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Abstract. We formulate general conjectures about the relationship between the
A-model connection on the cohomology of a d-dimensional Calabi-Yau complete
intersection V of r hypersurfaces Vι,...,Vr in a toric variety P j and the system
of differential operators annihilating the special generalized hypergeometric series
ΦQ constructed from the fan Σ. Using this generalized hypergeometric series, we
propose conjectural mirrors V' of V and the canonical ^-coordinates on the moduli
spaces of Calabi-Yau manifolds.

In the second part of the paper we consider some examples of Calabi-Yau
3-folds having Picard number > 1 in products of protective spaces. For conjec-
tural mirrors, using the recurrent relation among coefficients of the restriction of the
hypergeometric function Φo on a special line in the moduli space, we determine the
Picard-Fuchs equation satisfied by periods of this special one-parameter subfam-
ily. This allows to obtain some sequences of integers which can be conjecturally
interpreted in terms of Gromov-Witten invariants. Using standard techniques from
enumerative geometry, first terms of these sequence of integers are checked to
coincide with numbers of rational curves on Calabi-Yau 3-folds.

1. Introduction

In this paper we consider complex projective smooth algebraic varieties V of
dimension d whose canonical bundles Xγ are trivial, i.e. Xγ = Θγ, and the Hodge
numbers hp'°(V) are zero unless p = 0, or p — d. These varieties are called d-
dimensional Calabi-Yau varieties, or Calabi-Yau d-folds. For each dimension
d ^ 3, there are many examples of topologically different Calabi-Yau d-folds which
can be constructed from hypersurfaces and complete intersections in weighted pro-
jective spaces [5,6,7,24,23,26].

Physicists have discovered a fascinating phenomen for Calabi-Yau manifolds,
so-called mirror symmetry [12,17,27,29]. Using mirror symmetry, Candelas et al.
in [9] have computed the coefficients of the ^-expansion of the Yukawa coupling
for Calabi-Yau hypersurfaces of degree 5 in P 4 . The method of Candelas et al. was
applied to Calabi-Yau 3-folds in weighted projective spaces [14,33,21] and
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complete intersections in weighted and ordinary projective spaces [22,28]. The
^-expansions for Yukawa couplings have been calculated also for Calabi-Yau hy-
persurfaces of dimension d > 3 in projective spaces [18].

The interest of algebraic geometers in Yukawa couplings is explained by the
conjectural relationship between the coefficients of the ^-expansion of the Yukawa
couplings and the intersection theory on the moduli spaces of rational curves on
Calabi-Yau d-folds [18,19]. For small values of the degree of rational curves, this
relationship was verified in some cases by S. Katz [20]. However, the main problem
which remains unsolved is to find a general rigorous mathematical explanation of
the relation between the coefficient of ^-expansions and counting of rational curves
(instantons) on Calabi-Yau manifolds.

The purpose of this paper is to show that the calculation of the Yukawa
couplings for ^-dimensional Calabi-Yau complete intersections in toric varieties
bases essentially on the theory of special generalized hypergeometric functions. We
remark that these hypergeometric functions satisfy the hypergeometric differential
system considered by Gelfand, Kapranov and Zelevinsky in [15]. We propose also
a general method for computing the normalized canonical ^-coordinates.

The paper is organized as follows:
In Sect. 2, we give a review of the calculation of Candelas et al. in [9] of the

coefficients Γd of the ^-expansion of the normalized Yukawa 3-point function

The coefficients Γd — ridd3 conjecturaly coincide with the Gromov-Witten invariants
(introduced by D. Morrison in [35]) for rational curves on quintic hypersurfaces in
P 4 . Our review is greatly influenced by the work of D. Morrison [32,33], but we
want to emphasize the fact that the computation of the prediction for the number of
rational curves on quintic 3-folds bases essentially on the properties of the special
generalized hypergeometric series

which admits a combinatorial definition in terms of curves on P 4 .
In Sect. 3, we explain a Hodge-theoretic framework for mirror symmetry and

the ideas due to P. Deligne [11] and D. Morrison [34, 35]. The key-point here is the
existence of a new type of connection on cohomology of Calabi-Yau manifolds.
Following a suggestion of D. Morrison, we call it A-model connection (see also
[43]). The mirror symmetry identifies the ^4-model connection on the cohomology of
a Calabi-Yau d-ϊo\ά V with the classical Gauβ-Manin connection on cohomology
of its mirror manifold V.

Section 4 contains a review of the standard computational technique based on
the recurrent relations satisfied by coefficients of formal solutions of Picard-Fuchs
equations. We use this technique later in explicit calculations of ^-expansions for
Yukawa couplings for some examples of Calabi-Yau complete intersections in toric
varieties.

Section 5 is devoted to complete intersections in ordinary projective spaces.
Using explicit description of the series ΦQ(Z) for Calabi-Yau complete intersections
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in projective spaces, we calculate the J-point Yukawa coupling and propose the
explicit construction for mirrors of such Calabi-Yau d-folds3.

In Sect. 6, we give a general definition of special generalized hypergeometric
functions and establish the relationships between these functions and combinato-
rial properties of rational curves on toric varieties containing Calabi-Yau complete
intersections. It is easy to see that these generalized hypergeometric functions
form a special subclass of the generalized hypergeometric functions with resonance
parameters considered by Gelfand.et al. in [15]. We formulate general conjectures
about the differential systems and canonical ^-coordinates defined by the generalized
hypergeometric series corresponding to Calabi-Yau complete intersections in toric
varieties. Using a combinatorial interpretation of Calabi-Yau complete intersections
in toric varieties due to Yu. I. Manin [30], we propose an explicit construction of
mirrors.

In Sect. 7, we consider in more detail the example of Calabi-Yau hypersur-
faces V of degree (3,3) in P 2 x P 2 . We use this example to illustrate the general
computational method we used in Sect. 8, where we calculate the ^-expansions of
Yukawa couplings for some Calabi-Yau complete intersections in products of pro-
jective spaces. For this, we restrict the hypergeometric function Φo(z) to a very
special line, such that the resulting function of one parameter satisfies a fourth-
order differential equation to which we apply the methods described in Sect. 4. The
actual calculations were done on the computer, using a general program written
inside MAPLE. Applying methods of enumerative geometry, we check that first
numbers in the resulting sequences of integers (conjectural Gromov-Witten invari-
ants) coincide with numbers of rational curves of small degree on the corresponding
Calabi-Yau 3-folds. So our results can be seen as a confirmation of the conjectures
related to mirror symmetry.

2. Quintics in P 4

In this section we give a review of the (conjectural) computation of the Gromov-
Witten invariants Γd and predictions rid for numbers of rational curves of
degree d on quintics V in P 5 due to P. Candelas, X. de la Ossa, P.S. Green, and
L. Parkes [9]. The main ingredients of these computations were considered in papers
of D. Morrison [32, 33]. The purpose of this review is to stress that this computation
depends only on properties of the special generalized hypergeometric function ΦQ(Z).
We begin with the algorithm for computing the coefficients in the g-expansion of
the Yukawa coupling and the predictions for number of rational curves.

2.1. The Coefficients in the q-Expansion of the Yukawa Coupling. Consider the
series

Step 1. If we put an = ^ψ, then the numbers an satisfy the recurrent relation

in + 1 fan+l = 5(5« + 1 )(5Λ + 2)(5n + 3)(5/ι + 4)an .

3 Recently L. Borisov proposed a general combinatorial duality which includes as a particular
case this our construction [4].
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This immediately implies that the series Φo(z) is the solution to the differential
equation

®Φ(z) = 0 ,

where

2 = Θ4 - 5z(5Θ + 1)(5<9 + 2)(5Θ + 3)(5<9 + 4), Θ ^, Θ=z^ .
δz

One can rewrite the differential operator 2 in powers of Θ as follows:

2 = A4(z)Θ4 + A3(z)Θ3 + + Λ0(z) .

We denote by Q(z) the rational function Ai(z)/A4(z) (z = 0,..., 3).

2. Following [32], define the normalized Yukawa 3-differential as

3 = A, , -

where Kz = Wi{z)jΦ\(z) is the 3-point coupling function. The function W^{z)
satisfies the differential equation

ΘW3(z) = ~C

and the normalizing condition ^3(0) = 5.
One easily obtains

Step 3. The equation ΏΦ — 0 is a Picard-Fuchs differential equation with maximal
unipotent monodromy (in the sense of Morrison [32]) at z = 0. Therefore, there
exists a unique solution Φ\(z) to ^ Φ = 0 such that Φi(z) = (logz)Φ0(z) + Ψ(z),
where Ψ(z) is regular at z = 0 and Ψ(0) = 0. We define the new local coordinate
q = q(z) near the point z = 0 as

Then, we rewrite the normalized Yukawa 3-differential iV-$ in the coordinate q as

The function i ^ is called the Yukawa 3-point coupling. This function has the
power expansion

where Γ^ — n^d3 are conjectured to be the Gromov-Witten invariants of rational
curves of degree d on a quintic 3-fold in P 4 [20,35]. The numbers nd are predictions
for numbers of rational curves of degree d on quintic 3-folds.
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It is important to remark that in the above algorithm for calculation of the num-
bers rid one needs to know only properties of the series Φo(z) and the normalization
condition ^ ( 0 ) = deg V = 5 for W3{z), i.e., one does not need to know anything
about mirrors of quintics.

2.2. Philosophy of Mirrors and the Series ΦQ(Z). The central role in the compu-
tation of Candelas et al. in [9] is played by the orbifold construction of mirrors
for quintics in P 4 [17]. In [1], this construction of mirrors was generalized for
hypersurfaces in toric Fano varieties with Gorenstein singularities.

In the above algorithm, we have shown that one can forget about mirrors.
However, the philosophy of mirrors proves to be very helpful. For quintic 3-
folds this philosophy appears as the following twofold interpretation of the series

The first interpretation. We compute the coefficients an of the power series ΦQ(Z)
using combinatorial properties of curves C C P 4 of degree n.

Notice that any such curve C meets a generic quintic V at 5n distinct points
P\> ->P5n There exists a degeneration of V into a union of 5 hyperplanes
H\U ...UH5. Every such hyperplane Hι intersects C at n points piv...,pin

which can be considered as deformations of a subset of n points from the set
{pι,...,P5n}- It remains to remark that there exists exactly (5n)\/(n\)5 ways to
divide {p\,...,psn} into 5 copies of ^-element disjoint subsets.

The second interpretation. We find the coefficients an from an integral representa-
tion of Φo(z).

Let T = (C*)4 be the 4-dimensional algebraic torus with coordinate functions
X\, X2, X3, X4. Take the Laurent polynomial

f(u, X)=\- (uiXi + u2X2 + U3X3

in variables X\, X2, X3, X*, where the coefficients wi,...,« 5 are considered as inde-
pendent parameters. Let z = U1U2U3U4U5.

Proposition 2.2.1.

λ ^ , λ 1 r 1 dXx dX2 dX3 dX4

Φo(uι...u5) = Φo(z)= J _ _ - _ - Λ — Λ — - Λ — .
(2πv — 1) \xt\=\ J\uiχ) Λι Λ2 Λ3 M

Proof. One has

J(U,Λ) H f e 0

= Σ cm(u)Xm .
mez4

It is straightforward to see that CQ(U) = ΦQ(U\ .. .u$). Now the statement follows
from the Cauchy residue formula. D

The second interpretation of Φo(z) implicitly uses mirrors of quintics, since
zero-locus of f(u,X) defines the affine Calabi-Yau 3-fold Z/ in T whose smooth
Calabi-Yau compactification is mirror symmetric with respect to quintic 3-folds (see
[1]). Moreover, the holomorphic 3-form ω(z) on Z/ that extends to a regular form
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on a smooth compactification of Zf depends only on z, i.e., only on the product
u\ ...us. This 3-form can be written as

1 1 dXx dX2 dX3 dX4
ω O ) = ^ r r ^ R e s r, ^~^T Λ - F - Λ -IT Λ

. . . _ ^ 3 XA

This shows that Φo(z) is exactly the monodromy invariant period of the 3-form
ω(z) near z = 0.

Proposition 2.2.2. The differential 3-forrn ω(z) satisfies the same Picard-Fuchs
differential equation Q)Φ — 0 as the series Φo(z). In particular, all periods of ω(z)
satisfy the Picard-Fuch differential equation with the operator

Θ4 - 5z(5Θ + 1)(5Θ + 2)(5© + 3)(56> + 4) .

Proof. In order to prove the statement, it is sufficient to check that

f{u9X)J Xλ X2 X3 XA

is a differential of a rational 3-form on T\Z/. The latter follows from a standard
arguments using reduction by the Jacobian ideal Jf (see [2]). •

2.3. A-model Connection. The Yukawa coupling can be described in terms of a
nilpotent connection V^ on the cohomology of quintic 3-fold V,

This connection is homogeneous of degree 2, i.e.,

V^ : H\V, C) -> Hi+2(K C)

and hence V^ vanishes on // 3 (F, C). For this reason, we consider only the
cohomology subring

H2\V, Z) - ®H2i(V, Z) C H*(V, Z)
/=0

of even-dimensional classes on a quintic 3-fold F(rk//2 /(F, Z) = 1). Let ηt be the
positive generator of H2ι(V, Z). Then, in the basis ηo, η\, η2, ηs, the multiplication
by η\ is the endomorphism of//2*(F, Z) having as matrix
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Following [10] and [35], we define the 1-parameter connection on H2*(V, C)
considered as a trivial bundle over SpecC[[^]] as follows:

The matrix

(o
0

0

ί°
0

0

\o

dq

q

0

0

0

h

dq

0

0

0

0

^(3)

0

0

κ{

dq

0
3)^£

q

0

0

0

0
dq

0

\

mU
y \^3

o \
0
dq
n
y

0 y

K(q)= u ^ q " (1)

can be considered as the deformation of the matrix A such that

Λ= Res\q=oK(q).

The mirror philosophy shows that the matrix (1) can be identified with the
matrix of the classical Gauβ-Manin connection on the 4-dimensional cohomology
space H3(Zf, C) in a special symplectic basis. We notice that the quotients Fι/Fι+ι

of the Hodge filtration

H\Zf, C) = F° D Fι D F2 D F3 D F4 = 0

are 1-dimensional. There is also the monodromy filtration on the homology
H3(Zf, Z ) ,

0 = W-ι CWOCW1CW2CW3= H2(Zf, Z )

such that Wi/Wj-ι are also 1-dimensional. We choose the symplectic basis yo> 7\,

yi,yi in H^Zf, Z ) in such a way that {yo,---,?*} form a Z-basis of Wt. We

choose also the basis ωo, co\, co2, C03 of H3(Zf, C) such that {ωo,...,ω/} form a

C-basis of F3~ι and
Pij = / ω, = δ/, for i ^ j .

yj

So the period matrix Π = (pυ) has the form [18, 35]

Π =

Notice that all coefficients pij(i < j) are multivalued functions of z near z = 0.
Applying the Griffiths transversality property, we obtain that the Gauβ-Manin

connection in the z-coordinate has the form

1
0
0
0

Pn
1
0
0

Pu
P23

1
0

Pu
P34

P34

1

/Vωo\
[ Vω, _

Vω2 ~
\VCU3/

/0

0

0
\0

(θpn)τ
0

0
0

0

0
0

0

0

\

where Θp are single valued functions.
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Then the Yukawa 3-differential is simply the tensor product

) ) ~

By Griffiths transversality, one has a>o Aa>2 = 0, i.e. we can assume that
Pn = P34- The differential form ω 0 can be defined as ω/Φ0(z). Moreover, pi2 =
Φi(z)/Φ0(z). In the new coordinate q, we have pi2 = \ogq. Then the GauB-Manin
connection can be rewritten as

(°
0

0

9

0

0

0

0

0

0

0 \

0
dq

q
0 /

/ ω 0
I ωi

1 ω 2
\ ω 3

2.4. The q-Coordinate and the Yukawa Coupling. Since the coordinate q was
defined intrinsically as the ratio Φ\(Z)/ΦQ(Z) of two solutions of the differential
equation Q)Φ = 0, it is natural to ask about the form of the differential operator 2
in the new coordinate q. Denote by Ξ the differential operator qj-.

Proposition 2.4.1. The differential 3-form
equation with the differential operator

satisfies the Picard-Fuchs differential

where

K
(3) ^(3) '

Proof. By properties of the nilpotent connection, one has

Ξωo = co\, Ξω\ = K^cθ2, Ξ<x>2 = 0)3, Ξω^ = 0

So
Ξ4ω0 = Ξ

On the other hand,

ω2 =
1

^(3)
Ξ2ω0 ,

CO3 =
1 ,

Δ ω0 \ =--
1

K
(3)

Ξ3ω0

D

Remark. 2.4.2. The differential equation for ωo can be written also as

In this form this equation first arose in [13].



Generalized Hypergeometric Functions and Rational Curves 501

The differential operator Q) which annihilates the function Φo(z) defines the

connection in the basis ω,Θω,Θ2ω,Θ3ω of// 3(Z/, C):

/ 0 f 0 0 \
0 0 f 0
0 0 0 f

\-C0(z)f -Q(z)f -C2(z)f -C3(z)df/

The basis ω, ΘωΘ2ω, Θ3ω is also compatible with the Hodge filtration in

H3(Zf, C). Thus there exists a matrix

/ Vα, \

V6>ω

V<92ω ~

VvθW

r\\
0
0

7*12

r2 2

0

r 13

^23

r3 3

r 14

^34

^34

0 0 0 r4 4 >

such that

'co \ / ω 0 '

^Θ3ωJ \ω3i

It is easy to see that

rn = Φ0(z),r22 = Φ0(z)(Θpn),r33 = Φ0(z)(β/?i2

r 4 4 = Φo

3. Quantum Variations of Hodge Structure on Calabi-Yau Manifolds

3.1. A-Model Connection and Rational Curves. A general approach to the definition

of a new connection on cohomology of algebraic and symplectic manifolds V was

proposed by Witten [42]. The construction of Witten bases on the interpretation of

third partial derivatives

<33

dzjdzjdzk

of a function P(z) on the cohomology space H*(V,C) as structure constants of

a commutative associative algebra. The function P(z) is defined via the inter-

section theory on the moduli spaces of mappings of Riemann surfaces S to V.

Using Poincare duality, one obtains the structure coefficients of the connection on

H*(V, C).

We consider a specialization of the general construction to the case when V

is a Calabi-Yau 3-fold. We put n = άimH2(V, C) = d i m / / 4 ( F , C). Let η0 be a

generator of H\V, Z)9{ηu..., ηn} a Z-basis of H2(K Z ) , {Ci,...,C«} the dual Z-

basis of H\V, Z)((ηl9ζj) = δtj), and ζ0 the dual to η0 generator of H6(V, Z ) . We

can always assume that the cohomology classes η\,...,ηn are contained in the closed

Kahler cone of V.
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Definition 3.1.1. Let R — C[[qι9...,qn]] be the ring of formal power series in n
independent variables. We denote by H(V) the scalar extension

Ki=O / C

We consider a flat nilpotent holomorphic connection

defined by the following formulas [10,35]

1=1 Ίi

K>jkζj®—> k=l,...,n;

V^C/ = Co—-, j = I , . . . , Λ

VAζ0 = 0 .

The coefficients Kijk are power series in qχ,...,qn defined by rational curves C on

V, i.e., morphisms / : P 1 —> V as follows:

q[c]

Kijk = (ηi,ηj,ηk) + Σ n(Qη)(Cη)(Cη)
— qι

where r̂̂ ] = ^ i .. . ^ ^Q = (c,^». The integer

j,ηk) = n[C](C,ηi){C9ηj)(C,ηk)

is called the Gromov-Witten invariant [20,35] of the class [C]. If the classes
r\u Άj and γ\k are represented by effective divisors A , Dj and Dk on F, then
Γ[c](γ\i,ηj,r\k) is the number of pseudo-holomorphie immersions i: P 1 —>> K such
that [2(P1)] = [C] and < 0 ) e A , ι ( l ) G i ) ; , ι(oo) e Dk for sufficiently general
almost complex structure on V. One could hope that under favorable circumstance
the number n\c] would be equal to the number of rational curves C C V in the
class [C] is always non-negative.

The connection V^ will be called the K-model connection. The connection V^
defines on H(V) a variation of Hodge structure of type (1,«,«51). We call this
variation the quantum variation of Hodge structure on V.

Remark. 3.1.2. The Picard-Fuchs differential system satisfied by η$ was considered
in detail in [10].

One immediately obtains:

Proposition 3.1.3. Let η = hη\-{ h lnηn £ H2(V,Z) be a class of an
ample divisor on V. Define the \-parameter connection with the new coordinate
q by putting q\ = qlι,...,qn = qln. Then the connection \7A on H(V) induces the
connection
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V, : (φH2ι(VX[[q]])) -+ (0//2'(F,C [[<?]])) ®Ωι

C[[q]](\ogq) .
\/=o / \/-o / c

In particular, the residue of the connection operator Vq at q = 0 is the Lefschetz

operator Lη : H2l( V, C) -» H2ι+2( V, C), and

where

nd = Σ nin

Corollary 3.1.4. The connection Vq defines a differential operator of order 4
annihilating ηQ.

3.2. The Gauβ-Manίn Connection for Mirrors. Let W be a Calabi-Yau 3-fold such
that dim H3(W, C) — 2n + 2. Assume that we are given a variation Wz of complex
structure on W near a boundary point p of the ^-dimensional moduli space Jίψ
of complex structures on W in holomorphic coordinates zi,...,zw near p such that

Definition 3.2.1. The family Wz is said to have the maximal unipotent monodromy
at z — 0 if the weight filtration

0 = W-χ C Wo C Wx C W2 C r 3 =// 3 (^ z ,C)

defined by N is orthogonal to the Hodge filtration {F1}, i.e.,

H\WZ9C)= W^ΘF3-', z = 0,...,3 .

(This is essentially the same definition given in [34,35].)
Choose a symplectic basis

{yo,yι,- ,yn,δχ,...δn,δo}

of H^{WZ,Z) in such a way that 70 generates Ĵ Ό, {70?7i? >7Λ} ^S a Z-basis of W\,

is a Z-basis of W2 Then we choose a symplectic basis in H3(WZ,C):

{ωo,α>i,... , ω Λ , 1^1,..., L?Π, t?o} ,

such that COQ generates F 3 , {ωo,ωi, . . . ,ω/z} is the basis of F 2 ,{ωo,coi,. . .,ω, 7 ,
i'i,...,ι;,7} is the basis of F 1 such that

(ω / ? y 0 ) = (^/,yo> = {vi,yj) = (^o,7/) = (^o^/> =0, i= \,...,n, j = 0,...,n .

The choice of the basis of H3(WZ,C) defines the splitting into the direct sum
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such that all direct summands'acquire canonical integral structures. By Griffiths
transversality property, the Gauβ-Manin connection V sends H3~Uι to H3~ι~ι>ι+ι 0

Two Calabi-Yau 3-folds V and W are called mirror symmetric if the quantum
variation of Hodge structure for V is isomorphic to the classical VMHS for W. In
this case the ̂ -co-ordinates near p up to constants are defined by the formula [34]

ω0 .
7ι

4. Picard-Fuchs Equations

In this section we recall standard facts about Picard-Fuchs differential equations
which we use in computations of Yukawa d-point functions and predictions for
numbers of rational curves on Calabi-Yau manifolds.

4.1. Recurrent Relations and Differential Equations. Let an (n = 0,1,2,...) be an
infinite sequence of complex numbers. For our purposes, it will be more convenient
to define an for all integers n G Z by putting an — 0 for n < 0. We define the
generating function for the sequence {αj as the formal power series

Φ(z) = f>z'" e C[[z]] .

Consider the following two differential operators acting on C[[z]]:

z: fι->z / .

They satisfy the relation

[Θ,z] = Θ oz — z o θ — z . (2)

These operators generate the algebra D = C[z, Θ] of "logarithmic" differential
operators which are polynomials in non-commuting operators Θ and z.

Fix a positive integer d. Assume that there exist m 4- 1 (m ^ 1) polynomials,

Po(y),...,Pm(y)eC[y]

of degree d + 1 such that for every n G Z the numbers {α, } satisfy the recurrent
relation:

P0(n)an + Px(n + 1 )an+ι + + Pm(n + m)an+m = 0 . (3)

(Here we consider y as a new complex variable having no connection to our pre-
vious variable z.) Then Φ(z) is a formal solution of the linear differential equation

®Φ(z) = 0

with the differential operator

2 = zmP0(Θ) + zm-ιPx(Θ) + + Pm(Θ) . (4)
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This differential equation of order d -h 1 can be rewritten in powers of Θ as

2 = AM(z)ΘM + +Aλ(z)Θ +A0(z) , (5)

where At are some polynomials in z. It is easy to check the following:

Proposition 4.1.1. A power series Φ(z) is a formal solution to a differential
equation <3Φ(z) = 0 of order d + 1 for some element 3 G D if and only if
the coefficients {αj satisfy a recurrent relation as in (3) for some polynomials
P0(y%...,Pm(y) of degree rf + 1.

4.2. Picard-Fuchs Operators. Recall that a differential operator S as in (5) is
called a Picard-Fuchs operator at point z — 0 if y4ί/+i(0)=t=0. Solutions of the
Picard-Fuchs equations S)Φ are said to have maximal unίpotent monodromy at
z — 0 [33] if -4/(0) = 0 for i = 0,...,d. The above conditions on the operator S)
can be reformulated in terms of properties of the polynomial Pm(y) in (3) as
follows:

A differential operator S) is a Picard-Fuchs operator if and only if the poly-
nomial Pm(y) has degree d + I, i.e., its leading coefficient is nonzero. Moreover,
solutions of the equations S) have maximal unipotent monodromy at z = 0 if and
only if the polynomial Pm(y) equals cyk for some nonzero constant c.

Picard-Fuchs operators having the maximal unipotent monodromy at z = 0 will
be objects of our main interest. Therefore, we introduce the following definition:

Definition 4.2.1. A Picard-Fuchs operator Si with the maximal unipotent mon-
odromy will be called a MU-operator. We will always assume that the corre-
sponding polynomial Pm(y) in (3) for any MU-operator Si is yk, i.e., c — 1.

The fundamental property of M{/-operators is the following one:

Theorem 4.2.2. ifS) is MU-operator, then the subspace in C[[z]] of solutions of
the linear differential equation

has dimension 1. Moreover, every solution is defined uniquely by the value
Φ(0) = a0.

Proof If we have chosen a value of ao, all coefficients a\ for i ^ 0 are
uniquely defined from the recurrent relation (3). (We recall that we put at = 0
for / < 0.) D

Definition 4.2.3. Let Si be a MU-operator. Then the power series solution Φo(z)
of the equation <3Φ{z) — 0 normalized by the condition ΦQ(0) = 1 will be called
the socle-solution.

4.3. Logarithmic Solutions and the q-Coordinate. Let S) be a M£/-operator of order
d + 1. Putting Ci(z) — Ai(z)/A(i+ι(z) we can define another differential operator

Σ
z=0
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which is also a M(7-operator of order d + 1, where Ct(z) are rational functions in
z, and Q + i ( z ) = 1. Assume that we have a formal regular solution

i=0

Consider a formal polynomial extension

Mz = C[[z]][logz],

where log z is considered as a new transcendent variable. We can define the structure
of a left D-module on Mz putting by definition 6) logz = 1. In fact, Mz will be a
module over the larger algebra D z containing the new operator Logz such that

z o (Θ o Logz) = (Θ o Logz) o z = 1 ,

6) o Log z — Log z o 0 = 1 ,

and L<9#z acts on Mz by multiplication on logz.

Proposition 4.3.1. 2>/ ^ = Σi^ Q(z)Θι be any operator in D. Then

d+\

[0>,Logz] = ΣiCi(z)Θι-χ = 0>'Θ ,
z = l

where gP'Θ is a formal derivative of & with respect to Θ.

Proof The statement follows from relation

& oLogz -Logz o & =i&~1 ,

which can be proved by induction.
D

Assume that we want to find a element Φ\(z) in Mz such that SPΦ\(z) — 0 and
Φ\(z) has form

Φx{z) = log z.Φ0(z)+Ψ(z),

where Ψ(z) is an element of C[[z]], and Ψ(0) = 0.

Proposition 4.3.2. The element Ψ(z) satisfies the linear non-homogeneous differ-
ential equation

0>'ΘΦo(z) + 0>Ψ(z) = O, (6)

or, formally,
Ψ(z) = -»-λ9'θΦώz) = δ β l o g ^ Φ0(z).

Proof Since Φo and Φi are solutions, we obtain

Proposition 4.3.3. If Φo(z) w /Λe Λ ocfe solution, then the function Ψ(z) is uniquely
defined by Eq. (6) and the condition Ψ(0) = 0 as an element o/C[[z]].
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Proof. Let Ψ(z) = Σ ΐ ^ o c Λ ^ b e a n element of zC[[z]]9 i.e., bt = 0 for i ^ 0.
By 4.3.2, for any n G Z, the coefficient by zn in 0>Ψ(z) is

Pm(n)bn +Pm-i(n - l)bn-χ + + P0(n - m)bn-m .

On the other hand, the coefficient by zn in &'ΘΦo(z) is

P'm{n)an+Pf

m_x(n - l)απ_i + + Pf

Q(n - m)αΛ_w .

Thus, we obtain the recurrent linear non-homogeneous relation

m m

Pm(n)bn + ΣPm-i(n - i)bn-i + Σ^m-, (« - 0«»-« = 0 . (7)
ι=l i=0

Since Pm(n) = nd+ι φO for n ^ 1, one can find all coefficients bt (/ ^ 1) using
(7). For instance, we obtain

. . . e t c .

Corollary 4.3.4. Let & be a MU-operator, then the quotient Ψ/Φ of the solutions
of the linear system

— Q? &nΦ -

is a function depending only on 8P.

We come now to the most important definition:

Definition 4.3.5. The element

fΦι(z)\ fΨ(z)
q = e χ p X73: = z e χ p

is called the q-parameter for the Mil-operator 3P.

4.4. Generalized Hyper geometric Functions and 2-Term Recurrent Relations. Since
the number m + 1 of terms in a recurrent relation (3) is at least 2, 2-term recurrences
are the simplest ones. Any such relation is defined by two polynomials Po(y) and
P\(y) of degree d + 1:

P0(n)an=Pι(n+\)an+ι . (8)

Without loss of generality we again assume that the leading coefficient of
P\(y) is l.

Definition 4.4.1. Denote by

/au...,ad+{ \
Gd+ι(a,β; w) = Gd+ι w )

\βu...,βd+ι )

the series
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which is the generalized hyper geometric function with parameters αi,...,α</+i,
/?!,...,/?</+!. (This is a slight modification of the well-known generalized hyper-
geometric function d+\Fd {see [31,39]).)

Proposition 4.4.2. Assume that

then the function Gd+\{ot,β;λz) is a formal solution of the differential equation

= (Pι{Θ) - zP0{Θ))Φ = 0 .

Consider now the case when 3) is a M£/-operator, i.e., P\(y) — yd+ι, and the
recurrent relation has the form

(n+l)d+ιan+ι=P0(n)aH.

Then for the power series Ψ(z) = Σi>ι b\zι which is the solution to

where
oo

Φ0(z) = Σ ^ >

is a regular solution to 0*Ψ = 0, the coefficients {bi} satisfy the recurrent relation

nd+ιbn = Pχ{n - l)bn-χ +P[{n - l)αΛ_i - {d + \)ndan .

4.5. d-Point Yukawa Functions. Let π : Fz —> »S be a 1-ρarameter family of Calabi-
Yau ί/-folds, where <S = Spec C[[z]]. Let T be the corresponding monodromy trans-
formation acting on Hd{Wz,C), Tu the unipotent part of T,N = Log Tu.

Definition 4.5.1. The family Vz is said to have the maximal unipotent monodromy
at z = 0 if the weight filtration

O ^ ^ C ί f o C ί f i C C Wd-ι C Wd=Hd(Vz,C)

defined by N is orthogonal to the Hodge filtration {F*}, i.e.,

Hd{ Vz, C) = W^ Θ Fd-1 ί = 0,..., d .

(This is similar to definitions given in [18,35].)
Assume that the family Vz has the maximal unipotent monodromy at

z = 0 and dim Fι/Fι+ι = 1 for / = 0,...,d. Then the Jordan normal form of N
has exactly one cell of size {d + 1) x (d + 1). This means that there exists a
d-cycle y E Hd{VZiZ) such that y,Ny,...,Ndy are linearly independent in Hd(Vz,Z),
and Ndy = yo is a monodromy invariant d-cycle. Take a 1-parameter family ω(z)
of holomorphic ύf-forms on Wz. It is well-known that the periods of ω{z) over the
d-cycles in Hd(Vz,C) satisfy a Picard-Fuchs differential equation of order d + 1
defined by some differential M£/-operator

$> = Θd+ι + c r f (z)β r f + + Co(z) . (9)
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Definition 4.5.2. Define the coupling functions Wkj(z)(k,l ^ 0, k, I G Z) as
follows:

WkJ = fΘkω(z)AΘιω(z).
vz

(By definition, we put Θ° = 1 to be the identity differential operator.)

Definition 4.5.3 [32]. The coupling function Wd)o is called unnormalίzed d-point
Yukawa function.

Proposition 4.5.4. The coupling functions Wkj(z) satisfy the properties

(i) WkJ(z) = (-\)dWhk

(ii) Wk ι(z) = 0 for k + l < d
(iii) ΘWκι(z) = Wk+U(z) + WKM(z)
(iv) Wd+k+h0(z) + Cd(z)WM,0(z) + + Co(z)»i,o(z) - 0 .

Proof The statements follow immediately from the properties of the cup-product
and from the Griffiths transversality property.

Theorem 4.5.5. The d-point Yukawa function Wd,o(z) satisfies the linear differen-
tial equation of order one,

Θ Wdt0(z) + -ί-Cd(z)Wd,0 = 0 . (10)
a + 1

Proof By 4.5.4(ii), we have

Wd-hl(z)+Wd-i-l9i+ι(z) = 0fσr i = 0 , 1 , . . . , < / . (11)

Therefore, Wdt0(z) = (-iyWd-U. On the other hand, by 4.5.4(iii), we have

θWd-i9i = Wd-i+hi(z)+Wd-ht+ι(z) for z = O , l , . . . , d . (12)

It follows from (11) and (12) that

£ < 9 ^ , o ( z ) = Σ \ - i y ^ - ^ (13)
z=0

Case I. d is odd. Since

Wψψ(z) = 0 (4

we obtain

ΘWψtύ-1(z)=Wψtέ

Using (11) and (13) for k = (d + l)/2, we obtain

ΘWd,0(z)Wd+h0(z)

By 4.5.4(ii) and (iv), this implies Eq. (10) for Wd>0(z).

Case II. d is even. One has
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Using (11) and (13) for k = d/2, we obtain

The latter again implies the same linear differential equation for

Corollary 4.5.6.

Wdj{z) = c0 exp (-j

for some nonzero constant CQ = Wdto(O).

Example 4.5.7. Assume that &> = Θd+X -zP0(Θ) be the M£/-operator corre-
sponding to a 2-term recurrent relation (n-\- l)d+ιan+\ = Po(n)an, where Po(y) —
χ-yd+x _| -τ/hen the Yukawa J-point function Wd,o(z) equals

Wdi0(z) = ^
1 — λz

i.e., Wdio(z) is a rational function in z.

4.6. Multidimensional Picard-Fuchs Differential Systems with a Symmetry Group.
So far we considered only the case of the 1-parameter family of Calabi-Yau J-folds
Vz such that dim F*/Fi+X — 1 for / = 0,..., d. It is easy to see that the same methods
can be applied to the case dim Fι /Fι+ι ^ 1, provided Vz has a large automorphisms
group.

Proposition 4.6.1. Let Vz be a l-parameter family of Calabi-Yau d-folds with
dim Fι/Fι+X ^ 1. Assume that there exists an action of a finite group G on Vz

such that the G-invariant part (Fι/Fι+ι)G is I-dimensional for all i = 0,...,d.
Then the holomorphic differential d-form ω(z) again satisfies the Picard-Fuchs
differential equation of order d + 1.

Proof. The statement immediately follows from the fact that the cohomology
classes of ω(z), Θω(z),...,Θdω(z) form the basis of the G-invariant subspace
Hd(VZ9C)GcHd(VZ9C). D

5. Calabi-Yau Complete Intersections in P^

5. /. Rational Curves and Generalized Hyper geometric Series. Let V be a complete
intersection of r-hypersurfaces F i , . . . , F r of degrees d\,...,dr in P ^ + r . Then V is
a Calabi-Yau d-fold if and only \ϊ d + r+\ = d\Λ V dr. A rational curve
C of degree n in \>d+r has ndt intersection points with a generic hypersurface
Vt. On the other hand, there exists a degeneration of every divisor Fz into the
union of dx hyperplanes. Each of these hyperplanes has n intersection points with
C. This motivates the definition of the corresponding generalized hypergeometric
series Φo(z) as

to(n\y> (n\γ>- • ι ;

The coefficients
(ndιϊ) -(ndr\)

a
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satisfy the recurrent relation

O + i y / + 1α,?+i = P(n)an,

where P(y) is the polynomial of degree d -f 1:

In particular, the leading coefficient of P(y) is / = Π/=i(^) ί / 7

Example 5.1.1. Let V be a complete intersection of two cubics in P 5 . The corre-
sponding generalized hypergeometric series is

This series was found in [28] using the explicit construction of mirrors for V by
orbifolding the 1-parameter family of special complete intersections of two cubics
in P 5 :

by an abelian group G of order 81, where z = (3ι//)~6.
We will give another interpretation of the construction of mirrors V for V

which immediately implies that ΦQ(Z) is the monodromy invariant period for the
regular differential 3-form on V.

Let Z/, ys be the complete intersection of two hypersurfaces in a 5-dimensional

algebraic torus T = Spec [X^1,..., X^ι ] defined by the Laurent polynomials

f\(u9X) = 1 - {u\Xγ + u2X2 + U3X3I '

/ 2 (w,*) - 1 - (w4^4 + u5X5 + M 6 (^, -XsΓ 1)

We define the differential 3-form ω on Z/, /2 as the residue of the rational diίϊerential
5-form on T:

Let z = wi Uβ. By the residue theorem, we obtain

1 1 dXx dX5

J Λ Λ
θ ( Z ) "

In this interpretation, the mirrors for V are smooth Calabi-Yau compactifications
of afΐine 3-folds Z/, /,.

The equivalence between the above two constructions of mirrors for V follows
by the substitution

X4 = Yll{YxY2Y3\ X5 = Yl!{Y\Y2Y3) ,

U[ = ••• = u6 =
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Proposition 5.1.2. The normalized Yukawa d-dijferential for Calabi-Yau complete
intersections has the form

ίY
( l - λ z ) Φ g ( z ) \z) '

where d\,...,di are degrees of hyper surfaces.

Proof T h e s ta tement fol lows from 4.5.7 a n d t h e n o r m a l i z i n g condi t ion d\...dr —
Wd(0). D

5.2. The Construction of Mirrors. Let V be a ^/-dimensional Calabi-Yau complete
intersection of r hypersurfaces of degrees d\,...,dr in Y*d+r. We propose the explicit
construction of candidates for mirrors with respect to V as follows:

Let E = {v\,...9Vd+r+\} be a generating set in the (d -f r)-dimensional lattice

N = Zd+r such that there exists the relation

V\-\ h Vd+r+l = 0 .

We divide E into a disjoint union of r subsets Ej C E such that Card Eι = d\. For
/ = 1,...,r, we define the Laurent polynomial Pf(u,X) in variables X\,...,Xd+r as

= i - Σ ujXΰJ

where wi,...,wί/+r+i are independent parameters. We denote by V a Calabi-
Yau compactification of J-dimensional affine complete intersections Z in
T = SpectA^1,... ,x£r] defined by the polynomials P\(u,X),... ,Pr(u,X) with suf-
ficiently general coefficients u\. It is easy to see that up to an isomorphism the
affine varieties Z c T depend only on z = u\ Ud+r+\ Thus, we have obtained a
1-parameter family of d-dimensional varieties V'.

Conjecture 5.2.1. The 1 -parameter family of d-dimensional varieties V yields the
mirror family for V.

This conjecture is motivated by the combinatorial interpretation proposed in [1]
of the well-known construction of mirrors for hypersurfaces of degree d 4- 2 in
P ί / + 1 (see [17]). On the other hand, the conjecture is supported by the following
property:

Proposition 5.2.2. The hyper geometric series ΦQ{Z) in (14) is the monodromy
invariant period function of the holomorphic d-form ω on V.

Proof The statement follows from the equality

ψjndΛ) jndr\) „ = 1 1 dXx dXd+r

h • • • z ^ . P r { X ) Xι '" Xd+r '

D.
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6. Complete Intersections in Toric Varieties

6.1. The generalized Hypergeometric Series Φo Let TV be a free abelian group of
rank (d + r). Consider r finite sets

consisting of elements vtj G N. Let E be the union E\ U \JEr.
We put k = Card E ~k\ + ... + K and assume that E generates the group N.

Let R{E) be the subgroup in ZM consisting of all integral vectors λ — {λjj} such
that

r kx

Σ ΣhiHj - o.
ι=l j=\

We denote by R+(E) a submonoid in R(E) consisting of all λ — {λij} G R(E) such
that λij ^ 0.

Definition 6.1.1. Let u}j be k independent complex variables parametrized by k
integral vectors Vij. Define the power series Φo(u) as

r ( K

Φo(κ)= Σ Π
/=1

Let λ ^ j . jλ^ be a Z-basis of the lattice R(E) such that every element
λ G R+(E) is a non-negative integral linear combination of λ^ι\ We define new
r complex variables z\,...,zs as follows:

Thus, the series ΦQ(U) can be rewritten as the power series Φo(z) in t variables

Example 6.1.2. Let E — {ui,...,ι^+i} be vectors generating ^/-dimensional lattice
Â  and satisfying the integral relation v\ + + Vd+\ = 0, i.e., the group R(E)
is generated by the vector (1,...,1) G Z^ + 1 . Then the corresponding generalized
hypergeometric series is

where z = u\ - — Ud+\. The integral representation of this series is the mono-
dromy invariant period function for mirrors of hypersurfaces of degree (d -f- 1)
i n P ^ .

Definition 6.1.3. Let T be a (d Λ r)-dimensional algebraic torus with the
Laurent coordinates X = (X\9... ,Xd+r\ We define r Laurent polynomials PEχ (X),
...,PEr(X) as follows:

PE.(X)=l- Σ u*jXΌhl -



514 V.V. Batyrev, D. van Straten

Proposition 6.1.4. The series ΦQ{U) admits the following integral representation

Proof The statement follows immediately from the residue formula. •

6.2. Calabi-Yau Complete Intersections. Let P^ be a quasi-smooth {d + ^-dimen-
sional projective toric variety defined by a (d + r)-dimensional simplicial fan Σ.
Assume that there exist r line bundles J5fi,...,jSfr such that each S£t is generated
by global sections and the tensor product

<=L \ yy vy J-> γ

is isomorphic to the anticanonical bundle on J Γ " 1 on P^. If Vt is the set of zeros
of a generic global section of JS?ί5 then the complete intersection V = V\ Π Π Vr

is a J-dimensional Calabi-Yau variety having only Gorenstein toroidal singularities
which are analytically isomorphic to toric singularities of P j .

Now let E — {v\,...,Vk} be the set of all generators of 1-dimensional cones in
Σ. Denote by Dj the toric divisor on P^ corresponding to Vj. Notice that

Following a suggestion of Yu. I. Manin [30], we assume that one can represent E
as a disjoint union

E=EιU- UEr

such that the line bundle 5£\ is isomorphic to the tensor product

The elements of the group R(E) can be identified with the homology classes of
1-dimensional algebraic cycles on P j . Moreover, one has the following property

Proposition 6.2.1. Let λ = (λ\,..., λk) be an arbitrary element ofR(E) representing
the class of an algebraic 1-cycle C. Then

We can always choose a Z-basis λ^ι\...,λ^ of R(E) such that every effec-
tive algebraic 1-cycle on P^ is a non-negative linear combination of the elements
λ^ι\...,λ^\ Since the submonoid R+(E) consists of classes of nef-curves, this
implies that every element of R+{E) is also a non-negative linear combination of
A(1),..., λ^\ This allows us to rewrite the series ΦQ{U) in t algebraically independent
variables z\,... ,zt (t — rkR(E)).

Corollary 6.2.2. The series ΦQ(Z) can be interpreted via the intersection numbers
of classes [C] of curves C on PΣ as follows:

φ ( z ) _ τ «r1>c»! ((r,,θ)i [C]

έtE) ΨuC)\ -φk,c)\

where z™ = z \ x . . . z c

t , [C] = c λ λ ^ + ••• + c t λ ( t \
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6.3. General Conjectures. Let V be a ^/-dimensional Calabi-Yau complete intersec-
tion of hypersurfaces V\,...9Vr in a (d + r)-dimensional quasi-smooth toric variety
defined by a simplicial fan Σ. Choose a Z-basis /ί ( 1 ),..., j / ^ in R(E) such that the
classes of all effective algebraic 1-cycles have non-negative integral coordinates. We
assume that the divisors V\,...9Vr are numerically effective (in particular, they are
not assumed to be necessary ample divisors). We assume also that the following
conditions are satisfied:

(i) V is smooth;
(ii) the restriction mapping PicPi; -» Pic V is injective.

In this situation, there exist two flat A-model connections: the connection VAP
on H*(PΣ) and the connection VAv on H*(V9C). Let Hl be the image of Hι(PΣ,C)
in Hι(V,C). The connection VAP defines the quantum variation on cohomology of
toric variety P^. It follows from the result in [3] the following.

Proposition 6.3.1. The complex coordinates z\,...,zt on H2 can be identified with
flat coordinates with respect to VAp-

Conjecture 6.3.2. The generalized hypergeometric series Φo(z) as a function of
^Ap-flat z-coordinates on H2 is a solution of the differential system Q) defined
by the A-model connection V Av on H2 which defines the quantum variation of
Hodge structures on the subring in φ f = 0 # 2 z ( Ύ , C ) generated by restrictions of
the classes in PicPr to V.

Remark. 6.3.3. One can check in many examples that the differential system Q)
is already defined by the generalized hypergeometric series ΦQ{Z). Probably there
exists a general explanation of this fact.

Conjecture 6.3.4. The VΆv-flat coordinates qι,...,qt on H2 are defined as

qt = e x p ( Φ f ( z ) / Φ 0 ( z ) ) , i = l , . . . , ί ,

where Φi(z) is a logarithmic solution to the differential system Q) having the form

Φi(z) = (logzt)Φ0(z) + Ψi(z), Ψi(0) = 0

for some regular at z = 0 power series Ψt(z).

Moreover, all coefficients of the expansion ofVAV-flat coordinates qt as power
series of VAp-flat z-coordinates are integers.

Remark. 6.3.5. This conjecture establishes a general method for normalizing the
logarithmic solutions defining the canonical ^-coordinates for the differential system
Q). There are two motivations for this conjecture. First, the conjecture is true for all
already known examples of ^-coordinates for Picard-Fuchs equations corresponding
to Calabi-Yau complete intersections in products of weighted projective spaces (see
examples in the remaining part of the paper). Second, the Lefschetz theorem and
the calculation of the quantum cohomology ring of toric varieties [3] imply the
relation
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Conjecture 6.3.6. Assume that V has dimension 3. Let Kltjtk(z) be structure con-
stants defining the A-model VAV connection in the z-coordinates. Then

Φ2

0(z)KhJ,k(z)

is a rational function in z-coordinates.

Conjecture 6.3.7. The mirror Calabi-Yau varieties with respect to V are Calabi-
Yau compactifications of the complete intersection of the afβne hypersurfaces in
the (d -f- r)-dίmensional algebraic torus T defined by the equations

Remark. 6.3.8. Recall that two Calabi-Yau d-folds V and V are called mir-
ror symmetric if hp>d~p(V) — hd~p>d~p(V) and the superconformal field theories
corresponding to V and V are isomorphic. In [1] a general method for con-
structing pairs of mirror symmetric Calabi-Yau hypersurfaces in toric varieties was
proposed, based on the duality among so-called reflexive polyhedra A and A * (see
also [36,37]). However, the equality hι>ι(Zf) = hd~lΛ(Zg) for the pair of Calabi-
Yau d-folds Zf Zg corresponding to the polyhedra A and A* are not sufficient
to prove the mirror duality between Zf and Zg in full strength. One needs to
prove more: the isomorphism between the quantum cohomology of Zf and Zg.
Since the quantum cohomology is defined by the canonical form of the A-model
connection V^ in ^-coordinates, Conjecture 6.3.2 and Proposition 6.1.4 yield more
evidence for validity of Conjecture 6.3.7. We give below one example showing
that Conjecture 6.3.7 agrees with an orbifold construction of mirrors for complete
intersections in the product of projective spaces inspired by superconformal field
theories.

Example 6.3.9. Let V be a Calabi-Yau complete intersection of two hypersurfaces
of degrees (3,0) and (1,3) in the product P 3 x P 2 .

It is known that the mirrors for V can be obtained by orbifolding the complete
intersection of two special hypersurfaces

sxτ\ + s2τl + s 3 r | - φs4τxτ2τ3,
SJ + Si + S3

3 + Si = ΨS1S2S3

by the group G of order 27, where (S\ : S2 : S3 : S4) and (Tx : T2 : Γ3) are the
homogeneous coordinates on P 3 and P 2 respectively.

On the other hand, the 5-dimensional fan Σ defining P 3 x P 2 has 7 generators
{ι?i,..., Vj} = E satisfying the relations

V\ + V2 + V3 + V6 = V4 + V5 + Vη = 0 .

We choose vectors v\,...,v$ as the basis of the 5-dimensional lattice N. The com-
plete intersection V is defined by dividing E into two subsets E\ = {^1,^2^3} and
E2 = {̂ 4,̂ 5,1̂ 6?̂ 7}. The corresponding polynomials PE^(X) and PE2(X) are

u2X2 + u3X3),

u5x5 + l ι
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We obtain the equivalence between two constructions of mirrors by putting
u\ — ui — W3 = φ~ι,U4 = us — uβ = uη — \j/~ι, and

Λ χ=3l χ=
S4T2T3 ' 2 S4T{T3 ' 3 S4T1T2 '

Y * Y 2

6.4. Calabi-Yau 3-Folds with hι>ι = 1. We consider below examples of general-
ized hypergeometric series corresponding to smooth Calabi-Yau complete intersec-
tions V of r hypersurfaces in a toric variety P^ such that λ l j l ( F ) = 1. By the
Lefschetz theorem, hlyl(J?z) must be also 1. So I is a (r + 3)-dimensional fan
with (r -h 4) generators. There exists the unique primitive integral linear relation
Σhvi — 0 among the generators {VJ} of Σ, i.e., rk R(E) = 1, where E = {vi} is
the whole set of generators of Σ (Card E = r + 4).

In all these examples the M(7-operator 3? has the form

0> = Θ4 - μz(Θ + αi)(Θ + α 2 )(β + α3)(Θ + α 4 ) ,

where the numbers oc\,...,oc4 are positive rationals satisfying the relations

αi + α4 = α2 4- α3 = 1 .

The Yukawa 3-differential in the z-coordinate has the form

(

Example 6.4.1. Hypersurfaces in weighted projective spaces: In this case we obtain
Calabi-Yau hypersurfaces in the following weighted projective spaces P(λ\,...,λ5)

(λu...,λs) ΦQ(Z) W(0) μ (αi,α 2,α 3,α 4)

(1,1,1,1,1) ΣTΊ^Z" 5 5 5 (1/5,2/5,3/5,4/5)
«>o (w !)

(4,1,1,1,1) Σ ,.,W4 , / 2 2 1 8 (1/8,3/8,5/8,7/8)

The ^-expansion of the Yukawa 3-point function and predictions rid for the
number of rational curves on these hypersurfaces were obtained in [33,21,14].
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Example 6A.2. Complete intersections in ordinary projective spaces'. Let Vdu...,dr

denote t h e c o m p l e t e intersect ion of hypersur faces of degrees d\9...,dr.

ΦQ(Z) W(0) μ (αi,α2>#3?#4)

Yv CP5 Σ T ! ^ 2 " 9 3 6 (1/3,1/3,2/3,2/3)
B20 \n->

F2,4cP5 Σ ( 2 "Z ! y ) ! z " 8 2l° (1/4,2/4,2/4,3/4)

K 2 A 3cP 6 Σ ( ( 2 /?ji 3" ) !z" 12 2433 (1/3,1/2,1/2,2/3)

K2,2,2,2CP8 Σ^ττ3-z" 16 28 (1/4,1/4,1/4,1/4)

These Calabi-Yau complete intersections in ordinary projective spaces were con-
sidered by Libgober and Teitelbaum [28].

Example 6.4.3. Complete intersections in weighted projective spaces:

Φp(z) W(Q) μ («i,α2,«3,«4)
0 0 (4n^Ϋ

KM €P(1,1,1,1,2,2) Σ ( w ! ) 4 ( 2 w ! ) 2 z " 4 2 ' 2 (1/4,1/4,3/4,3/4)

F 6 , 6 eP(l, 1,2,2,3,3) Σ^ ^yϊ 1 ^ (1/6,1/6,5/6,5/6)

F 3 ; 4 e P ( l , 1,1,1,1,2) Σ ( w , ) 5 ( 2 w ; ) Z " 6 2 63 3 (1/4,1/3,2/3,3/4)

F 2 , 6 e P ( l , l , l , l , l , 3 ) Σ^g",'̂ " 4 2 83 3 (1/6,1/2,1/2,5/6)

K 4 , 6 e P(l , l , l ,2 ,2 ,3) Σjy^^f 2 2-33 (1/6,1/4,3/4,5/6)

The coefficients of the Yukawa 3-point function Kg for these five examples
of Calabi-Yau 3-folds V having the Hodge number hι> (V) = 1 were obtained by
A. Klemm and S. Theisen [22].

7. Calabi-Yau 3-folds on P 2 x P 2

7.1. The Generalized Hyper geometric Series Φ$. Calabi-Yau 3-folds V in P 2 x P 2

are hypersurfaces of degree (3,3). The homology classes of rational curves on
P 2 x P 2 are parametrized by pairs of integers (/i, h). Let 71,72 be the homology
classes of (l,0)-curves and (0, l)-curves respectively. Then for any Kahler class η



Generalized Hypergeometric Functions and Rational Curves 519

we put

ί - f η ) , ( i = 1 , 2 ) .

The generalized hypergeometric series corresponding to the fan Σ defining
2

g

P 2 x P 2 is

There are obvious two recurrent relations for the coefficients aιhι2 of the series

Φo(zuz2)= Σ ahhz
ι^zli :

- 3/2 + l)(3/i + 3/2 + 2)(3/i + 3/2 •

\ί2 1 ί) β/1,/2 + 1 — WM ' ~*^2 ~r I )\jl\ ~r Ji2 ~r £)\3l\ ~r Jί2 "

L e t
d d

ι d z ι 9 2 2 d z 2 '

Then the function Φo(z\iz2) satisfies the Picard-Fuchs differential system 2\

+ 302 + 1 )(3Θi + 3 0 2 + 2)(36>i + 3 0 2 + 3))Φ0 = 0 ,

+ 3 0 2 + l)(30i + 3 0 2 + 2)(30! + 3 0 2 + 3))Φ0 = 0 .

The differential system 2 has the maximal unipotent monodromy at (Z^Z-L) —
(0,0). There are two uniquely determined regular at (0,0) functions Ψ\(z\,Z2) and
^2,(^1,^2) such that

(\ogz2)Φ0(zuz2)+Ψ2(zuz2)

are solutions to 9, and ^i(0,0) = ^ 2 (0,0) = 0. If we put

Ψj(zuz2)= Σ b%l2z[*z£9

then one finds the coefficients ϋyι from the simple recurrent relations based on

4.3.2.
The ^-coordinates q\,q2 defined by the formulas

q\ = ziexp(ιFi/Φo, ) ,^2 — z2QXp(Ψ2/Φo)

are the power series with integral coefficients in z\,z2 of the form

\

, 7 = 1,2.g/ ( z i , z 2 ) = z 7

By symmetry, one has cγ\ — cf^t .



520 V.V. Batyrev, D. van Straten

7.2. Mirrors and the Discriminant. Let / be the Laurent polynomial

f(x9ύ) = l - uxxx - u2x2 - u3(XιX2y
ι - wΛ - u5x4 - ι

Let 7o be a generator of //4((C*)4,Z), i.e., the cycle defined by the condition
\Xt\ = 1 for / = 1,...,4.

By the residue theorem, the integral

1 1 dX\ dX2 dX3 dX4

is the power series

/(«)= Σ

Thus, putting z\ = u\u2u3\ z2 = u4u^u^ we obtain exactly the generalized hyper-
geometric function ΦQ(Z\,Z2).

It was proved in [1] and [2] that the function I(u) can be considered as the
monodromy invariant period of the holomorphic differential 3-form

1 1 dX\ dX2 dX3 dX4
ω = (^ r-ϊ\4Res77Ϋ\ΊΓ Λ ΊΓ Λ ΊΓ Λ ΊΓ

ylTly—Y) J \Λ ) Λ2 -Λ-2 Λ3 Λ4

for the family of Calabi-Yau 3-folds Z/ which are smooth compactifications of

the affine hypersurfaces Z/ in (C*)4 defined by Laurent polynomial / . One has

hl'l(Zf) = 83, h2>ι(Zf) = 2. The coordinates z\,z2 are natural coordinates on the

moduli space of Calabi-Yau 3-folds Z/ .
The mirror construction helps to understand the discriminant of the differential

system S as a polynomial function in z\,z2.
By definition [16], the zeros of the discriminant are exactly those values of the

coefficients {uι} of f(X) such that the system

P P Λ P

f(X)=XlΊ—

has a solution in the toric variety P^, where A is the Newton polyhedron of / .

Since P^ is isomorphic to the subvariety of P 6 defined as

P 4 = {(y0 : ... : Ye) e P6 |Γ0

3 = YχY2Y3Jl = Y^sYe} ,

or equivalently, the system of the homogeneous equations

UQYO -f 4- uβYβ — u\ Y\ — ι/3Y3

= u2Y2 - U3Y3 = U4Y4 - u6Y6 = u5Y5 - u6Y6 = 0

^0 — Y1Y2Y3 — ^4 ^5^6

has a non-zero solution.
If we put

A = U3Y3, B = u6Y6, C = u0Y0 ,
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then the last system can be rewritten as

3A + 3B + C = A3 + z{C
3 = B3 + z2C

3 = 0 .

So the discriminant of the two-parameter family is the resultant of two binary
homogeneous cubic equations in A and B:

2Ίzx(A + B)3 - A3 = 0, 2Ίz2(A + B)3 - B3 = 0 .

Put 27zi = x, 27z2 = 7.

Proposition 7.2.1. The discriminant of the 2-parameter family of Calabi-Yau 3-
folds Zf is

Disc / = 1 - (x + y) + 3(x2 - 7x.y + / ) - (x3 + 3x2>> + 3x/ + / ) .

7.3. The Diagonal One-Parameter Subfamily. We consider the diagonal one-
parameter subfamily of Kahler structures η on V which are invariant under the
natural involution of Hι>ι(V), i.e., we assume that

y\ Ίi

This is equivalent to the substitution z — z\ — z2.

Remark. 7.3.1. In this case we obtain the one-parameter family of mirrors

J ψ\Λ ) — Λ I T Λ.2 "T \A\Λ.2 ) -ή- ΛT, ~T~ Λ.4 ~Γ yΛ.iΛ^) — όψ — U, ψ — yZ IZ) ,

which is an analog to mirrors of quintic 3-folds [9].
It is easy to check that the discriminant of fψ(X) vanishes exactly when \j/ —

α + β, where α3 = β3 = 1, i.e., φ3 e {8,-1}, or z e {-(3)-3,(2 3)~3}.
The monodromy invariant period function is

F0(z) = Φ0(z,z) = Σ ( Σ alyZiy) z"

It satisfies an ordinary Picard-Fuchs differential equation

/ 3 \ g

2 : ί Θ4 + Σ Q(zW I F(z) = °? Θ =z— .

We compute the Picard-Fuchs differential equation S for F0(z) from the recur-
rent formula for the coefficients

a"

in the power expansion

n>0
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Proposition 7.3.2 ([40]). Let

Then the numbers bn satisfy the recurrent relation

(n + \fbn+x = (In1 + 7n + 2)bn + 8w26π_i .

Corollary 7.3.3. The numbers an satisfy the recurrent relation

(n + 1 fan+ι = 3(1 n2 + Ίn + 2)(3/ι + 2)(3/ι + 1K

Corollary 7.3.4. The monodromy invariant period function Fo(y) is annihilated by
the differential operator 0>:

Θ4 - 3z(7Θ2 + ΊΘ + 2)(3<9 + 1)(3Θ + 2)

-Ί2z2(3Θ + 5)(30 + 4)(3© + 2)(3Θ + 1).

The last operator can be rewritten also as

(1 - 216z)(l + 27z)Θ4 - 54z(7 + 432z)<93 - 3z(10584z + 95)<92

-48z(351z + 2)Θ - Uz - 2880z2 .

In particular, one has the coefficient

-54z(7 + 432z)
C3(z) =

(1 - 2 1 6 z ) ( l + 2 7 z )

The z-normalized Yukawa coupling K\ ' is the solution to the differential equa-
tion

dKJ3)

 = 27(7 + 432z) ( 3 )

dz ( l - 2 1 6 z ) ( l + 2 7 z ) z '

Let H be the cohomology class in H2(V,Σ) such that (//,yi) = (#,72) — l
Since //3 = 18, we obtain the normalization condition

= 18.

Applying the general algorithm in 4.3.3, we find the ^-expansion of the z-
coordinate

z(q) = q - 4Sq2 - ISq3 + 7976#4 - 16971 \5q5 + Θ(q6) ,

and the ^-expansion of the ^-normalized Yukawa coupling is

K™ = 18 + 378^ + 69498^2 + 7724862^3 -f 1030043898#4

+ 1 3 2 0 8 2 0 9 0 1 2 8 ^ 5 6

We expect that
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where n^ are predictions for numbers rational curves of degree d relative to the
ample divisor of type (1,1) on V. In particular, one has n\ = 378.

7.4. Lines on a Generic Calabi-Yau 3-Fold in P 2 x P 2 . We show how to check
the prediction for the number of lines on a generic Calabi-Yau 3-fold in P 2 x P 2 .

First we formulate one lemma which will be useful in the sequel.

Lemma 7.4.1. Let M be a complete algebraic variety, S£\ and 5£ι two invertible
sheaves on M such that the projectίvizations P ( i ^ ) = P(//°(M, =£?;))(/ = 1,2) are
nonempty. Define the morphism

Pλ : P ( ^ 0 x P( i? 2 ) -+ P(JS?! ® JS?2) =

by the natural mapping

Then the pullback p*&(\) of the ample generator Θ{\) of the Picard group of
P(if i 0 JS?2) is isomorphic to 0(1,1) on P(J£?i) x P(i?2).

Proof The statement follows immediately from the fact that λ is bilinear. •

Proposition 7.4.2. A generic Calabi-Yau hyper surface in P 2 x P 2 contains 378
lines relative to the Θ(\,\)-polarization.

Proof There are two possibilities for the type of lines: (1,0) and (0,1). By sym-
metry, it is sufficient to consider only (l,0)-lines whose projections on the second
factor in P 2 x P 2 are points. Let

π2 : V -> P 2

be the projection of V on the second factor. Then for every point p e P 2 the fiber

is a cubic in P 2 x p. We want to calculate the number of those fibers

which are unions of a line L and a conic Q in P 2 x p. The space of

the reducible cubics L U Q is isomorphic to the image A C P 9 = P(0P2(3)) of the
morphism

P(0p2(l)) x P(0p2(2))) = P 2 x P 5 -> P 9 - P(0p2(3)).

By 7.4.1, A has codimension 2 and degree 21.
On the other hand, a generic Calabi-Yau hypersurface V defines a generic

Veronese embedding

φ : P 2 ^ P 9 = p ( ^ p 2 ( 3 ) ) , φ(p) = π-\p).

The degree of the image φ(P2) is 9. The number of (l,0)-lines is the intersection
number of two subvarieties φ(P2) and A in P 9 , i.e., 9 x 21 = 189. Thus, the total
amount of lines is 2 x 189 = 378 Q

8. Further Examples

In this section we consider more examples of Calabi-Yau 3-folds V obtained as
complete intersections in the product of projective spaces. In all these examples
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for simplicity we restrict ourselves to one-parameter subfamilies invariant under
permutations of factors. The latter allows to apply the Picard-Fuchs operators of
order 4 to the calculation of predictions for numbers of rational curves on Calabi-
Yau 3-folds with hι>{ > 1.

8.1. Calabi-Yau 3-folds in P 1 x P 1 x P 1 x P 1 . We consider the diagonal subfamily
of Kahler classes on Calabi-Yau hypersurfaces of degree (1,1,1,1) in ( P 1 ) 4 . Re-
peating the same procedure as for hypersurfaces of degree (3,3) in P 2 x P 2 , we
obtain:

Θ4 - 4z(5<92 + 5Θ + 2)(2Θ + I) 2 + 64z2(26> + 3)(20 + 1)(2<9 + 2)2

48

(1-64z)( l - 16z)

K{q] 48 + 192^-h 7872#2 + 278400#3 + 9445056#4 + 315072192#5 + Θ(q6)

Hi nx = 192, n2 = 960, n3 = 10304, n4 = 147456, n5 = 2520576

Proposition 8.1.1. The number of lines on a generic Calabi-Yau hypersurface in
P 1 x P 1 x P 1 x P 1 relative to the (1,1, l,l)-polarization is equal to 192.

Proof. Let / be the polynomial of degree (2,2,2,2) defining a Calabi-Yau hyper-
surface V in ( P 1 ) 4 . If V contains a (0,0,0, l)-curve whose projection on the product
of the first three P 1 is a point (pupiiPi)* m e n aU three coefficients of the binary
quadric obtained from / by substitution of (p\,P2,P3) must vanish. Hence, the
number of (0,0,0,1) curves on V equals the intersection number of 3 hypersurfaces
of degree (2,2,2) in P 1 x P 1 x P 1 . This number is 48. By symmetry, the total
amount of lines on V is 4 x 48 = 192. D.

Proposition 8.1.2. The number of conies on a generic Calabi-Yau hypersurface in

P 1 x P 1 x P 1 x P 1 with respect to the (1,1, \,\)-polarization is equal to 960.

Proof By symmetry, it is sufficient to compute the number of rational curves of
type (0,0,1,1). Let M be the product of first two P 1 in (P 1 ) 4 . Then we obtain the
natural embedding

On the other hand, the points on M corresponding to projections of (0,0,1,1 )-curves
on V are intersections of φ(M) with the 6-dimensional subvariety A C P 8 which
is the image of the morphism

φ' : P(<Pr, x p l ( l , l ) ) 2 = P 3 x P 3 -> P 8 = P(0 P , x P , (2 ,2))

The image φ{M) has degree 8. On the other hand, φ has degree two onto its image.
Hence, the subvariety A has degree 10. Hence, we obtain 8 x 20 = 160 points on
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M. There are 6 possibilities for the choice of the type of conies. Thus, the total
amount of conies is 6 x 160 = 960.

8.2. Complete Intersections of Three Hyper surfaces in P 2 x P 2 x P 2 . We consider
two examples of 3-dimensional complete intersections with trivial canonical class
in (P 2) 3.

Calabi-Yau complete intersections of 3 hypersurfaces of degree (1,1,1):

9 256>4 - 15z(5 + 306) + Ί2Θ2 + 846)3 + 516>4)
+6z2(15 + 1556> + 5416)2 + 8286)3 + 5316>4)

-54z 3(l 170 + 37956) + 43996)2 + 21606)3 + 4236)4)
+243z4(402 + 1586Θ + 22706)2 + 13686)3

+2796) 4 )-59049z 5 (6)+l) 4

( 3 ) 90+162z

(27z- I)(27z2 + 1)

90 + 108? + 2916#2 + 57456#3 + 834084#4 + 13743108?5 4- Θ(qβ)

m - 108, n2 - 351, n3 = 2124, n4 = 12987, n5 = 109944

Proposition 8.2.1. A generic complete intersection of 3 hypersurfaces of degree

( l , l , l ) i π P 2 x P 2 x P 2 contains 108 lines relative to the 0(1,1, \ypolarization.

Proof Let V be the complete intersection of three generic hypersurfaces V\,V2, V3
in Mi x M2 x M3, where M ^ P 2 .

By symmetry, it is sufficient to consider lines having the class (0,0,1) whose
projections on M\ x M2 are points. There is the morphism

φ : Mi x M2 -> P 8 = P ( £ ) ,

where is is the space of all 3 x 3-matrices. By definition, φ maps a point {p\, pi) G
Mi x M2 to the matrix of coefficients of three linear forms obtained from the
substitution of p\ and p2 in the equations of V\,V2, and F3. The morphism φ
is the Segre embedding and its image has degree 6. On the other hand, if a
point (p\,p2) £ Mi x M2 is a projection of a (0,0,1 )-curve on V, then the im-
age φ(p\,p2) must correspond to a matrix of rank 1 in E. Thus, the number of
(0,0,1 )-curves equals 6 x 6 = 36, the intersection number of two Segre subvarieties
in P 8 . So the number of lines on V is 3 x 36 = 108. D

Abelian 3-folds: The complete intersection of three hypersurfaces of degrees (3,0,0),
(0,3,0), (0,0,3) are abelian 3-folds constructed by taking products of 3 elliptic cu-
bic curves in P 2 . Although abelian varieties are not Calabi-Yau manifolds from
the view-point of algebraic geometers, these manifolds also present interest for
physicists.
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v Λ(3j>)!)3((3g)!)3((3r)!)3

+8 Iz2(27<92 + 540 + 40)(6> + 1 )2

-2187z3(36> + 5)(36> + 4)(Θ + 2)(Θ + 1)

K^ 162

Thus, we obtain that all Gromov-Witten invariants for the abelian 3-folds are zero
which agrees with the fact that there are no rational curves on abelian varieties.

8.3. Calabi-Yau 3-Folds in P3 x P3.
Complete intersections of a hypersurface of degree (2,2) and 2 copies of

hypersurfaces of degree (1,1):

n=0\k+m=n

- 4z(3<92 + Θ + 1)(2© + I) 2 - 4z2(46) + 5)

1°1
16z)(l-64z)

40 + lβθq
4 #5 +

40 + lβθq + 12640^ + 39

-h 17420640^4 + 662416160#5

= 160, n2 = 1560, π3 = 14560, n4 = 272000, n5 = 5299328

Proposition 8.3.1. The number of lines on a generic complete intersection of a
hypersurface of degree (2,2) and 2 copies of hypersurfaces of degree (1,1) is
equal to 160.

Proof Let W = Gr(2,4) x P 3 be the 7-dimensional variety parametrizing all
(l,0)-lines on P 3 x P 3 . Let $ be the tautological rank-2 locally free sheaf on
Gr(2,4). We put cχ(δ) = cu c2{S) = c2, and h be the first Chern class of the
ample generator H of Pic(P3). Let S2{$) be the 2n d symmetric power of δ. By
standard arguments, we obtain:

Lemma 8.3.2. The Chern classes c\, c2 generate the cohomology ring of Gr{2,4).
The elements 1, c\, c2, c

2, c\c2, c\c2 form a Z-basis of H*(Gr(29 4),Z), and one
has the following:

c* = cj= c2, c\ = 2cλc2 ,

cx{S\δ)) = 3cu c2(S\£)) = 2c\ + 4c2, c^S2{S)) = 4cλc2 .
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Moreover, for any invertitle sheaf ^ on P3, one has

c2(S2(δ) 0 JS?) = 2c\ + Ac\ + 2

c3(S2(<ί) (8) i f ) = 4 C l c 2 + d(J2?)(2c? + 4c2)

Then the number of (l,0)-lines equals the following product in the cohomology
ring of W\

= (A2 + ciA + c2)
2(8A3 + 3d Ah2 + 2(c2 + 2c2) 2A + 4cic2)

O(H)) c2(δ 0 0(//)) C3(52((T) 0 Θ(2H))
2

4- 4(c? + 2c2)
2/z3 + 24cfeλ3 + 8 φ 3 )

= (8 + 4 x 10 + 24 + 8)c?c2A
3 = 80c?c2A

3 .

Thus, the number of (Γ,0)-lines is 80. By symmetry, the total amount of lines
is 160. D

Complete intersections of hypersurfaces of degrees (1,1), (1,2) and (2,1):

_, (2k + m)\(k + 2m)\((k + m)\)\
 n

U (k\)\m\f )
Z

0> 5290
4
 - 23z(92 + 6210 + 16440

2
 + 2O460

3
 -f 9210

4
)

-z
2
(221168 + 10335280 + 17726730

2
 + 13285840

3
 + 38O8510

4
)

-2z
3
(-27232 + 2089320 + 1O287910

2
 -f 131O1720

3
 + 4758610

4
)

-68z
4
(-976 - 16640 + 51390

2
 + 14O2O0

3
 + 88730

4
)

+6936z
5
(30 + 4)(30 + 2)(0 -h I)

2

K
(3) 46 + 68z

(54z- l)(z
2
- llz- 1)

46 + 160^ + 9416#
2
 + 251530^

3
 + 9120968^

4
 + 289172660#

5
 + O(q

6
)

n
x
 = 160, n

2
 = 1157, n

3
 = 9310, n

4
 = 142368, n

5
 = 2313380

Proposition 8.3.3. The number of lines on a generic complete intersection of
hypersurfaces of degrees (2,1), (1,2), and (1,1) is equal to 160.

Proof We use the same notations as in 8.3.1. The number of (l,0)-lines equals the
following product in the cohomology ring of W:

Θ(H)) c2(δ 0 0(2//)) csOSV) 0 Θ(H))

= (A2 + ciA + c2) (4/z2 + 2cxh -I- c2) (A3 + 3ciA2 + 2(c2 + 2c2)h + 4cic2)

= (24c2c2 + 2(5c2 + 2c2)(2c2 + c2) + 9c2c2 -f c^)A3

= (24 + 2(5 + 10 + 4 + 4) + 9 + l)c?c2A
3 - 80c2c2A

3 .
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Thus, the number of (l,0)-lines is 80. By symmetry, the total amount of lines
is 160. D

Hypersurfaces in product of two Del Pezzo surfaces of degree 3:
A Calabi-Yau hypersurface in product of two Del Pezzo surfaces of degree 3

is a complete intersections of (1,1), (3,0) and (0,3)-hypersurfaces in P 3 x P 3 .

Θ4 - 3z(4 + 23β + 5302 -f 60<93 + 4804)
+9z2(304 + 13440 + 231902 + 198O03 + 873<94)

3 2 3 4
( )

-162z3(800 + 33480 + 52596>2 + 388803 + 1269Θ4)
-f 2916z4(688 + 29520 + 465302 + 324O03 -f 891Θ4)

-1417176z5(30 + 4)(30 + 2)(0 + I)2

54-972z

(1 -54z)(l -27z)
2

54 + \62q + 7290#
2
 + 119232#

3
 + 30451\Aq

4
 + 798459 \2q

5
 + O(q

6
)

n
x
 = 162, n

2
 = 891, n

3
 - 4410, n

4
 = 47466, n

5
 = 638766

Proposition 8.3.4. Le/ 5Ί, ̂ 2 te two Del Pezzo surfaces of degree 3. Then the
number of lines on a generic Calabi-Yau hypersurface V in S\ x S2 is 162.

Proof If C is a line of type (1,0) on S\ x £2, then n\(C) is one of 27 lines on S\,
and %i(C) is a point on S2- Let ΘSί(—K) denotes the anticanonical bundle over St.
Then the zero set of a generic global section s of n\ΘSχ{—K) (g> π|^ 2 (—^Γ) defines
a morphism

On the other hand, for any line L G S\,' one has the linear embedding

f : V(G)Sι(-K -L)) S P1 c_ P3 =

The intersection number of Im </) and Im φ' in P 3 equals 3, i.e., one has exactly
3 lines C on a generic F such that π ^ C ) = Z, and π 2(C) is a point on #2. Thus,
there are 3 x 27 = 81 lines of type (1,0) on V. By symmetry, the total amount of
lines is 162. D

Proposition 8.3.5. Let S\, S2 be two Del Pezzo surfaces of degree 3. Then the
number of conies on a generic Calabi-Yau hypersurface V in S\ x S2 is 891.

Proof If C is a conic of type (1,1) on S\ x S2, then L\ = n\(C) is one of 27 lines
on «SΊ, and L2 — π2(C) is one of 27 lines on S2. On the other hand, for any pair of
lines L\ e S\,L2 e S2, the intersection of the product L\ x L2 C S\ x ^2 with V is a
conic of type (1,1). So we obtain 27 x 27 = 729 conies of type (1,1) on V. On the
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other hand, the number of (2,0) and (0,2) conies obviously equals the number of
(1,0) and (0,1) lines. Thus, the total number of conies is equal to 729+162
= 891. D

8.4. Calabί-Yau 3-Folds in P 4 x P 4 .
Complete intersection of hypersurfaces of degrees (2,0), (0,2) , and 3 copies of

hypersurfaces of degree (1,1):

m)\

25<94 - 20z(5 + 306) + Ί2Θ2 + 846>3 + 366>4)
-16z 2 (-35 - 700 + 71<92 + 268<93 + 181<94)
+256z3(<9 + 1)(165 + 375(9 + 248<92 + 37<93)

+ 1024z4(59 + 2320 + 331Θ2 + 198<93 + 390 4 ) + 32768z5(<9 + I ) 4

80+128z

4z)(l -32z)

80 + 128^ + 3776^2 -f 65Ί92q2 -f 1299136^4 + 23104128^5 + O(q6)

nλ = 128, n2 = 456, n3 = 2432, n4 = 20240, n5 = 184832

Proposition 8.4.1. The number of lines on a generic complete intersection of
hypersurfaces of degrees (2,0), (0,2), and 3 copies of hypersurfaces of degree
(1,1) is equal to 128.

Proof Let W = Gr(2, 5) x P 4 be the 10-dimensional variety parametrizing all
(l,0)-lines on P 4 x P 4 . Let $ be the tautological rank-2 locally free sheaf on
Gr(2,5). We put c\(δ) = c\, c2{δ) = c2, and h be the first Chern class of the
ample generator H of Pic(P4). Let S2($) be the 2n d symmetric power of $. Again,
by standard arguments, we obtain:

Lemma 8.4.2. The Chern classes c\, c2 generate the cohomology ring o/Gr(2,5).
The elements 1, c\, c2, c2, c\c2, c\, c2c2, c\, c\c\ + c\ form a Z-basis of H*
(Gr(2, 5),Z), and satisfy the following relations:

c\c\ = 2c\ c\ = 5ccj c\ = 5c2cjc\c2 = 2c\c\ = 2c\, c\ = 5cιcj, c\ = 5c2cj = 5c3, c\c2 =

Then the number of (l,0)-lίnes equals the following product in the cohomology
ring of W:

= (2A) (h2 + cih + c2γ • (4c,c2) = 64c\c2

2h
A .

Thus, the number of (l,0)-lines is 64. By symmetry, the total amount of lines
is 128. D
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Complete intersection of 5 hypersurfaces of degree (1,1):

Σ Σ

4- 286<93 4- 155<94)
-z2(15736 + 660940 + 102261Θ2 4- 680044Θ3 + 161O504)

+8z3(476 4- 37590 + 9071Θ2 4- 8589<93 4- 2625<94)
-16z4(184 4- 8060 + 1439<92 + 126603 + 465<94) 4- 512z5(<9 4- 1 )4

( 3 ) 70-40z

( 3 2 z - l ) ( z 2 - l l z - 1 )

Kq(q) = 70 + 100^ + 5300g2 + 79750^3 + 1966900#4

5 6

= 100, Λ2 = 650, w3 - 2950, n4 = 30650, n5 = 297150

Proposition 8.4.3. ^ generic complete intersection of generic 5 hypersurfaces of
degree (1, 1) *'« P 4 x P 4 contains 100 ftwey.

We give below two different proofs of the statement.

I: We keep the notation from the proof of 8.4.1. Then the number of (l,0)-lines
equals the following product in the cohomology ring of W\

(cxh + c2)65 + 5(cxh + c2)64/*2 + lOfaλ + c2fhh
4

- ( 5 x 2 4 - 5 x 6 +

Thus, the number of (l,0)-lines is 50. By symmetry, the total amount of lines
is 100.

II: Let M = M\ x M2, where Mz = P4(/ — 1,2). By symmetry, we consider only
lines of type (0,1) whose projections on M\ are points. The substitution of a point
p G M\ in the equations of the hypersurfaces H\,...,Hs C M gives 5 linear forms
/i , . . . , /5 in homogeneous coordinates on M2. A point p e M\ is a projection
of a (0,l)-line on H\Γ)...ΠH$ if the system of linear forms has rank 3. The
space of 5 copies of linear forms can be identified with the space L of matrices
5 x 5 . We are interested in the determinantal sub variety D in P 2 4 consisting of
matrices of rank ^ 3. The subvariety D has the codimension 4, the ideal of D is
generated by all 4 x 4 minors. Using the free graded resolution of the homogeneous
coordinate ring of D as a module over the homogeneous coordinate ring of P 2 4 ,
we can compute the degree of D which is equal to 50 (The Hilbert-Poincare series
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equals (1 + At + 10ί2 + 20ί3 + 10ί4 + At5 + tβ)/(l - t)21). On the other hand, the
equations of generic hypersurfaces H\,..., H5 define a generic embedding

of P 4 as a linear subspace. So the number of lines of type (0,1) on a generic
complete intersection is 50. Thus, the total number of lines is 100. D

Hypersurfaces in product of two Del Pezzo surfaces of degree 4:
A Calabi-Yau hypersurface in the product of two Del Pezzo surfaces of degree 4

is a complete intersection of 5 hypersurfaces in P 4 x P 4 : two copies of type
(2,0), two copies of type (0,2), and one copy of type (1,1).

M Σ

9Θ4 - 12z(6 + 330 + 73<92 + 80<93 4- 64<94)
+ 128z2(75 + 3150 + 521Θ1 -f 4406>3 + 194<94)
-4096z3(66 + 261Θ + 397<92 + 288<93 + 94<94)

+ 131072z4(19 + 11Θ + U1Θ2 + 80<93 + 22β 4 ) - 8388608z5(<9 + 1 )4

96-1024z

(1 -32z)(l - 16z)
2

96 + 128^ + 3456^
2
 + 38144^

3
 + 512S00q

4
 + 9344128g

5
 + O(q

6
)

n
x
 = 128, n

2
 = 416, n

3
 = 1408, n

4
 = 8896, n

5
 = 74752

Proposition 8.4.4. Let S\, S2 be two Del Pezzo surfaces of degree 4. Then the
number of lines on a generic Calabi-Yau hypersurface V in S\ x S2 is 128.

Proof If C is a line of type (1,0) on S\ x S2, then %\{C) is one of 16 lines on S\,
and 7t2(C) is a point on S2. Let ΘsΊ{—K) denotes the anticanonical bundle over Sj.
Then the zero set of a generic global section s of n\GSλ{—K) 0 πlΘSl(—K) defines
a morphism

4

On the other hand, for any line L G S\9 one has the linear embedding

φ' : P(ΘS](-K-L)) * P2 *-+ P4 - P(φ5l(

The intersection number of Im φ and Im <// in P 3 equals 4, i.e., one has exactly
4 lines C on a generic V such that πi(C) = L and π 2(C) is a point on 52. Thus,
there are 4 x 16 = 64 lines of type (1,0) on V. By symmetry, the total amount of
lines is 128. D

Proposition 8.4.5. Let S\> S2 be two Del Pezzo surfaces of degree 3. Then the
number of conies on a generic Calabi-Yau hypersurface V in S\ x £2 is 416.

Proof If C is a conic of type (1,1) on S\ x S2, then L\ = π\(C) is one of 16 lines
on S\, and L2 = πι(C) is one of 16 lines on S2. On the other hand, for any pair of
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lines L\ G Si,, L2 E S2, the intersection of the product L\ x L2 C S\ x S2 with V is

a conic of type (1,1). So we obtain 16 x 16 = 256 conies of type (1,1) on V.

In order to compute the number of (2,0)-conics, we notice that S\ has exactly

10 conic bundle structures. Moreover, these conic bundle structures can be divided

into 5 pairs such that the union of degenerate fibers of each pair is the set of all

16 lines on S\. A generic global section s of π\Θsλ(—K) <g> π | ^ 2 ( — K ) defines the

anticanonical embedding

On the other hand, the points p e S2 such that φ(p) splits into the union of

two conies C\ U C2 are exactly intersection points of φ{S2) and the image of the

embedding

φ' : P(0 S l (CO x ΘS](C2) * P 1 x P 1 -> P 4 = P(ΘS](-K)) .

Since the image of φ' has degree 2, we obtain 8 points p e S2. Each such a point

yields 2 conies on π^ip). Therefore, for each of 5 pairs of conic bundle structures

we have 16 (2,0)-conics.

Thus, the total number of conies is equal to 256 + 2 x 8 0 = 416. D
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