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Abstract: We present several identities involving quasi-minors of noncommutative
generic matrices. These identities are specialized to quantum matrices, yielding
^-analogues of various classical determinantal formulas.

1. Introduction

A common feature of the algebraic constructions which originated from the quantum
inverse scattering method is the systematic use of matrices T with noncommutative
entries, obeying a relation of the form

where the /^-matrix is a solution of the Yang-Baxter equation [13,20,35]. The
entries of the monodromy matrix T may be regarded as the generators of an asso-
ciative algebra subject to the above relation. Many interesting examples of algebras
arise in this way. Among them are Aq(GLn\ the quantized algebra of functions
on GLn [35], the quantized universal enveloping algebra Uq(gln) [13,20,35], the
Yangian Y(gln) [13,33,27] and the quantized Yangian Yq(gln) [8]. In each of these
cases, an appropriate concept of quantum determinant can be defined [22,21,35]
which is of fundamental importance in the description of the center of these alge-
bras and their representation theory. For example the Drinfeld generators [14] of the
Yangian 7(#/rt) are given by some quantum minors of the Γ-matrix. These genera-
tors can be used to construct the Gelfand-Zetlin bases for certain irreducible repre-
sentations of Y(gln) [30,26]. Moreover, it is shown in [30] that the Gelfand-Zetlin
formulas for Uq(gln) follow from certain algebraic identities satisfied by quantum
minors of the Γ-matrix corresponding to the quantized Yangian Yq(gln). Another
application of quantum determinants is the construction of a ^-deformation of the
coordinate ring of the Grassmannian and the flag manifold, whose basis consists in
products of quantum minors of the Γ-matrix associated with the algebra Aq[GLn]
[23, 38]. In this case, the quadratic relations satisfied by quantum minors can be used
to establish an analogue of the classical straightening formula [6]. These examples
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suggest that it is an important task to explore these various quantum determinants
and to investigate the algebraic relations between their minors.

In fact, the problem of defining the determinant of a matrix with noncommu-
tative entries is an old one and can be traced back to Cayley [7]. An example
of great significance in the classical representation theory is Capelli's determinant
[5,40,19,29,32]. In the forties, Dieudonne proposed his famous definition of the
determinant of a matrix over a noncommutative skew-field [12] which was sub-
sequently used and extended by Sato and Kashiwara in the context of the the-
ory of pseudo-differential operators [36]. Another interesting construction is that of
Berezin who defined an analogue of the determinant for supermatrices [1]. However,
it is only recently that Gelfand and Retakh initiated a completely different
approach, introducing the quasί-determinants of a matrix with noncommutative
entries [16,17].

The most striking facts about quasi-determinants are the following: (1) a n x n
matrix A = (α^ ) admits not only one but (in general) n2 quasi-determinants related
by the so-called homological relations; (2) the quasi-determinants of A are not
polynomials but noncommutative rational functions of the a^; (3) in contrast to the
Capelli determinant or to the various quantum determinants which only make sense
for very particular matrices with entries obeying some specific commutation rules,
quasi-determinants are defined for matrices with formal noncommutative entries,
and can therefore be specialized to any matrix; (4) the Capelli determinant, the
Dieudonne determinant, the Berezin determinant and the quantum determinants of
Aq[GLn] and Y(gln) can be expressed in a uniform way as products of commuting
quasi-determinants.

The aim of this article is to demonstrate that the quasi-determinants of Gelfand
and Retakh can be applied successfully to the important problem of describing the
algebraic relations satisfied by the quantum minors of a monodromy matrix. To this
end, we first investigate identities satisfied by quasi-minors of the generic noncom-
mutative matrix, and then derive quantum determinantal identities by specializing
them to a Γ-matrix. For simplicity, we only consider in this paper the Γ-matrix of
the generators of the quantum group Aq(GLn\ but the same technique applies also
to the case of Y(gln)

We emphasize that from our point of view, the generic quasi-minors identities
are perhaps more important than their specializations to a given monodromy matrix.
Indeed, they lend themselves to other applications, as illustrated by [15] where the
same identities are used for studying noncommutative symmetric functions, Fade
approximants and orthogonal polynomials. Noncommutative Fade approximants and
orthogonal polynomials appear for instance in Quantum Field theory where they are
used for computing rational approximations of perturbation series [2,18].

The paper is organized as follows. Section 2.1 introduces the free field, which
is the natural algebraic setting for dealing with quasi-determinants. Section 2.2 pro-
vides a self-contained introduction to quasi-determinants and their basic properties.
It happens that quasi-determinants are closely related to the representation aspect
of automata theory initiated by Schϋtzenberger (see [3,37]). The presentation we
give here is influenced by this point of view. We describe then in Sect. 2.3 non-
commutative analogues of several classical theorems, including Jacobi's theorem,
Cayley's law of complementaries, Muir's law of extensible minors, Sylvester's
theorem, Bazin's theorem and Schweins' series. Finally, these results are specialized
in Sect. 3 to quantum minors of Aq(GLn\ yielding quantum analogues of the same
theorems.
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2. Quasi-determinants

2.1. The Free Field. Let A be a set of noncommutative indeterminates. We de-
note by Q(A) the free associative algebra generated by A over Q. We wish to
imbed Q{^4) in a field, called its universal field of fractions, or free field. In other
words, the problem is to extend to noncommutative polynomials the classical con-
struction of the field of fractions of a ring of commutative polynomials. There are
different equivalent definitions of the free field due to Amitsur, Bergman and Cohn.
Cohn's approach, which relies on the resolution of linear systems with coefficients in
Q(A), is the most closely related to the definition of quasi-determinants [9, 10]. We
shall recall his construction in the case where Q is the ground field, the general
case (where Q is replaced by an arbitrary field) being essentially the same.

From a categorical viewpoint, the problem may be formulated as follows. A
Q(A) -field is a (skew) field K equipped with some ring morphism φ% from
Q(A) into K such that K is the least field containing the image of φ#. A special-
ization between two Q (A) -fields K, L is a ring homomorphism φ from a subring
^o of K to L such that any element of KQ which is not in the kernel of φ has an
inverse in KQ. The class of fields does not form a category, for it is not possible
to define a notion of morphism of fields due to the zero inverting problem. How-
ever, one can show that Q (A} -fields equipped with specializations form a category.
Moreover, there is an initial object in this category which is exactly the so-called
free field Q{A],

K
In other words, for every Q (A) -field K, there is a unique specialization
7pκ from Q{A] to K that extends φ#.

More concretely, here is how Cohn constructs Q{^}. A n x n matrix M with
entries in Q(A) is called a full matrix if it cannot be written as a product of an
n x r by an r x n matrix where r < n. M is called linear if its entries have degree
^ 1. Let Σ be the set of full linear matrices, and for each n x n matrix M —
(my) in Γ, take a set of n2 symbols, arranged as an n x n matrix M' = (m^-). Define
a ring by the presentation consisting of all the elements of Q(A), as well as all the
m'jj as generators, and as defining relations take all the relations

MM' =M'M=In

for each M in Σ. This ring is none other than the free field Q{A}. Using this

construction one can show that any element x of Q|/4j can be represented as

X = IM~1T, (1)

where / = (1, 0, ...,0) considered as an π-dimensional row vector, T is some col-
umn vector of Qn and M is some element of Σ. This means that every element
x of Q{^} is the first component of the solution X of some linear system of the
form MX — T. Cohn and Reutenauer have recently shown the unicity (up to linear
isomorphisms) of the representation of an element x G Q{^} under the form (1)
when the dimension n is minimal [11].
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There is another interesting construction of the free field based on Malcev-
Neumann series. This method provides a series expansion for every element of
Q|U}. We first recall a general construction related to ordered groups introduced
independently by Malcev and Neumann [25,31].

Let ^ be some total order on a group G compatible with the group structure,
which means that

0ι ^ AI , 02 ^ A2 => #102 ^ h\hι

for any #1,02,^1,^2 G G. A Malcev-Neumann series is a formal series over G
whose support is well-ordered with respect to ^ . Malcev-Neumann series can
therefore be multiplied, and one can show that they form a field denoted by

Consider now the free group F(A) constructed over A. There are several classical
ways of totally ordering F(A), based on the fact that the successive quotients of the
lower central series of F(A) are free abelian groups [34]. Hence one can consider
the Malcev-Neumann series field QM[[F(A)]]. One can show that the subfield of
QM[[̂ (^)]] generated by the group algebra Q[F(A)] is always (independently of
the order ^ chosen on F(A)) isomorphic to Q{>4}.

Consider for instance the element (ab — ba)~l of Q{α,Z?}. Choose an order on
F(a,b) such that ba ^ ab. Then

1 ^ bab-la~l ^ (bab~la~1)2 ^ ,

and the expansion of (ab — ba)~l as a Malcev-Neumann series is

-1 +°°(ab — ba) = (ab) (1 — bob a ) = (ab) Σ(bab a )n .
n=Q

2.2. Definition of Quasi-Determίnants. We let now A — {a^, 1 ̂  ij ^ n} be an
alphabet of n2 letters. The matrix (fl//)^/,^, also denoted by A, is called the
generic matrix of order n. It is a full linear matrix, as well as all its submatrices.
Therefore, all square submatrices of A are invertible in Q{A). Throughout the paper
we shall use the following notation for submatrices. For jP, Q subsets of {!,...,«},
we let APQ denote the submatrix whose row indices belong to P and column indices

to β, and APQ = AJQ, where P = {!,...,n}\P and Q = {!,...,n}\Q are the set
complements of P and Q. Consider a block decomposition of A

R S

A= P ( ApR Aps

Q \ AQR AQS

and the corresponding decomposition of A~l = B = (by),

P Q

A~l — B — R ( ^^ ^RQ

S V BSP BSQ

Here we suppose that \P\ = \R\ and \Q\ = |5| so that APR, AQS, ##/>, BSQ are square
matrices. By block multiplication we get the classical relations
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BRP = (ApR - ApsA-}

sAQRΓl , (2)

(3)

(4)

(5)

In particular, taking P = {/>}, R = {r}, one obtains that the entries of the inverse
of A are given by the recursive formula

BSQ — (AQS — AQRApRApS)

brp = (apr ~ Aps(AQS) (6)

where Q = {!,...,n}\{p} and S = {!,...,n}\{r}. This leads to the following
definition.

Definition 2.1 (Gelfand, Retakh; [16]). Let Apq denote the matrix obtained from A
by deleting the pth row and the qth column. Let also ξpq — (ap\,...,άpq,...,apn}
and ηpq = (a\q,...,άpq,...,anq). The quasi-determinant \A\pq of index pq of the
generic matrix A is the element of Q{^} defined by

\A\pq = apq - = apq- (7)

where ξpq is considered as a row vector and ηpq as a column vector.

It is sometimes convenient to use the following more explicit notation;

a\\ ... a\q ... a\n

MU = * pn

an\ ... anq

For instance, for n — 2 there are four quasi-determinants

= flu - 021 ,

a\\
\02\\

,-1, flu
fl21

fl!2

ana2l

lc

fli2

The quasi-determinants \M\pq of a matrix M — (m^) with entries in a given field
K are obtained by applying the specialization ai} —» m/7 to the rational expressions
\A\pq. Some of them may fail to be defined. A sufficient condition for \M\pq to be
well-defined is that Mpq is invertible in K. It follows from (6) and (7) that when
K is a commutative field, \M\pq = (-iχ+<?detM/detM^. Thus quasi-determinants
may be regarded as noncommutative analogues of the ratio of a determinant to one
of its principal minors.

By construction the quasi-determinants of the generic matrix A are the inverses
of the entries of B — A~l :

i j l = \A\β> ί>J = !>•••>« - (8)
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Thus we can rewrite (7) as

=βw- Σ
'

(9)

which can be regarded as a recursive definition of \A\pq.
We now recall from [16,17] how quasi-determinants behave under elementary

operations on rows and columns.

Proposition 2.2. A permutation of the rows or columns of a quasi-determinant
does not change Us value.

Proof. Let σ e Sn and let Pσ be the associated permutation matrix. Then we have

\P*AP\ \pq = Mi-

D

For example,

an
021 022 023

032 033

021

011

022 023

012 013

032 033

022

012

021

011

023

013

033

Proposition 2.3.
pth row on the left by λ, then

matrix C is obtained from the matrix A by multiplying the

f
" I Mk

for k — p,
for kή= p .

Similarly, if the matrix C is obtained from the matrix A by multiplying the qth

column on the right by μ, then

for l =
for\A\pl

Finally, if the matrix D is obtained from A by adding to some row (resp. column)
of A its kth row (resp. column), then \D\pq = \A\pq for every p Φ k (resp.

Proof. The two first properties follow from (9) by induction on n. Let D be obtained
from A by adding its kth row to its Ith row, and set M = In + E\^ where EM denotes
the matrix whose unique non-zero entry is the lkth entry equal to 1. Then D = MA,
and

\D\-p

λ

q = (D~l\p = (A~lM~l)qp = (A~l\p = \A\~l

q

for every pή^k, since multiplying a matrix by M on the right modifies only its kth

column. D

A major difference between quasi-determinants and determinants is that quasi-
determinants are not polynomials but rational functions of the entries of the matrix.
However, formal power series expansions of quasi-determinants can be obtained,
which are conveniently described in terms of graphs. To this end, we introduce the
field automorphism ω defined by setting
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( -fly ί f i φ y

for 1 g i,j ^ n [10]. This involution maps the generic matrix A on / — A, and its
inverse on the star of the matrix A,

ι=0

The star operation is a basic tool of automata theory [3], and ω establishes a
correspondence between quasi-determinants and formal power series associated with
automatas. In our case, it is useful to associate with A the automaton si whose
transition matrix is A. In other words, si is the complete oriented graph constructed
over {!,...,«}, the edge from / to j being labelled by α/y. Thus, for n — 2, the
automaton si is

a22

a21

Denote by ^// the set of words labelling a path in si going from / to y, /.e. the set
of words of the form w = a^ dk}k2

 ak2k3 - ak,._}j A simple path is a path such that
ks ή= i, j for every s. We denote by &&ij the set of words labelling simple paths
from / to j. It is clear that the entry of index ij of A* is equal to

(A*)υ= £ w ,
we%

or equivalently,

I/-Λ7 1 = Σ w .
w€f//

Using natural decompositions of these sets of paths, we arrive at the classical
formula

= f (an
\ 2

where the star of a series 5- in the atj with zero constant coefficient is defined by

For instance, the equality of the entries of index 11 in (10) amounts to the decom-
position of paths from 1 to 1 into sequences of paths going from 1 to 1 without
using 1 as an intermediate state. We note that (10) is to be seen as the image under
ω of (2),(3), (4), (5), the noncommutative entries α/,- of (10) being interpreted as
the blocks APR of some block decomposition of the matrix A. Similarly, one has

\I-A\n = l- Σ w . (11)
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For example,

= 1 -an

The graphical interpretation of formal power series expansions of quasi-determinants
is an important question. It has been studied at length by Gelfand and Retakh, and
we refer the reader to [17] for many other results.

2.3. Minors Identities for Quasi-Determinants. In this section, we give noncom-
mutative analogues of several classical theorems. The reader is referred to [24]
for a review of these theorems in the commutative case. We adopt the following
convention for indexing quasi-minors, that is, quasi-determinants of submatrices. If
Oij is an entry of some submatrix APQ or APQ, we denote by \APQ\^ or Hpρ|// the
quasi-minor of this submatrix in which a\j is boxed.

2.3.1. Jacobΐs Ratio Theorem. In the commutative case, Jacobi's ratio theorem
[39,4] states that each minor of the inverse matrix A~l is equal, up to a sign
factor, to the ratio of the corresponding complementary minor of the transpose
of A to det A. This generalizes the well-known expression of the entries of A~l

as ratios of principal minors of A to det A. The corresponding statement in the
noncommutative case is even more natural.

Theorem 2.4 (Gelfand, Retakh; [16]). Let A be the generic matrix of order n, let
B be its inverse and let ({i},L,P) and ({j},M,Q) be two partitions of {l,2,...,n}
such that \L\ = \M\ and \P\ = \Q\. Then there holds:

Proof. Using appropriate permutation matrices allows to reduce the proof to the
case i=j9L = M and P = Q. Set R = P U {/}. Formula (2) yields

(ARR) = BRR — BRL(BLL) &LR -

Now, considering the entry of index ii of the matrices on both sides, we find

\ARR\~ = bή - Σ bik\BLL\Jk *// = |#iu{i},iu{i}|i/ '

D

For example, take n = 5, / - 3, j = 4, L = {1,2}, M = {1,3}, P = {4,5} and
Q = {2,5}. Theorem 2.4 shows that

α32 10341 ^35

fl42 a44 #45

«52 054 «55

b\\
bsi
641

2.3.2. Cay ley's Law of Complement aries. In the commutative case, Cayley's law of
complementaries assumes the following form. Let / be an identity between minors of
the generic matrix A. If every minor is replaced by its complement in A (multiplied
by a suitable power of det A\ a new identity Ic is obtained, which is said to result
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from / by application of the law of complementaries [28,4]. In the noncommutative
case, we have the following analogue of this law.

Theorem 2.5. Let I be an identity between quasi-minors of the generic matrix A of

order n. If every quasi-minor \Aiju\ij involved in I is replaced by M^y/A L\j{ι}\βl>

where L = {1,..., n}\L and M = {!,..., n}\M, there results a new identity Ic.

Proof. Applying identity / to A~l gives identity Ic by means of Theorem 2.4. D

For example, let n — 3 and let / be the identity:

013

033
= 013*012 -033*032

By means of the law of complementaries, one can deduce from / the new iden-
tity Ic:

011 012 013

021 022 023

[037] 032 033

011 012

[02Π 022

011 012

021 022

031 032

013

023

011 012 013

021 022 023

[03Ϊ1 032 033

011 012 013

021 022 [023]

031 032 033

011 012 013

[02Π 022 023

031 032 033

-1

2.3.3. Muίr's Law of Extensible Minors. Let us first recall Muir's law of exten-
sible minors in the commutative case [28,4]. Let D be a square matrix of order
n + p, let A = DP& C = Dpβ, where P, Q are two subsets of {1,...,n + p] of
cardinality n and let / be an identity between minors of A. When every minor
ML,M| involved in / is replaced by its extension \DLup MU-Q\ (multiplied by a suit-

able power of the pivot \C\ if the obtained identity is not homogeneous), a new
identity IE is obtained, which is called an extensional of /. A similar rule holds in
the noncommutative case.

Theorem 2.6. Let D be the generic matrix of order n + p, let A — Dp^ where
P, Q are subsets of {1,..., n + p} of cardinality n and let I be an identity between
quasi-minors of A. If every quasi-minor \AL^M\ιj involved in I is replaced by its
extension \DLup MUQ\ΪJ> 0 new identity IE is obtained which is called an extensional
of I. The submatrix DJ-Q is called the pivot of the extension.

Proof. As shown by Muir, Theorem 2.6 results from two successive applications of
Theorem 2.5. Indeed, a first application of the law of complementaries to identity /
transforms it into another identity Ic between quasi-minors of A. But quasi-minors
of A may be seen as quasi-minors of D and identity Ic may be seen as an identity
between quasi-minors of Zλ A new application to Ic of the law of complementaries,
but taking now the complements relatively to Z), yields identity IE. D

As an illustration, consider the following identity which results from (8):

011

011

[02Ϊ1

031

012

022

032

013

023

033

012

011

021

031

012

032

013

023

033

013

011

021

031

012

022

032

013

[023]

033
(12)
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An extensional of (12) that illustrates Theorem 1.3 of [17] is:

|0ΪΓ] 014

041 044

051 054

+
\a\2\ 014
042 044

052 054

+
[0ΪH 014
043 044

053 054

015

045

055

011 012 013 014 015

|02l| 022 023 024 025

031

041

051

015

045

055

011

032 033 034 035

042 043 044 045

052 053 054 055

— 1

— 1
012 013 014 015

021 |022| 023 024 025
031

041

051

015

045

055

011

021

031

041

051

032 033 034 035

042 043 044 045

052 053 054 055

— 1
012 013 014 015

022 [023] 024 025

032 033 034 035

042 043 044 045

052 053 054 055

Another example is given by the so-called homological
the trivial identity

1

ail
0&/ 0&/
Λ«/ ή

_ j

~ ~akl
0&/ |0κ|
ail 0/7

= 0 .

relations [16]. Start with

'

and extend it using the pivot Akl^. The following relation arises:

(13)

which relates the two quasi-determinants \A\ij and \A\kj via quasi-minors of lower
rank. Arguing similarly, one also obtains

V \klΓ
l . (14)

The homological relations prove to be a fundamental tool for dealing with quasi-
determinants. For example, they lead immediately to the following analogue of the
classical expansion of a determinant by a row or column

(16)

for any k^p and /Φ0. Indeed, it follows from (8) that

The row expansion (15) is obtained by multiplying this last equation from the right
by \AIpq, and then using (14). An explicit example of (15), where n = p = q = 4,
is the following:
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-#42

a\\ a\2 #13 #14

#21 #22 #23 #24

#31 #32 #33 #34

#41 #42 #43 |#44|

j

= #44 — #43

#11 #12 #13

#21 #22 #23

#31 #32 |#33|

#11 #12 #14

#21 #22 #24

#31 #32 |#34|

— 1 —1
#11 #12 #13

#21 #22 #23

#31 [#32l #33

#11 #13 #14

#21 #23 #24

#31 #33 |#34|

-#41

#11 #12 #13

#21 #22 #23

|#3l| #32 #33

#12 #13 #14

#22 #23 #24

#32 #33 f#34l

2.3.4. Sylvester's theorem. Another important application of Muir's law of
extensible minors is the noncommutative version of Sylvester's theorem. As in
the commutative case, it can be obtained by applying Theorem 2.6 to the complete
expansion of a quasi-determinant.

Theorem 2.7 (Gelfand, Retakh; [16]). Let A be the generic matrix of order n and
let P, Q be two subsets of {1,...,«} of cardinality k. For ί e P and j G Q, we set
Cij = \^p\j{i}fQ\j{j}\ij and form the matrix C = (^>)zep76g of order n — k. Then
one has

\A\lm = \B\lm

for every I e P and m e Q.

Let us take n = 3,P — Q — {3} and I — m—\. Applying Muir's law to the
expansion of M{i,2},{i,2}|n :

we get the identity

|#1Ϊ1 #12 #13

#21 #22 #23

#31 #32 #33

\a\\\
#21

#31

#12

#22

#13

#33

: #11 -#12 #22*^21

[flϊH

#32

f#Ϊ2l

#32

[β2Ϊ1

#31

#13

#33

#13

#33

#23

#33

ί#22l #23

#32 #33

-1
f#2l |

#31

#23

#33

which is the simplest instance of Sylvester's theorem for quasi-determinants.
We note that Sylvester's theorem furnishes a recursive method for evaluating

quasi-determinants since it allows to reduce the computation of a quasi-determinant
of order n to the computation of a quasi-determinant of order n — 1 whose (n — 1 )2

entries are quasi-determinants of order 2. As one can check, this leads to a cubic
algorithm for computing quasi-determinants.

We presented here Sylvester's theorem as a simple consequence of
Theorem 2.6. It can also be directly deduced from relation (2).

2.3.5. Bazin's theorem. Sylvester's theorem takes the form of a relation between
(quasi-)minors of a square matrix. Bazin's theorem deals with maximal (quasi-)
minors of a rectangular matrix. In fact, in both commutative and noncommutative
cases, these theorems are equivalent and each one may be deduced from the other
by specialization to a suitable matrix.
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Given a n x 2n matrix A and a subset P of {1, . . . ,2w}, we denote for short by
y4/> the submatrix ^{iv..π}^.

Theorem 2.8. Lei ^4 fce ίfe generic matrix of order n by 2n. Fix an integer m
in {l,...,/ι}. For 1 g ιj ^ H, Λtf rf^ = \A{M+l_n+i^n+i+l_2n}\mj and form the
matrix D = (dυ )ι^ij^n. Then,

\D\kl = M{«+l,...>}U,«+A:M{l,..,/-l,/+lv..,«,«+A:}|^rt+A:M{lv.,«}U/

/or 0rcy integers k, / m {!,..., n}.

Proo/ Let us consider the 2n x 2n matrix C defined by

where /„ and Oπ denote respectively the unit and zero matrix of order n. Applying
Sylvester's theorem to this matrix with C{iv ..,«},{„+!, ...,2«} as pivot, we get

where ut denotes for every integer / the row vector whose only non-zero entry is
the ith entry equal to 1. Expanding by its last row each quasi-determinant involved
in the above identity and using Proposition 2.3, we obtain

\C\n+k,l = -\A{n+ι^

On the other hand, it follows from (3) that

\C\n+k,l = -(A{l[..,n}
A{n+l,...,2n

Using Definition 2.1, this relation can be written in the form

(17)

\C\n+Ll ~ El
Expanding now this quasi-determinant by the last row, we get the identity

iq ^-M,,...,,,-1 M{w_u+

and we conclude by comparing to relation (17). D

Example 2.9. Let n — 3 and k — I — m = 1. We adopt more appropriate notations,
writing for short \2\4\5\ instead of |M{2,4,5}|i4. Bazin's identity reads

2.3.6. Schweins' series. "Schweins found an important series, in 1825, for the quo-
tient of two ft-rowed determinants which differ only in one column. This series is of
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great use in many branches of algebra and analysis, and maliy interesting cases arise
by treating one column as a column of the unit matrix" [39]. Here is an example
of Schweins' commutative series.

, d\_
e\(ae)u e\

(18)

where for instance (aed}\23 denotes the determinant
a\ e\ d\
02 ^2 d2

Schweins' series is still valid in the noncommutative case. Keeping the notations
of 2.3.5, we first note that according to the homological relations one has for a 3 x 6
matrix A, say,

Ml23|i3 M124114 = Ml23 23 M124J24 = M123 [33 M 124^4

This common value will be denoted for short by ll^l"1]^!?)!. We can now state
Schweins' series for quasi-determinants. For convenience, we limit ourselves to the
case of quasi-determinants of order 3 and 4, the general case being easily induced
from these.

Theorem 2.10. The maximal quasi-minors of a 3 x 6 generic matrix satisfy the
relation

The maximal quasi-minors of a 4 x 8 generic matrix satisfy the relation

InoΓ/Πl —1 Uo alΠl _ H oαΓ/Πl —111 oαfZll loα/ifTcll —1 lo^/iRΊl

+|678[4JΓ1|678[5J| .

Proof Let us take again the notations of Example 2.9. Applying Bazin's theorem
for n = 2 to the matrix (4513), we get:

1

Multiplying from the left by and using Muir's law, one obtains the relation

Schweins' series for order 3 results from two applications of this lemma. The general
case is similar. D
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As noted by Turnbull, interesting corollaries are obtained by specialization to
a particular matrix some columns of which are columns of the unit matrix. Let us
mention the following, which for convenience is stated for order 3 and 4 only.

Theorem 2.11. The quasi-minors of a 3 x 4 generic matrix satisfy the relation

#11 #12 #13

#21 #22 #23

#31 #32 |#33|

#11 #12 #14

#21 #22 #24

#31 #32 |#34|

+ #11 #13

#21 [#23~1
"

=

#11 #12 #13

#21 #22 #23

#31 #32 [#3T|

#13 #14

#23 ί#27|

-1
#11 #13 #14

#21 #23 #24

#31 #33 |#34|

+ #^#14

The quasi-minors of a 4 x 5 generic matrix satisfy the relation

#11

#21

#31

#41

#12

#22

#32

#42

#11

#21

#31

#11 #12 #13 #14

#21 #22 #23 #24

#31 #32 #33 #34

#41 #42 #43 |#44|

#13 #14

#23 #24

#33 #34

#43 [#44]

#14 #15

#24 #25

#34 f#35l

-i

— 1
#11

#21

#31

#41

#11 #12 #14

#21

#31

#41

+
#11

#21

#22 #24

#32 #34

042 044

_ι
#14

#241

#12 #13 #15

#22 #23 #25

#32 #33 #35

#42 #43 |#45|

#15

#25

#35

[#45]

#11

#21

0^1

#14 #15

#24 [#271
+ #14

#22

#32

#14

#24

f. Let us prove the first relation, the general case being similar. We specialize
Theorem 2.10 to the 3 x 6 matrix

( 0 0 0i3 0i4 0ιι 0i2 \

1 0 023 #24 #21 #22 I
Π 1 /

Using the homological relations (14), we get

= #
#13 #11 #13 #14

#11

#21

#13

ί#23l

-1

Similarly, we also find that

#11
#21

#31

#13

#23

#12

#22

#32

#14

[#24~1

#13

#23

[#33l

#11

#21

#31

#13

#23

#33

#14

#24

[#34l

and the claim follows. D

Theorem 2.11 is the true analogue for quasi-determinants of (18) and it even
looks more natural this way.
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3. Quantum Determinants

In this section we specialize the previous theorems on quasi-determinants to the
matrix of generators of the ^-deformation Aq(GLn) of the algebra of functions
on GLn.

3.1. Definitions and notations. We recall fundamental facts on the algebras Aq(Matn)

and Aq(GLn) [35]. The algebra Aq(Matn) is the associative algebra over C[q, q~l]

generated by n2 letters fy, /, j = l,...,n subject to the relations (written in matrix
form)

RT1T2 = T2T1R, (19)

where

n

R = q~lΣ en ® eu + Σ eu ® e/j + (q~l -q)

Here, T — (fy ), T\ — T ®7, TΊ — I (8) Γ, and e^ 's are the matrix units. More
explicitly, the relations obeyed by the symbols f//s can be written

*i* *// = q~ltu tik for * < /, tik tjk = g"1*/* fe

tik tμ - tji tlk =(q~l - q) in tjk for i < j, k < I .

The algebra Aq(Matn) has a bialgebra structure whose comultiplication A and counit
ε are given by

®τ .e. ί// = ^^% / , y = , . . . , Λ ,
Ar=l

ε(Γ) = 7 i.e. c(f,;) = <5ι;/ i,j=l,...,n.

The quantum determinant of Γ is the element of Aq(Matn) defined by

det - det Γ = -

where 5« is the symmetric group on {!,...,«} and /(σ) denotes the length of the
permutation σ. The quantum determinant of T belongs to the center of Aq(Matn)
and is a group-like element, namely Δ(άQlq T) — detg T tg> det^ T. More generally,
for P — {i\ < < Z'A:} and β = {yΊ < < Λ} one defines the quantum minor
of the submatrix TPQ as

In particular, the quantum comatrix C(T) = (c/y) is defined by

Then, one has
Γ C(Γ) - C(T) T = det, Γ . In , (20)
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which amounts to the expansion of det, T by one of its rows or columns. This

leads to the definition of the algebra Aq(GLn) as the localization Aq(Matn)[άQt~l]
of Aq(Matn). The algebra Aq(GLn) is a Hopf algebra whose coproduct and counit
are defined as above, and whose antipode is the anti-automorphism given by

S(T) =

In other words

C(T\ i.e. S(fy) = det"1 cy , 1,7 =

**"'

= /„, (21)

and S(T) — (5^-) is the inverse matrix of T. Finally, we remark that since S is an
anti-automorphism, the entries of S(T) and C(Γ) obey the same commutation rules
as those of Γ with g replaced by q~l.

3.2. Quantum determinants and quasi-determinants. We now consider the connec-
tion between quantum determinants and quasi-determinants. As recalled in Sect. 2.2,
quasi-determinants are noncommutative analogues of the ratio of a determinant to
one of its principal minors. Thus if the entries ί/7 of a matrix Γ belong to a commu-
tative field, one has the following expression of det T in terms of quasi-determinants

tnn

The following theorem provides an analogue of this formula for quantum determi-
nants.

Theorem 3.1. (Gelfand, Retakh; [16]). Let T = (ί//)ι^/j^n be the matrix of gen-
erators of Aq(GLn). In the field of fractions of Aq(GLn), one has

t\\ t\2 ... t\n

h\ hi . . hn

tn\ tn2 tnn

=

K i l l tu ••• tin

h\ hi ... hn

tnl *n2 * tnn

\t22\ ... hn

tn2 ... tnn

γ n—1 n—\\ tn—l n

tn n—\ *nn

and the quasi-minors in the right-hand side commute all together. More generally,
let σ — /i ... /„ and τ — j\ . . Jn be two permutations of Sn. There holds

T — (—/i —\ (22)' v ΊT\i Γ 1 7 1 t ,\ \1U\ \ 1*272 ' * * lnjn

and the quasi-minors in the right-hand side commute all together.

Proof. We first note that Aq(GLn) is an Ore ring and therefore has a field of
fractions. By (8), the quasi-determinants of T are the inverses of the entries of
S(T) = (det, Γ)-1 C(T). Hence we have

det, T = (- det, Γ> = (-qΓJ det, Γ> |Γ|ίy , (23)

and (22) follows by induction on n. Let us now prove that the quasi-determinants
involved in (22) commute all together. For simplicity, we only argue in the case
/i = jι = !,...,/„ = jn = n. By induction on n, it is enough to prove that |Γ|π
commutes with \Tll\22> ,tnn. Using relation (23), it suffices to show that det, Γ11
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commutes with det
that det^ Γ11 commutes with fy , /, j — 2, . . . , n.

Thus, for n — 2, we have

det T = On -

for | <; / rg « - 1? which follows from the fact

D

(t\2 -

- ^22^2^11)^12 = (*22 - fclf

Note that the parameter q no longer appears in the first and fourth expression.

3.3. Minor identities for quantum determinants. In this section, we derive quantum
analogues of several classical determinantal formulas. We shall sometimes use the
following terminology. A k x k matrix M = (ra//) with entries in Aq(GLn) is called
a k x k quantum matrix if its entries m^ obey the same commutation rules as the
generators tυ of Aq(GL^). More generally, a rectangular matrix M is said to be a
quantum matrix if all its 2 x 2 submatrices are quantum matrices.

3.3. L Jacobi's ratio theorem. Recall that Jacobi's theorem states that each minor of
the inverse matrix Λ~l is equal, up to a sign factor, to the ratio of the corresponding
complementary minor of the transpose of A to det^4. For quantum determinants, we
have the following analogue.

Theorem 3.2. Let P = {i\ < - < 4}, Q = {j\ <
{!,..., n}, andP = {iM < < in}9 Q = {jk+l <
plements. Set σ — i\ ... in and τ — j\ .. .jn. Then,

^-i S(T)ptQ = (- > det

< jk} be two subsets of
< jn}, be their set com-

(det, T)~l .

Proof. Express det^_ι S(T)p,Q as a product of quasi-determinants by means of
Theorem 3.1 and apply Jacobi's Theorem 2.4 to each of them. The result then
follows from a second application of Theorem 3.1. D

For instance, if n — 5, P — {1, 3, 4} and Q — {1, 2, 3}, we have

,33

S42

, (det,

3.3.2. Cayley's law of complement arίes. For quantum determinants, we obtain the
following analogue of Cayley's law of complementaries (see Sect. 2.3.2).

Theorem 3.3. Let I be a polynomial identity with coefficients in C[q, q~l] between
quantum minors of the matrix T of generators of Aq(GLn). If each minor det^

involved in I is replaced by its complement det^ TP>Q multiplied by (det^ Γ)"1 and
if, in addition, the substitution q —> q~l is made in the coefficients of I, there
results a new identity Ic.

Proof. The entries of the matrix S(T)* obey the same commutation rules as those
of T with q replaced by q~l. Therefore, replacing in / each minor det^ 7>}ρ by
det^_ι S(T)pQ and substituting q~l to q in the coefficients, one obtains a poly-

nomial identity between quantum minors of S(Tγ. Identity Ic then results from
Theorem 3.2. D
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For example, take n = 4 and consider the following identity (see Proposition 3.6)

til t\2
hi =

hi hi

Applying Cayley's law to (24), we get

3 ^34

^43

hi

hi

hi

til hi

h\ hi

^34

(24)

^43 ^44

3.3.3. Muir's law of extensible minors. From Cayley's law 3.3 is deduced the
following quantum analogue of Muir's law. The proof is similar to the one of
Theorem 2.6.

Theorem 3.4. Let n ^ m be two integers, and P, Q be two subsets of {!,..., m}
of cardinality n. We consider the imbedding of Aq(GLn) in Aq(GLm) obtained by
identifying the matrix Tn of generators of Aq(GLn) to the submatrix (Tm)pQ of

Tm. Let I be a polynomial identity with coefficients in C[q, q~l] between quantum
minors of Tn. When every quantum minor detq(Tn)L,M involved in I is replaced
by its extension det^ (Tm\upMUQ (multiplied by a suitable power of the pivot

dQtq(Tm)pQ if the identity is not homogeneous), a new identity IE is obtained,

which is called an extensional of I.

As an illustration, take n — 2, m = 4, P — {2, 4}, Q = {2, 3} and consider the
identity

Applying Muir's law, we get

h\ hi hi h4

hi hi h4

„-!
hi ^13 h4

hi hi h4
hi hi h4

hi t\2 h4
hi hi h4
hi hi h4

3.3.4. Sylvester's theorem. An important consequence of Muir's law is the quantum
analogue of Sylvester's theorem.

Theorem 3.5. Let det be a quantum k x k minor of the matrix T of genera-

tors of Aq(GLn\ For i G P and j G Q, set u\j — det^ 7/>u{/},ρu{y} and let U denote
the (n — k) x (n — k) matrix (wzy)zep eg. Then U is a quantum matrix, and there

holds

n-k-l

Proof. The commutation rules for the entries of U follow from Muir's law. Also,
applying Muir's law to the complete expansion of the quantum minor det^ Tp&

yields Sylvester's theorem, the term, (det^ Tp^n~k~l in the right-hand side being
an homogeneity factor. D
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Thus, let n = 3, k = 1, P = Q = {3}. Sylvester's theorem reads

tn *ι

19

hi

hi hi

t\\ t\3

hi h2 hi

Sylvester's quantum theorem can also be directly deduced from its noncommuta-
tive analogue (Theorem 2.7), using the same method as in the proof of Theorem 3.2.

3.3.5. Baziris theorem. The proof of Bazin's theorem for quantum determinants
requires two lemmas of independent interest, which provide sufficient conditions
for certain quantum minors to commute up to a power of q.

Throughout this section, we fix two integers n < m, and we consider quantum
minors of the matrix T of generators of Aq(GLm). Let 1 ^ j\ < < jn ^ m. The
quantum minor det^ Γ{lv ..,«},{;,, ...,_/„} is written for short \jι9...,jn]q

Lemma 3.6. Consider an increasing sequence of integers 1 ̂  j\ < - < jn <
k ^ m. The following commutation relation holds for all i ^ n:

[jl . .jn]q tik = jl . . .jn\q

Proof. We may suppose that js = s for s — !,...,« and k = n-}- 1. The proof is
by induction on n. For n — 1, t\\t\2— q~l in t\\ is one of the defining relations
of Aq(GLm). Assume that the commutation relation holds for n—l. Expand the
quantum minor [1 ...ri]q by its last row:

s=l

For / ^ n — 1, tm+\ commute with tns and

[l...S...ή]qtin+ι = q~l tιn+\

by induction. Therefore [1 ...n]q tιn+\ —q tin+ι [l...n]q for / ^ n— 1. In the
remaining case / = n, we may use Cayley's law 3.3. Indeed, applying Cayley's law
to the relation

[l...S...n]qtιn+ι =q~l ίlιι+1 [\. .S...ri\q

regarded as an identity between minors of the matrix T of generators of Aq(GLn+\),
we get:

tn+i n+i det^ Γ{2,...,π+ι},{i,...π} = q det^ 7{2,...,n+ι},{i,...n} tn+ι n+i

which is equivalent to

tnn+ι [l...n]g = q[l...n]qtnn+ι

by translation on the row indices. D

An immediate corollary of Lemma 3.6 is

Lemma 3.7. Consider two increasing sequences of integers 1 ̂  j\ < - < jn ^ m
and I ^ k\ < - - < kn £j m and suppose that for some s e {0,...,«}, one has
ks < ji < jn < ks+ι. Then,

III J n ] q .•• kn]qljl ..jn\q
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Thus, for n — 2, m = 4, we have

[12], [34], = q-2 [34], [U}q, [14], [23], = [23], [14], .

We can now state Bazin's theorem for quantum determinants.

Theorem 3.8. Let J = [j\ < - - < jn} and K = {k\ < - < kn} be two subsets
of {!,.../«} such that jn < k\. Then the entries of the matrix Bn = (bst)ι^Sft^n
defined by

bst = [//, (A ks)}q forl£s,t£n9

obey the same commutation rules as the generators of Aq(GLn) and we have

Proof. The proof is by induction on n ^ 2. For n = 2, one can check by means
of Plucker relations for quantum determinants (described for example in [38]) that
the entries of

D _ ( L/Ί k2\q [J2 k2]q
2~\[jιkι]q [Mi],

obey the same commutation rules as the generators of Aq(GLϊ\ and that

det, B2 = q [ j ι J2]q [k\ k2]q .

Using Muir's law 3.4, it follows that every 2 x 2 submatrix of Bn is a quantum
matrix, and therefore that Bn is itself a quantum n x n matrix for every n ^ 2.
Assume now that

for all sequences J and K of cardinality n — I satisfying the hypothesis of
Theorem 3.8. From Theorem 3.1, it results that

Now Muir's law and the induction hypothesis show that

On the other hand, expanding all entries of \Bn\m according to Theorem 3.1, and
applying Bazin's theorem for quasi-determinants, one obtains

\Bn\nn = [*1 - - .*n]? [JIJ2 - Jn-Mq1 [jl - jn]q

The claim follows now from Muir's law, which shows that

I/I Jn\q [JIJ2 . Jn-Mq = q~l\J\h ' -Λ-1*Λ ̂  ' ' J»1<! '

and from Proposition 3.7. D
As an illustration, take n = 3, J = {1, 2, 3} and £ = {4, 5, 6}. Then, Bazin's

theorem reads

[145], [245], [345],
[146], [246], [346],
[156], [256], [356],

= q3 [123], [456]^ .
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3.3.6. Schweins' series. Using Theorem 3.1, one readily deduces from Schweins'
series for quasi-determinants (Theorems 2.10, 2.11) the following quantum ana-
logues. Here again identities are stated for quantum determinants of order 3 and 4
only, the general case being easily understood from these. The notations for quantum
minors are those introduced in Sect. 3.3.5.

Theorem 3.9. The maximal minors of a 3 x 6 quantum matrix satisfy the relation

= [123]-1[125],[235]-1[234],

+ [253]-1[256],[356]^1[354], + [563]~1[564], .

The maximal minors of a 4 x 8 quantum matrix satisfy the relation

[1234]-'[1235]? = [1234]-1tl236]?[2346]-1[2345]<?

1[3465]? + [3674]?-

[6784]-1[6785]?.

[2364]-1[2367]?[3467]-1[3465]? + [3674]?-
1[3678]?t4678]-I[4675]<?

Theorem 3.10. The minors of a 3 x 4 quantum matrix satisfy the relation

hi t} 2 t11

hi h2 hi
hi h2 hi

hi h2 hi
hi h2 hi

*

1

q

hi
hi

tn
hi

tn
hi

q

tl2

~l

1

q

tn
a

hi hi
hi hi
hi hi

tn tΏ

hi hi

hi ti4
hi h4

t\4

h4

h4

t\4

h4

q

tn t\3
hi hi

q

_ J

n

-1

The minors of a 4 x 5 quantum matrix satisfy the relation

hi tu
hi hi
hi hi
/41 t42

H-

hi
hi
hi
t4l

til t\4

hi h4
hi h4
t41 t44 q

hi tu
hi hi J
'31 hi

4- tn

hi

tl2 t\3 t\4

h2 hi h4
h2 hi h4
t42 t4l t44

— 1

q
I

tn tu t\3
hi h2 hi
hi h2 hi q

'14 ^ , ,
'24

34 q

«-!! «•!/

hi hi q

tn tu t\τ> ^15
hi h2 hi hs
hi hi hi hs
t4\ t42 ^43 ^45

*11 tu t\4 t\s

hi hi h4 hs
hi h2 h4 hs
t4l ^42 ^44 ^45

q

hi tu t\4
h i hi h4
hi hi h4

q

t\\ t\4 ίj5 —1

hi t24 hs , .
12 l 124

hi h4 hs q ι
-I

tl4

t24
hi

a

tl4 tis i i

t t 14 14 '
fir
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