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Abstract: We investigate the ground state of a two-dimensional quantum particle
in a magnetic field where the field vanishes nondegenerately along a closed curve.
We show that the ground state concentrates on this curve as e/h tends to infinity,
where e is the charge, and that the ground state energy grows like (e/h)2/3. These
statements are true for any energy level, the level being fixed as the charge tends
to infinity. If the magnitude of the gradient of the magnetic field is a constant bo
along its zero locus, then we get the precise asymptotics (e//z)2/3(bo)2/3£* +(9(1)
for every energy level. The constant E* ~ .5698 is the infimum of the ground state

energies E(β) of the anharmonic oscillator family —JJ + {\y2 — β)

1. Introduction

We investigate the asymptotics of a two-dimensional quantum particle in a magnetic
field as λ = e/h tends to infinity. Here e is its charge and h is Planck's constant.
The Hamiltonian of Schrodinger's equation is the covariant Laplacian associated
to a connection whose curvature is the magnetic field. Geometrically speaking, the
parameter λ is the Chern number, or power, of the line bundle on whose sections this
Laplacian acts. If the magnetic field is bounded away from zero by some constant
i?o, then it is well-known that the particle's ground state energy E\(λ) satisfies

Eι(λ)^ \λB0\. (1)

We are interested in the case where the field does vanish. We will assume that
it vanishes along a closed curve C and that its gradient there is nonzero. Our main
result is that in this case the ground state concentrates along C as λ —> oo and that
its energy satisfies:

Ex(λ)=p(λ2η. (2)

More generally, for every eigenvalue below the continuous spectrum, the same
energy bounds and eigensection concentration holds.
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If the gradient of the magnetic field has constant nonzero magnitude b0 along
C then we can be more precise about the spectral asymptotics. For each fixed j the
/ h eigenvalue satisfies

where the positive constant E* is defined to be the infimum of the ground state

energies E(β) of the anharmonic oscillator family — j-j + (\y2 — β) . With the

help of Cesar Castilho we have E* ~ .5698.
There is a fair amount of work regarding the spectrum of covariant Laplacians.

Most authors assume that the magnetic field is nowhere vanishing, or in higher
dimensions, that the curvature is fat, which means as nondegenerate as possible. In
[12,13, and 14] Guillemin and Uribe relate the spectral asymptotics to the classical
Hamiltonian flows under the assumption of fatness. In [7] and [8] Demailly weakens
the assumption of pointwise nondegeneracy of the curvature and uses his resulting
asymptotics to answer a conjecture in complex complex differential geometry. The
papers of Simon and co-authors [27,6] and references therein, contain a host of
varied results concerning the spectrum for magnetic fields on the plane.

The motivation for this work was our discovery of a peculiar classical phe-
nomenon. The classical motions γ(t) — (x(t\ XO) °f a particle in a magnetic field
satisfy the following constrained variational principle: minimise the arclength be-
tween two given endpoints on the surface, subject to the constraint that the "flux"
φ — J A between these two points is fixed. A is the one-form potential for the
magnetic field B : dA = B x (area form). In [25] we showed that, in addition to
the classical motions, every sufficiently short arc of the zero locus C of the mag-
netic field is also a solution to this minimization problem. Such arcs are critical
points of Φ. In some sense, the extraneous solution C corresponds to a classical
motion for which the particle's charge is infinite. Our original question was "Does
the extraneous solution persist upon quantization?" We find that not only does it
persist, but it is the dominant feature as λ = e/h tends to infinity.

1.1. Sublaplacians and Nilpotent Groups. The correspondence between the spectral
asymptotics of Laplacians and Riemannian geodesies is well-known. We believe the
phenomenon described here is one of the first instances of a correspondence between
the asymptotics of subLaplacians and singular geodesies for their corresponding
SubRiemannian geometries. We will define these terms momentarily.

Suppose that the underlying two-dimensional space for our magnetic field prob-
lem is flat with metric dx2 -\-dy2. Then the family of Hamiltonians which we in-
vestigate is

d
- - iλAx(x, y)) -ίg~- i^y{x, y)

where Axdx + Aydy represents the connection form, or vector potential for the field.
Introduce a circular variable z and consider the hypoelliptic operator

d\2 i d a χ 2

dzj \dy ydz
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Decomposing wave functions into Fourier modes relative to z we find:

The operator H is an example of a subLaplacian which is hypoelliptίc accord-
ing to a theorem of Hόrmander: By a subLaplacian we mean a second order linear
differential operator of the form H = Σj=\XJ + Xo, where the Xj are smooth vec-
tor fields on a n-manifold Q, n > k. H is called hypoelliptic if whenever u is a
distributional solution to the equation Hu — f with / smooth then u is also smooth.
Hόrmander's theorem [19] asserts that a subLaplacian is hypoelliptic provided the
Xj are Lie bracket-generating, which is to say that the Xj together with their iterated
Lie brackets [Jζ, Xj\\Xιy [Xj, Xk\\ span the entire tangent space TQ. The H for
our magnetic problem is the hypoelliptic. It takes two brackets to generate along
the zero locus of B and one everywhere else.

The differential geometry underlying subLaplacians is called subRiemannian geo-
metry [28] or Carnot-Caratheodory geometry [11]. It consists of a rank k distribution
3) C ΊQ together with a fiber inner product on Q). 3ι is the span of the Xj which
we declare to be orthonormal, thus defining the inner product. In our magnetic field
problems Q is a 3-manifold, the total space of a circle bundle with connection
A, over a two-dimensional Riemannian surface M 2 . The 2-plane field 3) C ΊQ is
the horizontal distribution {dz — Axdx — Aydy — 0} associated to the connection A
and the vector fields X\^Xi are the horizontal lifts of an orthonormal frame for
M. The operator H is the so-called covariant or horizontal Laplacian. It commutes
with the circle action on Q so we can decompose it according to Fourier modes
(representations of the circle),

H=®H(λ),

(4)
λeπ

where φ e Γ(λ) if φ(eιθq) = euθφ(q), where q\-*eιθq denotes the circle action.
The spaces Γ(λ) are naturally identified with the λth tensor product of the Her-
mitian line bundle L for which Q is the space of unit vectors in its dual Z,* =
L~ι. We are interested in the asymptotics as λ —> oo. In the general case λ
will be some measure of the components transverse to βi of the differentials of
functions.

Let QQ, be the set of absolutely continuous paths in Q whose derivatives
lie in 3) when they exist. The length of such a path y : [0, Γ] —> Q is de-
fined as the integral Λj~{y,y)dt. We use this length functional to define minimiz-
ing subRiemannian geodesies, geodesies, and a distance function as in Rieman-
nian geometry. Let h : T*Q —> R be the principal symbol for our subLaplacian.
Thus

where Pj(q,p) = p(Xj(q)) for p G T*Q. (So H is a quantization of h.) The pro-
jections y C Q to Q of the solutions ζ C T*Q to Hamilton's equations for h are
locally-in-time minimizing geodesies. For a while it was thought that these ac-
counted for all geodesies. However, the peculiar classical phenomenon just referred
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to provides a counterexample: the horizontal lifts to Q of the zero locus C C M2 in
our magnetic problem are locally minimizing geodesies which are not projections
of solutions to Hamilton's equations.

These curves are the first examples of strictly singular geodesies. An inte-
gral curve for a distribution Q) is called singular if it is a critical point for
the endpoint map end: Ω@ —> Q x Q which sends a path γ to its endpoints end
(?) — ( 7(0), y(T)). Since our work Liu and Sussmann [22] have found a plethora
of singular minimizers for rank 2 distributions in ^-dimensions, of which ours is
the simplest case. The curves which they investigate are the same class investigated
by Bryant and Hsu [3] who showed that they are isolated points in the C1-topology
on Ω@ Γ\end~ι(qo,qι) mod reparameterisations.

There are hints (Sussmann, private communication; Bismut [1]) that the small-
time asymptotics for the subLaplacian's heat kernel is dominated by contributions
from singular curves. There is also evidence for the conjecture that the presence
of rigid singular geodesies signals the breakdown of a property called analytic
hypoellipticity for the subLaplacian. (An operator is called analytic hypoelliptic if
Hu~ f with / analytic implies that u is analytic.) A stronger conjecture was made
by Treves [29] for the case of general pseudodifferential operators with nonnegative
symbol h. In this generality, singular curves correspond to the projections of nonva-
nishing Cartan characteristics for the restriction of the canonical two-form ω to the
characteristic set {h = 0} C T*Q. (ξ : [0, T]-> {h = 0} is a Cartan characteristic if
ω(ξ, •) = 0). Evidence supporting this conjecture is provided by work of Helffer on
invariant subLaplacians on nilpotent groups. We describe Helffer's work briefly. It
is relevant to our work in more ways than one.

The subRiemannian analogue of the Riemannian tangent space at q is called
the nilpotentization of (β> Q) at q and is an ^-dimensional graded nilpotent Lie
group G = Gq with a rank k subRiemannian structure. (See [26,22,24].) For this
and other reasons invariant subLaplacians on such groups have been the subject of
much study. (In addition to some of the above references, see also [16,17], and
references therein.) Helffer analyses such subLaplacians in terms of their spectral
decomposition φχH(λ), where now λ runs over G\ the space of irreducible rep-
resentations of G. He proves (Theorem 1.3, [15]) that the subLaplacians arising
from the nilpotentization of the rank 2 examples of Bryant-Hsu-Liu-Sussmann fail
to be analytic hypoelliptic. The simplest rank 2 nilpotentization is the group whose
Lie algebra is the four-dimensional Engel algebra. This has basis {X, 7, W9 Z} and
only non-vanishing brackets [7, X] = W,[Y, W] = Z. Its subLaplacian is X2 + 7 2 .
Helffer calculates that for a certain family of representations λ the correspond-
ing covariant Laplacians H(λ) are precisely the anharmonic family of oscillators

x 2

T ) "*~ (β ~^~ \by2) w r π c r i a r e t n e key to our spectral analysis. They are also

the key to Helffer's Theorem 1.3.
This coincidence is perhaps not so surprising. A local normal form for distri-

butions of the type we investigate (generic degeneracy of a contact distribution)
near the zero locus was found by Martinet [23] and asserts that the distribution
can be framed by vector fields 7 = f- and X — ^ -f \y2^- (These will typically
not be orthonormal.) The Engel algebra can be realised as the Lie algebra gener-
ated by the vector fields Ϋ = γy and X = ^ + yj^ + \y2γz on IR4. Observe that

π*X = X , π * 7 = 7, where π is the projection π(x, y, z, w) — (x, y, z). So the En-
gel subLaplacian projects to an approximation of our //, the approximation which
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we use to develop our asymptotics. This approximation is exact when the scalar
magnetic field is B — y on the flat plane.

1.2. Physical Considerations.

h2 ί ί d e . .

is the Hamiltonian for a spinless nonrelativistic planar particle of charge e and
mass m in a magnetic field peφendicular to the plane whose signed magnitude is
B. Here A = Axdx + Aydy is the vector potential for B so that B = γAx — ^Ay,
or Bdx f\dy = dA. If the magnetic field is a constant B — BQ then the ground state
energy is

„ 1 ft2 \eB0\

22 m ft

The bound (1) above states that if B is not constant but instead satisfies a bound
B > BQ (or is less than — Bo) then this energy is a lower bound for the true energy.

Our result concerning the case where the field vanishes along C is that

in case the magnitude bo of VB is constant along C. The scale at which this
asymptotics is valid is

where ί encodes the length scales associated to C, for example, its length, the

inverse of its minimum curvature, and Tyf̂ r

The operator which we will study is obtained from the above Hamiltonian by

eliminating units and multiplying by 2. Thus replace ^ by 1, set e/h = λ9 and
multiply by 2 to obtain

2. Formulation and Results

We will formulate our results on curved surfaces. So, let M be an oriented complete
Riemannian surface, possibly with boundary. A magnetic field on M is the curvature
two-form of a connection (t/(l)-gauge field) A for a complex Hermitian line bundle
π: L —• M over M. The magnetic field can be represented by a scalar field B on M
according to the rule

dA = τCBd2x ,

where d2x represents the area form on M.
The quantum Hamiltonian H = H(A) for our particle is the covariant Laplacian:

H = D*ADA .
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In local coordinates x\x2 on M:

Here gμv is the inverse metric on M9λ/gdxιdx2 — d2x is the area form,

is the covariant derivative in the xμ direction, and A = A\dxι + A2dx2 is the connec-
tion one-form relative to the local trivialization in which the section ψ is represented,

is a section of T*M 0 L. The operator D*A is the adjoint of DA relative to the L2

pairing for sections of L and of T*M 0 Z,. If M has boundary we impose Dirichlet
boundary conditions: φ = 0 on the boundary of M. If M is noncompact we insist
that the sections are square integrable.

The particle couples to the magnetic field through its charge λ and the minimal
coupling rule:

Geometrically, minimal coupling is achieved by replacing the line bundle L by its
Λ-fold tensor product:

Lλ = L 0 Z 0 ...(8)1 (λ times).

(Negative λ corresponds to powers of the dual of L.) For if A is the connection
form for L with respect to a local trivialization, then λA is the connection one-form
which it induces on the tensor product.

We are interested in the spectral asymptotics of

H(λ) = D(λ)*D(λ),

the covariant Laplacian on Lλ as λ -» oo. Let

E{(λ) = i

be the bottom of the spectrum for H(λ). Recall that E\(λ) is the infimum of the
Rayleigh quotient

\\D(λ)ψ\\2

II / Ί I 2 '
where the infimum is taken over nonzero sections φ of ZΛ Here || || denotes the
L2 norm on the space of sections of either Lλ or Lλ 0 T*M and ( , •) the inner
product. The equality above is obtained by integration by parts, the boundary terms
vanishing because due to Dirichlet boundary data.

We will suppose that the zero locus,

C = {B = 0} CM
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of the magnetic field is a single curve, nondegenerate in the sense that dB^O along
this curve. If M has boundary, we suppose that it is disjoint from C. If M is not
compact, we suppose that C is compact, and we will suppose that the magnetic
field B is bounded away from zero at infinity. The next two theorems summarise
our main results.

Theorem 1. Under the assumptions described in the above paragraph, E\(λ) =
O (\λ\2/3). Specifically, there are positive constants k and K such that for all
sufficiently large \λ\,

k < < κk < μp/3 = κ -

More generally, for any fixed positive integer j , there is a A sufficiently large
such that for all λ with \λ\ ^ A,H(λ) has at least j eigenvalues Ej(λ) below its

continuous spectrum and they all satisfy the estimate k < -φ^β ^ K. The corre-

sponding eigensections xj/f concentrate along C in the sense that for any open set

U whose closure is disjoint from C we have

λ—OOj; J

Remark. If M is compact then there is no continuous spectrum to worry about, of
course.

Remark. The last part of the theorem says that it is almost certain that the particle
is very close to the zero locus C provided λ is sufficiently large. This statement
can be made stronger: Let y(m) = dist(C, m) for m E M. Then, for any exponent
i; < 1/3 we will show that:

lim / 2

for any family ^( , λ) of sections with energy of O{λ2/2>).

Remark. The assumptions that C is compact and that the magnetic field is bounded
away from zero are needed to insure that the continuous spectrum grows linearly
with |A|, and so is separated from the the discrete spectra. See the end of Sect. 6.

Remark. Our analysis suggests that the eigenvalue splitting E2(λ) — E\(λ) is 0(1),
apparently bounded Iπb2^/length(C)2 and oscillating between this upper bound and
o(l). See Eq. (11) below. We plan to make this error estimate the subject of a future
paper.

Theorem 1 follows rather easily from the next theorem in which we are more
precise about the asymptotics at the expense of adding another assumption. We
introduce the family of model operators:

acting on L2(tiί). β is a real parameter. The coordinate y will be identified with
the coordinate normal to C. Let E(β) denote the 1st eigenvalue of //anh(β) and set



658 R. Montgomery

We will see that E* > 0 and E* ~ E(β^) for some β*. We have numerically cal-
culated: E* ~ .5698.

Theorem 2. In addition to the assumptions made for Theorem 1, assume that the
magnitude of the gradient of the magnetic field is a constant bo along C. Then

The same estimate holds for all eigenvalues, as in Theorem 2.

Theorems 1 and 2 should be compared with the following theorem which is a
restatement of Eq. (1).

Theorem 3. Suppose that the magnetic field satisfies \B\ ̂  BQ for some positive
constant Bo. Then

Ei(λ) ^ B0\λ\ .

Remark. If M is compact without boundary and BQ is positive, then the ground
states of Theorem 3 are precisely the holomorphic sections. The multiplicity of the
ground state energy is given by the Riemann-Roch theorem for large charge. In
particular, the ground state is always degenerate for sufficiently positive Chern
class (total flux). Theorem 3 and these results appear to be well-known to experts.
See Demailly [7, 8] and references therein. For completeness we prove them in our
appendix.

3. Sketch of Proofs.

As discussed above

ψ WΦW2 '
where the infimum is taken over all nonzero smooth sections satisfying the boundary
conditions. We will refer to the function to be infimised as the Rayleigh quotient,
or energy of a section. Upper bounds for E\ can be obtained by calculating the
energy of a family of test functions. Lower bounds are harder. For them we rely on
a partition of unity trick for splitting up the Laplacian known as IMS localization
and discussed in detail in [27, 6].

Remark. The theorem of Simon in [27] is motivated by Witten's proof of the
Morse inequalities. At a certain point Witten argues that one can use WKB analysis
to estimate the number of low-lying eigenvalues and Simon makes this argument
rigorous. For another approach to rigorizing this argument, see Helffer [18].

We begin by proving Theorem 2. Our proof is based on a calculation which
shows that when written in normal coordinates near C the Hamiltonian is close to a
separable Hamiltonian Ho(λ) acting on the space of functions on C x 1R ~ S[ x 1R.
After separating variables, the part of Ho acting normal to C becomes an anharmonic
oscillator Hamiltonian. This can be analyzed precisely and leads to our estimates.

Most of the technical tools for our proof are borrowed from B. Simon's article
"Semiclassical Analysis of Low lying Eigenvalues I: Nondegenerate minima," [27].
The main tool is the so-called IMS localization method which lets us localize the
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Hamiltonian near C. This is done by multiplying wave functions by a family J}{
of nonnegative functions whose support contains C and shrinks to C as λ —» oo.
The upper bound of Theorem 1 is proved by inserting functions of the form jfφ,
where the φ are eigensections for HQ into the Rayleigh quotient. The lower bound
follows from the IMS localization formula (28) below. This is a formula for H in
terms of J\HJ\9 a term supported away from C, and some corrections.

Concentration of eigensections follows from Theorem 3 by contradiction.
Roughly: If a family ψλ of sections is supported away from C, then its energy
must grow linearly, like λBo, where BQ > 0 is a lower bound for the absolute
value of the magnetic field on the support of the family of sections.

The estimate of Theorem 1 follows from Theorem 2 by perturbing the metric
near C in order to obtain a new metric for which the hypothesis of Theorem 2 holds.
We follow how the perturbation changes the Rayleigh quotient and this leads to the
necessary estimates.

Theorem 3 is proved in the Appendix.

4. Deriving the Anharmonic Oscillator

4.1. A Model Case: Rotationally Symmetric Field. The mechanism at work behind
our theorems can be seen most simply by assuming that the magnetic field is
rotationally symmetric. Let r, θ be polar coordinates on the plane and suppose that

A=Aθ(r)dθ

is the potential for such a magnetic field:

- l d

r dr

Expressed in polar coordinates, the Hamiltonian (5) is

1 d ( d\ 1 / d

We suppose that there is a unique r = rQ > 0 such that

B(r0) = 0

and

Then the zero locus C is the circle of radius ΓQ and

where b(r0)φθ and 2%A\ is the total flux, or holonomy, enclosed by C. We can
separate variables by writing



660 R. Montgomery

with k an integer. Then

Hψ = (Hk(λ)φ)exp(ikθ),

where

r S 0 + χlh \(k/λ)"A(ro) ~ \b(r)(r"ro)2

Set
If 1

K = Vκλ = -r- < (i//) - v4(r0) - -b(r){r - r0rz { 2

Our reduced Hamiltonian,

( i \ 2 7

dr J dr
has the form of a Hamiltonian for a one-dimensional particle in a strongly con-
straining potential field. Setting

β(k,λ) = (k/λro)-(Aι/ro)

and jr(r — ro) = y we see that

2

so that our Hamiltonian is roughly of the form of a strong anharmonic oscillator:

2

The WKB method now suggests our theorems. The exponent 2/3 in front of the
energy can be derived by a scaling argument which reduces the above operator to
a standard anharmonic oscillator Hamiltonian.

4.2. General Case: Normal Coordinates. Introduce normal coordinates (x9y) in a
neighborhood of the zero locus C with x arc length along C and y normal to C.
Then C — {y — 0} and the metric near C has the form

ds2 = f(x,yfdx2 +dy2 ,

where

/ ( * , 0 ) = l .

The area form is
d2x = fdx Λ dy .

We can choose a local gauge (section) so that

A = Ax(x,y)dx = U + -b(x,y)y2 J Jx .
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If L denotes the length of C, then A\ = ^log(Holonomy(C)) = ι JCA, and Z?(x,0) =

VB(x,θy(normal) = ψ(x,O)φO, and

To obtain the approximate operator Ho(λ) we replace f{x,y) by /(x, 0) = 1 and
b(x,y) by bo — ±|V#(x,0)|, assumed constant.

We expect

for small y. A significant part of the proof concerns being precise about the meaning
of " ~ "

We can think of Ho(λ) as a self-adjoint operator acting on L2(Sι x IR), where
the circle Sι has length L and is coordinatized by x. Since Ho commutes with
j - we can separate variables. Set

^ (7)

Then

The operator on φ has the form of an anharmonic oscillator.

φ
dy2 V 2-

with a strong potential (λ » 0). Here we have replaced λbo by λ and set

5. The Anharmonic Oscillator Family

The dilation

(T(a)φ)(y) — y/aφ((xy)

is a unitary operator on L2(IR,c/y) which satisfies -§-T(a) = aT(a)f- and ysT(a) =

. By computing Z7(α)//anh(^; i?) and balancing the strengths of the kinetic
and potential terms of the resulting Hamiltonians we obtain the scaling law

= T
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Let E(β) be the lowest eigenvalue of //anh(l, β). Then

where E\(λ,β) is the lowest eigenvalue of //anh(^β)-
For β = —\β\ negative we have

>β2-

For β positive the potential is a "seagull potential." It can be factored: (\y2 — β) =

( A=y — Λ/βj \^y+ y/β) Consequently, for β > 1, H\(\,β) is approximately

two widely separated harmonic oscillators each of frequency 2^/β. Thus for positive
β we have

(See Simon [27] for a rigorous proof of this bound.) In either case E(β) is positive
and unbounded for large \β\. Since E(β) is a continuous function of β, its infimum

E* = infβE(β)

is a positive number which is realized for some jδ*,β*, < 0,

E*=E(β).

Numerically, we have found

£* ~ .5698

and /?* ~ .730. (Thank you, Cesar Castilho)
Returning to our model operator H0(λ) on L2(Sι x IR) we see that

H0(λ) ^ λh\E* .

Moreover, if k = A (A) is any sequence of integers such that

V λLbQ

then

Here we use E\(H) to denote the first eigenvalue of an operator //, and H0(λ,k)
is the restriction of Ho(λ) to the space with angular momentum k. Our sequence
k(λ) satisfies

*g!> Urf(rf) (8)
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(It is a straightforward exercise in number theory to see that there is a sequence
k(λ) of integers, λ integer, satisfying this property.) The corresponding family of
ground states for Ho(λ,k(λ)) is

where φ\ is the positive normalized ground state for

One can work out its asymptotics using the WKB method. We will not need the
full asymptotics but only the bounds:

(9)
I/I

dφi

dy oo (10)

valid for all y with \y\ greater than some YQ(C,S). Here δ is an arbitrary small
positive number, and c is a positive constant. For rigorous proofs of these WKB-
type bounds see [21] or [9].

Remark on higher eigenfunctions for //Q. Observe that if k(λ) satisfies the condition
of Eq. 8, then so does any sequence of the form k(λ) + δk for any fixed integer
δk. The corresponding functions φ of the ansatz are orthogonal since exp(i2πbc/L)
and exp(z*2π((A; -f δk)x/L) are orthogonal for δk a nonzero integer.

Using perturbation theory we can estimate the size of the eigenvalue splitting:

δE = Ex(k(λ) + δk9λ) - Ex(k(λ9k)

due to such a change of wave number. Since β* minimizes E(β) we have
dE/dβ\β^ = 0. And

δβ = β(k + δk, λ) - β(K λ) = iπδk/λL .

It follows that

= 0 ( 1 ) .

This proves that for each fixed j the / h eigenvalue Ej(λ) of Hϋ also satisfies

E°Λλ) 2 / 3
l i m ^ = b2βE
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In particular, it also implies the eigenvalue splitting estimate

j ) = 0 ( 1 ) . (11)

The WKB bounds (9, 10) for the ground state also hold also for these / h

eigenfunctions.

6. Proof of Theorem 1: Upper Bound

6.1. Upper Bound. We establish the upper bound

(12)

by inserting test functions of the form

into the variational principle (6) for E\(λ). Here

1 2πik(λ)x

—ϊ~ φ
1

ψ(x, y\ λ) = -j=

are the ground states for Ho(λ) as described in the previous two sections. Thus the
φo(y, λ) are ground states for our anharmonic oscillator family. The functions Jf
are a family of bump functions centered on the curve C = {y = 0} whose width
shrinks to zero as λ —> oo in a manner which we now describe.

Introduce a fixed smooth function J\(y) of y whose values lie between 0 and
1 and which is identically 1 for |^| ^ 1, and identically 0 for \y\ ^ 2. Define the
function J}{ by

The exponent v must satisfy
2/9 < v < 1/3 .

This inequality is crucial due to the fact that

λ2'9« r « A1/3

as λ —* oo (cf. with the WKB scaling at the end of Sect. 4).
The upper bound (12) follows from the following three lemmas.

Lemma 1. The ansάtz φA satisfies

lhήl = 1 + 0 ( 1 ) (13)

as λ —» oo.

Set

= (J-ψ^j dy = (J-ψ - iλ (AX + bQ

l-y^j x^j dx
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for φ a section defined near C. If the adjoint * is taken with respect to the flat
metric on C x IR = Sι(L) x 1R, then our model operator is given as

H0=D*0D0.

Lemma 2.

Lemma 3. There exists a positive constant c such that for all sufficiently
large λ,

\\\D(JtV)\\2 - I I Z M W I 2 ι * V Ϊ 2 6 Ϊ
Let us see how the upper bound follows from these lemmas. Combining them

and recalling that φA — Jιψo(x, yiλ) we see that

I \\D(λ)φλ\\2 - \\D0(λ)φλ\\2 I ^ cλι~3v fλ 1 / 3ftJ / 3>/E*+o(A 1 / 3)] [1 -l-o(l)]

(14)

But I - 3v,2 - 6v < 2/3 since v > 2/9. Therefore

λ | | 2 WTΛJAWί _ Λ / ^ / 3 \ ( 1 5 )

Then

* « s HX̂ IM

^ [Hpα^i 2 - ιiD0α)^ιι2ι + ipoα^ii2] π +

which establishes the upper bound.

Proof of Lemma 1. The WKB eigenfunction φo(y; λ) is normalized:

CO CO CO

1= J \φo(y;λ)\2dy= J (J^y))2\φ0(y;λ)\2dy + J (1 - (Jΐ(y))2)\φ0(y;λ)\2dy.
— CO —CO —CO

On the other hand,

IIΆΐ2 = J(4(y))2{\Φo(y,λ)\2f(χ,y)dχdy.

The support of J^ is \y\ ^ 2λ~v and on this domain

for some constant c (related to the curvature of C and of the metric near C). It
follows that

2//v

/

— 2/Av

rfy
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and so

|1 - \\φλ\\2\ S c 2J (JΪ(y))2\Φo(y;λ)\2\y\dy + f(\ - (j(f)\φo(y;λ)\2dy .
- 2 / Λ '

Now change variables to ζ — λx^y to obtain:

-2/λv 2λλ^~x

I {JλΛy)Ϋ\Φo{y\λ)\2\y\dy s f \φo(y;λ)\2λ-v3\ξ\dξ =
2/λv -2λ^3-v

The support of 1 - Jχ{y)2 is |^ | > A~v so that

oo oo

/ (i -JUy?)\Φo(y;λ)\2dy s 2 / \φo(y;λ)\2dy.
- 0 0 1/λv

Using the WKB estimate (9) for φx and Watson's lemma (cf. Erdelyi, or Copson
[5]) we find that for any δ > 0 we have

- 7 ι»«)i'« a
\/λv χl/3-v

which is much smaller than O(A~1/3). Putting these inequalities together we obtain
the normalization equation (13).

Proof of Lemma 3. If a section ψ is supported in a small neighborhood then we
can compute Do(λ)ψ and D(λ)φ and compare them. Now the connection one-form
for D is

where a^ is a smooth bounded function in a neighborhood of C It follows that

so that we have the pointwise equality:

2 - \D0φ\2 = \Dxφ\2 - \D0xψ\2

= -λf-2{(DOxψ,ia3y
3ψ) + (ia3y^,D0^)} + λ2(a3y

3f\φ\2

(The subscripted xs denote the dx components of the differentials. The length of dx
is f~ι.) Integrating, and applying Cauchy-Schwartz we obtain

2\\a2y6φ\\2
λ2\\a2y

Now replace φ by J}(φ. (We think of multiplication by Jf as a map from the space
of square integrable sections over to the space of such sections over C x E . ) The
support of Jγψ and D^\j/λ is {|_y| ^ 2λ~v} so that the above inequality becomes

\(\\D(j('φ)\\f -

(17)
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where the constant c\ is independent of λ and involves bounds on / and α3 in an
arbitrarily small neighborhood of C, and various powers of 2. QED.

Proof of Lemma 2. It suffices to prove the stated asymptotics for the integral of

\D0(λ)φλ\2dxdy .

This is because |1 — f\ :g cy in an annular neighborhood of C, and the support of
Doφ

λ is {\y\ S 2/Λv}, so by an argument given previously

\J\D0φ
λ\2dxdy - J\DQφλ\2fdxdy\ S cf λ~v $\\Dvφλ\\dxdy (18)

for some constant c'. But if
j\\Doφ

λ\\dxdy

has the stated O (^2//3) asymptotics, then the above inequality yields a differ-

ence which is 0 (λ2/3~v) = o (/l2/3) so that the limits of - ^ / \\D0ψ
λ\\2fdxdy and

-rjjj jDoψλ\\2dxdy are equal.
Now

D0(Jfψ) = dJf 0 ψ + J(ιDoψ , (19)

so that

|A)C/ίV)|2 = \dJλ\2\ψ\2 + 2Re(JtdJΪψ,D0φ) + {Jί)2\DQφ\2 . (20)

We analyze the integral of each of these three terms separately.

First Term. The support of dj\ is {^ ^ \y\ ^ ^ } and dj\ = λvJ[(λvy)dy (recall:

Jfty) = Ji(λvy)) so that

Since φ is square integrable with integral close to 1 we obtain

f\dJΪ\\ψ\2dxdy = O {λ2v) = o (λ2'3) . (21)

(Further analysis using the WKB estimates shows that this integral is actually
exponentially small in λ.)

Second Term. Assuming the validity of the O (λ2/3) bound on the third term we
have

\f(JΪdJΪψ9Doψ)dxdy\ ύ ^ ^

c'λvλι'3bι

Q

/3EιJ2

(2η (22)

Third Term, ψ = φ(x,y;λ) is an exact eigenvector for H0(λ) so that

J\D0φ\2dxdy = {λb0fl
3Ex{β{λ,k{λ)), (23)
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where Ex(β(λ,k(λ)) -> E* as λ -> oo. But:

f\D0ψ\2dxdy = J(Jΐ)2\DQφ\2dxdy + /(I - (^)2)|A>^|2rf*«> (24)

The support of 1 - (J?{)2 is {|^| > jv} so that

/(I - (JΪ)2)\DQψ\2dxdy ^ 2 JΓ |Do

The latter integral is analyzed using the WKB estimate (10) for φ\ and Watson's
lemma ([5 or 10]). One finds it to be of the form O(P(λ)exp(-±λι~3v)) for a
polynomial P. In particular:

/ ( I - (JΪ)2)\Doφ\2dxdy = o (22 / 3) . (25)

Integrating Eq. (20) and using Eq. (21)—(25) yields the claimed result.

6.2. Higher Eigenvalues. A slight extension of the above argument, applied to the
yth eigenfunctions of Ho in place of its ground state, gives the same upper bound
for the yth eigenvalue Ej(λ), for all j .

A priori, it is not apparent that there is any discrete spectrum. We remedy this
by combining Theorem 3 with Perrson's theorem ([6], p. 38) which states that the
infimum of the essential spectrum of H(λ) is given by the min-max expression:

. (Ψ,H(λ)ψ)
sup in J{ψ:sapp(φ)cM\κ}

Here K ranges over the compact subsets of M. According to Theorem 3, this last
quantity is bounded below by |Λ,|2?o, where Bo is a lower bound for the absolute
value of the magnetic field as we approach infinity (cf. Remark 2 following the
aforementioned statement of Perrson's theorem, and Theorem 6.1 of that reference).
In particular, the essential spectrum must grow at least linearly, so there is plenty
of room for eigenvalues growing like λ2/3.

The extension to the higher eigenvalues now follows the lines of Simon's
article, using the observation made at the end of our Sect. 5. There we observed
that for each integer δk, the /fo-eige nfu n cti°ns corresponding to two different
sequences k(λ) -f δk, k(λ) + δj, δk + δj, λ, δj9 δk = 1,2,3,... are orthonormal rela-
tive to the norm for sections over C x R (product metric) and that the corresponding

//o(O-eigenvalues Ej(λ) satisfy lim -j^jr — b^E*. The sections obtained by mul-

tiplying these Ho eigensections by J}{ are easily shown to satisfy Lemmas 1 and 2,

and hence the first j eigenvalues are less than λ2^3b0 E* -f- o(

7. Proof of Theorem 1: Lower Bound

We will show that

H(λ) ^ λ2/3b2

Q

/3E (26)
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for any E < E*. It follows immediately that lim infjjjjE\(λ) ^ b0 E*, the desired

result. Set

4 = V1 - (JO2 (27)
with J* as in the previous section. The proof of Eq. (26) is based on the IMS
localization formula for H:

H(λ)=J(H(λ)JΪ +4H(λ)4 - \dJx

λ\2 - \dJof . (28)

See [27] or [6] regarding IMS localization.

Derivation of (28). An IMS type formula is valid for any operator of the form
covariant Laplacian plus potential. (See for example the definition in [2] of gener-
alized Laplacians.) Let / denote the operator of multiplication of sections by the
smooth function / . Then

= ~2\df\\ (29)

from which it follows that

fHf =1-(fH + Hf2)+\df\2. (30)

Add the fHf formulas together for / = j£ and / = J'{ and remember that (JQ)2 +
(J^) 2 = l to obtain the IMS formula (28).

We now proceed to obtain bounds for each of the terms in the IMS formula.
In the previous section we showed that

J\dJi\2\ψ\2d2x ϊg λ2vf\φ\2d2x . (31)

It follows that
2

where the left-hand side is thought of as a multiplication operator. (As shown in
the previous section, these terms are actually exponentially small in λ.) This bounds
the last two terms of the IMS formula.

To bound the JQH JQ term consider the covariant Laplacian with Dirichlet bound-
ary data for sections over the set {\y\ ̂  ^ } . Observe that for any smooth section
φ we have JQΦ = 0 on the set {\y\ = jy}. So JQιφ can be considered as in the
domain of this restricted covariant Laplace operator. Now

|5| ^ boλ~v + o(λ-v) for \y\ ̂  1 . (32)

It follows from Theorem 3 (i.e. the bound of Eq. (1)) that

(ψ,4H(λ)J$ψ) = (4ψ,H(λ)JoΨ) ^ ^[(M"v) + o{λ-v)-\\\{4fΦt (33)

or:

4'H(λ)4 ^ [boλ
ι-v + o (λι-v)] (4)2 » λ2'\b2

0

βE)(J0

λ)2 . (34)

Our upper bound will be complete once we have shown that

> {λ2/3b2

0

βE + O(A 2 / 3 ) } (J/ ' ) 2 (35)
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For then, by the IMS formula (28) and (34),

H(λ) > λWbψEVΪf + λ2"bfE(4f + o{λ2") = λ^bfE + o(A2/3) , (36)

as required.
Equation (35) is in turn implied by

JΪH0(λ)J{ > (λ^bfE + o(22/3))(// f , (37)

and Lemma 3 of the previous section. For observe that the left-hand side of the
inequality in that lemma is

\{ψ,Jΐ(H(λ)-H0(λ))4ψ)\. (38)

It follows that

But

(ψ,JΐH0(λ)4) = \\D0(λ)JΪφ\\2 , (39)
so that this inequality becomes

-f-—-iμ^H . (40)

N o w v > I so that 1 — 3v < | , 2 — 6v < | and Λ

Λl/3 , Λ

 2/3 both go to zero as

λ —•» oo. We have

(41)

so that
1 / \

-^{ψτJΪHJϊψ) ^ | | (^)^ | | 2 f^o/3 +°0)) (4 2)
As claimed.

It remains to prove Eq. (37). Refer back to the proof of Lemma 2, (18), of the
previous section where we proved

IIIA)C/IV)IIM - IIA>(^IV)IICXRI < cλ~v\\Do(JιλΨ)\\2cxκ > ( 4 3 )

the notation of subscripted norms being obvious, we hope. We analyzed the spec-

trum of H0(λ) several sections ago and found that for all φ, || A)<HICXIR > ^ 3 ^ o
I n Particular, for φ = jfψ we find that \\D0(jf\l/)\\2

CxW, > λ2/3b2

0

/3

K. Finally

> \\JIΨ\\M + ^'ΨIΨ\\M' (44)
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Combining these last few inequalities yields Eq. (37).
This proves the lower bound for the ground state energy, and hence completes

the proof of the energy bounds of Theorem 2.

8. Eigenvalue Concentration

We will prove the following

Lemma 4. Let ψi λ) be a sequence of sections of LA such that -^/j{ψ(',λ),
H(λ)\l/( ,λ)) is bounded as λ —*• oo. Then the ψ( ,λ) concentrate on C in the
sense that

where J$ is the function used in the proof of the lower bound. (The support of J^

is the set {\y\ > jv} •)

According to the upper eigenvalue bounds of Theorem 1 and 2, the / h eigensec-
tions satisfy the uniform bound of this lemma. This proves the concentration result
claimed in Theorem 2.

Proof of Lemma. Let b* be any positive number smaller than the minimum of
|V2?| over C. Then for λ sufficiently large the absolute value of the magnetic field
is greater than f̂- on the support of J£. It follows from Theorem 3, the nonzero
magnetic field eigenvalue bound, that

>(.,*)> *λ(^)\\4ψ(.,λ)\\2

u.

Combine this with the IMS localization formula (28) and the bounds on the
\dJ?

a\(2\) to obtain

On the other hand, we are given that the left-hand side of this inequality is
bounded above by some constant K. It follows that for sufficiently large λ we have

as desired.
QED.

9. Proof of Theorem 1

The eigenvalue estimate of Theorem 1 follows from that of Theorem 2 and the
Rayleigh-Ritz principle. First observe that we can obtain the situation of Theorem 1
from that of Theorem 2 by perturbing the metric g of Theorem 2 while leaving the
connection A fixed. Let x, y be coordinates in a neighborhood of C such that (with
respect to a certain local trivialization) A = (A\ + (\/2)y2)dx, x is an angular coor-
dinate along C and C is given by y — 0. (These are no longer normal coordinates
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with respect to the metric g\) Let p\(y) be a smooth function which is identically 1
for \y\ < 1, identically 0 for \y\ > 2 and satisfies 0 ^ p\ :§ 1 in between. (With-
out loss of generality we may assume that the range of y is at least \y\ < 3.) Set
po = I — P\. Define a new metric h = p\(dx2 + dy1) + pog. Then clearly h satisfies
the hypothesis of Theorem 2.

Since g and h are equal outside of a relatively compact neighborhood of C,
there exist positive constants k\,k2 such that k\gij ^ hlJ rg Jc2gκ/. Then one easily
sees that for all smooth sections φ:

It follows immediately from the characterization of the first eigenvalue as the mini-
mum of these quotients that

where & = ( | M , K = ί ^ J and the notation Ej(g), Ej(h) has the obvious mean-

ing. A few moment's reflection shows that by using the min-max characterization

of the / h eigenvalues that the same is true for all discrete eigenvalues:

The bound of Theorem 1 now follows directly from that of Theorem 2.

10. Appendix

Here we prove Theorem 3 and thus the bound Eq. (1). They follow immediately
from the following theorem together with the fact that the curvature of Lλ is λ times
that of L.

Theorem 4. Let φ be a section of L -» M. If M has boundary suppose that φ is
zero on its boundary and if M is noncompact suppose that φ is square integrable.
Then

\ΫM^ jB\φfd2x
M

Equality holds if and only if the section φ is holomorphic or antί-holomorphic on
each component of M.

Remark. Theorem 3 also follows immediately from the Weitzenbock type identity
of Bochner-Kodaira-Nakano. See Demailly [8] and references therein.

We explain what we mean by holomorphic and anti-holomorphic. M admits
coordinates (x, y), often called isothermal coordinates, with the property that in
these coordinates the metric has the form d2s = μ(x,y)2(dx2 + dy2) and dx Λ dy
agrees with the orientation of M. Then z —x-\-iy defines a complex coordinate on
M. Set

Dzφ = -(D{φ-iD2φ)
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and

D£φ = -

where the index 1 refers to x and 2 to y. Then φ is holomorphic if Dfφ = 0 and
anti-holomorphic if Dzφ = 0.

Set dz — dx + idy and dz — dx — idy. Then we can form the combination

dAφ = D£φdz,

which yields a well defined operator dA : Γ(L)-^ Γ(T^1^ L) over the whole
manifold. (Γ^'1) denotes the complex line bundle with local sections dz.) Simi-
larly we can define dA : Γ(L) -> Γ(Γ ( 1 ' 0 ) <8>Z). One easily calculates that

A, = I A + ^ .

SΪ0W Conventions. In this appendix we use the complex manifolds convention
DAφ — dφ -\- iAφ when A is the connection form, as opposed to the physics con-
vention, DAφ — dφ — iAφ, used in the rest of this paper. The reason for making
this change of convention is so that the next theorem corresponds to those found in
standard references on complex manifolds [4] and line bundles. With this conven-
tion D\D2φ — D2D\φ = iFuφ The sign convention on the Hermitian inner product
on L is (φ,zφ) = z(φ,ψ).

The above theorem is now an immediate consequence of the following

Theorem 5 (of Weitzenbόck-Bochner type).

2\\dAφfM = \\DAφ\\2

M - JB\φ\2 ,
M

Proof. \\dAφ\\2

M is obtained by integrating

M

( d A φ J A φ ) = i(Dxφ - iD2φ,Dxφ - iD2φ)\dz\2

= H I A Ψ I 2 + \ D 2 φ \ 2 + i[(Dιφ,D2φ) - ( D 2 j

Since d2x = μ2dx A dy this integral is

W^ΛΦ\\2M = \ \\\DAΦ\\2

M + iί[(Dλφ9D2φ) - (D2φ,D,φ)]dxdy\ .
1 L M J

We integrate the second term by parts. Form

α = (φ,DAφ) = (φ,Dλφ)dx + (φ,D2φ)dy .

Then

da = {(Dιφ,D2φ) - {D2φ,D,φ) + (φ,[DiD2 - D2Dx]φ)}dx A dy

= {(Dxφ,D2φ) - (D2φ,Dyφ) + (φ,iFl2φ)}dx A dy .
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Now the Dirichlet boundary conditions imply that α = 0 on the boundary of M. So
by Stokes' formula, and the definition of B: Fγχdx Λ dy — Bd2x, we have

if[(Dιφ,D2φ) - (D2φ,Dxφ)-\dx Λdy = -jB\φ\2d2x .
M M

The first formula follows.
The second one is derived in exactly the same way.
QED.

The theorem has several interesting corollaries which appear to be well-known to
the complex geometry community but which we have not found in the Schrodinger
operator literature. In the complex geometry literature, bundles for which B > 0 are
called positive line bundles.

Corollary 1. Suppose that M is compact without boundary and B is constant.

Then the ground state energy for the covariant Laplacian is A)^(M) > w^ere cι ™

the first Chern class of the bundle. In particular, if we take L to have Chern class 1

then the energy corresponding to H(λ) is Ar^a!My

Corollary 2. Suppose M is compact without boundary and B ^ 0. Let c\ be the
first Chern number of L, and g be the genus of M. Then the dimension m\ of the
lowest eigenspace satisfies m\ Ξ> c\ — g + 1. If we take L to have Chern class 1,
then the ground state multiplicity, m\(λ\for the covariant Laplacian H(λ) on Lλ

satisfies

for all λ with λ > 2g - 1.

Proof From the First Bochner formula the lowest eigensections are in one-to-one
correspondence with holomorphic sections. The theorem is then a direct translation
of the Riemann-Roch theorem.
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