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Abstract: This paper studies the structure of the random “sawtooth” profile corre-
sponding to the solution of the inviscid Burgers equation with white-noise initial
data. This function consists of a countable sequence of rarefaction waves sepa-
rated by shocks. We are concerned here with calculating the probabilities of rare
events associated with the occurrence of very large values of the normalized ve-
locity, shock-strength and rarefaction intervals. We find that these quantities have
tail probabilities of the form exp{ — Cx*}, x > 1. This “cubic exponential” decay
of probabilities was conjectured in the companion paper [1]. The calculations are
done using a representation of the shock-strength and length of rarefaction intervals
in terms of the statistics of certain conditional diffusion processes.

1. Introduction

This paper is a sequel to a previous article [1] concerning the structure of statistical
solutions of Burgers’ equation with random initial data (Burgers Turbulence)

ou(x,t) L0 u(x, t)? -0
Ot ox 2 -

u(x,t = 0) = up(x) = Gaussian white noise .

(1)

This nonlinear wave equation is understood as the inviscid limit (v — 0) of the
equation

ou(x,1) N a u(x,1)*\ vazu(x,t)
ot Ox 2 - oxz

The statistical properties of Burgers Turbulence have been widely studied since
the original works of Burgers [2] and Hopf [3]. In particular, expectation values,
moments and correlation functions of the velocity, u(x,t), have been calculated.
A modern and interesting account of the theory of Burgers Turbulence and other
related systems, as well as of its role in recent cosmological theories, can be found
in Gurbatov, Malakhoff and Saichev [4]; see also [12].

(2)
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Let us review briefly some known properties of statistical solutions of (1) which
are relevant to this paper. The initial velocity uo(x) can be viewed as a highly oscil-
latory function that is spatially uncorrelated and assumes the values + co and — co
everywhere. The integral of the initial velocity is statistically a Brownian motion,
or continuous-time random walk. At positive times, the solution evolves accord-
ing to the hyperbolic equation in (1), with shocks forming and interacting with
each other. When two shocks travelling at different speeds overcome each other,
they merge into a larger shock which travels at a new speed, determined by the
Rankine-Hugoniot condition [5]. Interacting shocks behave like particles undergoing
inelastic collisions, in which mass and momentum are conserved (but not energy,
which is dissipated in the collision). The solution of (1) at positive times is a piece-
wise linear random function, with a countable, discrete, set of jump discontinuities
corresponding to shocks [1]. The piecewise linear portions between consecutive
shocks have the same slope 1/t and correspond to rarefaction waves. The velocity
profile can therefore be seen as a statistically homogeneous “sawtooth” function
formed by a sequence of consecutive random shocks followed by rarefaction waves
(“N-waves”).

Due to the self-similarity of the initial datum uy(x), the velocity satisfies the
scaling relation [1, 7]

1 X

u(v.t) ~ (;2—/31) , 3)
where “~” denotes statistical equivalence. Therefore, the spatial structure of
Burgers Turbulence at arbitrary times can be deduced from the solution at time
t = 1 by rescaling. This reflects the fact that the system (1) corresponds to the
long-time, large-scale limit of the viscous equation (2). In this limit, all times be-
come infinitely large with respect to the diffusion timescale and hence are equivalent
after a similarity transformation.

The goal of this paper is to complete the study initiated in [1] which gave
various results on the probability distribution of the velocity, shock-strengths and
lengths of rarefaction intervals of the function u(x, ¢). Unlike other works on Burgers
Turbulence, such as [2, 3, 4], this paper and its predecessor [1] focus on extreme
properties of these distributions, such as the probability that a given shock has very
small or very large intensity. The motivation for this investigation comes from the
numerical works of Kida [6] and She, Aurell and Frisch [7], who studied the statis-
tics of very small shocks. A rigorous proof of the scaling laws proposed in these
papers was given in [1]. A different kind of initial datum was studied rigorously by
Sinai [8], also in the context of small shock-strengths. Here, we concentrate on the
opposite asymptotics, i.e. on the probability of occurrence of very large shocks.

The scaling form of the distribution for extremely large values of the shock
strength was conjectured in [1], where it was shown that the tails of the velocity,
shock-strength and rarefaction interval distributions could be bounded from above by
a cubic exponential function exp{— Cx}. Notice that when applied to the velocity
u(x, 1), this bound implies that the velocity PDF is non-Gaussian and has very short
tails. In this article, we shall establish rigorously that the cubic exponential scaling
function gives the correct asymptotics for the three quantities. These results give us
a more complete picture on the structure of Burgers Turbulence.

Our main objective is to prove

Theorem 1. Let u(x) = u(x,1) be the solution of (1) at time t = 1, let S re-
present the strength of the first shock to the left of x = 0 and let x represent the
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length of the rarefaction interval containing x = 0. There exist positive numerical
constants Cy and Cy such that for allu =2 1,s = 1 and x = 1,

exp{ — 1’} < Prob.{u(x) > u} < exp{—Cu’’}, (s)
exp{—cls3} < Prob.{S > s} £ CXP{-C2S3}, 6)

and
exp{ — C1x’} < Prob.{ox > x} < exp{—Cx*}. 7

The upper bounds in (5), (6) and (7) were derived in Theorem 3 of the com-
panion paper [1]. Our purpose here is thus to prove the corresponding lower bounds,
thereby establishing that the cubic exponential scaling form is sharp. We have not
attempted to keep track of the exact values of the constants C; and C;, leaving open
the possibility that C; = (;, i.e. that the bounds give the exact asymptotic behavior
of the probabilities on a logarithmic scale. However, we believe that more refined
analysis along the lines of this paper is likely to give quantitative information on
the constants as well.

The mathematical approach for deriving the estimates is based on the study of
rare events for certain diffusion processes associated with Burgers Turbulence. These
processes arise naturally by considering the variational solution of the Hamilton—
Jacobi (eikonal) equation satisfied by the velocity potential; cf. equation (8). With
our approach, the statistical quantities of interest can be described in terms of the
absolute minimum value and the time at which the absolute minimum is attained for
random processes conditioned on never hitting a linear boundary. This description
of the shocks and rarefaction intervals was introduced in [1], where the connec-
tion between the statistics of Burgers Turbulence and those of the convex hull of
Brownian paths, first studied by Groenboom [9] and Pitman [10], was noticed. In
that first paper, we used this technique to calculate the statistics of small shocks.
It turns out that a characterization of the probabilities for large values of shocks,
etc. can also be made using conditional diffusions. Roughly speaking, the reason for
the cubic exponential scaling is that the tail probabilities can be determined from
steepest descent, or Laplace-type asymptotics, applied to either standard Brownian
paths or conditioned diffusion paths, depending on the quantity of interest. For ex-
ample, a large value of the velocity u(x,1) corresponds to a Brownian trajectory
B(+) satisfying f(u) < — Cu?, for u > 1, an event with probability of the order of
exp{ — Cu’}. The arguments for shock-strengths and rarefaction intervals are simi-
lar in spirit but require the use of conditional diffusions and hence are of a more
technical nature.

This paper is organized as follows: in Sect. 2 we discuss the tails of the distri-
bution of the velocity u(x), where x is an arbitrary real number. Here, consideration
of standard (free) Brownian motion is sufficient for our purposes. The lower bound
is obtained by choosing an “event” in the space of Brownian trajectories (associ-
ated with a set of initial data uy) on which the magnitude of the velocity at the
origin x = 0 is necessarily larger than a specified large constant #. We then show
that such event, or set of realizations of u, has probability at least exp{ — Cju’}.
In Sect. 3, we turn to the study of the tails of the distribution of shock strengths.
Again, we find an event in the ensemble of initial velocity configurations which
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has the correct probability (= exp{ —Cs*}) and on which the shock-strength S
exceeds a large constant s. Unlike the case of Sect. 2, the technique for calculating
the probability of such event relies on properties of a conditional diffusion process
introduced in the companion paper [1]. In Sect.4 we use a similar approach to
study the rare events for the length of a rarefaction interval.

Although this paper tries to be self-contained in its exposition, it borrows several
results from [1]. Therefore, a reading of the relevant sections of [1] is recommended.

2. Tails of the Velocity Probability Distribution

Let us recall some elementary facts about Burgers equation with random initial
data. The solution of (1) can be expressed in terms of a variational principle. This
is a consequence of the classical Hopf-Cole transformation linearizing (1) and (2).
Define Y(x,1) = [, u(x',t)dx’', ¥(x) = ¥(x,1) and u(x) = u(x,1). Then, we have

_ 2
W(x0) = Inf |B(y) + ("—2—})—} , (8)
and hence
d
u() = x — Zsup [xy — (1/2)y* = ()]
y
=x — )@x). 9)

Here f(y), —o0 < y < 400, is a two-sided Brownian motion and y(x) is the
point where the minimum of (8) is achieved. The function y(x) can be interpreted
as the inverse of the derivative of the convex envelope of the function F(y) =
1% + B(y), of. [1].

From (8), (9), we know that

u(0) = - »(0),

where y(0) is the point where F(y) attains is minimum. We seek a lower bound
on the probability

Pr.{|y(0)| > u} = 2Pr{y(0) > u}

Pr. { infOF(y) is attained at some > u} .
y >
Let a > 0 be a given number. If a Brownian path (y), y > 0, is such that

1
§y2+ﬁ(y) > —a fory < u

and
2u* + PQu) < —(a + 1),
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then F(2u) < inf,<,F(y), and hence the minimum of F(y) is necessarily attained
at some y > u. We have therefore

Pr.{|u(0)] >u} = Pr.{ inf F(y) > —a; 2u8* + pQu) < —(a + 1)}
y=su
= T Pr.{ inf F(y) > —a; p(u) = z}
—@+ape) T
x Pr.{fQu) + 2u* < —(a + 1)|(u) = z}dz
> uf~a Pr.{inf F(y) > ——a;ﬁ(u):z}
— @+ T

x Pr{pQu) — P(u) < —(a + 1) — 2u* — z}dz

uz‘a
> / Pr.{inf F(y) > —a;ﬁ(u):z}
—(a+@puy
—(1+3u2) 5 dz
x f exp{—(z /zu)}m
=Gy f Pr.{inf F(y) > —a;ﬁ(u):z}
@)y T

X exp { - 51;(1 + 3u2)2} dz
> Crexp{ — (94’ /2)}Pr. { yigqu( y) > —a}

> Clexp{—(9u3/2)}Pr.{yinfooF(y) > —a} )

Here C is a numerical constant. Since the infimum of F(y) is finite, the latter prob-
ability is positive and independent of u. (Note also that this probability approaches
1 as a — +00.) Therefore, we conclude that, for a suitable constant C > 0 and
all u = 1, we have

Pr.{ju(0] > u} = exp{—Cu’}.

This proves the lower bound in (5).

We recall, for the sake of completeness, how the corresponding upper bound was
proved in [1], Sect. 5. There, an upper bound of cubic exponential type was obtained
by estimating the probability that F(y) < 0 for some y > u. This event must
necessarily occur if »(0) > u, since F(y(0)) is always negative. The probability
that F(y) < 0 for some y > u is found to be of the order of exp{ — Cu*}, by a
direct calculation with the Gaussian distribution.
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3. Tails of the Shock-Strength Probability Distribution

In this section, we shall use the technique of conditional diffusions and time-reversal
to study the statistics of the shock-strength ; cf. [1]. Let S denote the strength of,
say, the first shock to the right of x = 0. We seek a lower bound on

Pr{S > s}

for s > 1. For this purpose, we use Lemma 4 in [1], which establishes a connection
between the distributions of S and 7, which we define as the time at which the
stochastic process

{)’E(z) = Bt) + % — u(0), conditional (10)

onX(t) > O forall¢ > 0

attains its minimum. More precisely, we have

Pr{S > s} = E{P [z;((,) < ﬂ} :

where P denotes the distribution of X' (t) given u(0) and E[-] represents expectation
value with respect to the distribution of #(0). In other words, the random variables
S and 1/t* have the same distribution conditionally on u(0). Let ¢ = 1/s. Then, if

2 - 3
n < X(2) < 7 (11)
4 - 5
- <X@) < =, (12)
t t

and
X)) > % >t (13)

the minimum of X (5),0 < s < 400, must necessarily occur for s = t;,, < .
Hence,

E{P[tyo) < 1}

> Pr.{% < X(t2) <

>

~ ] W
~1 &

- 5 -
<X(t) < ;;X(t’) > %,t’ > t}

B 2 ~ 3 4 ~ 5 ~ 3,
_Pr.{; < X(t/2) < i <X(t) < ;’Pf(z),t [X(t) < ;,t > t]}

(14)

~

In order to estimate the last probability, we make use of a comparison principle,
Proposition 7 in the companion paper [1] , which gives a lower bound on the
probability inside the brackets in terms of the statistics of conditional Brownian

motion (conditioned on never hitting § = 0; cf. [11] or [1]). Since ¢ < X(1) < 3,
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we have X @) > } and Proposition 7 of [1] can be applied. We have, accordingly,

~ 3
’ ’
P)f(v(l),t [X(t ) > ;,t > tJ

1 ~ , 1 1 3,
= EP [ﬁj’v(t),t(t)-i_ % > ;,t > I:I
1 ~ , 35 ,
= '2—P [ﬁ)?(t),t(t) > —t——,t > t:|
Y 3.
_ X - 23
2 X
_li- & 1
2 % 20°

Here, 8, ,(t) = Brownian motion conditional on not hitting 0, starting at x at time
t. In the last estimate, we made use of the fact that the infimum of this conditional
Brownian motion is uniformly distributed on the interval [0,x]; cf. [11].

We conclude that

E{P[tyq, < t1}

1 2 ~ 3 4 ~ 5
= —Pr.q- X(t/2 - = X(t -
2 gt {3 <Fom < 33 <X < 3}
1 2 ~ 3 4 ~ 1 1 5
= %E{? <X(t/2) < ”t‘,P [; )’(V(t/Z),t/Z(t) + Z_? < ?jl} .

where Proposition 7 of [1] was applied again, using that X(z/2) > —f- the probability
inside the last expectation value satisfies

4 - 15

P {; < ﬁ),(v(t/Z),t/Z(t) — —2-; < ?:‘
4.5 ~ 55
=P |:T ,{’v(t/Z),t/Z(t) < —t—‘]

p [ft_S < W) < 5—;] ,

where |W(-)| is a three-dimensional Brownian motion starting on the sphere of
radius [¥(1/2)] at time ¢ = 0 and [W()| = \/W3() + W3() + W2() (ef. [11]
or [1]).

An elementary estimate based on the fact that W(-) has multivariate Gaussian
probability density with variance ¢ gives, for 1 = 1,

45 5.5 C
P [—t— < |W(@)| < T] = exp{—t—s} ,

where C is a numerical constant that we do not evaluate explicitly. Hence

1 c 2 - 3
E{P[t}q, < 1]} 2 Eexp{~t—3} xPr.{; < X(@t2) < ;} . (15)
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It remains to estimate from below
2 ~ 3 ~
Pr.{? < X(@#2) < ;} = Pr.{l < (#2)X(#2) < 3/2}. (16)

For this, we shall use the definition of the process X (¢), given in (10). Note that
the corresponding unconditional process, X(t) = p(¢) + 2% — u(0), satisfies

1
tX(t) = tf(z) + 7~ w0y, t > 0.
Introducing © = ¢* as a new “time” variable, we have
N 1
X(@) = P(r) + 3~ w03, 1 >0, (17)

where ﬁ(‘r) = 1f(¢) defines a new Brownian motion, as a consequence of the sta-
tistical self-similarity of Brownian paths. From (16), we conclude that the process

tX(t), conditioned on never hitting 0, is statistically equivalent to ?(r), where

{}7(1) = @) + 3 — w0y, <« > o0, (1)

conditioned on never hittingY = 0.

Before giving the rigorous proof of the estimate for the tails of S, let us give an
intuitive idea of why it should hold. Notice that Y(7) tends to 1/2 as T — 0. There-

fore, for very small values of 7, the distribution of 17(1) should be approximately
equal to the distribution of the unconditioned process

1 1
P + 5 - u(0)t'? = (1) + > <L (19)
This approximation leads to

{2 < (2) <2

Pril < Y(x) < 32}, (t = (2)®)

I

1t

Pr{1/2 < B(z) < 1}

8
exp{——}, T K1
T
C
eXpy ~ 3 (> <1,

which is a “cubic exponential” function of 1/¢. Putting this together with (15) we
obtain the desired lower bound on the probability of large shocks of setting ¢ = 1/s.

In order to make the above argument fully rigorous, we shall use a technical
lemma which is proved in the Appendix. The statement of the lemma is stronger
than what is needed to estimate the probability in (16). The reason for this is that
we shall make use of the full result of the lemma in Sect. 4, when estimating the
probabilities of large rarefaction intervals.

14

a4
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Lemma 2. Let a,b,c be positive numbers such that a < 1/2 < b < c. Then, for
all uy > 0 there exist constants Ty = To(a,b,c,up) > 0and Cy = Cy(a, b, ¢, upy)
> 0 such that for all © £ Ty, and all u such that uy < u(0) < 2uy, we have

Pr.{ inf Y(7') > a,b < Y(1) < c} = exp{ — Co/t} .

<z

Applying this lemma with a = 1/3,b =1 and ¢ = 3/2, we obtain, for uy <
u(0) < 2up,(/2)* £ Ty and © = (/2)?,

P{% <f(%) < %} = P{1 <7() < 3/2}

v

P { inf Y(&') > 1/3,1 <Y(x) < 3/2}

> exp{—Cop/t} = exp{—8Co/f’}. (20)

Therefore, putting together (15) and (20), we conclude that

1 2 - 3
E{Plty) < 1} Z 55 - exp{-C/*} - Pr.{; <X (%) < ;}

v
o —

3 exp{—C/t’} - E{P E <f(%) < %} sup < u(0) < 2u0}

1
20

(v

- exp{—C/f} - exp{—8Co/’} - Pr.{uy < u(0) < 2uy},

for sufficiently small values of . Since the last probability is positive, this implies
that

E{Pltyqy < 11} Z exp{~C'/P’}, t =<1,

for a suitable numerical constant C’. Finally, changing back to the variable s = 1/t,
we have

Pr.{S > s} = exp{—C's*},

which is the lower bound that we want. This completes the proof of the result on
the tail probabilities of shock strengths.

4. Tails of the Probability Distribution of the Length of a Rarefaction Interval

In this section, we prove the lower bound in (7) for the distribution of the length
of rarefaction intervals of the function u(x) = u(x,1). To fix ideas, let [xg,x]
be the rarefaction interval containing the origin x = 0. We denote its length by
Ox = x; — xo. According to Lemma 4 in [1], we know that, given u(x,),

ox = inf)?(t) ,
t>0
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where X (¢) is the conditionalprocess defined in Eq. (10). Let x be a positive number
and set £ = 3—lx If the path X(¢) satisfies the conditions

% <tX(t) fort <7, (1)
1 <X <2, (22)

and
X(@) > él—?zx for t >7, (23)

then, since (21) implies
f(t) > %:x fort <17,

the path X (¢) will be everywhere greater than x. Therefore, conditionally on the
value of the random variable u(xy), we have

P{X(¢) > x}
1. 1 -~ 2 . 1
> P{— < inf ((X(1)); = <X(1) £ =; inf X(¢) > —N}
3 tsf t t o>f 3t
—pll < (X (1)) ! < X(t) < 2 p, nf X(1) > —
I = =7 xad LG 7

For % <X @) < %, we can use Proposition 7 in [1], which relates the distribu-
tions of X and of conditional Brownian motion, and obtain the bound

- 1

> % . Pr.{ﬂ)?(ﬂ);(t)+%—§?> %,t> t”}
zl-Pr.{ﬁ~ ~(t)>—5: z>f}

=2 X4 67’

_LX(F) - 5/67

2 X()

1 1/f—§/6f

=2 2/

1

B

Notice that we made use of the explicit distribution of the minimum of conditional
Brownian motion again. From this last estimate, we conclude that

E {P [}ggi(t) > x] }

> g {P [1 < inf (LX(0));

= 3 =t (®)

(24)

Y —
IIA
>0

l
A
NS
ee—J.
—
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We introduce again the “stretched” time variable T =#> and the process Y () =
tX(t). The last expectation value in (24) is equal to

Pr.{% < inf Y('); 1 <Y(z) £ 2} (25)
with
T=1°=(1/3x)*. (26)

To estimate this probability, we proceed as follows:

<t

Pr.{1/3 < inf Y(U');1 £Y(1) < 2}
> E{uo < u(xg) < 2ug; P [% < inf Y(r); 1 £Y(7) < 2” ,
<1

where P{-} = conditional probability given u(xp). Applying Lemma 2 (with u(xo)
instead of u(0)), we have

1 ~ ~
Pr.{§ < infY(r)1 £Y(r) £ 2}
<t
= exp{—Co/t} - Pr.{uy < u(xo) < 2up},

for some numerical constant Cy = Cy(ug) and all t sufficiently small. Clearly,
Pr{upy < u(xp) < 2up} =0 for all uy. Therefore,

Pr.{inff(t') > x} 2> exp{-C'/r},t £ 1,

>0

for a suitable constant C’. Changing back to the variable x, according to (26), we
conclude that

Pr{éx > x} = Pr. {ingf(t) > x}
>
> e—27c’x3 _
This completes the proof of the lower bound for the tail probabilities for the length
of rarefaction intervals.

Taking into account the upper bounds for the probabilities established in Theo-
rem 3 of [1], the proof of Theorem 1 is complete.

Appendix: Proof of Lemma 2

Our goal here is to give a proof of the estimate of Lemma 2, namely

P= P{i,nf Y(U')>a;b<Y(1) < c} = exp{—Co/t} (A1)
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for © < Ty, where Y (7) is the process

Y(1) = (z) —ut'® +1/2 (A2)
conditioned on never hitting ¥ = 0. The constants a,b and ¢ satisfy

O<a<l2<b<ec.

The constant u in (A.2) represents the value of u(0) or u(xg) and is assumed to
satisfy the inequality uy < u < 2uy, for some positive constant uy; see the statement
of Lemma 2.

Let 1o denote the first time that the unconditioned process Y(t) hits ¥ = 0.
Then, by definition, we have

szP{inff(r') >a;)7(1')=)’}dy’
b o<1

where
P{inf Y(7) > a; Y(r) = y}
<t
P{i/nf Y(t') > a;Y(1) = y;10 > T}
— lim T <t
T—o0 P{‘Co > T}
, . Plwg >T|Y(x) =y}
_ ' . —
_P{TI,Il<fTY(‘L') >a,Y(r)—y,} XT]LI’I;O Plro > T}
= P{inf Y(i') > s Y(7) = y} x 0(1/2,0; y,7),
<t
with

) o Plo>T|Y(0) =y}
O 0y = m e =T v =)

(A.3)

In this last equation, we emphasize the dependence of the probabilities on the
starting point/time.

We claim that if y and u are strictly positive and bounded, (i.e. 0 < C < y,u <
C’ and © £ ("), then 0(1/2,0; y,7) is bounded from below by a positive constant,
C”, depending only on C and C’, the latter bound holding uniformly in y,z, and
u. This claim obviously implies that the probability of interest, P, is comparable to

P{inf Y > a;b < Y(1) < c} .
<t

In this way, the problem reduces to the study of the unconditional process Y(7),
which is easier to analyze.

To prove our claim, we shall evaluate the quantity Q(1/2,0; y,7) in terms of
path-integrals corresponding to Brownian motion. For notational convenience, we
denote by P}',, the probability in the numerator of (A.3) and use a similar notation
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throughout. As a first step, note that
oo
PY {rg>T}= Ofpir{fo > 1;Y(1) =z}P) {ro > T}dz
and
Y Ty Y
Ploolto > T} = {Pl/z,o{fo > 1;Y(1) =z}P; {10 > T}dz.

We have assumed, without loss of generality, that © < 1. By Girsanov’s Theo-
rem, the probability measures induced by Y and f (standard Brownian motion) are
mutually absolutely continuous. Moreover, with the obvious notation,

Pl {0 > T} = Ef {to > T;M[1,T,u, B]}, (A.4)

where M [1,T,u, f] is the Radon-Nikodym derivative of PY with respect to P#, the
standard Brownian motion measure, given by

M[1,T,u, f] = exp {fTb(s)dﬁ(s) - %fT(b(s))zds} :
1 1
Here,
b(s) = —%ur‘m

is the drift of Y (7). Note that this drift is square-integrable on the interval [1, +00),
and that b < 0 if u > 0.

Furthermore,

Ef (v > T;M {1, Tu, 1}

EP {10 > T:M[1,T,u,
- 2 {0 ; [ A} xPﬁl{ro > T}
Pz,l{’co > T}

= P (M1, +00,u, 1} x P! {z0 > T} (A.5)

as T — -+o0. Here, § is Brownian motion conditioned on not hitting 0, i.c., ff ~
Bessel-3 process (cf. [11] and Sect. 4. in [1]), and

- +oo - ] oo
M [1,400,u, ] =exp{ OO (b(s))zds} :
1 1
It can be checked by direct computation that, if u > 0, then
e=C0 ) < BF (M1, 400, 1) < 1, (A.6)

for some numerical constant C. Furthermore, the probability Pﬁ (o > T) converges
to zero as 7 — +o0. Its asymptotic behavior is given by

2
P (10 > T) —\/—.;IZT T>1. (A7)
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Putting together (A.4), (A.5) and (A.7), we arrive at an expression for Q(1/2,0; y, 1),
namely

0(1/2,0; y,7) )
Jy Pyl > 1Y(1) = 2}ED M [1, +00,u, f] }zdz
f 1/20{70 > 1;Y(1) =z} E 1{M [1,4+o0,u, ,8 }zdz

For y such that » < y < ¢, for u such that uy < u < 2uy and for 7 < 1, this
quantity is uniformly bounded from above and below. This follows from the bounds
in (A.6). We have therefore reduced the proof of Lemma 2 to the estimation of the
probability for the unconditional process Y, viz., P{inf, ., Y(7') > a; b < Y(7) <
c}.

We will show that, given uy > 0, there exist constants Cy and T, which depend
on a,b,c and ug, but not on t or u, such that

P{inf Y(t') > a;b < Y(1) < c} = exp{—Co/t},
<t

for all T < Ty.
For this purpose, given a,b,c, and u, select Ty in such a way that

d =a—1/242mT)" <0,
and
B =b—1/2+2uT)° <c—12=

With these values for @’ and &/, the inequalities

inf B(r )>d,

v LT,
and

b < B(x) <, fort T,

imply that

inf Y(7') > a,

<7y
and

b<Yr)y<e fort=Ty.

Therefore, if 1 < T, then
P> Prob.{inf B(x') > d'; b < B(x) < c'} i
(<

The latter probability is easy to estimate: since @’ < 0, the constraint on inff is
irrelevant as © — 0. Hence, for small enough 7, we have

P> %Prob.{b’ < B(z) < c'}.
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By direct calculation with the Gaussian distribution, we conclude that

P e Colt

for some numerical constant Cy = Co(d’,c’).

This completes the proof of Lemma 2.
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