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Abstract: Large time asymptotics of statistical solution u(t,x) (1.2) of the Burgers'
equation (1.1) is considered, where ξ(x) — ξι(x) is a stationary zero mean Gaussian
process depending on a large parameter L > 0 so that

ξdx) ~ σLη(x/L) (L -> oo) ,

where σi — L2{2 logL)1/2 and η(x) is a given standardized stationary Gaussian pro-
cess. We prove that as L —> oo the hyperbolicly scaled random fields u(L2t,L2x)
converge in distribution to a random field with "saw-tooth" trajectories, defined by
means of a Poisson process on the plane related to high fluctuations of ξ(x), which
corresponds to the zero viscosity solutions. At the physical level of rigor, such
asymptotics was considered before by Gurbatov, Malakhov and Saichev (1991).

1. Introduction

The Burgers' equation
dtu + udxu = μd\u, (1.1)

t > 0, x e R, u — u(t,x),u(0,x) = uo(x), admits the well-known Hopf-Cole explicit
solution

oo

_/ [{x - y)/t] exp [(2μ)-\ξ{y) - (x - yf/lt)] dy
2 , (1.2)( , ) 5 5 : ,

/ cxp[(2μ)-1(ξ(y)-(x-y)y2t)]dy
— OO

where ξ(x) = — J-OQuo(y)dy (see Hopf (1950)). It describes propagation of non-
linear hyperbolic waves, and has been considered as a model equation for various
physical phenomena from the hydrodynamic turbulence (see e.g. Chorin (1975)) to
evolution of the density of matter in the Universe (see Shandarin, Zeldovich (1989)).
Due to nonlinearity, solution (1.2) enters several different stages, including that of
shock waves' formation, which are largely determined by the value of the Reynolds
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number R = σl/μ (see Gurbatov, Malakhov, Saichev (1991)). Here, μ > 0 is the
viscosity parameter, while σ and / have the physical meaning of characteristic scale
and amplitude of ξ(x), respectively.

Starting with Burgers' own papers (see Burgers' (1974) for an account of the
early work in the area), numerous works discussed statistical solutions of (1.1), i.e.,
solutions corresponding to random initial data ξ(x) = ξ(x; ω) (see, e.g., Kraichnan
(1959)). The random process ξ(x) is usually assumed to be stationary or having
stationary increments. Although many of these works are not quite rigorous math-
ematically, they reflect the interest of physicists in the "Burgers' turbulence" and
other physical phenomena described by this equation (for a survey of past and
current work on the stochastic Burgers equation, see Fournier, Frisch (1983), Woy-
czynski (1993), Funaki, Surgailis, Woyczynski (1995), and other papers quoted in
references).

From the probabilistic point of view, a study of the limiting behavior of u(t,x)
as t —> oo, or as μ —> 0, seems to be most interesting. If μ > 0 is fixed, then,
under some additional (exponential) moment conditions on ζ(x), and in absence
of the long-range dependence, u(t,x) obeys a "Gaussian scenario" of the central
limit theorem type (see, e.g., Bulinskii, Molchanov (1991), Albeverio, Molchanov,
Surgailis (1993)). Non-Gaussian limits have also been found under less restrictive
conditions on ζ (see e.g. Funaki, Surgailis, Woyczynski (1995)).

On the other hand, if the initial fluctuations ξ(x) are large enough to make the
exponential moments of ξ(x) infinite, and the marginal tail distribution function

P[exp(ξ(x)/2μ)>a]

varies slowly as a —> oo, then the behavior of u(t, x) is very different from the
"Gaussian scenario," namely,

u(t,x)~X-^- (f->oo), (1.3)

where y* = y*(t,x) is the point where S(y) := ξ(y) — (x — y)2/2t attains its maxi-
mum. For a degenerate shot noise process ξ(x), the asymptotics (1.3), together with
an estimate of growth of the right-hand side of (1.3), was rigorously established in
Albeverio, Molchanov, Surgailis (1995).

In their important physical works, Gurbatov, Malakhov, Saichev (1991) (see also
Kraichnan (1968), and Fournier, Frisch (1983)) discussed asymptotics of u(t,x)
at high Reynolds numbers, in the case when the initial Gaussian data ξ(x) are
characterized by large "amplitude" σ = (E(ξ(0))2)1^2 and large "internal scale" L =
σ/σ' > > 1, where σ' = (£(£'(0))2)1/2. At time t = tL ~ tL{tL\ where

ίL(t) = (σt)ι/2(log (σ'tβπL))-1'* (1.4)

is the "external scale" at time ί, they demonstrated (at the physical level of rigor)
that "[...] a strongly nonlinear regime of sawtooth waves [...] is set up, [...] and
the field's statistical properties become self-preserving" (ibid., p. 163). In particular,
they were able to find explicitly one- and two-point distribution functions of the
(limit) sawtooth velocity process (ibid., Sect. 5.4).

In the present paper, we formulate the problem in mathematical terms and give a
rigorous derivation of the "large internal scale asymptotics" of the above type in the
sense of the weak convergence of finite dimensional distributions of hyperbolicly
scaled velocity random field u(L2t,L2x). The particular asymptotic form (2.1) of
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the initial Gaussian process is a simplification assumed for technical reasons; even
in this case the proofs are rather involved. The limit "sawtooth" process, which
corresponds to zero viscosity limit solutions of the Burgers' equation, is defined
with the help of a Poisson process on R2 corresponding to high local maxima of
the Gaussian data. The «-point distributions and correlation functions of the limit
field are given. For n — 1, 2, they coincide with the corresponding expressions
found by Gurbatov, Malakhov, Saichev (1991). The paper makes an extensive use
of a modern theory of extremal processes; the comprehensive account thereof can
be found in Leadbetter, Lindgren, Rootzen (1983).

In Sect. 2 we formally present our main result and take first steps towards
its proof. Section 3 studies the Poisson convergence of high local maxima of the
Gaussian processes together with the deterministic (parabolic) behavior of their
trajectories near the extreme points. Section 4 introduces the Burgers (^-) topology
on point processes - a natural topology for the problem at hand. The convergence
and compactness criteria for that topology are then provided. In Sect. 5 we return
to the study of the Hopf-Cole functional and complete the proof of our main
Theorem 2.1. Finally, Sect. 6 discusses explicit formulas for the multipoint space-
time densities and correlation functions of the limit velocity field.

2. Internal Scale and Hyperbolic Asymptotics

The "internal scale" that was discussed above on the intuitive level will be formal-
ized roughly as follows. We shall start with a zero-mean stationary differentiable
Gaussian process η(x) and take as the initial data process

ξL(x) = σLη(x/L) , (2.1)

where

σL=L2y/2logL . (2.2)

The particular asymptotics of GL is dictated by the standard normalization constant
(see (2.7)) in the extremal theory of Gaussian processes, and the scaling properties
of the Hopf-Cole functional (1.2). Then,

ξ'(x) = (σL/L)η'(x/L),

and the "internal scale"

[E(ξ(x))2]1/2

1 /?

is proportional to parameter L. Studying the solutions at large "internal scales" will
mean letting L —• oo.

We shall assume that the covariance function r(x) = Eη(0)η(x) of the process
η(x\ x G R, satisfies the following two conditions:

r(χ) = o(l/logx) (x —> oo) (2.3)

and

r(χ) = 1 - — λ2x
2 -\ λ4x

4 + o(x4) (x —> 0) . (2.4)
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Fig. 1. Points (yj,Uj) of the Poisson process (marked by •) correspond to high local maxima
of the Gaussian curve ξ(x). Critical parabolas define discontinuity points and zeros of the limit
velocity process v(t,x).

Then, our main result can be formulated as follows.

Theorem 2.1. Let u(t, x) be the solution (1.2) of the Burgers' equation (1.1)
with the initial datum ξ(x) = £z,(x), x G R, of the form (2.1) and satisfying con-
ditions (2.3) and (2.4). Then, as L —• oo, the finite dimensional distributions of
u(L2t,L2x),(t,x) G R+ x R, tend to the corresponding distributions of the random
field

yj*{t,x)
v(t,x) = (2.5)

Here, yj*(t,x) Ξ yj* is the abscissa of the point of a Poisson process (yj,Uj)jez on

K2, with intensity e~ududy, which maximizes Uj — (x — yj)2/It, i.e.

(χ-yr)
2

it it
(2.6)

The intuitive meaning of Theorem 2.1 can be best explained with the help of
the geometric construction presented on Fig. 1 which, actually, goes back to the
original Burgers' (1974) work. Also, notice that the limit random field v(t,x) does
not depend on the viscosity parameter μ in Eq. (1.1), and that its shape is what
one usually sees in the study of the Burgers' equation in the zero viscosity limit.
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Proof of Theorem 2.1. To simplify the notation, we shall consider only the con-
vergence of one-dimensional distributions of u(L2t,L2x) forμ = t= 1/2, x = 0. Af-
terwards, we shall explain how the general case can be obtained.

Put

HL :=u(L2

1ogI

where c\ = log(v^2/2π). According to (1.2), (2.1),

-2fyQχv[L2(ηL(y)-y2)]dy

H

(2.7)

(2.8)

where

tfLiy) — aL {j\{Ly) — ̂ L) (2.10)

Let yjlL\uj = ηUyf^) be positions and heights of local maxima of the
process ^(x),x G R, respectively. Due to condition (2.4) of the theorem, their num-
ber is a.s. finite on any finite interval (see Leadbetter et al. (1983), Sect. 7.6). Let
(yfj-\ujlύ) be the pair which maximizes ufύ - (yfL))2 = ηL(yfL)) - {y^f, j €
Z, i.e.,

(In the case when the last maximum is achieved at several points, we chose the
one with the smallest ordinate.) Now, put

I(A^) = J exp [L\ηL(y) - y2)] dy, (2.12)

where

z l ^ = [y e R : \y - y(f\ < l/LaL] . (2.13)

Then, HL of (2.9) can be written as

HL = -2-

where

RL = J y exp [L2(ηL(y) - y2)] dy / I(ΔJ*L)) , (2.14)

QL= S exp [L2(ηL(y) - / ) ] dy / I{Δf]) , (2.15)

7 *

and

PL= J (y-y^L))^v[L2(ηdy)-y2)]dy/i(A^)). (2.16)
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Clearly, the convergence in distribution

HL => v{\/2, 0) = -2yr , (2.17)

follows from the facts that

yfL) ^ y r Ξ ^ * ( 1 A 0 ) , (2.18)

RL=>0 , (2.19)

QL => 0 , (2.20)

and from the trivial bound \pL\ < 2/LaL —• 0(L —» oo).
Proof of the theorem requires a study of the Poisson convergence of functionals

of a Gaussian trajectory near high local maxima, in the spirit of Chapter 10 of
Leadbetter, Lindgren, Rootzen (1983). Moreover, to prove (2.18) we need a criterion
for convergence of the point process (yj,Uj)jez in a topology matched to
the Burgers' equation. That topology will be introduced and studied in Sect. 4.
The proof of Theorem 2.1 will then be completed in Sect. 5.

3. Poisson Convergence of Local Maxima

Let Jt be the space of all locally finite point measures on R2, with the topology of
vague convergence of measures, denoted by —> (see Kallenberg (1983)). Introduce
also the space Jί of all locally finite point measures on R2, taking values in the
Banach space C[—1,1] of continuous functions, equipped with the supremum norm.
|| ||. Elements v G Jί can be identified with countable sequences

v = (yj,uj,gj)Jez , (3.1)

where (yj,uj) G R2 and gj G C [ - l , 1], j G Z. Write v = (yj,Uj)jez. Then v can be
identified with the element V £ δ^yj,Uj) G Jί. The convergence vL —> v

(vi, v G Jί) is equivalent to the condition that VL —> v (in Jί) and that

\\9j\L-9j\\ ->0 (3.2)

for any j G Z. It is clear that Jί, as well as Jί, are complete, metrizable spaces
with respect to the above topology. Without any risk of misunderstanding, we will
use the same notation => for the weak convergence of random elements from Jί, Jί,
and/or from a finite dimensional Euclidean space.

With the Gaussian process r\ι{x) of (2.10) we associate the point process v ^ =

(yfL\uJL^)jez £ Jί of local maxima, and the point process

γWL) — (y^ L ^ U ^ L ^g^L ^ z £ j ι ^ (3.3)

which includes the "germs" g^L\ ) G C[—1,1] of the trajectory near local maxima,
where, for y G [—1,1],

gJL\y) = ηL(yfL) + y/LaL) - ηL(yfύ)

'"') + y/LaL)-u^). (3.4)
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Proposition 3.1. The point process

v t o ) = > v , (3.5)

where v = (yj,Uj,gj)jez, with v = (yj,uj)jez being the Poisson process of Theorem
2.1, and

^ ^ hU] (3.6)

being a deterministic parabola.

Proof. The lemma is equivalent to the statement that both

viηL) => v , (3.7)

and

P - lim | | ^ } - g\\ = 0 , (3.8)

for any j G Z such that the corresponding local maximum (yj \uj ) lies in a

fixed compact set [xi,%2] χ [̂ 1,̂ 2] C R2 for all, sufficiently large L. Relation (3.7)
is well-known, see e.g. Leadbetter, Lindgren, Rootzen (1983), Theorem 9.5.2. State-
ment (3.8) can be proved using the Slepian model process representation near a local
maximum (due to Lindgren (1970)) as follows. In view of the above, it suffices to
prove that, for any ε > 0,

ΣP \\\Q{jL) -g\\>ε, (y^Kuf^) e [χi,*2] x [uuu2]] - o , (3.9)

as L —> oo. Write the left-hand side as

[P [\\g(^-g\\ > ε\yfύ,u^] • 1 ( o ^ , ^ ) 6 [xuxi] x [uuu2]

(3.10)

[

According to Theorem 3 of Lindgren (1970),

\λ2x
2\ > εl , (3.11)

^ 1

where vι = aι + (u + c\ ~)jaι and, for any u 6 R ,

η"(x) = vA(x) + ζ,(x) - ζ2,B(x), x e [-1,1] ,

is the Slepian model process conditioned at a local maximum of height v at
x = 0. Here A(x) = (λ4r(x) + λ2r"(x))/D, D = λ4 - λ\ > 0, while d(jc) and ζ2,Ό(x)
are independent stochastic processes with

where B(x) = (A2r(x) + r (x))/D, and κ:y > 0 is a random variable with the density
proportional to zexp[—(z — λ2v)2/2D],z > 0. The process ζ\(x) is a zero mean
Gaussian process with the covariance function C(x,y) given in Lindgren (1970),
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Eq. (8). Making use of condition (2.4), and the fact that A(0) = 1, Af(0) = A"(0) =
0, one easily obtains that

aLvL(A(x/aL) - I) ^ 0 ,

uniformly in x e [—1, l],u e [uuu2]. Next, using the fact that ζ\(x) is a.s. continu-
ously differentiable, and that ζ\(0) = ζ\(0) — 0, similarly as in Leadbetter, Lindgren,
Rootzen (1983), p. 203, we conclude that

sup aL\ζι(x/aL)\ -^ 0, a.s .

Finally, noting that

sup -aLvLλ2B(x/aL)+-λ2x 0 ,
2

and denoting by pLfU the probability in (3.11), we obtain that

PL,« = P[\l - (κΌL/λ2vL)\ > ε] + o ( l ) - > 0 , (3.12)

uniformly in u£[u\,u2], as κv/λ2v —» 1 (v —»oo), in probability. Since
(yfL\uJlL))jez = v{ηL) converges to a Poisson limit (see (3.7)), relations (3.10)-
(3.12) imply (3.8) and the proposition itself. QED

Proposition 3.1 immediately yields the following lower bound for the exponential
integral in (2.12).

Corollary 3.1. For any compact A c R2, and any ε, δ > 0, there exists an Lo < oo
such that, for every L > LQ,

( ) < e x p [ Z ( V (yr ) δ)] ? / )

J y/eL2aL

 J J
<ε. (3.13)

4. Burgers' Topology on Point Measures

Fix α0, βo ^ 0, and consider the subspace & — &χoφo C M consisting of all mea-
sures v € l such that for any α > αo, β > βo,

Iaβ(v) := je™-βyldv < oo . (4.1)

Definition 4.1. Let vL, v £ M. We shall say that vL -* v as L —> oo, // vL —> v and

I*JI(VL)-> I*j(v), L^oo, (4.2)

for any a > oto,β > βo The convergence -^ defines a topology in & which hence-
forth will be called the Burgers' topology (^-topology).

The next lemma provides a criterion of compactness in the ^-topology.

Proposition 4.1. $ is a complete separable metrizable space in the &-topology.
A Bore I set A c B is compact in the ^-topology if and only if A is compact in
the vague topology, and for any oc > αo, β > βo,

< oo. (4.3)
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Proof. The lemma follows easily from the well-known properties of Jί and of
the vague topology (Kallenberg (1983), 15.7), and from the following observa-
tion. Let vι —> v and sup£(/α/β/(vz,) + /α" #/(VL)) < oo for some αo < <x! < ot <

α" < oo, βo < β' < β. Then /α^(v) < oo and (4.2) holds. Indeed, as Ia,β(vL) <

I*'Φ'(VL) + Vφi(yL\ so supLI^L) =: 7 ^ < oo. Assume that /^(v) = oo. Then,

one can find a compact ^ c R 2 such that

/exp [ecu — βx2]dv > 2/α?β .
A

On the other hand, from vL —> v it follows that

^ lim supJe^-^dvL ^ 1^ ,
A A

which is a contradiction, i.e. /α,^(v) < oo. To prove (4.2), note that, by a similar
argument as above, limL f Iaj(vL) ^ /«,/?(v). Assume that limkIaφ(vLk) > Ia,β(v) for
some sequence {L^}; for simplicity take Lk — h Then, since Vk -^ v, one can find
ε > 0 and a sequence R^ —+ oo such that

ί*(<x,/0:= / ^ α M - ^ v , > ε . (4.4)
{\u\ + \x\>Rk}

Write

ΰ(α,)8) = 4(α,i8) + ^(α,i8),

where

i'k{a,β)= J e™-Pχ2dvk.
{\u\+\x\>Rk,u>0}

Obviously,

where

</* := inf ! ( / - α)n -h ()8 - jff;)*2 : M > 0, \u\ + |x| > ^ } -> oo ,

as A: -^ oo. Since

SUp/α//^,(Vifc) < OO ,

we have that lim^ i'k(ot, β) = 0. Similarly, lim^^(α, β) = 0, which contradicts (4.4).
QED

Let ¥(Jί\ P ( ^ ) denote the family of probability measures on </#, J>, respec-

tively. Write => and => for the weak convergence of probability measures on, or
random elements in, Jί and 38, respectively. The next proposition provides a char-
acterization of the latter convergence.

Proposition 4.2. Let PL,P e P(J>) Then PL^>P if, and only if,
(i) PL => P,

J ^ P o Iβ\(π) PL O I-J ^ P o I~β\ Vα > α0, V^ > j80.
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Proof. The necessity of (i) and (ii) for PL =^ P is easy. In particular, (ii) follows
from the fact that /α,β(v) is continuous on M.

To prove the converse part, it suffices to show that {PL} is tight in P ( ^ ) , i.e.,
that for any ε > 0 there exists a compact K C & such that

sup PL(β\K) < ε . (4.5)
L

By (i), there exists a compact Kyg C Jί such that sup/,PL(&\KJ/) < ε/2, and by
(ii), for any k ^ 1 there exists a compact Q c R such that

Put
oo

k=l

Then, from Proposition 4.1, we obtain that K C & is compact, and

ε ^—> £

which proves (4.5). QED

Now, we can return to the study of the convergence of the point processes from
Lemma 3.1 in the J'-topology. Fix α0 = l,βo = 0, so that

& = gglfi = {v € Jί : /α,/?(v) < oo, Vα > 1, )8 > 0} .

Proposition 4.3. For any L > 0, the point processes v ^ and v of Lemma 3.1
belong to M a.s. and, as L —> oo,

v0fc) JL, v ^ ( 4 6 )

C The relation v = (yJ9Uj)jez £ ^ a.s. follows from the facts that

oo 2

J j e~ududy = f e~^^y dy < oo ,

and

/ / eau-βy2e~ududy = — ί - / e~{β/cί)y2dy < oo
{(xu-βy2<0} α ~ -°°

(see e.g. Kwapien, Woyczynski (1992), Chapters 7 and 8). According to Proposition
3.1 and Proposition 4.2, the ̂ -convergence in (4.6) will follow once we demonstrate
that, as L —> oo, the (one-dimensional) distributions of

W > W v ) , (4.7)

for any α > \,β > 0, where

7GZ
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We shall prove (4.7) by first decomposing

kβ(v(tlL)) = ΈJP

where

J eocu-βy2

dv(ηL)

and where
A^y = {(y,u) € R2 : αw - βy2 + y > 0} (4.8)

is the set above the parabola

dA^y = {(y,u): ocu - βy2 + y = 0} ,

γ e R2; Ac

ΛAy = R2\A^y.

From Lemma 3.1 one easily obtains that, for any 7, K G R,

^(v^)) => J{(v) = / e™-βy2dv ,
A^γn{u<κ}

as L —» 00. Moreover, as 7, ^ -^ 00,

^ i ( v ) = > / ^ ( v ) .

Therefore (4.7) will follow once we prove that

P- lim J 3 (v ( ^ ) ) = 0, (4.9)

and that, for any y G R,
P - lim J2(v ( / / l )) = 0 , (4.10)

uniformly in L —>• 00.
Let us begin with the proof of convergence of J2 in (4.10). Write

oo
= V f vi

k=-oo

Here, for j > 0 and L > 1,

/> [^,^L > 0] S P[ max ^L(χ) > ((βf - -
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with C\ < oo independent of j , K, Z, and other parameters (see Leadbetter, Lind-
gren Rootzen (1983)). A similar estimate clearly holds for j ^ 0. Consequently,
for every L > 1,

oo

P [J2(v^) >0]S Σ P [ξj,κ,L > 0] = Oier**),
j=-oo

with cι = c2(α,/?,y) > 0, which proves (4.10).
Next, we shall prove (4.9). Here, the expectations exist, so we can work directly

with them rather than with probabilities which were needed in the analysis of Λ
According to Leadbetter, Lindgren, Rootzen (1983), p. 161,

Ev(ηL\dy,du) = ΓL(u)e~ududy ,

where, with c\ — log(\/X^/2π) and D — Λ4 — λ\ > 0,

/ OO

x (l + (l/λ2aLV2^D) f (x V (-aLλ2))
^ - o o

exp [-x2/2D + λ2(u + cx

From there, it easily follows that

JJ ((z + ̂ 2(M + C l ) ) V (-
—oo aL

with C < oo and independent of L, and u eR. Therefore

SC f eau-βy2e-ududy
Ac

C

α - 1
0 ,

and y —> oo, uniformly in L > 1. This proves (4.9) and the Proposition 4.3 as well.
QED

Below we use Proposition 4.3 to prove the convergence (2.18) of the local

maximum point (ypL\uJiL^).

Proposition 4.4. As L —> oo,

(y^\u(^)^(yr,ur), (4.11)

where (yj*,Uj*) is the Poisson point process described in Theorem 2.1. In
particular,

^^f] (4.12)



Hyperbolic Asymptotics in Burgers' Turbulence 221

Proof. Consider the set M§ — & Π Jt§9 where Jίo is the set of all simple point
measures v G J . Each V G I O can be identified with its range, that is, a locally fi-
nite, countable set U/<Ez{(.y/,w/)} (without any danger of misunderstanding we shall
use for the latter the same notation v = (yj,Uj)J<Ez). Note, that for any "parabolic"
set Axφ^oc > l,jβ > O J G R (see (4.8)), and any v G ^ o such that v(dAa^y) — 0,

we have that vL -^ v implies vL(A^y) = v(^α^7) for all sufficiently large L, and
that

dist(vL n ^ φ v n ^ φ ) -> 0 . (4.13)

Consider the functional

Φ) = (yj*,uj*)9 v = (yJ9Uj)jez , (4.14)

with values in R2, where y* = /*( 1/2,0). Then h(y\ which is clearly not con-
tinuous in the usual vague topology, is a.e. well defined and continuous on &$
in the ^-topology, with respect to the Poisson measure of Theorem 2.1. Indeed,
for every α > 1 and almost all v G l o OΠQ can find y G R such that h(v) G ̂ 4α,α,y
and v(&4w /) = 0. Moreover, for a.e. v = (yj,Uj)jeZ £ ^o, the maximum on the
right-hand side of (2.6) is attained at a single point Cyy *, wy*) € v. Hence, if

vz, -^ v
?
 vi = (yj,L,uj,L)jez, then (4.13) clearly implies that Λ(vz,) -^ Λ(v), i.e., the

functional h(v) is a.e. J'-continuous. Now, (4.11) and (4.12) follow from Proposi-
tion 4.1 and from the well-known properties of the weak convergence.

5. Proof of Theorem 2.1 (continued)

Let us return to the proof of convergence in (2.18)-(2.20) of Sect. 2. Consider the
set Ωs,γ,κtL °f points ω G Ω satisfying the following four conditions:

f ; , (5.1)

(y,ηdy)) £A2Xγ, for \y\ >κ, (5.2)

/(Λ^) > (\/y/ΪL2aL) exp [L2(u$L) - (y^f - δ)] , (5.3)

- y2 < u(>p - (y^f - 2δ, for every y £ Δ(JlL\ \y\ ^ K . (5.4)

Then, in view Proposition 4.4, Proposition 4.3, Corollary 3.1 and Proposition 3.1
(in that order), for any ε > 0, δ > 0 we can find γ > 2δ, K < oo, and LQ > 0
such that for all L > Lo ,

Therefore, it suffices to prove (2.18)-(2.20) with Rι, and QL replaced by R'L =
RLί(ω e Ωs y K L) and Q'L = QLI(OJ eΩs Ί K L), respectively. In view of (5.2),
(5.3),

Q'L S

+ exp[L2(uip)-(y(

/'l
L))2-δ)] J cxp[L2(ηL(y) - y2)]dy)

{\y\>K,(y,ηL(y))<jtA2χ.,}
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which proves (2.20). In a similar way, one can prove (2.19). Finally, (2.18) follows
from Proposition 4.4. This proves (2.17).

We complete the proof of Theorem 2.1 with a few remarks about the conver-
gence of general finite-dimensional distributions, i.e.

(u(L2tuL2xι),...,u(L2tn,L
2xn)) => (υ(tuxi),. ,υ(tn,xnj) (5.5)

for any n ^ 1, and any points (tl9Xf) G R+ x R, ί — 1,.. .,n.
Similarly as in (2.13), we write

u(L2thL
2Xi) = ((x, - yψMu + RLJ + PLJ) / (1 + QLJ),

i = \,...,n, where

u ψ _ J_{ _ inύf = m a x (u(nύ _ ±( _ (nύ}2\
Λ 2 t χ - v ' J 2 t i

RL,I = I —^ exp [L\ηL{y) - (x, - y)2/2ti)]dy /I(A("L)) ,
(ηL) H Jι

QL,i = J exp [L2(ηL(y) - (x, - y)2/2t,)]dy /I(4jlL)),

jΐ

y - y(lL)

PLJ= J ~^cxp[L2(ηL(y)-(x,-y)2/2ti)]dy/I(Δf)),

and

I(A%L)) = J exp [L\ηL{y) - (Xi - yfβu)} dy .

Then, similarly as in the proof of (2 .17) , one can s h o w that for any ί = l,...,n,

P - lim \RL^\ + QLJ + \pLJ\ = 0 ,

so that (5.5) follows from the fact that

where jf =j*(tι,xι) .

Consider a functional h(v) = (h\(v),...,A«(v)), v £ J , taking values in (R2)",
where, for every i — 1,...,«,

Ai(v) = Oy s ^ *) G v = (yj9uj)jez .

In the same way as in Proposition 4.4 one can show that h(v) is a.s. well defined
and continuous in the ^-topology. Hence, in view of Proposition 4.3,

h(viηL)) => A(v)

as L —> ex), which proves (5.6).
This concludes the proof of Theorem 2.1. QED



Hyperbolic Asymptotics in Burgers' Turbulence 223

6. Densities and Correlation Functions of the Limit Velocity Field

Using the Poisson process representation (2.5) of the limit velocity field v(t,x), one
can obtain explicit formulas for its time-space multipoint distribution and correlation
functions. Note first that for n > 1, the joint distribution of

(v(tuxιχ...,v(tn,xn)) (6.1)

is not absolutely continuous in Rπ but rather a sum of absolutely continuous dis-
tributions on some A -dimensional hyperplanes of R", 1 ^ k ^ n. This is due, of
course, to the fact that P[yj*(titXi) — yj*(t/tχf)] > 0 f° r z'4=7

It follows from (2.5) that both the distribution of (6.1), and its joint moment
(ft-point correlation function) p^n\t\,x\,...,tn,xn) = Eυ(t\,x\)...v(tn,xn), can be
obtained from the distribution

P*(-;(t,x)n)=P[(y*)ne'] (6.2)

of the random vector

(y*)n = (y*,...,y*n), (6.3)

where

y* = yj? = yrc*,*) >

/ = 1,...,«, and we use the notation

( Λ = (^i Λ ) e R " ,

(t,χ)n = ((tι,χλ),...9(tn,xn)) e (R+ x R)n .

In particular,

p^(t,x)n = / ft X~^P* (d(y)nl (t,x)n) . (6.4)
Rn ,=1 '

We have

( ) ( ' (^)«) ' (6 5)

where the sum is taken over all partitions (A)m = (A\,...,Am) of {1,...,«},^4/ Φ0,
^ n ^ = 0 ( i + y ) , U ^ , 4 = { l , . . . ,«} ,m=l, . . . ,« , a n d ^ ^ ^ j ^ α x ^ ) is a
measure on Rw which can be identified with the distribution of (y*)n on the m-
dimensional hyperplane

y* = yk, i^Λk, A = l , . . . , m . (6.6)

Note that the last event occurs if, and only if, for every k = l , . . . ,m, and any
Poisson point (yj9Uj),jΦk, the following inequality is true:

W/ < Λ feOy) , (6.7)

where

te(7) = uk + —((y-xtf - (yk -Xi)2) (6.8)

is the parabola passing through the point (yk,Uk) and "centered" at xi9i G ̂ . Using
the well-known formula for the Poisson probabilities, we obtain from (6.7) that for
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each partition (A)m, the measure P^m( l(t9x)n) is absolutely continuous in Rm,
and that the corresponding Radon-Nikodym density is given by

W(y)π

where

W{y)m = {(u)m € Rm : uj <

-Σ««-/V V<
ί=l Rk=\ieAk

i€Ak

d(u)m , (6.9)

j), for all j + k,j\ k = l , . . . , m } . (6.10)

For n = 1,2 formulas (6.4), (6.9) can be made much more explicit. Con-
sider first a 1-dimensional distribution of υ(t,x). Then, according to (6.9) (with
n = m= l,(t,x)ι = (t,x), (y)\ = y, W(y)γ = R), we obtain

p*(y; (t,x)) = f exp ί-ii - /exp [-u - ((z - x)2 - (y - x)2)/2t]dz]du
R L R J

= /exp —w — exp [—u + (y — x)2/2t]v2πt\ du
R L

i.e., j/*(ί,χ) is Gaussian with parameters x, t, and consequently, v(t,x) is Gaussian
with parameters 0, \jt.

Consider the case n = 2,(ί,x)2 = ((ίi,xi),(^2?-^2))- There are two partitions of
{1,2}, namely, (A){ = {1,2}, and (A)2 = ({1},{2}). From (6.9), we have

and

a2

(6.11)

(6.12)

where

ax = — ((y2 - Xif - (yι - Xif) ,

Uv; yuyi) = e^-χi)2'2ti J e^z-χ^2/2t'dz,

^ -n ( z - JΊ)(z + Ji + 2 χ i ) (z - yi)(z + J2 + 2x2)
<v>,

and

Ί(v;y\,y2).

Also, we are able to compute the time-space covariance

- y)p\(y)dy
tχt2R

—-f(χ\ -
tlt2
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Let t\ < h\ the case t\ = t2 is simpler and should be treated separately. By the
translation invariance of the Poisson process, p ( 2 ) (*i ,xύh,x 2 ) — P^KhJi'^i — x\),
and we can assume, without loss of generality, that x\,x2 satisfy

*i = — : : — > *2 = — : — , (6.13)
h -t\ t 2 - t\

or x\/t\ —χ2lh. Substituting (6.13) into (6.11) and (6.12), after some elementary,
but tedious, transformations we arrive at the formula

1 oo

p (ti,x\',t2,x2) = — J (z — x\)(z — x2)A~ (z;x2,x2)dz
hh-oo

" / lzi(l ~
hh -oo

where

/
\y\<\A

+ e(z-x2)
2/2t2 J

\y\>\z\

The corresponding expression for fixed time {t\ — t2 = t) covariance was ob-
tained in Gurbatov, Malachov, Saichev (1991) p. 181, and is somewhat simpler,
namely

p{2Xt,xι\t9x2)=~{
t dx

where

P,(2x) = (1/v^πO / [e(x+z) l2tΦt{x+z) + e{x~z) /2'Φt(x -

with, as usual, Φt(x) = (l/V2πt) /f.̂  e u l2tdu, being the probability that the points
x\9 x2, x2 - x\ = 2x9 belong to the same line segment of continuity of the sawtooth
process v(t9x) (see Gurbatov, Malachov, Saichev (1991), pp. 175-181, for details).
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