10)

where At are constant coefficients and A(z) is a smooth connection. We call the
coefficients Aj singular parts of A.

Definition 4. The space of connections jtfg,n on a decorated Riemann surface
with marked points is defined by the requirement that the singular parts of the
connection belong to the coadjoint orbits assigned to the corresponding marked
points:

y4 e 0 i . (2.11)

It is remarkable that the symplectic structure (2.1) may be used for the space ja^Λ

as well. It is convenient to introduce one more symplectic space which is the direct
product of jtfgtn and its collection of coadjoint orbits:

<% = <</,« x ^ i x x^ . (2 12)

It carries the symplectic structure

β£' = O.* + UX (2.13)
I

The action of the gauge group may be defined on the space £&*£*„ as follows:

A* = g~lAg + g~ldg:

Tf = g(zlΓ
lTlg(zϊ\ i f - Oig(zt). (2.14)



Symplectic Structure of the Moduli Space of Flat Connection 103

As we see, the modified gauge transformations are combined from the standard
gauge transformations (2.2) and orbit conjugations (2.8). The moment mapping for
the gauge group action (2.14) looks very similar to (2.3):

μ(z) = ΣTiδ(z - Zi) + F(Z) . (2.15)
, 2π

It is easy to see that the definition of stfg^n ensures that there is a lot of solutions
of the zero level conditions.

Definition 5. The space of flat connections on a decorated Riemann surface ^sg^n

is defined as a space of solutions of the following equation which replaces the zero
curvature condition:

μ(z) = 0. (2.16)

Let us choose a loop Si surrounding the marked point zz . One can define the
monodromy matrix (or parallel transport) M/ along this way. It is easy to check that
if A and {Γ/} satisίy (2.16), the monodromy matrix Mt belongs to the conjugacy
class of the exponent of D19

. (2.17)

Definition 6. The moduli space of flat connections on a Riemann surface of genus
g with n marked points JΊg,n is defined as a quotient of the space of the flat
connection on a decorated Riemann surface over the gauge group action (2.14) :

(2.18)

It is important that the moduli space MQtn is obtained by Hamiltonian reduction from
the symplectic space £&*£„• This procedure provides the nondegenerate symplectic
form on Jtg^n which is the main object of this paper.

Let us finish this subsection by the remark that symplectic spaces Mg>n naturally
appear as phase spaces in the Hamiltonian Chern-Simons theory (see for example
[4]). So, the results concerning the corresponding symplectic forms may be always
reinterpreted on the language of the Chern-Simons theory.

2.2 Poίsson-Lie Groups

Let us consider the Lie group G associated to the Lie algebra <$. We shall introduce
a Poisson bracket on G such that the multiplication:

GxG-*G (2.19)

is a Poisson mapping. A Lie group endowed with such a Poisson bracket is called a
Poisson-Lie group. To give an expression for this bracket we need some notations.
Let r+ and r_ be classical r -matrices corresponding to the Lie algebra <§\

r+ = -X>, ® A1' + Σ <?α ® e-α , (2.20)

(2.21)
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Then the Poisson bracket on the matrix elements of the group G is the following
[11]:

{gl

9i} = [r+9g
li] = [r-,glf]. (2.22)

Here we use the tensor notation gλ —g^I^g1 — / ® 0. A simple Lie group G
equipped with brackets (2.22) is a Poisson-Lie group. Another Poisson-Lie group
which we need is called G*. An element of G* is a pair (Z+,Z,_), where L+(Z_) is
an element of the Borel subgroup generated by positive (negative) roots of #. The
Cartan part of L+ is inverse to the one of Z_. In the simplest case of G = SL(N),L+

is represented by an upper-triangular matrix and L_ by a lower-triangular one. The
multiplication on the group G* is component-wise:

(L+9L-)(L'+9L'_) = (L+L'+9L-L'_) . (2.23)

The Poisson bracket on G* looks as follows [10]:

{L\,L\} = [r+,Ll

+L2

+] ,

{Ll,L2_} = [r+,Ll_L2_] , (2.24)

{Ll

+, L2_} = [r+,Ll

+L2_] .

The formulae for classical r-matrices and Poisson brackets in G* make sense either
for complex simple groups or for their split real forms which means that they admit
a *-invariant root basis. The example of such a real form is provided by the group
SL(N,R).

It is useful to introduce a mapping α from G* to G

α : (L+9L- ) -> L = L+LIl . (2.25)

The group structures of G and G* are different and the mapping α is not a group
homomorphism. However, we shall see in Sect. 4 that it may be useful if we replace
the requirements of the group homomorphism by some weaker conditions.

The matrix elements of the resulting element L have the following Poisson
bracket:

{Ll,L2} = r+LlL2 + LlL2r- - Llr+L2 - L2r,Ll . (2.26)

The Poisson bracket (2.26) is degenerate. So, one can describe its symplectic
leaves. To this end we consider the action of G on G* by means of dressing
transformations [10]:

L-*g~lLg, L e α(G*), g€G. (2.27)

This action is a Poisson one. It means that the mapping

G x G* -> G* (2.28)

is consistent with Poisson structures on G and G*.
Dressing transformations are useful when one describes symplectic structures as-

sociated to G*. The result has been obtained in two steps. First, it was proved [10]
that symplectic leaves of the Poisson bracket (2.26) are orbits of dressing transfor-
mations (2.27) and then the expression for the symplectic forms was found in [6,1].
To write down the answer we choose a particular orbit of dressing transformations:

®c = {L = g-*Cg, Lea(G*), g & G}, (2.29)
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where C is an element of the Cartan subgroup which parametrizes the orbit. So we
have the mapping π : G —» G* given by (2.29). It is convenient to use coordinates
L+,L_ and g on the orbit simultaneously. We have the following formula for the
pull-back of the symplectic form on the orbit (2.29) along the projection π:

$(g,C) = — Tr{Cδgg~ Λ C~ δgg~ +£+ δL+ Λ Z / Z δL-} . (2.30)
2

We shall see in Sect. 4 that the orbit of dressing transformations may be naturally
associated to each marked point on the Riemann surface.

Now we have a full analogue of the classical theory of coadjoint orbits of the
group G for the Poisson-Lie case. The dressing transformations replace the coadjoint
action and form (2.30) replaces the Kirillov form (2.6). To complete the program
we should find an object which corresponds to the cotangent bundle Γ*G. Actually,
it has been introduced in [10] and called the Heisenberg double D+. In the case
at hand (simple Lie group with Poisson brackets (2.22)) D+ is isomorphic to the
Cartesian product of two copies of G:

Z ) + ~ G x G . (2.31)

So D+ is a Lie group with component-wise multiplication. There exists a Poisson
structure on D+ such that the following embeddings of G and G* into D+ are
Poisson mappings:

G-^D+: λ->(λ,Λ), (2.32)

G*^D + : /,->(/,+,/,_). (2.33)

We do not write this Poisson bracket (see for example [10]), but make two remarks
about it. First, D+ is not a Poisson-Lie group (i.e. this bracket is not consistent
with multiplication). Second, the Poisson structure on D+ is degenerate, but there
is the symplectic leaf

C£> f~i/~** f~\ /^f*/^' /O 'I A \~L = CrCr I I Cr Cj (Z.34J

which is open and dense in D+. In formula (2.34) G, G* are embedded into D+ by
means of the mappings (2.33). To write down the symplectic form on this leaf let
us consider a set of coordinates

Ύ Ύ T — 1 — 1 S~Λ γ I T / ( Ύ I \ — 1 /— 1 /—f— 1 / f f^ O C \L — L+L_ =g Cg, L = L+(L_) = g C g. (2.3 j )

One can express h as
h = g~lg'. (2.36)

The pull-back of the symplectic form on «£? is the following [1]:

Θ(g9g ,C) = -Tr{Cδgg~l /\C~lδgg~l +L~lδL+ /\LIlδL-}+

1 _ Ί / /_, / /_, /_., /_-,
+ -Tr{C δg g Λ Cδg g +L+ δL+/\L+ δL_}+

-f TrδCC'1 A (δgg~l - δgg~l). (2.37)

As one can see the symplectic form on D+ consists of two terms similar to
the symplectic forms on the orbits (2.30). So we have two orbit systems (their
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dynamical variables are denoted by letters (g,L) and (g',Lf) which contain points
C and C"1. The last term in (2.37) is designed to take into account the fact that
now C is a dynamical variable as well. The form (2.37) will appear in Sect. 4.
It will correspond to the contribution of one handle into a symplectic form on the
moduli space.

2.3. Dual Pairs

One of the powerful tools in Hamiltonian mechanics is the language of dual pairs.
Let X be a symplectic space. Obviously, it carries a nondegenerate Poisson structure.

Definition 7. A pair of Poisson mappings

μ:X^Y,

v:X->Z (2.38)

is called a dual pair if

{{/,*} = 0, V/ - / o μj : Y -> C} <Φ {3h : Z -* C,A - h o v} . (2.39)

In other words, any function lifted from 7 is in involution with any function lifted
from Z and moreover, if some function commutes with any function lifted from 7
it means that it is lifted from Z.

The standard source of dual pairs is Hamiltonian reduction. If we have a Hamil-
tonian action of a group G on a symplectic manifold X, the following pair of
projections is dual:

μ : X —^*,

v : X -> X/G. (2.40)

Here the mapping μ is the moment mapping from the manifold X to the space dual
to the Lie algebra #.

Dual pairs provide the method to classify symplectic leaves in the Poisson spaces
7 and Z. For any point y G 7 the subspace v(μ~l(y)) is a symplectic leaf in
Z. It carries a nondegenerate symplectic structure. The same is true in the other
direction. Take any point z G Z, then the subspace μ(v~l(z)) is a symplectic leaf
in 7. Actually, in this paper we don't need the full machinery of dual pairs. Only
one simple fact will be of importance for us.

Lemma 1. Let the pair of mappings (μ,vj (2.38) be a dual pair. Suppose that
the Poisson bracket on Y is equal to zero at the point y. Under these conditions
the restriction of the symplectic form Ω on X to the subspace μ~l(y) coincides
with the pull back of the symplectic form ωy on the symplectic leave v(μ~l(y))
along the projection v;

Ω|A-,ω = v*ω, . (2.41)

This lemma relates the symplectic structure of the reduced phase space with the
symplectic structure of the global space X which is usually much simpler.

A particular example of the conditions of Lemma 1 is provided by the
Hamiltonian reduction over the origin of the moment mapping. Indeed, the
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Poisson structure of the space ?* is described by Kirillov-Kostant-Sourieu
bracket:

{/,/} = /?/, (2.42)

where f%b are structure constants of the Lie algebra <s. At the origin of ^* coordinates
y° are equal to zero and the Poisson bracket is obviously equal to zero for any
functions on 0*. It means that Lemma 1 is applicable for the moduli space of flat
connections on a Riemann surface with marked points. The symplectic structure in
question may be investigated using the relatively simple symplectic form (2.13) on
the space ^g% The subject of the next section is how to make this description
indeed efficient.

3. Combinatorial Description of the Symplectic Structure on the Moduli Space

As it was pointed in Subsect. 2.3, the pull-back of the canonical symplectic structure
on the moduli space to the space of flat connections on the decorated Riemann
surface is easy to describe because it coincides with the restriction of the canonical
symplectic structure on the space £#*£„. The drawback of this description is that we
have to use flat connections as coordinates on the moduli space. The space of flat
connections is infinite dimensional, whereas the moduli space is finite dimensional
for finite g and n. So, we should look for more efficient coordinate mappings. The
simplest example of such a mapping may be constructed in the following way. Let
us choose a point P on the Riemann surface which does not coincide with marked
points z/. One can define a subgroup of the gauge group GΣ(P) by the requirement:

/}. (3.1)

The quotient space

tfg,n = *g,n/GΣ(P) C Hom(π(Z,,n), G) (3.2)

is already finite dimensional and admits efficient parametrization.
Let us draw a bunch of circles on the Riemann surface so that there is only one

intersection point P. In this bunch we have two circles for each handle (correspond-
ing to a- and b- cycles) and one circle for each marked point. We shall denote the
circles corresponding to the f s handle by at and bt(i = !,...,#) and we shall use
symbols ml(i = !,...,«) for the circles surrounding marked points. We assume that
the circles on Σ are chosen in such a way that the only defining relation in π\(Σ9}n)
looks like

mi - - - mn(a\bΐlaΐlb\) - (agb~la~lbg) = id . (3.3)

To each circle we assign the corresponding monodromy matrix defined by the
flat connection A. Let us denote these matrices by Al9Bi and M/ for a-, b- and
m-circles. The set of monodromy matrices provides coordinates on Jtg,n and a
representation of the fundamental group π\(Σ9tn). It implies the relation

A-lBl)...(AgB~[A-iBg)=I (3.4)

imposed on the values of A^Bl and Mz.
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For a Riemann surface with marked points 2?Qyn is only a subset in the space
of representations of the fundamental group Hom(π(Σ^M), G) defined as follows:

,̂B = {pe Hom(π(Σgtn), G\Mτ = p(mt) G %•} , (3.5)

where ^ are certain conjugacy classes in the group G defined by the decoration:

<gt = \M = u-lCiUi,Ui e G, C, = exp(yA) } (3.6)

So the space Jf9>n is a subspace in

^fl>» = G2β x ft*. . (3 7)
ι=l

defined by the relation (3.4).
The original moduli space may be represented as a quotient of JtQ^n over the

residual gauge group which is isomorphic to the group G:

Λg,n = #g,n/G. (3.8)

It is convenient to define some additional coordinates Kt on J%,«:

Ko=I,

KI = Mι...Mi9l ^ i ^ n,

Kn+2i-\ = ^+21-2^/5 (3-9)

Kn+2i = Kn+2i-lBi A{ BΪ.

It follows from Eq. (3.4) that

Kn+2g=Kv=I. (3.10)

The canonical symplectic form on the moduli space without marked points may
be efficiently described in terms of A,B and K. Since marked points are admitted,

we have to make one more step and introduce a new space ^:

& = G»+i9 xHn+g . (3.11)

Here H is a Cartan subgroup of G. & may be parametrized by matrices u^i —
l,...,n + 2g from the group G and by Cartan elements Q, i = !,...,« + 2g, Cn+2ι =

C~+2i-ι We define a projection from ^ to ̂  by the formulae:

(3.12)

Let us recall that the Kirillov symplectic form on a coadjoint orbit can't be efficiently
described in terms of linear coordinates on the orbit. We get a nice formula making
a pull-back to the group (see Subsect. 2.1). Replacing the space & by the space
& we do essentially the same work for the moduli space. The symplectic structure
assigned to marked points resembles the Kirillov symplectic structure and it needs
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a pull-back to the group for an efficient description. The new variables u furnish
this task.

Let us call ffl g,n the preimage of fflQ,n in ^> We collect all information about
the projections and embeddings in the following diagram:

JF ->• ^
U U . (3.13)

The spaces Jf7

9tn and ̂  are parametrized by A,B,M and K. The coordinates on

fflQ,n and iF are given by u and C. Actually, all these spaces are designed to provide
efficient parametrization of Jίg^n which does not admit good coordinates itself.

After these lengthy preparations we are ready to formulate the main result of
this section.

Theorem 1. The pull-back of the canonical symplectic form on Jtg,n to ffl g,n

coincides with the restriction of the following two-form defined on if:

r\ TIΩ^ = — Tr
4π

n+2g

(3.14)

Σ Ciδum^C-1 Λ Sum-1 - Σ δK,K~l Λ δK,-ιKΓ_\
(=1

n+2g

+ 2 £) δCiCt i\δuϊui

 l

ι=n+l

Remark. The combinatorial description of the symplectic structure on the moduli
space of flat connections on a Riemann surface without marked points was given
by W.Goldman [7]. An elegant formulation of this result in terms of equivariant
cohomology of a certain bicomplex was suggested by A.Weinstein [14]. Recently
the moduli space for a surface with marked points was considered in [15]. They
use a generalization of the cohomological technique of Goldman. This is a way
to get a nice presentation for complicated expressions of the symplectic structure.
By contrast, our technique of pull-backs provides a bit lengthy but more concrete
formulae which will be used in Sect. 4.

The rest of the section is devoted to proof of Theorem 1.

Proof of Theorem 1 Let us cut the surface along every circle α ί56z 5 W j . We get
n + 1 disconnected parts. The first n are similar. Each of them is a neighborhood
of the marked point with the cycle πii as a boundary. We denote these disjoint
parts by P/. The last one is a polygon. There are no marked points inside and the
boundary is composed of a-J>- and ^-cycles as it is prescribed by formula (3.3).
We denote the polygon by P0.

Being restricted to PQ a flat connection A becomes trivial:

A\Po=g-ldg0. (3.15)

For any other part P/ we get a bit more complicated expression:

A\P, = --g^Dtgidφi + g~ldgi. (3.16)

We recall that Dl is a diagonal matrix which characterizes the orbit attached to
the marked point z/. There is a set of consistency conditions which tells that the
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connection described by formulae (3.15,3-16) is actually smooth on the Riemann
surface everywhere except the marked points. It means that when one approaches
the cuts from two sides, one always gets the same value of A. To be explicit,
let us consider the w-cycle which surrounds the marked point z,. Comparison of
Eq.(3.15,3.16) gives:

~ ~ (3.17)

This equation may be easily solved:

0oU =NMgimi, (3.18)

where N is an arbitrary constant matrix and M is equal to

(3.19)

Now we turn to consistency conditions which arise when one considers a- or b-
cycles. In this case both sides of the cut belong to the polygon PQ. Let us denote
the restrictions of g$ on the cut sides by gf and g" . So we have:

g'-ldg' = g"-ldg". (3.20)

We conclude that the matrices g' and g" may differ only by a constant left multiplier:

g"=Ng'. (3.21)

By now we considered connection A in the region of the surface where it is
flat. However, it is not true at the marked points. We calculate the curvature in the
region Pj and get a <5-function singularity:

F(z)\Pl = -g^Dig^z-z,) . (3.22)

Equations (3.22,2.15,2.16) imply that the value #/(z/) coincides with the matrix
vt:

gl(zl) = vi (3.23)

Let us recall that Vj diagonalizes the matrix 7} attached to the marked point zl by
definition of the decorated Riemann surface.

Now we are prepared to consider the symplectic structure on the space of flat
connections. First, let us rewrite the definition (2.13) in the following way:

Of* = ωo + ΣX (3.24)
ι=l

where the summands correspond to different parts of the Riemann surface:

k
α>o = ~τ~Tr fδA Λ SA,

471 PQ

k
ωt = — Tr fδA f\δA + wt . (3.25)
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The next step must be to substitute (3.15,3.16) into formulae (3.25). The following
lemma provides an appropriate technical tool for this operation.

Lemma 2. Let A be a ^-valued connection defined in the region P of the Riemann
surface Σ. Suppose that

A = g-lBg + g-ldg. (3.26)

Then the canonical symplectic form

ωp = TrfδA Λ δA (3.27)
p

may be rewritten as

(OP = TrJ{δB ΛδB + 2δ[FBδgg-1]} + TrJ{δgg-ld(δgg-{)- 2δ[Bδgg-{]} ,
P dP

(3.28)
where FB is a curvature of the connection B

FB = dB + B2. (3.29)

One can prove Lemma 2 by straightforward calculation.
Let us apply Lemma 2 to the polygon P0 In this case B = 0 and the answer

reduces to

The boundary of the polygon 3Po consists of n + 4g cycles (3.3). So actually
we have n -f 4g contour integrals in the r.h.s. of (3.30).

Now we use formula (3.28) to rewrite symplectic structures ωt:

υiυ-1)2. (3.31)
Λ

The last term in (3.31) represents the Kirillov form attached to the marked point
zt. Taking into account relation (3.23) we discover that this term together with the
third term in (3.31) cancel each other.

At this point it is convenient to denote the values of g$ at the corners of the
polygon. We enumerate the corners by the index i = 0,..., n + 4g — 1 so that the
end-points of the cycle πii are labeled by / — 1 and /'. One can easily read from
formula (3.3) the enumeration of the ends of a- and ^-cycles (see Fig. 1). For
example, the end-points of at are labeled by n + 4(i— 1) and n + 4(i - 1)+ 1,
whereas the end-points of a^~l entering in the same word are labelled by n + 4(i —
1) + 2 and n + 4(i — 1) + 3. We denote the value of go at the z's corner by hi.

Monodromies Al9Bi and Mi may be expressed in terms of ht as

Mt = h~\h, , (3.32)

Λ = ^~+

1

4(ί_ι)^+40-l)+l = A~+1

4(l _1)+3A|i+4(ι-l)+2 , (3.33)

BΪ = A^4(i_i)+2

A/i+4(i-i)+i = h~+4(i_l+3hn+4i . (3.34)
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Let us remark that without loss of generality we can choose go in sucn a waY
that its value ho is equal to the unit element in G. After that some of the corner
values hi may be identified with Ki\

hi for 1 ^ i <* Λ
h2i-n~ι for (/ — w) odd, « < /
A2/-/ι for (/ — «) even, « < /

(3.35)

Our strategy is to adjust notations to the description of Poisson-Lie symplectic
forms (see Subsect. 2.2). Using formula (3.18) one can diagonalize M/,

(3.36)

Here ut is the value of the variable gt at the point P.
Let us rewrite formula (3.30) in the following way:

(3.37)

Here φι is a contribution corresponding to the marked point:

k
(3.38)

and i/r z- is a contribution of the handle:

(3.39)
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First, we are going to evaluate the total contribution of the given M-cycle which
is equal to a sum of two terms:

Ql = ωι + φ, . (3.40)

Actually, each summand in (3.40) includes an integral over the #2-cycle. However,
this sum of integrals is an integral of exact form and it depends only on some
finite number of boundary values. This situation is typical and will repeat when we
consider a contribution of a handle.

Lemma 3. The form ω, depends only on a finite number of parameters and may
be written as

ω; = —TrlCiδUiU, Λ C, δUiU. - δKiK Λ δKi-ιK _\]. (3.41)
4π

To prove Lemma 3 one should substitute formula (3.18) into the expression for φl9

integrate by parts and compare the result with the expression for ω, . The integrals in
φl and ωz cancel each other and after rearrangements the boundary terms reproduce
formula (3.41).

Now we turn to the contribution of a handle ψi into the symplectic form on
the moduli space. One can see that each α-cycle and each &-cycle enter twice into
expression (3.37). These two contributions correspond to two sides of the cut. As
usual, the result simplifies if we combine the contributions of two cut sides together.

Lemma 4. Let gr, g" be two mappings from the segment fx\9X2j into the group
G with boundary values Q\^OI{^ Suppose that these mappings differ by the x-
independent left multiplier

g"=Ng'. (3.42)

Then the following equality holds:

n ^ 7c " n-\j,si " "-K rr Xh ' ' - I Λ / S ' 7-KΩ[XlyX2] = Trjog g d(og g ) — Trjog g d(og g ) =

~, / _ ι e / / / _ ι c // / _ ι c / / / _ ι e H. ,*Λ*^
= Tr(gl δgl Λ gl δgl - g2 δg2 Λ g2 δg2 ). (3.43)

Proof is straightforward.
Let us parametrize Al and Bl as in (3.12):

Ai = MΠ + 2 z_1Cw +2/_ιM r t+2z-l, Un+2i = Un+2i-\Bi (3-44)

One of the motivations for such notations is the following identity:

In principle, one can introduce the following uniformal variables:

1

-»ί«+2!-l = Ai = Mn+2I _ιCB+2, -lMB+2(-l,

Mn+2l = B-IA~IB, = U~l2l cn+2ίun+2i, (3.46)

so that the defining relation (3.4) looks like

Mi... MnMn+ι - Mn+2g = I. (3.47)
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In these variables we treat handles and marked points in the same way. Roughly
speaking, one handle produces two marked points which have the inverse values of
C : C\ — Cn+2i-ι,C2 = C~+2i-ι- I* resembles the relation between the double D+

and two orbits of dressing transformations (see Subsect. 2.2). Using the definition
of M (3.46) we can clarify the definition of Kfi

Kt=Mι...Mi. (3.48)

Now we turn to the contribution ψi of a handle into symplectic form (3.37).

Lemma 5. The handle contribution into symplectic form depends only on the
values of go at the end-points of the corresponding a- and b-cycles and may be
written as

- δKn+2i-ιK~+2l_l Λ

Λ

Λ

(3.49)
If we take into account Lemma 4, the proof of Lemma 5 becomes a straightforward
but long calculation. Let us remark that the terrible formula (3.49) contains two
copies of the marked point contribution (3.41) with parameters Cn+, and C~^. The

last term includes δCn+2i-\C~+2ι-ι an(^ coincides with the corresponding additional
term in formula (2.37) for the symplectic form on the double D+.

Summarizing Lemma 3 and Lemma 5 we get the proof of Theorem 1 completed.
Let us remark that in our approach one can easily prove that the form Ω^ is

closed. It is assured by the construction, but we give here a sketch of the combi-
natorial proof. Let us define Mt for / — 1 , . . . , n + 2g as

(3.50)

and introduce a three-form η by the formula

—
4π i

(3.51)

This is a sum of standard H3(G) generators for n + 2g copies of G represented by
MI. One can split the two-form Q^ into two pieces:

= Qi - Q2,

= 4ί2
Λ

n+2g

+ 2 £ δCiC~l /\δuiU-1

i=n+l

(3'52)
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There are two different representations of M, in terms of w/, C/ and in terms of Kt.
Both these substitutions actually kill the nontrivial cohomology class of η and one
can prove that

δΩi = δΩ2 = —η. (3.53)

Equation (3.53) assures that the symplectic form on the moduli space is closed.

4. Equivalence to Poisson-Lie Symplectic Structure

Formula (3.14) contains cross-terms with different indices /. In this section we
represent the canonical symplectic structure as a direct sum of several terms. Using
Subsect. 2.2, each term may be identified with either the Kirillov form for the
Poisson-Lie group G* or the symplectic form on the Heisenberg double D+ of the
Poisson-Lie group G. To achieve this result we have to make a change of variables.
The new set of variables is designed to "decouple" contributions of different handles
and marked points.

The following remark is important for understanding of the construction of de-
coupled variables. Monodromy matrices M,, A\ and Bl are elements of the group
G. In accordance with this fact we use G-multiplication to define the variable Kt

(3.48) and to constraint monodromies (3.4). On the other hand, natural variables
for description of orbits of dressing transformations of double D+ must belong to
G*. In Sect. 2 we defined the mapping α : G* —> G. Unfortunately, α is not a group
homomorphism. So, we would face difficulties applying α to identities (3.48,3.4).
This is a motivation to introduce a notion of a weak group homomorphism.

Definition 8. Let G and G' be two groups. A set of mappings

α(n) : Gn -> G'H (4.1)

is called a weak homomorphism if the following diagram is commutative for
any i:

In) i

Gn -» G n

m, i m' j (4.2)

Here m/ and m' are multiplication mappings in G and G' correspondingly which
map the product of n copies of the group into the product of n~ \ copies:

mz' : (01? . . .,gi9gi+l9. . . , gn) -> (gl9 . . . , gfgi+l9. ..,gn):. (4.3)

The mapping α (2.25) may be considered as a first mapping of a weak ho-
momorphism from G* to G. To define the other mappings α(w) we introduce the
products

. (4.4)
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The action of α^ looks as follows. A tuple (Z,+(z),Z,_(/)) G G * , i = l 9 . . . n is
mapped into the tuple M/ G G, i — !,...«:

Mί^-ίi-iy^-ίί-lΓ1. (4.5)

Here Lt is the image of the pair (L+(i),£_(/)) under the action of α:

Lt = L+(i)L-(irl (4.6)

One can easily check that the set of mappings (4.5) satisfies the requirements of a
weak homomorphism.

The next step is to implement the definition (4.5) to the space 3F. Let us
introduce a set of variables on & which consists ofvi9i= l,...,n + 2g taking values

in G and Ci9i = \,...,n + 2g9C'n+2i = Cf

n~2i_l taking values in H. In addition we
introduce the elements of G:

L, = υ~lC Vi forl g i ^ n\
__ /

Ln+2i = vn+2ΐCn+2lvn+2l forl ^ i ^ g, (4.7)

together with their preimages in G* with respect to α"1. Technically that means
that we assume the Bruhat components L±(i) (2.25) of L(i) to exist. We have
introduced the space JF in order to parametrize the moduli space of flat connections.
Now Poisson-Lie groups come into the game for the first time. One can reinterpret
the space J^ as a space of parameters on the direct product of n orbits of dressing
transformations and g copies of doubles D+. Coordinate projection

q : & -> 0ι x ... x 2n x 29+ (4.8)

is given by formulae (4.7). The space 3)\ x ... x Q)n x @9

+ carries a nondegenerate
symplectic form which is equal to the direct sum of symplectic forms on the orbits
of dressing transformations (2.30) and on g copies of the double D+ (2.37) (see
Subsect. 2.2). The pull-back of this symplectic form to the space J^ is equal to

ΩPL = Σ,#(Vi>Ct ) + Σθψn+V-ltVn+ϊitC^^) . (4.9)

Let us compare the forms (3.14) and (4.9). Motivated by the definition (4.5) we
introduce a mapping σ : JF —> iF defined by the relations:

Here K-(ι) are defined as in (4.4). It is easy to see that the mapping σ induces the
mapping α(/z+2^ from the set of pairs (Z+(/),£_(/)) into the set of monodromies
Mi. It is guaranteed by the definition of weak homomorphism that the G-product in
the relation (3.4) is now replaced by a G*-product:

K±(n + 2g) = L±(l)...L±(n + 2g) =/. (4.11)

Equation (4.11) defines the preimage of jfegίn in & with respect to the mapping
σ. It is worth mentioning that the matrices Kt from the previous section may be
represented as
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Ki = K+(i)K-(irl (4.12)

This is also a consequence of the definition of weak homomorphism. Indeed, Kj has
been defined as a product in G of the first / monodromies. Formula (4.4) defines a
product in G* of / first elements (L+(/),Z,_(/)). Using the basic property of weak
homomorphism (/ — 1) times we check (4.12).

Let us arrange the introduced spaces and mappings in the commutative diagram:

T T ΐ G

3F —> ^ -> #1 x ... x <$n x G2g (4.13)

U U

We should make several comments concerning the structure and properties of
the diagram (4.13).

Projection Q)\ x . . . x <&n x &\ -» 2\ x . . . x 2n x G*2^ is defined by formulae
(4.7) and prepares tuples of n + 2g elements of G*. The next projection $)\ x ... x
Ώn x G*2g — > G* is a multiplication mapping in the group G*. Projection ^\ x .. . x
^n x G2g —> G is a multiplication mapping in the group G. These two mappings
are consistent with the mapping α : G — » G* and represent the generalized moment
mapping for Poisson-Lie groups in the sense of [9]. Actually, the image of Jjf g^n

in the symplectic space 2\ x . . . x &n x @g

+ coincides with the preimage of the
unit element in G* and the moduli space Jtg,n may be obtained by the Poisson
reduction from &\ x ... x &n x &9

+. As a result of Poisson reduction we get some
symplectic form on the moduli space JtQ^ Our task is to compare this new form
with the canonical symplectic structure of the moduli space. Given Theorem 1 the
only necessary step is to compare the forms Ω^ and QPL on 3F .

Lemma 6. The two-form Ω^ is proportional to the pull-back of the form ΩPL

along the mapping σ:

ΩF = £-σ*(ΩPL). (4.14)
2π

Lemma 6 may be proved by straightforward calculation.
Now we are ready to formulate the main result of this paper.

Theorem 2. The pull-back of the direct sum of n copies of the Kirillov symplectic
form on the orbit of dressing transformations in G* and g copies of the canonical
form on the Heisenberg double of the group G to the space &g,n coincides up
to a scalar multiplier with the pull-back of the canonical symplectic form on the
moduli space of flat connections on the Riemann surface of genus g with n marked
points.

Proof of Theorem 2. The proof consists of three steps. First, in Subsect. 2.2 we
established that the pull-back of the canonical symplectic form on 3)\ x . . . x Q)n x
D9

+ is equal to ΩPL. Next, Lemma 6 provides the identification of the pull-back of
ΩPL with Ωp up to a multiplier. Finally, Theorem 1 proves that the pull-back of Ωp
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to &Q,n coincides with the pull-back of the canonical form of Jtg^n to the same
space. Thus, Theorem 2 is proved.

Remark. In this formulation Theorem 2 is correct for G being a complex simple
Lie group or its split real form (compare to Subsect. 2.2). In order to apply this
result to a compact form, let us remark that the space 3?g,n may be embedded
into the complexified space 3?^n. This embedding is induced by the embedding

G —> G€. Consider the following diagram:

^1 y y Q) y Πxg 4— ̂ c <— W —> ^ f4 1M«/Ί A ... A ^^ A /^_|_ < ^ ̂ n < ^ g>n » JM g^n. \^.YJ )

For G being a compact Lie group, the result of Theorem 2 may be generalized as
follows. The pull-back of the Poisson-Lie symplectic form defined on the complex
space 2\ x ... x 3)n x D*g to the space J^g>n coincides with the pull-back of the
canonical symplectic form on the moduli space along the projection J^fg>n —> Λtg,n

5. Conclusions

As we promised in the Introduction, the symplectic form on the moduli space of
flat connections may be split into n pieces corresponding to the orbits of dressing
transformations and g pieces corresponding to the copies of the Heisenberg double.
By the principle of orbit-representation correspondence [8] one should assign some
irreducible representations 7, of the quantum group Uq(y) to the orbits and the
regular representation 91 to each copy of the Heisenberg double. Taking into account
the constraint (4.11), which means that the representation of the total spin is trivial,
we have a complete quasi-classical analogue of formula (1.1).
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