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Abstract: It is shown that there is a critical value of the Chern—Simons coupling
parameter so that, below the value, there exists self-dual doubly periodic vortex
solutions, and, above the value, the vortices are absent. Solutions of such a nature
indicate the existence of dyon condensates carrying quantized electric and magnetic
charges.

1. Introduction

In this paper, we shall concentrate on a mathematically simplified anyon model
known as the Abelian Chern—Simons Higgs model in which the Yang-Mills or
the Maxwell field term is dropped and the Higgs potential takes a specific form.
The dominance of the Chern—Simons gauge field gives rise to both electrically and
magnetically charged vortices known as dyons. In the recent work [HKP, JW], it
is found that there exists a self-dual structure so that the model permits a class of
topological multivortex solutions with quantized charges similar to the solutions in
the Abelian Higgs equations [JT, T1, T2] and a class of nontopological solutions
carrying fractional values of charges [CHMcY, JLW, SY1]. This raises hope to
establish the existence of condensates or periodic multivortices in the model. In this
paper, we will present such a result. Note that the vortex condensation phenomenon
in a gauged nonlinear Schrodinger equation has been established in [O]. There
some evidence, which is consistent with our result here, is also given that there
may exist periodic multivortices in the full self-dual Chern—Simons Higgs model
when the basic lattice cell is sufficiently large so that its approximation by the
gauged Schrddinger equation becomes effective.

In our problem, the self-duality condition requires the specific assumption that
the Higgs potential be of a ¢° type which limits, of course, the applicability of the
theory to general situations. On the other hand, however, the mathematics here is
certainly richer than the classical self-dual Abelian Higgs model where the potential
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function is of a ¢* type. In the Chern—-Simons model the topological solutions
[SY2] asymptotically recover the solutions in the Abelian Higgs model. Besides,
nontopological solutions, which are absent in the Abelian Higgs case, are present in
the Chern—Simons case and give rise to fractional values of electric and magnetic
charges and a continuous spectrum of energies.

In its full setting, the equations of motion of the anyon model assumes a diffi-
cult form. However, it may be useful to mention that there has been considerable
attention on the model recently (see [FM1, FM2] and references therein). Mathemat-
ically, the anyon model is a classical field theory defined on the (2+1)-dimensional
Minkowski space R?>! and contains the coupling of the scalar fields and the Yang—
Mills and Chern—Simons gauge fields. The condensate solutions have been discussed
by many people (see [CH, H, IL, P, RSS]) and it is believed that these solutions are
relevant to various important issues in theoretical physics such as high-temperature
superconductivity and the quantum Hall effect. Therefore it is of interest to pursue a
mathematical study of the existence of the condensates or stationary periodic vortices
in the anyon model, or sometimes, its simplifications such as the one studied here.

An interesting connection may be made of our problem with Abrikosov’s mixed
states [Ab] in a type-II superconductor, also known as condensates, whose existence
is due to a sublevel magnetic excitation. There the excited state always exhibits a
lattice type periodic structure so that the total magnetic flux through a basic cell
can only assume a few selected values related to the local defects. These defects
are represented by the zeros of the order parameter and are indications of a partial
destruction of superconductivity. The order parameter is just the Higgs scalar and
the quantized flux is characterized by the winding number of the scalar field around
the boundary of a lattice cell. In fact, the winding number is actually related to
the number of algebraic zeros of the field confined in the interior of the cell. It is
already known that, in the self-dual coupling, such a picture may be realized exactly
and the number of zeros of the Higgs field or the vortex number for a solution in
a periodic region is bounded from above by a threshold depending on the size of
the region [WY], but independent of the locations of the vortices. Our analysis in
the Chern—Simons case here seems to indicate that a similar threshold depends on
these locations.

Here is an outline of the contents of the paper to follow. In the next section, we
derive the governing self-dual equations for the Chern—Simons vortices in a periodic
region using the method of [JW] and the ’t Hooft periodic boundary condition
[’t H]. We then state our existence theorem. In Sect.3, we use a sub/super solution
technique to construct the solutions of the underlying elliptic equation. In Sect.4,
we sketch an alternative variational approach to the problem.

2. Periodic Multivortices
We adapt the notation in [JW]. The (2+41)-dimensional Minkowski spacetime metric

is diag(1,—1,—1) which will be used to raise or lower indices. The Lagrangian
action density of the Chern—Simons Higgs theory is

% = DD ) + P Ay, ~ V(1)

where D, = 0, —id,,A4, is a 3-vector field called the Chern—Simons gauge field,
¢ a complex scalar field called the Higgs field, F,p = 0.4p — OpAy, o, By, 00 =
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0,1,2,x > 0 the coupling parameter, &’ totally skew-symmetric with &

and V' the Higgs potential function.
The Euler-Lagrange equations associated with the action density % are

SKeVEy, = = i($ID*9)" — ¢"[D*))
DD =~k (1

where j* = (p,j) is the conserved matter current density and F); the magnetic field.
In the self-dual model [HKP, JW], the potential function takes the triple-well form

V(9 = 19P( ~ 627

In the rest of the paper, we shall always observe this assumption.

We are to look for stationary solutions of the Chern—Simons equations (1) over
a periodic cell with a gauge-periodic boundary condition to be specified later. Since
the o = 0 component of the first equation in (1) reads

kFia = J° = p = =240l¢[, )
the magnetic flux @ and the electric charge Q are related by the equation
k@ =K [Fpdx = [pdx =0 . 3)
On the other hand, it is straightforward to see that the energy-momentum tensor
of ¥ is given by
Ty = 2Re{(Dd)" (D)} = guwl(Dy)(D"$)* — V(|9])] -
Thus the energy density & = T is written in view of (2) in the form

,_ K Fh 2y 2 242
&=—" 2+|D§b| 2|¢|(1_|¢|)3 (4)
4 ¢l
where j = 1,2.
In order to introduce a suitable periodic boundary condition, we recall the gauge-
symmetry of ¥ given by the general expressions

d) = ¢e1w’ Au = Au + ayw 5

Since we are interested in stationary field configurations, the above gauge-symmetry

becomes '
b= ¢, Ao Ao, Aj— A;+ 00, (%)

where w is a real-valued function of the spatial coordinates x; (j = 1,2) only.
We are now ready to examine the 't Hooft boundary condition.
Consider a basic lattice cell Q in R? generated by independent vectors a' and a*:

{x—(X],XQ)ER | x = s1a' +s50d%, 0 < 51,5, < 1}.

Define
IF=xeR |x=5d, 0<s <1}, k=12.

Then the boundary of  is given by
Q=r'ur*u{a +r’yu{a® +r'yu{o,d',d e +a*} .
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In view of the gauge transformation (5), we impose the following ’t Hooft
boundary condition on £:

exp(ic(x + d*))p(x + a*) = exp(i&k(x))p(x) ,
Ao(x +d*) = Ao(x) ,
(4) + 0,8 +d*) = (45 + 0;80(x) (6)
xer'urr-rk k=12,
where &1, ¢, are real-valued smooth functions defined in a neighborhood of I'? U
{a' +1?}, " U {a? + I'"'}, respectively.

It will be more convenient to denote the value of a function ¢ at a point x =
sia' + s,a° € Q by &(s1,57). Since ¢ is a single-valued complex function, its phase
change around @ can only be a multiple of 2z. Thus, the boundary condition (6)
leads to the equation

(1L, 17) = &i(1,07) + £(0,07) — £1(0,17)
+ 607, 1) = &7, 1) + &(17,0) = &(07,0) + 22N =0, (7)
for some integer N. As a consequence of (6)—(7), we obtain

@ = [Fidx = [A;dx; = 27N , (8)
Q 0

which says by (3) that the magnetic flux and electric charge are both quantized in
a cell domain. Without loss of generality, we assume N = 0 in the sequel.
To calculate the energy, we follow [JW] to rewrite (4) as

1 x
E=—|—
4 119l
by using the identity |D;p|> = |Di + iD2op|* +il[(D1p)D2p)* — (D1)*(D2h)],
where
A= —Fp|¢f +i[(D19)(D2)* — (D19)*(D2¢)]
= Im{0;exd* (D)}

is a total divergence whose integral over the cell Q vanishes by virtue of (6). Thus,
applying (8) in the decomposition (9), we find

E($,4) = [Edx = & = 27N ,
Q

2
Fat 20067 )| +1Dig +iDgP + Pt A ©)

with equality fulfilled if and only if the pair (¢, A4) satisfies the self-dual equations
Di¢p+iD2¢p =0,
Fis + 519l (6P = 1) =0,

KF1p 4+ 240|¢|* =0, (10)

subject to the periodic boundary condition (6)—(7). It is straightforward to examine
that the solutions of (10) satisfy the full Chern—Simons equations (1). The system
(10) was first discovered in the work [HKP, JW] on a full space setting. We have
just rederived it on a general periodic lattice cell. The solutions of (10) subject



Vortex Condensation in Chern—Simons Higgs Model 325

to the boundary condition (6)—(7) are condensates which saturate the designated
energy level labeled by the integer N. Such an energy level is actually determined
by the number of vortices confined in the cell. One of the interesting results below
is the conclusion that there are only finitely many possible energy levels for each
given Chern—Simons coupling parameter x.

To formulate our problem properly, recall that the first equation in (10) says
that, locally, ¢ is holomorphic up to a nonvanishing multiple. Therefore the zeros
of ¢ are isolated and have integer multiplicities. These zeros give the locations of
point vortices. Let the zeros of ¢ be py,..., p, with multiplicities ny,...,n,,, respec-
tively. Then N = nj + - - - + n,, is the total vortex number which leads to the phase
condition (7). Namely, the vortex number gives the winding number of ¢ around
the boundary of a lattice cell and thus determines the quantized magnetic and elec-
tric charges. Counting algebraic multiplicities, an N-vortex solution is represented
by a solution so that ¢ has N zeros. Our basic existence problem for N-vortices
is: Under what conditions, does the system (10) permit a solution satisfying the
periodic boundary condition (6)—(7) and realizing a prescribed N-zero set for the
Higgs field ¢? Our main existence theorem is stated as follows.

Theorem 1. Let py,..., pm € @,ny,...,n, be some positive integers, and N = ny +
-+ +ny. There is a critical value of the coupling parameter, say k., satisfying

the upper bound
1 /19
L< oy 2 1
=2V ah

so that, for 0 < k < k., the self-dual Chern—Simons equations (10) subject to the
periodic boundary condition (6)—(7) have an N-vortex solution (¢p,A), for which,
Pls---» Pm are the zeros of ¢ with multiplicities n,,...,nn, respectively, and the
energy, magnetic flux, and electric charge are given by the formulas

E=27aN, ®=2zN, Q =2nkN .

Moreover, the solution can also be chosen so that the magnitude of ¢,|¢|, has
the largest possible values. Such a solution is called a maximal solution which
represents a state that is the most superconducting. If k > k., Eqs. (10), sub-
Ject to (6)—(7) have no solution realizing the zeros pi,..., pm, With respective
multiplicities ny,...,ny.

Furthermore, let the prescribed data be denoted by S ={pi,..., pm;
ny,...,Nm}, where the n's may also take zero value, and, write the depen-
dence of k. on S by k.(S). For 8" ={pi1,..., pm;n},...,m,}, we write S < §’
ifm < ni,....nym < nl,. Then k. is a decreasing function of S in the sense that

k:(S") < k.(S), whenever S £, (12)

The inequality (11) says that, for any given coupling parameter x, the periodic
Chern—Simons system over € can only have finitely many saturated energy levels
of the form F = 2znN.

In the following sections, we present proofs of these results. The construction
employing sub/super solutions should be useful to numerical simulations of the
multivortex solutions. We will show that the iterations can always start from a
largest supersolution (with some point singularities) so that the desired solution
obtained in the limit is the maximal solution. Although we do not have accurate
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estimates for the critical number k., the analysis suggests that it seems to depend
on the locations of vortices as well as the total vortex number. Another interesting
approach is through a variational principle subject to an inequality type constraint.
There is a Lagrange multiplier problem if the minimizer occurs at the boundary of
the admissible set. A crucial part in the proof is to show that, as far as the parameter
Kk is not too large, the minimizers must be interior. Due to an obstacle arising
from the optimal constant in the Trudinger—Moser inequality which is important in
our alternative variational approach, we have to assume then that the locations of
vortices are sufficiently even in the region. Fortunately, such a gap is filled by the
sub/super solution approach.

3. Construction of Solutions

For convenience, we introduce the new parameter A = 4/xk?. In this section, the
prescribed zero set of ¢ is written Z(¢) = {p1,..., py} containing all possible
multiplicities. Then the new variable u = In|¢|*> reduces the system (10) to the
equation

N
Au = Je“(e* — 1)+4n25pj in Q, (13)
J=1

where 0, is the Dirac distribution concentrated at p € Q. The boundary condition
(6) implies that we are now looking for a solution of (13) defined on the doubly
periodic region Q or the 2-torus Q = R?/Q. In the rest of the study, we always
observe this assumption.

Conversely, if u is a solution of (13), it is well established that (see [JT]) a
solution pair (¢,4) of (10) may be constructed according to the rules

N

$(2) = expl(yu(z) + i arg(z — ).
f=

A1(z) = —Re{2i0*In ¢(2)},

Ay(z) = —Im{2i0*In ¢(2)},

where z = x| + ix; and 0* = (0; +102)/2. Thus it is enough to solve (13). All the
functions below are defined on the 2-torus €.
Let up be a solution of the equation (see [Al])

47N N
AUO = —W +4TCJ§15P] . (14)

Inserting u = uy + v into (13), we obtain

47N
Av = Ae"oti(eht’ — 1) + ILQI . (15)

Integrating this equation on € yields the constraint

1\> A 4aN
up+v __ - _
As{ (e 2) 4 Q- (10
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Thus we are led to the following necessary condition for existence:

A 4N

as expected. We introduce a monotone iterative scheme to solve (15):
(4 = K)o, = Aeh0Ttn=1( 0¥ =1 — 1) — Kv,_; + 42,
vo=—ug, n=12,.... (18)
Lemma 2. Let {v,} be the sequence defined by the scheme (18) with K = 24

Then
Vg > 0p >Up > v > Uy > 00 > U (19)

for any subsolution v_ of (15). Thus, if there exists a subsolution, the sequence
{v,} converges to a solution of (15) in the space C*(Q) for any k = 0 and such
a solution is the maximal solution of the equation.

Proof. We prove (19) by induction.

First, it is standard that v; € C°(Q — {p1,....,pn})NC*(Q) (0 < a < 1).
Since (4 —K)(v; —vp) =0 in Q—{p1,...,pn} (see (14)) and v; — vy < 0 on
0Q,, where Q, is the complement of U?/:]{xHx— pjl < e} in Q with ¢ suffi-
ciently small, the maximum principle implies v; — vy < 0 in Q.. Hence v; — vy < 0
throughout.

Suppose that vy > v; > --- > v;. We obtain from (19) and K = 24 that

(4 — K) (01 — 0g) = 2620 — 2%=1) — K(vg — vp_1) — A€0(e% — e%-1)
2 2280 (0 — vg—1) — K(vg — vk—1)
2 K(e00 — 1)(vg — 04—1) =0,
where vy = w = vr—1 £ vg. The maximum principle implies vg41 — v < 0 in Q.
Next, we establish the lower bound in (19) in terms of the subsolution v_ of
(15), namely, v_ € C*(Q) and
47N

Av_ = Jeoti—(ghot'— — 1) ——
12|

(20)

Initially, we have in view of the definition of vy and (20) that

A(U_ - Uo) = A(l)_.. + uo)
> Jefott—(ghoti— — 1) = le’~T0(e'- " — 1)
in Q—{pi,...,pn} So if ¢ > 0 is small, then v_ — vy < 0 on JQ,, and by the
maximum principle, we have v_ — vy < 0 in Q.. Hence v_ — vy < 0 throughout

Q.
Now suppose that v_ < v, for some £ = 0. Then (19)—(20) give us

(4 —K)(v_ — vgq1) = e?0(e¥~ — ¥ ) — K(v_ — ) — Ae™0(e"~ — %)
> 22620 (v — ) — K(v— — vy)
> K(0t — 1)w_ — 1) =0,

where v < w = v < vg. So the maximum principle again implies that v_ < vgyq.
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The statement of convergence follows from (19) and a standard bootstrap
argument.
The proof of the lemma is complete.

Lemma 3. If A > 0 is sufficiently large, Eq.(15) has a subsolution v_ satisfying
(20).

Proof. Choose small ¢ > 0 so that the balls
B(p;2e)={x€Q||x—p;| <2}, j=12,...,N

satisfy B(p;;2¢) N B(p;;2¢) =0 for pj+ py. Let f, be a smooth function so that
0 f:<1and

fe(x)=1, x€B(pje), j=12,...,N
N
fox) =0, x¢ U B(p;2e).

Then we have b
8N 32n°N
= <=1 2. 1
=g o+ = @D

Q
Define
C(e) .
o = Tr S = €@
Since [g. = 0, we know that the equation
Aw = g, (22)

has a solution which is unique up to an additive constant.
First, from (21), we see that, for x € B(pj;e),

- 4nN ( 8N 2) 4N
——¢ — (23)
= Jaf 1€ 12|
if ¢ is small enough. In the following, we fix ¢ so that (23) is valid.
Next, we choose a solution of (22), say wy, to fulfill
&t <1, xeQ. (24)

Therefore, for any A > 0, we have the inequality

— 4N
AWO—g£>ﬁ

> Aehoto(ghot™o — 1) + i, x€B(ppe), j=12,...,N. (25)
Finally, set

N
po = inf{e"™ | x € Q — UB(p;;¢)},
j=1

N
p = sup{e”™ | x € Q— UB(pjse)} -
j=1



Vortex Condensation in Chern—Simons Higgs Model 329

Then 0 < po < py < 1 and e“otWo(eh0t™o — 1) < po(u; — 1) = —Cy < 0 for x €
Q- U;V:, B(p,;e). As a consequence, we can choose 4 > 0 sufficiently large to

fulfill (25) in entire Q. Thus, wy is a subsolution of (15).
The lemma is proven.

Lemma 4. There is a critical value of A, say 2., satisfying

167N

)'C >
€|

v

(26)

so that, for 4 > A., Eq. (15) has a solution; while for 1 < )., the equation has
no solution.

Proof. Suppose that v is a solution of (15). Then u = uy + v verifies (13) and is
negative near the point x = p;,j = 1,2,...,N. Using the maximum principle away
from the points p's, we find that u < 0 in Q.

Define A = {4 > 0| A is such that (15) has a solution }. Then A is an interval.
To show this fact, we prove that, if A’ € A, then [1',00) C A. In fact, denote by v’
a solution of (15) at A = 2. Since uy + v' < 0, we see that v’ is a subsolution of
(15) for any 4 = /. By virtue of Lemma 2, we obtain 1 € A as desired.

Set A. = inf A. Then A > 167N/|Q| for any A > 1. by (17). Taking the limit
A — Ac, we arrive at (26). Thus the proof is concluded.

Recall the notation in Theorem 1 for the data of the prescribed zeros of the
Higgs field. Namely, S = {pi,..., pmsnt,....nu},S" = {p1,..., pmsn},...,n,,}, and
the order S < §’. Then the corresponding statement in Theorem 1 is related to the
solvability of the following form of Eq.(13),

m
Au = Je"(e" = 1)+ 3> n,dp; , (27)
j=1

in view of the parameter 4. We denote the dependence of A. on S by 4.(S) (see
Lemma 4).

Lemma 5. A.(S) £ A.(S") for S £ S'. Hence (12) holds.

Proof. We need only to show that, if 1 > 4.(S"), then 4 = 1.(S).
Let «' be a solution of (27) with n; =n,j =1,2,...,m and uo satisfy

47N "
Aug = il +4nd n;6,, ,
=

where N = n; + --- + n,,. Then the substitution ¥’ = ug + v_ leads to

4N

AU_ — leu0+04(eu0+v_ _ 1)+
||

+4ny (n) —n,)dp,
J=1

which implies in particular that v_ is a subsolution of (15) in the sense of distribu-
tions and (19) holds pointwise. However, since the singularity of v_ at x = p; is
at most of the type In |x — py|, the inequality (19) still results in the convergence
of the sequence {v,} to a solution of (15) in any C*-norm. In fact, using (19), we
see that {v,} converges almost everywhere and is bounded in the L?>-norm. Hence
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the sequence converges in L2. Similarly, the right-hand side of (18) also converges
in L2. Applying the standard L*-estimates we see that the sequence converges in
W?*? to a strong solution of (15). Thus a classical solution is obtained. The con-
vergence in C* follows again from a bootstrap argument. This proves 1 = A.(S).
Thus 4.(S) < A.(S") as expected and the lemma is proven.

It is clear that the lemmas of this section furnish the proofs of all the statements
made in Theorem 1.

4. An Alternative Variational Treatment

In this section we formulate a variational solution of Eq.(15) by using an inequality
type constraint. This problem is of independent interest due to the two exponential
nonlinear terms in (15). Recall that a similar equation of the form 4v = Ky — Ke’
arises in the prescribed curvature problem for a 2-surface, compact or noncompact,
which has been studied extensively [Av, CY, KW1, KW2, KW3, Mc, Ni]. A basic
structure of this latter problem is that it permits a constrained variational principle
so that the Lagrange multiplier arising from the constraint naturally recovers the
original coefficient in the equation. In our equation (15), the two exponential terms
ruin such an approach because the Fréchet derivative of the constraint functional
cannot assume a suitable form allowing the recovery of the original equation. Our
variational treatment of (15) can be briefly sketched as follows. We first replace
the equality constraint (16) by an inequality constraint which is equivalent to the
solvability of the equality constraint and defines the admissible set, .o, for a suitable
objective functional, /. We then show that when A is large, the minimizer of / will
stay in the interior of ./; hence we are able to avoid the Lagrange multiplier
problem arising from the equality constraint. Finally we prove that the minimizer
obtained in a small space is actually a critical point of I in the usual Sobolev space.
Thus a solution of (15) is found.

We concentrate on the case that the points py,..., py are so evenly located
that the lattice region can be divided into N periodic subregions and that the full
problem is an N replication of the problem on a subregion. To solve such a problem,
it suffices to consider (15) with N = 1. This restriction comes from the optimal
constant in the Trudinger-Moser inequality which will become clear later.

We use the notation U = e"0. Then (15) takes the form

Av = AU (Ue’ — 1) + Iig_l ) (28)

The function U = 0 is smooth since it behaves like In|x — p|? near the prescribed
vortex point p.
We shall work on the standard space H = W!?(Q) (the set of doubly periodic
functions). Then
Jv= O}
Q

is a closed subspace of H and H = R+ H’. Namely, for any v € H, there is a
unique number ¢ € R and v’ € H’ so that

H'={UGH

v=c+1v. 29
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Suppose that v € H given in (29) satisfies (16). Then

/ 4
eZch2eZU _ che + 7” =0. (30)
Q

Of course (30) is a quadratic equation in ¢ = ¢ which has a solution if and only if
2
’ 16 v
(fw) -2 v 2 0. (1)
Q Ao
In this case we may choose ¢ = ¢(v’) in (30) to satisfy

2
[Ue”/+\/(er”'> — 16z y2ex
. Q Q )

= : 32
e 2T U (32)
Q

With v satisfying (31) and ¢ given by (32), we define a functional / on H' by
the expression

1 A oy
1W)=[ {EWU'P + %Uzez‘“” — AUet? } + 4nc . (33)
Q
Set o7 = {v € H' | v satisfies (31)}. Consider the optimization problem

min{/(v") | V' € o/} . (34)

We shall find some condition under which the problem (34) has only interior
minimizers.

Lemma 6. For v/ € H' on the boundary of o, namely,

’ 2 167‘[
(er") o G (35)
Q
we have I(vV') = —4n In A — C for some constant C > 0 independent of 1.
Proof. From (32) and (35), we obtain

JUe 8n

c Q
= 7 = 7 . 36
CToruer T i Ue (36)
Q Q

Therefore a simple calculation shows that
1
V') = —67m + 5||vu'||§+4m:, (37)

where and in the sequel we use || ||, to denote the usual L?>-norm on Q.
We now recall the Trudinger—-Moser inequality [A2]

/ 1
Je = C(s)exp{ [F + EJ ||VU/||§}9 v'eH, (3%)
2
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where ¢ > 0 is arbitrary. We are going to use (38) to estimate the lower bound
of I on 0.9/. The optimal constant 1/16w presents a basic obstacle in the general
problem.

We rewrite (36) as

c=In 8n—ln/1—ln<er”/>. (39)
Q
Let p,g > 1 be conjugate exponents to be determined so that 1/p+ 1/g = 1.

In view of the Schwartz inequality and (38), we have the following upper bound
for In(f Ue): ‘

o(gue’) s gnlger) + go(g)

1 1 i1

Using (39)—(40) in (37), we arrive at

lIA

1 1
N> [ 2 —_— 2 — —
Iv') = (2 4nq[16 +£:I>HVU”2 4 In 1 — C(e,q) . 41)

We can choose suitable ¢ > 0 and g > 1 above to make the coefficient of the first
term on the right-hand side of (41) positive. Thus Lemma 6 is proven.

We now evaluate / at an interior trial point in the admissible set .«/. For con-
venience, we choose v/ = 0 as a trial element.

Lemma 7. Suppose that A > 0 is sufficiently large so that

2 l6n
(fU) - —[U*>0,
Q Ao
ie, vV =0 lies in the interior of </. Then there are constants Ci,C, > 0 inde-
pendent of A so that 1(0) £ —CiA+ C,.

Proof. Assume that ¢ = c is given by the expression (32) with v" = 0. Equation
(30) with ¢ = ¢y and v/ = 0 enable us to obtain

1(0) = —%ec"!{U +4n<co - %) . (42)

However, Eq.(32) says that

fQU () -/QU
2fQU2 <e' < fQU2'

Inserting this into (42), we obtain

2
foU
1(0) < —/‘LW + 47 In (fQUz) .

Recall that U is independent of A. Therefore the lemma follows.
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From the above two lemmas, we see that there is a g > 0 so that
100) < =1 4+IW), weod, A>l. (43)

So it is hopeful to get an interior minimizer for (34). From now on we always
assume that 4 is such that (43) holds.

Lemma 8. There are constants C;,C, > 0 so that

IW) = G|V} -G, VvV eo.

Proof. Using (31)—(32), we have

87 A
e”@—(er”) )
4 \a

= —1n<erv’) +1n (8)—”) . (44)
J v

On the other hand, the two exponential terms in I(v') (see (33)) are easily
controlled. In fact, using the Schwarz inequality, we have

As a consequence,

f {%U2e20+2ul _ Ue(:-HJI} ; —2|Q, . (45)
Q

Finally, inserting (44)—(45) into (33) and applying the inequality (38) again as
in the proof of Lemma 6, we arrive at the conclusion of the lemma.

Lemma 9. The problem (34) has a minimizer v' which lies in the interior of the
admissible set ..

Proof. Let {v],} be a minimizing sequence of (34). From Lemma 8 and the Poincaré
inequality, we see that {v},} is bounded in H'. Therefore we may assume without
loss of generality that {v],} weakly converges to an element of H’, say v'. Since
the mapping H' — L(Q) given by f — e/ is well-defined and compact (see [A1]),
we know that v’ € o/ and ¢(v,) — ¢(v') as n — oco. Applying this observation in
(33) we see that v’ is a minimizer of (34). Moreover, (43) implies

I(V") £ =1+ inf{I(w') | w' € 07} .

In other words, v’ belongs to the interior of /. The lemma is proven.

Since our optimization problem is defined on the subspace H' of H, it is not
obvious whether a critical point of / in H’ gives rise to a solution of Eq.(28). In
the following, we will examine that the composition ¢ + v/ with ¢ defined by (32)
indeed is a critical point of / in the full H and thus solves Eq.(28).

Lemma 10. Let v’ be the minimizer produced in Lemma 9 and the number c
defined by (32). Then v =c+ v is a solution of (28).
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Proof. In fact, since v’ is an interior minimizer, the Fréchet derivative of I at v’
vanishes. Namely,

[61(v")](W) =0 forany w' € H' .
It is more convenient to rewrite the above equation in the functional form

0 =f {VU’ Vw4 /'L[UZGZC(U’HZU' _ Uec(v’)+u’]wz}
Q

7 ’ ’ / 4
+  [Dye@)]f {x[UzeM“ W e+ 4 —”} , (46)
Q

where the numerical factor in front of the second integral above, i.e.,
/ d / 7
D,c(v') = EC(U + tw )lt=0

is the directional derivative of ¢ at v/ along w’. On the other hand, in view of
Eq.(30), the second integral above actually vanishes. Thus (46) takes the simplified
form

I {vv’ VW AU Uec+”’]w'} -0. (47)
Q
Set X = L*(Q) and consider the decomposition X = R + X', where

X’={f€X {{f:O} .

Choose a suitable ¢ € R such that
U2 _ ety roe X’ .
Then the relation H' C X’ and (47) imply that
0=/ {w Vo 4+ (U202 _ ey 4 o—)w’}
Q

— j‘ {VUI . V(a+ W/) + (/I[U262C(v/)+2vl _ UCC(UIH'UI] + O')((Z +W,)}
Q

for any a € R. Consequently,

{90 O + LU — Uet o) =0, WweH .
Q

This equation implies that v’ is a smooth solution of
A = U (Ue™ — 1)+ 0. (48)
Integrating (48) yields

},f(UeC_H)I _ U2626+26/) — O'|Q| .
Q
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Comparing the above equation with (30) we obtain immediately o|Q| = 4x.
Thus, by (48), we see that v = ¢ + v’ solves (28) and the existence proof is com-
plete.
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