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Abstract: We study a family of transforms, depending on a parameter q e [0,1],
which interpolate (in an algebraic framework) between a relative (namely:
-/z(log#X ))'(—iz)) of the logarithm of the Fourier transform for probability
distributions, and its free analogue constructed by D. Voiculescu ([16, 17]). The
classical case corresponds to q — 1, and the free one to q = 0.

We describe these interpolated transforms: (a) in terms of partitions of finite sets,
and their crossings; (b) in terms of weighted shifts; (c) by a matrix equation related
to the method of Stieltjes for expanding continued J-fractions as power series. The
main result of the paper is that all these descriptions, which extend basic approaches
used for q — 0 and/or q = 1, remain equivalent for arbitrary q £ [0,1].

We discuss a couple of basic properties of the convolution laws (for probability
distributions) which are linearized by the considered family of transforms (these
convolution laws interpolate between the usual convolution - at q = 1, and the
free convolution introduced by Voiculescu - at q — 0). In particular, we note that
description (c) mentioned in the preceding paragraph gives an insight of why the
central limit law for the interpolated convolution has to do with the ^-continuous
Hermite orthogonal polynomials.

1. Introduction and Statement of Results

We will work with probability distributions having finite moments of all orders, and
we will consider a simplified algebraic approach, where the sequence of moments
(/Rt n dμ(t))^ 0 is addressed, rather than the distribution μ itself. Thus we will think
(in this simplified approach) of distributions as of linear functional on the algebra
C(X) of polynomials in an indeterminate, and write " μ ( / ) " instead of "f fdμ",
for / a polynomial. We denote the space of such objects by Σ; i.e.,

Σ = {μ : C(X) -> C\μ linear ,μ(l) = 1} . (1.1)

For μi,μ2 £ Σ, their convolution product (which is denoted in this paper by μ\ μ2-
because the symbol " * " is used for free products) gets the expression:

0*1 μi)(f) = {μχ®μi){f{Xχ + X2)\ f G C(X) (1.2)
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the tensor product μ\ ® μ2 in (1.2) is viewed as the linear functional on the algebra
of polynomials in Xx and X2, which has (μi <g> μ2 )(X™X2

n) = μ\ (X™ )μi(X2 \m>n^ 0.
In the work of D. Voiculescu ([16, 17]), a theory of free convolution of distri-

butions was developed, which parallels the usual convolution theory, in a context
where tensor products are replaced by free products. More precisely, the free con-
volution of μi,μ2 G Σ, denoted by μiEF|μ2, is described in the same way as in (1.2),
but where the tensor product of μi and μ2 is replaced by their free product μ{ * μ2:

(μΆn)(f) = (μi*μ2)(f(Xi+X2)), /£C(X). (1.3)

For the definition of μi * μ2, which is a linear functional on the algebra of non-
commutative polynomials in X\ and X2, see for instance Sect. 1.5 of [18].

Our emphasis will be on transforms which linearize convolution. The existence
of such transforms is an important point in the theory of both usual and free convo-
lution. On one hand, as it is well-known, usual convolution is linearized by the log-
arithm of the Fourier transform: logJ^(μi μ2) = logi^(μi) + log^(μ 2 ),μi,μ 2 G
Σ. In the present context, the Fourier transform of a distribution μ is viewed as

a formal power series, ((J^(μ))(z) = ] Γ ^ 0 ^ p z π , and the logarithm of a for-
mal power series φ with φ(0) = 1 is taken as logcp = Σ^i \{— l)n+ι(φ — 1)";
hence for μ G £,log #Xμ) is viewed here as a formal power series vanishing at
zero. On the other hand, free convolution is linearized by a certain R-transform,
defined in [16, 17] via a construction involving "formal" Toeplitz operators. For
μ G Σ,R(μ) is also a formal power series vanishing at zero, and we have the for-
mula R(μι£Qμ2) = R(μ{) + R(μ2),μuμ2 G Σ.

It is easily seen that both the logarithm of the Fourier transform and the R-
transform are bijections between the space of distributions Σ of (1.1), and the
space

} (1.4)
= i )

of formal power series vanishing at zero. Therefore one can in fact define both the
usual and free convolution as the operations on Σ obtained by transporting from Θ
the pointwise addition, via the appropriate transforms.

In this paper we point out a remarkable family of bijective transforms Rq :
Σ —>• Θ, depending on a parameter q G [0,1], which interpolate between the R-
transform (at q — 0), and a relative - namely "-/z(log#X ))'(—/z)"- of the loga-
rithm of the Fourier transform (at q = 1). The Rq's bring along a family of convo-
lution laws EE|̂ ,<7 G [0,1], on the space Σ of distributions, which interpolate between
free convolution (at q = 0) and usual convolution (at q = 1); more precisely, [F^
is the operation on Σ obtained by transporting from Θ the pointwise addition, via
the Rq-transform.

The main goal of the paper is to show that the i^-transforms (0 ^ q ^ 1)
can be described in several ways, corresponding to some basic approaches used for
q = 0,1. The point consists, of course, in proving the non-trivial fact that all these
descriptions remain equivalent for arbitrary q G [0,1].

We have started our work from the approach of Voiculescu, in the case q — 0,
where the ^-transform is defined in terms of formal Toeplitz operators, i.e. in terms
of certain generating functions having as variable the unilateral shift on a separable
Hubert space. The Rq-transform is obtained from this by putting on the shift the
weight (depending on the parameter q) which was considered in connection to the
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"^-commutation relations," a remarkable interpolation between the canonical com-
mutation and the canonical anti-commutation relations - see [3]. (The same weighted
shift also appears in the context of the quantum SU(2) group - see for instance
[20]). The ^-commutation relations seem to be well-suited to "quantum probabilis-
tic" considerations (see e.g. [12]), and the idea of defining the Rq-transform in this
way comes naturally on this line of thought.

On the other hand, it turns out that the nth moment of a distribution μ is
expressed in terms of the coefficients of its i^-transform via a summation formula
over the set of partitions of {l,...,w}; in the case q — 1, this is equivalent to the
well-known formula relating the moments of μ and its so-called "cumulants" (see
for instance [11], Sect. II. 12.8). We mention that the existence of such a formula
had also been noticed in the case q = 0; more precisely, it had been shown by
R. Speicher [13] that in this case one has to consider in the summation formula
only those partitions of {1,...5«} which are non-crossing (in the sense of [8]).
The interpolation (in the summation formula for the moments) between the set of
non-crossing partitions and the set of all partitions turns out to be due to a factor
"qco(π)" j n ^ g e n e r a j t e r m o f the sum, where co(π) is a number accounting in
some sense for "how many crossing has the partition π" (see Notation 1.1.A below
for the exact definition).

Moreover, it turns out to be possible to give a third characterization of the Rq-
transforms, in terms of a matrix equation related to the one involved in the method
of Stieltjes for expanding continued /-fractions as power series. This characterization
gives an insight of why in a certain (important) particular case, taking the Rq-
transform has to do with the ^-continuous Hermite orthogonal polynomials (see
1.6, 4.2 below).

In all the approaches we consider, the inverse of the Rq-transform, R~ι : Θ —» Σ
is actually defined first, and then Rq is defined as (R~ι)~ι. We mention that all the
considerations of the paper are actually valid for q e (- l ,oo); and moreover, what
happens at q = - 1 is that R~\ which can still be defined, is no longer bijective.

In order to state explicitly the main result of the paper (Theorem 1.2 below),
we need to set a few notations.

1.1. Notations

A. Partitions. For n ^ 1, we denote by ^({\,...,n}) the set of partitions of
{1,...,«}. For π £ ^({1,...,«}) and 1 ^ m\,πi2 ^ «, we will write "m\~m2" for
the fact that m\ and m2 are in the same class (block) of π.

Recall that a partition π of {l,...,n} is said to be non-crossing (notion in-
troduced in [8]) if there is no 4-tuple (mi,m2,m3,m4) such that 1 ^ πi\ < m2 <

^ π π π
mi < ni4 ^ n^m\^m.'})^m2^jwiόt.

We will call left-reduced number of crossings of π £ 3P({ 1,...,«}) the number:

( |1 tk ni\ < rri2 < m?, < rri4 -^ n,m\~m?,

(m\,m2,m2,m4) \m2^m^ each of mi,#22 is minimal

I in the class of π containing it
(1.5)

The words "left-reduced" in the name of co(π) refer to the fact that rather than
counting all the 4-tuples mentioned in the preceding paragraph, we impose a more
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restrictive condition "on the left" (the minimality requirement on m\ and πi2 implies
of course mx^rn-i). It is easy to check, however, that a partition π 6 ^({1,...,«})
is non-crossing if and only if it has co(π) = 0.

B. Matrices. We will consider infinite complex matrices of the form M = (Xιj)ij^o-
The (z,j)-entry of a matrix M will be denoted by (M)tj. We will call diagonal
height of M the number

dh(M) = sup{/ - i\i,j e N,(Af)l7 + 0} C ZU {-00,00} , (1.6)

where "dh(M) = -00" is, by convention, equivalent to "M = 0".
We denote by Jί the set of infinite matrices M having dh(M) < 00. Then Jί

is a unital algebra, with the usual operations with matrices. Note that dh(M + N) ^
maκ(dh(M),dh(N))9 and that </λ(AflV) ^ dh(M) + dh(N) for M,Λf G ΛT.

We denote by ω the linear functional Jί —> C defined by

ω(Af) = (M)o,o, MeJί. (1.7)

For M e Jί we denote by 1 Θ M the matrix with entries

u if ij ^ 1
( l θ M ) l V = 1, if ί = 7 = 0 (1.8)

I , otherwise

(this is of course in Jί, with dh{\ θ M ) = max(ί//z(M),0)).

C. Weighted shifts. We will consider the following remarkable family of weighted
shifts on /2(N) (first studied by S.L. Woronowicz [20]): for 0 ^ q < 1, de-
note by Sq the operator on /2(N) determined by Sqδn = y/[n + l]qδn+ι,n ^ 0,
where (<5«)^0 is the canonical basis of /2(N), and where we use the custo-
mary notation [m]q = 1 + q -f +qm~ι,m ^ 1. The adjoint S* of Sq is determined

by S*δo = 0,S*δn = ^/[π]^δ«_i,« ^ 1. Sq and Ŝ* satisfy the important relation
SjSg = qSqS*q +1 (see [20], also [3]).

We will actually work most of the time with the matrices of the above operators,
with respect to the canonical basis. The reason for this is two-fold: on one hand, we
will deal with infinite sums of monomials in Sq and S* which don't make sense (are
divergent) as operators, but still have meaning as matrices; on the other hand, when
formulated in terms of matrices, all the considerations are also valid for q = 1.

Hence, for every q G [0,1], we (also) denote by Sq,S*, the matrices:

/ , s * y . = ί \/ΌTq> if j - i = i ( l 9 )

otherwise ' ^ q ^'y ^ 0, otherwise ' '

These matrices belong to the algebra Jί of l.l.B. For # φ l , they are exactly the
ones of the weighted shift Sq and its adjoint, with respect to the canonical basis (it
will always be clear from the context whether we are referring to the operator or
to its matrix).

The main result of the paper can then be stated as follows.

1.2. Theorem. If θ(z) — Σ^i oinz
n is a formal power series vanishing at zero,

and q e [0,1] is a parameter, then all the following constructions lead to the
same distribution μ : C(X) —> C.
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(a) The moments of μ are given by the formula

Σ qCoiπ

.,n}) 7 =
π={Bh...,Bk}

(l.io)

(co(π) is as defined in (1.5), and the as are the coefficients of θ. \Bj\ stands, of
course, for the number of elements of Bj, and we use the customary notation for
q-factorials:[0]q\ = l,[/] ? ! = [l],[2], • • [/], for / £ 1.)

(b) Consider the matrix

oo

Γβ^s + ΣX+i^e.* (l.ii)
n=0

(this makes sense, because any two of the matrices Sq,I,Sq,S^,... involved in the
sum are supported on different diagonals)', define μ by

μ(f) = ω(f(Tθ,q)), feC(X), (1.12)

with ω the linear functional of (\.Ί).λ

(c) Consider the lower triangular matrix M(= M(θ,q)), with entries:

{ > i f J ()
I 0, ifi<j

{in particular M belongs to the algebra M of 1.1.B). There exists a unique matrix
Γ e J( which is lower triangular with 1 's on the diagonal, and which satisfies:

Γ = (lφΓ)M. (1.14)

Γ can be in fact written explicitly as a limit,

Γ= l i m ( l θ Θ l Θ M ) ( l Θ Θ l Θ M ) ( l Θ M ) M , (1.15)
n—> oo s v y ^ ""v» s

n n—\

with the direct sums taken as in (1.8). Define μ to be the distribution with moments
given by the entries of the first column of Γ :

μ(Xn) - (Γ)π,0, n^O. (1.16)

1.3. Definition. Let q £ [0,1] be a parameter. For every formal power series van-
ishing at zero, θ(z) — Σ ^ i α«zM> denote by R~ι(θ) the distribution μ constructed
in Theorem 1.2. Consider the map R~ι : Θ —> Σ (with Θ,Σ as in the formulae
(1.4), (1.1), respectively) which is obtained in this way. Then R~x is a bijection
- as it is immediate from characterization (a) of 1.2, for instance', its inverse,
(R~ι)~ι : Σ —> Θ, will be denoted by Rq, and called Rq-transform.

1.4. Remark, (the case q = 0). The description of R~ι provided by (b) of Theorem
1.2 is a straightforward extension of the one used by Voiculescu in [17], for q — 0;

1 The terminology used in such situations is that "μ is the distribution of Tβ,q in the non-
commutative probability space (,/#,ω)" - see [16], or the monograph [18].
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the only modification for arbitrary q G [0,1] is that there exists a weight on the shift.
In particular, the 7?0-transform of Definition 1.3 coincides with the i?-transform of
[16,17].

Note also that, for q = 0, Eq. (1.10) in (a) of Theorem 1.2 becomes:

μ(Xn)= .<*\Bk\,
{}

π={Bh..,Bk}

where Jί^{{\,...,«}) denotes the set of non-crossing partitions of {1,...,«}. This
relation between the moments of a distribution μ and the coefficients ( α , , ) ^ of
R(μ) was first remarked by R. Speicher [13].

1.5. Remark, (the case q = 1). By putting q = 1 in Eq. (1.10), and using the fact
that for a partition n = k\ + 2A:2 H hnkn(k\,... ,£„ ^ 0) of the number rc there
are w!/[(l!)^ (n\)knk\! kn\] partitions of {1,...,«} which have &i classes of 1
element,...9kn classes of n elements, we get:

μ(Xn)
Σ

\kn

n ^ 1 (1.17)

in (1.17), μ is a distribution, and (oOJ^i a r e the coefficients of R\(μ). But, as it

is easily checked, (1.17) means that the series Y^Lo ~ p z " is the exponential of

this entails the formula

(1.18)

In particular, the R\-transform of Definition 1.3 differs from the logarithm of the
Fourier transform only by a linear bijective map from the space Θ of (1.4) onto
itself; and, as a consequence, R\ shares the property of log 3F of linearizing the
usual convolution of distributions.

1.6. Remark, {relation with continued fractions). We now look at the character-
ization (c) in Theorem 1.2. Let q e [0,1] be a parameter, let θ(z) = Σ^Lλanz

n be
a formal power series vanishing at zero, and define the lower triangular matrices
M,Γ as in (1.13), (1.14) of 1.2 (c). Equation (1.14) defining Γ remains valid if
we delete the first line of Γ, and also of 1 0 Γ. Moreover, what is obtained from
1 0 Γ (by deleting the first line) has only zeros on the first column; hence we can
delete that column too, if we also erase the first line of M. Making for i > j the
notation (Γ)y = ytj (the (z,j)-entry of Γ), we thus arrive to:

72,0

73,0

74,0

1
72,1

73,1

74,1

1

73,2

74,2

1
74,3 1

\

/

=

/ 1
7i,o

72,0

73,0

\ ••'

1
72,1

73,1

1
73,2 1

(1.19)
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1
1

«3[2]tf!/[0]f! α 2 [2y/[ iy . ax[l\q
α4[3]^!/[0]^l c(3[3]^!/[l]^! ot2[3]^!/[2]^! oci[3]^!/[3]^! 1

\ ••• '•• •" /

The latter equation is very similar (especially if we also take into account the
significance of the first column of Γ) to what one has when converting a continued
J-fraction into a power series, after the method of Stieltjes (see [19], Sect. 53). The
difference between (1.19) and the matrix equation of Stieltjes is that the third matrix
in (1.19) may have non-zero (z,y gentries for all pairs (ij) such that j ^ / + 1 (and
not only for those (ij) with |z — j \ ^ 1).

Note that if the considered power series θ happens to be a quadratic polynomial
vanishing at zero, θ(z) — <x.\z + o^z2 (i.e. 0C3 = α4 = = 0), then the theorem of
Stieltjes can indeed be applied, and gives

n=° l - α i z -

- otiz--

1 1 - α i z

with μ = R~ι(θ). In particular, by putting αi = 0 and α2 = 1 in (1.20), we have

that the generating function for the moments of R~ι(z2) is the expansion of

^ (1-21)

This continued fraction is known to be associated to the ^-continuous Hermite
polynomials (see for instance [7], Eq. (4.4), or Sect. 2 and 3.5 of [1]); therefore,
R~ι(z2) is the measure associated with this set of orthogonal polynomials.

We mention that various facts concerning the particular case discussed in the
preceding paragraph were known. On one hand, the formula for the moment of
order 2n of R~ι(z2) provided by characterization (a) in 1.2 is Σπq

Co^π\ with sum-
mation after all the matchings (i.e. partitions into classes with exactly two elements)
of {l,...,2ft}. The relation between this sum and the continued fraction (1.21) was
pointed out by Touchard [15] (see also Flajolet [5]). On the other hand, the dis-
tribution of the operator Sq + S* with respect to the functional ω (with Sq, ω as
in Notations 1.1 above) was studied by Bozejko and Speicher [3] Part II, and its
connection with the g-continuous Hermite polynomials was found. (In view of 1.2
(b) above, an alternative definition of R~ι(z2) is as the distribution of Sq + 5 * with
respect to ω.)

1.7. Remark, {equations in generating functions related to the Rq-transforms). We
consider again Eq. (1.14) of Theorem 1.2(c), and we use the same notations
(q,θ,M,Γ) as in the preceding remark. In addition, for every j Ξ> 0 we denote

00

φj(z) = Σ^iΠij (1.22)
ι=J
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since Γ is lower triangular, ψj could be called "the generating function for the / h

column of Γ."
Equation (1.14) is equivalent to the fact that (for every j ^ 0) the / h column

of Γ is the linear combination of the columns of 1 Θ Γ, with coefficients taken from
the / h column of M. Hence (1.14) comes to the system:

φ0 = 1 + (Xιz[0]q\φ0 + a2z
2[l]q\φι + a3z

3[2]q\φ2 + •

Jφj = zJφj^ + onzJ+ι(y]q\/y]q\)φj + α 2z'+ 2([/ + 1 ],!/[/], ! ) φ y + 1

Renormalizing: φj = \j]q\(pj,j ^ 0, we obtain:

/ π / , / . 2, 3 ^ + ' ϊ , , ^ 1 (1.23)
$• = u]qΦj-i + αizι/j -|- a2z φj+\ + 0L3Z φj+2 + ,y ^ 1 .

Now, the first column of Γ contains the moments of μ = R~ι(θ) (by (c) of
Theorem 1.2); hence φ0 = φ0 is the generating function for the moments of μ,ι/>o =
Σ^oμ(Xn)zn. If it were not for the other generating functions φι,φ2,φ3,-- which
appear in (1.23), this system would thus express the relation between μ and θ (i.e.
the 7^-transform) in terms of generating functions.

The method of handling φ\,φ2,φ3,... seems to consist in expressing them in
terms of φo. Their form can be guessed (and then proved) both for q = 0 and
q = 1 (but we couldn't find it explicitly for arbitrary q). To be precise, we have:

^ 1, for q = 1

(where (zJ'φo)^ stands for the / h derivative of zJφ0). Proving (1.24) is very easy
- let us show it for instance for q = 0. From the fact that the 7^-transform is well-
defined it follows that the system (1.23) has a unique solution, where φo is given
as data, and (α/)°2i and (φj)JZ\ are viewed as unknowns. So, if we can construct

(for q = 0) a solution of (1.23) which has φ} = φΐ+ ,j'^ 1, then the first relation
(1.24) will be proved. But we can proceed as follows: since the constant term of
φo is 1, it is clear that there are unique oc\,a2,oί3,... G C such that

^0 = 1 + oc\zφo + oc2z
2φo + α3z

3^0

3 H . (1.25)

These (α7)yS1? together with (φj = ΦQ+1)JZO satisfy hence the first equation in (1.23);

but multiplying (1.25) with ΦO9ΦQ,ΦQ,... it is actually clear that not only the first,

but all the equations of (1.23) (for q = 0) are satisfied, and we are done.
We note that (1.25) is equivalent to Theorem 2.9 of [17]. The analogue of all

this for q = 1 leads to nothing else but the second form of the equation (1.18).

The paper is divided into sections as follows: after a few combinatorial prelim-
inaries described in Sect. 2, the proof of the main result of the paper, Theorem 1.2,
is presented in Sect. 3. In the fourth (and last) section we consider the convolution
laws EB^O S q S 1, which are linearized by the Rq-transforms, and (without going
too deep in their study) we point out some basic properties which are built in their
definition.
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2. Combinatorial Preliminaries

2.1 Notations Let w b e a positive integer. We denote by ty>n the set of ^-tuples2

{fi = (fii,...,επ)|ei,...,εΛ G N U { - l } , f > 7 - ^ 0 for every 1 ^ m ^ /i,f>./ = 0 } .
7 = 1 y = l

(2.1)
We denote by ρn : ^ ( { 1 , . . . , Λ } ) —> # Λ the map which associates to the partition
π = {#!,...,£*} G^({1,...,«}) the «-tuple ε = (εi,...,εΛ) G #„ given by:

_ Γ l̂ yl — 1, if m = mz>2 i?7 for some (uniquely determined) 1 ^ j ^ k ,
&m ~ \ - 1 , otherwise.

(2.2)
An important ingredient in the proof of (β) <=> (6) in Theorem 1.2 is the com-

binatorial identity stated as follows:

2.2 Theorem. Let n be a positive integer, and let q £ [0,1] be a parameter. Then
for every ε = (εi,..., εn) E *$„ we have:

πep-\e)

(2.3)

/ \ / \ " '

Γ^ [ei+ + e*
• such that

(pn : ̂ ({l,...,w})-+ %n as in 2.1, co( ) as in l.l.A).

«,#, and ε = (ε\,...,εn) e^n about which we are proving (2.3) are fixed for
the rest of the section. Let the set of positions {m\l ^ m ^ n,εm ^ 0} be written
explicitly as {p\,..., pu], with 1 = px < < pk ^ n. We also use the shorthand
notation εPj = lj,l ^ j ^ k; note that

/ ! + . . . / * = / ! - * (2.4)

(indeed, we have 0 = εi H + £„=£„. H ε- + (-1) H (-1) = h H +

For every 1 ^ j ^ k we denote by sj the sum:

PJ

+ 1)1 - Pj = in ~ Pj) -
J

Σ (/ι
/=7+l J

is a non-negative integer, and in fact sj ^ lj, 1 ^ 7 ^ A:(57 =
EP/ ^

2.3 Lemma. There exists a bijection between the index set p^ι(ε) of the sum
(2.3), and the set

{{Aλ,...,Ak)\Aj C {!,...,Sj},\Aj\ = lj for every \ ^ j ^ k] , (2.6)

2 O n e t h i n k s o f t h e e l e m e n t s o f c€n as o f p a t h s in t he s q u a r e la t t ice , b y iden t i fy ing ( ε \ , . . . , ε n )
w i t h t h e s e q u e n c e o f p o i n t s ( 0 , 0 ) , ( l , ε i ) , ( 2 , ε i + ε2),.. . , ( « , c i H hcn) = (n,0).
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such that the following holds: if π e Pΰι(ε) corresponds to {A\,...,Ak) in the set

(2.6), then
co(π) = co(Aι) + '-co(Ak)9 (2.7)

where for any finite set of positive integers A — {a\,. ..,a^\ we put

co{A) = (a, - 1) + (a2 - 2) + + (ah - h)

= card {(b,a)\a, b positive integers, b < a, a G A,b ̂  A} . (2.8)

Proof Given a &-tuple of sets (A\,...,Ak) as in (2.6), we construct a partition
π = {B\,...,Bk} G p^ι(s) as follows.

We begin by taking p\ G B\,...,pk G Bk\ Pj must come out to be in fact the
minimal element of Bj, 1 ^ j ^ k, and we also know that Bj\{pj} must contain
exactly lj elements.

The next step in constructing π is to choose the 4 elements which form
Bk\{Pk} All these Ik elements must lie to the right of pk. There are exactly
n — pk — Sk numbers to the right of pk in {l,...,n}, and our way of choosing 4
of them (to form Bk\{pk}) is the one dictated by Ak. (Recall that Ak, the last set in
the A -tuple {Aχ,...,Ak) we started with, is a subset with 4 elements of {1,...,^};
therefore, whenever we have a totally ordered set of Sk elements, Ak indicates a
choice of Ik of them, in the obvious way.)

We now go to the choice of the 4- i elements which form Bk-\\{pk-\}- All
these 4- i elements must lie to the right of pk-ι, and we must take care that none
of them falls in the (already chosen) block Bk. There are n — pk-ι numbers to the
right of pk-\ in {1,... ,n), and 4 + 1 of them are already picked in Bk, therefore we
have to choose our 4-1 numbers out of (n - pu-\) — ( 4 + 1) = ty-i possibilities.
We make the choice as dictated by the set Ak~\ in the A:-tuple {A\9...,Ak) we
started with.

We continue by repeating the algorithm described in the preceding paragraph, in
order to choose, recursively, the 4-2 elements of Bk^2\{pk-2},..., m e h elements
of B\\{p\}. This leads us to the partition π = {B\,...,Bk} G p^ι{ε) we needed to
construct.

Let us remark that the partition π G p^ι(ε) we arrived to satisfies (2.7). Indeed,
the formula (1.5) defining co{π) can also be written:

^ m\ < m2 < mi < m^ ^ n ,
π π

\m2 — Pj,m\ = pi for some i < j

(this is because, obviously, for every 4-tuple {m\,m2,m^,m4) appearing in (1.5),
m\ and m2 must lie in {p\,...,pk}) Now, a 4-tuple appearing in (2.9) is clearly
determined by its third and fourth components, which shows that for a given 1 ^
j ^ k, the set appearing on the right-hand side of (2.9) is naturally in bijection
with

l(b,a)\pj < b < a,aeBj,beJ[jBΛ (2.10)

but by comparing (2.10) with (2.8), one sees without difficulty that the cardinality
of the set (2.10) equals co{Af). Hence the / h term of the sum (2.9) is co(Aj), which
establishes (2.7)
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Finally, it is an easy exercise, left to the reader, to check that the construction
described in the first five paragraphs of the proof does indeed establish a bijection
between the set of A -tuples (2.6) and p~ι(ε). QED

We also record the following known fact (see for instance [6], Lemma 5.1).

2.4. Lemma. For I g s non-negative integers we have

2.5. Proof of Theorem 2.2. We have:

Σ qCo(π) = Σ 4 ( ^ )

I
= π

(by Lemma 2.3)

"Si', (by Lemma 2.4)

/7 was a shorthand notation for εPj, 1 ^ yr ^ Λ, hence the second fraction appearing

in (2.12) is exactly (\\ \^m^n [sm]q\)~ι. In order to establish (2.3) it remains to
s.tεm^O

verify that

L ^ l M J ' m[Sk k \ }

But it is easily seen that

such that

Multiplying the equalities (2.14) together, and taking into account that si = /i yields
(2.13) and concludes the proof. QED

2.6. Corol lary. For n,q and ε — ( ε \ , . . . , ε n ) G ^n as in Theorem 2.2 we have:

Σ ^(" )
| - l ] , ! = Π

s'ufh"fha"«

(2.15)

Proof. From the definition of the map />„ :

for every π = {Bx,...,Bk} £ p-\ε), we have U%d\Bj\ ~

hence (2.15) reduces to (2.3). QED

it is immediate that,
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2.7. Remark. The relatively short derivation of (2.3) presented above was suggested
to us by an anonymous referee for a talk related to this paper (at a conference
on algebraic combinatorics, Rutgers, May 1994). We mention that an alternative
proof of the identity (2.15) (hence, equivalently, of (2.3)) can be made by using
an argument which enumerates a certain class of inversions of permutations of
{1,...,«},« ^ 1. This alternative proof is presented in [10], Sect. 4; it is sensibly
longer, but offers on the other hand a more complete picture of the situation. The q-
factorials in (2.15) come out, during the derivation via permutations, as sums of the
form Στecfmqιnv(τ\ where ίfm denotes the group of all permutations of {l,...,ra},
and inv(τ) is the number of inversions of τ G ̂ m. (As it is well-known, the latter
sum equals [m]^!-see for instance [14], Corollary 1.3.10.)

3. The Proof of the Theorem 1.2

In this section we prove the equivalence of (a), (b) and (c) in the main result of
the paper (Theorem 1.2). We will fix throughout the whole section a formal power
series vanishing at zero, θ(z) = Y^i Un2", and a value of the parameter q G [0,1].
We start with the construction made in (b) of Theorem 1.2; that is, we consider
the matrix ΎQΆ defined by the formula (1.11), TQΆ = S* + Σ ^ o α « + i ^ > a n d t h e

distribution μ : C(X) -> C defined by the formula (1.12), μ(f) = ω ( / ( 7 ^ ) ) for
/ G C(X). We will have to show that the result of the constructions made in (a)
and (c) of Theorem 1.2 is also μ.

Let us make first a preliminary remark about the weighted shift Sq.

3.1. Remark. The calculations related to Sq are usually simplified when we con-
jugate with certain diagonal matrices. More precisely, for q G [0,1], let us denote
by Δq the diagonal matrix having ^/[ΐ\q\ on its (z,/)-entry, for every / ^ 0. Then,
with Sq and S* as in the formulae (1.9) of 1.1.C, it is easily checked that:

S A V - I 1? i f i =
SqΔq)hJ-<

(i.e. A ιSqΔq is So, the usual unilateral shift); and

\ Δ k γ otherwise.

Another fact which should be kept in mind is that conjugating with Δq preserves
the linear functional ω : Jt —> C of (1.7) - i.e. ω{Δ~ιNΔq) = ω{N) for every N G
M (immediate verification).

We start towards the proof of (a) Φ> (b) with the following

3.2. Lemma. Let Sq,S* be the matrices discussed in Remark 3.1, let n be a positive

integer, and let εi,...,εn be in NU {—1}. Consider the monomial Sq

nSq"~ι -Sq

ι,
where we make the convention that SE

q

m means S* whenever εm — — 1. {In the case
when εm ^ 0, Sq

m is of course the corresponding power of Sq in the algebra M
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of l.l.B; the monomial under consideration will hence also be an element of the
same algebra.) We have:

0, otherwise,

where ω : Ji —» C w /7ze linear functional in (1.7) 0/ l . l .B, owd ^ π zs z7ze se/1

defined in 2.1.

Pro*?/ The left-hand side of (3.3) equals, by Remark 3.1: ω((Aq

ιSε

q"Aq)

(A~ιSq"~ι Aq) (A~ιSql Aq)). This is (if we take into account that ω simply "takes
the (0,0)-entry"):

00

z'l ,...,/„_ 1 = 0

(3.4)

Now from Remark 3.1 it is immediate that the entry-wise description of A~ιSqAq,ε £

N U { - 1 } , is
( 1 , i f i-j = ε e N

( S ε

g \ j = < U ] q , i f i - j = ε = - l (3.5)
I 0, otherwise .

In order that an (n — l)-tuple (zΊ, . . . ,z n _i) gives a non-zero contribution in the
sum (3.4), we need therefore to have 0 — in-\ = εn,zw_i - in-2 = εΛ_i,...,z'2 — z'i =
ε2,zΊ — 0 = εi; these relations come to zm = Σ™=1 ε t, 1 ^ m ^ « — 1, together with
Σ/Ui ε^ = ^ ^ m c e z'i J 5 z«-i must be positive, it follows that we need in particular
to have (ε i , . . . , ε w ) G <&„. Conversely, if (ε i , . . . , ε Λ ) G ̂ Λ , then the sum (3.4) will
reduce to its term:

{Aq Sq

nAq)o,ει+...cn_ι(Aq Sq" Aq)ε]+...εn_uει+...Cn_2"-

which (by (3.5)) is exactly the product in the right-hand side of (3.3). QED

3.3. The proof of (a)^(b) in Theorem 1.2. Let us also fix a positive integer n;
we have to show that an explicit formula for the nth moment of the distribution μ
(considered in the first paragraph of this section) is provided by the right-hand side
of Eq. (1.10). Recall that the definition we are currently having for the nth moment
of μ reads: "μ{Xn) = ω ( 7 ^ ) " .

We make the notation Tθ^n = S'* + Σζl}0 α^+iS1^. This is a truncation of Tθφ

in the sense that

0, otherwise ( 3 > 6 )

(immediate verification). We claim that co(Tg ) = ω(Tg ). Indeed, we have:

00
ω(Tθ,q) = (Tθ,q)θ,O = Σ (Tθ,q)θ,in_ι(Tθ,q)ιn_ι,in_2 ' ' ' ( ^ ) / 2 , i i (Tθ,q)ιh0 • (3.7)

i\,...,in-1=0
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The diagonal height (defined as in l.l.B) of TQA is, obviously, equal to 1; hence
every (n — l)-tuple (zΊ,...,zw_i) which gives a non-zero term of the sum in (3.7)
must satisfy: in-\ ^ 0 + 1 , in-i ^ in-\ + 1,..., M ̂  h + 1. By taking (3.6) into ac-
count, it is then immediate that the entries of TQ# appearing in (3.7) can be replaced
by the corresponding entries of To^y, in this way, the right-hand side of (3.7) is
transformed into (Γ^J o ,o - ω ( Γ ^ ) .

So we also have μ(Xn) = ω(Tβ ), and this gives, by expanding Tβ as a sum:

"-' -^) Π α

By also making use of Lemma 3.2, we thus arrive to

μ(X")= Σ f Π [ei + βm-i],- Π « i+*, | (3-8)
\ J

But now, from Corollary 2.6 we know that the first product appearing on the
right-hand side of (3.8) can be replaced with

Σ
p \ε)

π={Bh..,Bk}

By reviewing the definition of the map ρn : ^ ( { 1 , . . . , Λ } ) -> ^n (Eq. (2.2) in 2.1),

one sees immediately that the second product on the right-hand side of (3.8) can

be replaced with Πy=i α|#/|> f° r a n arbitrary π e p^ι(ε) When these replacements

are performed, (3.8) becomes:

\

= Σ I Σ ^ ( )

\

which is exactly (1.10). QED

Before going to the proof of (b) <̂> (c) in Theorem 1.2, let us clarify the relation
between Eqs. (1.14) and (1.15) appearing in 1.2 (c).

3.4. Lemma. Let N be a lower triangular infinite matrix, with Γs on the principal
diagonal There exists a unique invertible matrix X in the algebra M of l.l.B,
which satisfies

X = (1®X)N (3.9)

(with l φ J defined as in (1.8) above). X is also lower triangular with Γs on the
diagonal, and can in fact be written "explicitly" in the form:

X= l i m ( l θ Θ l Θ Λ O ( l Θ θ l Θ Λ O (lΘΛOAΓ. (3.10)
n—>oo v ss ' s v '

n n—\

Another explicit description of X is the following: let N G Jί be the matrix obtained
from N by deleting the first line ((N)ij = (N)i+\j,iJ ^ 0). Then the entries of X
are:

i j 9 i J ^ O . (3.11)
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Proof. The limit in (3.10) exists, because multiplying an arbitrary matrix P e Jί
with 1 0 0 1 φN on the left leaves unchanged the first n -f- 1 lines of P (hence,

n

for given ij ^ 0, all the matrix-products appearing in (3.10) are having from a
certain moment the same (z,y)-entry).

If X is the limit in (3.10), it is clear that X is lower triangular with Γs on the
diagonal; in particular, X is invertible. By adding 1 in direct sum, on the left of
(3.10), we obtain:

1 ΘX = l im(l
n—»oo s —

•0 10W) O 0 W ) ,

n n—\

which immediately implies that X satisfies (3.9).
Conversely, let Y e Jί be an invertible matrix such that Y — (1 0 Y)N. By

adding Γs in direct sum, on the left of this equality, we get:

7 = 0 0
107 =

l θ -01 Θ7 = (J θ θ \ΦY)Q 0 0 \ΘN)
n n+\ n

that is

( l θ 107ΓH1 = (10 010JV)
(3.12)

n+\

Multiplying together the first n + 1 equalities (3.12), in reversed order, we obtain:

7 = (1 0 0 1 07)(1 0 0 1 ΘΛO (1 0 N)N . (3.13)

n+\ n

Then letting n —• oo in (3.13) (and taking into account that ( l φ Φ \ΘY) tends

for n —> oo to the identity matrix), it becomes clear that Y coincides with X of
(3.10).

It remains to prove (3.11). While this can be done without difficulty from (3.10),
let us remark that another simple way of doing the verification of (3.11) is by
showing that: the matrix Z defined by {Z)Uj = {(N)ι\j,ίJ §; 0, is lower triangular
with Γs on the diagonal, and satisfies Eq. (3.9). (Then Z —X, by the uniqueness
assertion proved above.)

The fact that Z is lower triangular is immediate: the diagonal height (defined
as in l.l.B) of N is obviously dh(N) = 1, which implies dh((N)1) ^ i for i ^ 0,
and has as consequence that ((N)ι)oj = 0 for j > i. Moreover, the same kind of
argument shows that for every / Ξ> 2, the sum:

oo
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reduces in fact to the single term (W)o,i(AOi,2 * (N)i-\j = (N)n(N)2,2 * (N)μ =
1. Since it is also clear that ((Λ0°)o,o = ((N)ι)o,i = 1» it follows that Z has indeed
Γs on the diagonal.

Finally, we verify (3.9). Since both Z and ( 1 0 Z)N have the first line equal to
(1,0,0,...), it suffices to check ((1 ΘZ)Λ% = (Z)Uj for i ^ 1. We have:

(the sum is from k — 1 because (1 0 Z\o = 0)

0 0

= Σ(Z)i-ijc-i(N)k-ιj = (by putt ing l = k - \ and replacing (Z\-U)
k=\

=Σ((Ny-ι)oΛN)ιj = ( ( ^ Γ 1 K)oj = (Z)ij . QED
1=0

3.5. The proof of (b) -ΦΦ f^ in Theorem 1.2. We remark that the matrices: TQ#-
defined by (1.11), and M-with M defined by (1.13), are conjugated by a diagonal
matrix. (To put things in the right order: M is the unique matrix obtained from TQΆ

by conjugating with a diagonal matrix, such that we get Γs on the first diagonal
above the principal one.) Indeed, if Δq is the diagonal matrix considered in 3.1,
(Δq\i = y/[i]q\9i ^ 0, then the definition of TQ# combined with the formulae (3.1),
(3.2)'of 3.1 give us:

ί
<*i-j+u if j ^ i
\j]q, ify = ι + l (3.14)

0, i f y > / + l .
By writing AqTo^qA~ι as Δ2

q{Δ~ιTe^qΔq)Λ~2 and using (3.14) it is then immediate
that

ΔqTθ,qΔ-ι=M. (3.15)

Now, if Γ is the unique solution of Eq. (1.14), then by the previous lemma we
have, for every n ^ 0:

(ΓU = ((Mf)o,o °= j q

and the latter quantity was the definition taken for μ(Xn) at the beginning of this
section. QED

4. Remarks on the Interpolated Convolution Laws EB̂

4.1. Definition. Let q £ [0,1] be a parameter. We denote by E^ the operation
on the space of distributions Σ 0/(1.1), which is linearized by the Rq-transform
Rq:Σ^Θ; i.e.,

It is clear from the definition that (£,[+^) is an Abelian group, for every 0 ^
q ^ 1. From the considerations in Remarks 1.4, 1.5, it follows that |+|0 = |+|, the
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free convolution of Voiculescu ([16, 17]), while EBi is the usual convolution of
distributions.

This way of introducing the interpolated convolution (via the linearizing trans-
form) has at least one immediate advantage; namely, that we get from the very
beginning an algebraic version of what is usually called "the method of charac-
teristic functions" (see, e.g. [4], Sect. XV.5). Thus, for instance, it is very easy
to prove an interpolated version of the central limit theorem. Since our approach
consisted in working with distributions (rather than with random variables), we
consider the formulation of the central limit theorem in this language; that is, we
use the ^-convolution [+| of distributions as a counterpart for a notion of "addition
of ^-independent random variables." Also, the operation of multiplying a random
variable by a constant r > 0 finds its analogue in the one of composing a distri-
bution with the dilation Dr : C(X) —> C(X)(Dr = the unique homomorphism such
that Dr(X) = rX). Thus:

4.2. Central Limit Theorem. Let q e [0,1] be a parameter, and let (μk)fL\ be a
sequence of distributions such that:

(i) μk(X) = 0 for every k ^ 1;
(ii) limk^oo±Σk

j=ιμj(X2)=U
(iii) sup^ \μk(Xn)\ < oo for every n ^ 2.

Then the sequence ((μiEE^ 'Sqμn) ° A / ^ ) ^ i converges weakly to the dis-

tribution R~ι(z2).

The sense of the words "converges weakly" in Theorem 4.2 is the one of con-
vergence of moments of all orders. The "^-Gaussian" distribution R~[(z2), playing
the role of central limit, is the same which appeared in the considerations in 1.6
above. We mention that interpolations of the central limit theorem, with the same
central limit laws, have been previously considered in [2], Sect. 4 (version equi-
valent to 4.2 above, but in language of random variables) and also in [12], in a
different context.

The proof of Theorem 4.2 comes to repeating word by word the argument
proving Theorem 3.5.1 of [18] (with "[+]" replaced by "H^")» and is therefore left
to the reader.

Now, of course, both usual and free convolution were originally defined in terms
of a "product" which takes values outside Σ (the tensor and the free product, re-
spectively - see Eqs. (1.2), (1.3) above). It appears hence as a natural question
whether one can define an operation with distributions, *^,0 rg q ^ 1, which in-
terpolates between the free and the tensor product, and such that a formula of the
type (1.2), (1.3) holds for every q G [0,1].

It is reasonable to ask that, for q G [0,1] and μi,μ2 G Σ, the "g-free product"
μi * g μ2 is a linear functional on an algebra of polynomials in two indetermi-
nates. Actually, we can always consider μ\ itq μι on the algebra Q{X\,X2) of non-
commutative polynomials in X\ and X2, by reasons of universality (any algebra of
polynomials in two indeterminates is a quotient of C(X\,X2), hence linear func-
tionals on it can be pulled back to C(X\,X2)). In particular, for q = l,μi * i μ2 :

C(XUX2) -» C will be the composition C(XUX2} -> C(XX) ® C(X2)^ΪC, or in
other words will be described by

- - X l n ) = μx{Xh)μ2{Xk),n^ \,iλ, . . . , / „ € { 1 , 2 } , (4.2)
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where in (4.2) h is the number of Γs and k — n - h is the number of 2's appearing
among i\,...,in. (In this context, the fact that the tensor product is really a functional
on C(X2) ® C(X2) is stated as "μx * i μ2 can be factored through C{X\) <g> C(X2)"
and reflects the presence of some "additional symmetry," particular to the case

Hence, in short, the problem is that we have the formula

(μ\mqμiWn) = (μι * * μiX&i +Xi)n),n ^ 0,μl9μ2 € Σ* <7 = 0,1 , (4.3)

and we would like to extend it to the case of arbitrary q G [0,1]. The key idea
in order to do this appears to be (once again) to apply an adequate "transform,"
which makes the formuale defining μ\ * 0 μi and μ\ * i μ2 look very similar. More
precisely, we will define a two-dimensional analogue Rπ,q of the i^-transform,
0 ^ q ^ 1, and it will turn out that for both q = 0 and q = 1 we have the very
simple formula:

(Riijiμi +q μ2))(z\,z2) = (**(μi))(zi) + {Rq{μi)){z2) . (4.4)

Then (4.4) will be used to define μ\ * ^ μ2 for arbitrary q G [0,1]. The details of
this are presented in the following

4.3. Definition. 1° We denote by Σπ the space of linear functίonals μ :
C(X\,X2) —> C such that μ(l) = 1; and by Θπ the space of formal power se-
ries in two non-commuting variables, and with vanishing constant coefficient. An
element θ e ΘJJ is thus of the form:

θ(zuz2)= £ Σ βiι,.Jnzh " Zin ,
n^\ iw..,ine{h2}

with (βh,...,ιn)n^\;iu...,ine{\,2} complex coefficients.
For θ G ΘJI,Π ^ 1 and i\,...Jn G {1,2}, we will denote by {θ)iw.jn the coeffi-

cient of ziχ — zln in θ. Also, the following notation concerning multi-indices will be
useful: Ifi\,...Jn G {1,2} and 0+B C {1,...,«} is a subset with, say, m elements,
then (i\,...,in)\B will denote the m-tuple obtained by deleting from i\,...,in the
ik's wίthk^B. {For example, (1,2,2,1,2,1)|{2,4,5,6} = (2,1,2,1).)

2° Let q e [0,1] be a parameter. We define RJ^q : Θπ —> Σπ by associating

to θ G Θπ the functional μ G Σπ determined by:

μ(Xiχ---Xin)= Σ 9Co(π)ϊim\-lV(θ){iί,..jn)iBk- (4.5)
^ ( { i } ) k\k=\

Then RJjq is easily seen to be a bijection from Θπ onto Σπ, and we define

Rn,q : ΣJJ -> Θπ to be ( Λ ^ Γ 1 .
3° Let q G [0,1] be a parameter. For every μ\,μ2 in the space of distributions Σ

0/(1.1), we define their q-free product μ\ * ^ μ2 to be the unique linear functional
in Σπ which satisfies Eq. (4.4).

For the fact that * 0 defined by 4.3.3° coincides with the free product of dis-
tributions, see Theorem 3.3 of [9] (in a slightly different context, this phenomenon
was first put into evidence in Sect. 4. of [13]). The fact that * i defined by 4.3.3°
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is the same as the one appearing in Eq. (4.2), comes to an easy calculation made
in the following

4.4. Lemma. Let μ\,μ2 be in Σ, and let θ G Θn be the formal power series defined
by θ(zuZ2) = (Rι(μι))(zι) + (Rι(μ2))(z2). Then for every n ^ 1 and iu.. .,/„ e
{1,2}, we have that (Rjj\(θ))(Xn — Xln) coincides with the right-hand side of
(4.2).

Proof Let us fix n ^ 1 and /],...,/„ G {1,2}, and make the notation Cx = {1 ^

m ^ n im = 1}, C2 = {1 S m ^ n\im = 2}. We have, by the definition of R]~j\:

m

^ xin) = Σ

in view of the particular form of θ, this can be continued with:

Σ Π

where ( α ^ ) ^ ! and (α; 2 ) )^ j are the coefficients of the formal power series
R\(μ\) and R\{μι), respectively. But clearly, the sum (4.6) decomposes as a
product of two factors, which equals (by characterization (a) of Theorem 1.2)

\ \ c \ \ \ c \ \ c ^ \ c ^ QED

Hence the operations *^,0 ^ q ^ 1, defined by 4.3.3°, really interpolate be-
tween the free product and (the pull-back of) the tensor product, and it only remains
to verify that

4.5. Theorem. Relation (4.3) holds for every parameter q G [0,1] and every
μι,μ2 e Σ.

Proof Let us fix q G [0,1] and μ\,μ2 G Σ, and let us denote the ^-transforms

of μx and μ2 by θx(z) = E ^ i α^z" and θ 2 ^ ) = Σ ^ i ^]zn, respectively. Then
the Rj /^-transform of μ\ +q μ2 is (by Definition 4.3.3°) the formal power series
θ e θu defined by θ(zuz2) = θx(zx) + Θ2(z2).

Let us also fix n ^ 2. We have

m

Σ Σ qCo{π)Y\[\Bk\-lV(θ)in,..,ln)\Bk (4.7)
{} {} * 1

(where we used that μx iκq μ2 = RJ~/q(θ), and formula (4.5)).

Now, given an rc-tuple (zΊ,. . . ,/„) G { l ,2} n and a partition π G
let us write "(/ i , . . .,/„) <̂ π " if ih = i\ whenever 1 ^ h ^ I ^ n are in the same
class of π. Remark that in the double sum (4.7), the term corresponding to
(z'i,...,/„) G {1,2}" and π = {B\,...9Bm} G ̂ ({1, . . . ,«}) can be non-zero only if
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(z'i,...,in) -< π. Indeed, in the opposite case we can find a class Bk of π, 1 ^ k ^ m,
such that (i\9...,in)\Bk contains both Γs and 2's; then (θ)(z1 ,...,/„)|5A. = 0, forcing the
corresponding term of the sum (4.7) to vanish.

Taking into account the remark of the preceding paragraph, and changing the
order of summation in (4.7), we obtain:

m m

(μι •, μi){{X\ +Xi)n) = Σ qCo(π) Π i\Bk\ ~ 1],! Σ Π Φ)(iw.jn)Wk .
πe&({l,...,n}) k=\ (iι,...,in)^πk=\
π={Bh...,Bm}

(4.8)

Let us next take a partition π = {B\,...,Bm} G ̂ ({1,...,«}), and concentrate
for this π on the second sum on the right-hand side of (4.8). The index set of this
sum consists of those 2m sequences (/i,...,/n) G {1,2}W which, viewed as functions
from {l,...,n} to {1,2}, are constant on each class of π. Moreover, it is clear
(from θ(z\,z2) = θ\(z\) + Θ2(z2)) that for every such sequence (z'i,...,in) and every
1 ^ k ^ m, we have

ί αL ,, if (z'i,...,zw) is constantly 1 on 5^

αj£, if (ίi,...,iΛ) is constantly 2 on Bk

(where recall that (oη )JZ\ a n ( l (α/ )/Ξi a r e m e coefficients of θ\ and θ2, respec-
tively). In this way we see that:

m

nΨ){h,.,in)\Bk = z^ m

α|5,ι *"αi5mι

J2)1 ) + α (

Hence, returning to (4.8), we conclude that it can be continued with:

Σ ^ ( ) ! V g
π={B{,...JBm}

+ # 2 ) ] ( ^ ) ( by (a) of Theorem 1.2)

Cn) ( by the definition of ffl^). QED
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