
Commun. Math. Phys. 168, 39-55 (1995) Communications IΠ

Mathematical
Physics

© Springer-Verlag 1995

Simultaneous Uniqueness of Infinite Clusters
in Stationary Random Labeled Graphs

Kenneth S. Alexander1

Department of Mathematics, University of Southern California, Los Angeles, CA 90089-1113,
USA. Email: alexandr@mtha.usc.edu

Received: 12 October 1993/in revised form: 19 April 1994

Abstract: In processes such as invasion percolation and certain models of con-
tinuum percolation, in which a possibly random label/(6) is attached to each bond
b of a possibly random graph, percolation models for various values of a parameter
r are naturally coupled: one can define a bond b to be occupied at level r iff(b) 5Ξ r.
If the labeled graph is stationary, then under the mild additional assumption of
positive finite energy, a result of Gandolfi, Keane, and Newman ensures that, in
lattice models, for each fixed r at which percolation occurs, the infinite cluster is
unique a.s. Analogous results exist for certain continuum models. A unifying frame-
work is given for such fixed-r results, and it is shown that if the site density is finite
and the labeled graph has positive finite energy, then with probability one, unique-
ness holds simultaneously for all values of r. An example is given to show that when
the site density is infinite, positive finite energy does not ensure uniqueness, even for
fixed r. In addition, with finite site density but without positive finite energy, one
can have fixed-r uniqueness a.s. for each r, yet not have simultaneous uniqueness.

I. Introduction and Statement of Results

There are various models in which percolation processes are naturally coupled for
all values of the order parameter. Typically, a value f(b) is attached to each bond
b of an infinite graph (V, M) with site set V and bond set ffl\ the graph and/or the
values/(fo) may be random. A bond b is said to be occupied at level r iϊf(b) ^ r, and
one can consider percolation of occupied bonds at various levels r. Some examples
follow.

Example 1.1. In invasion percolation, introduced in the mathematical literature in
[6], (V,3$) is a (nonrandom) lattice in Rd, and the values {f(b): b e 08} are iid
uniform in [0,1]. The corresponding percolation model is Bernoulli bond
percolation.

Research supported by NSF grant DMS-9206139



40 K.S. Alexander

Example 1.2. In one example of the "lily pad" model of continuum percolation, the
sites are those of a Poisson process of constant intensity in Rd, and connections
exist between pairs of sites separated by distance at most some r > 0; see [9]
Chapter 10. This is equivalent to centering a ball of radius r/2 at each site, and
considering the connected components of the union of such balls. The clusters
formed by the connections are not affected if one considers only pairs of sites which
are adjacent in the Voronoi graph, obtained by placing a bond between every pair
of sites for which the corresponding polyhedral Voronoi regions Rx:= {z e Rd:
d(z,x) = min{d(z,y): y e F}}, x e V, have a face in common (see [17] Lemma 6.2).
Thus we can take (F, 0$) to be either the Voronoi graph or the complete graph on
the set of sites./(b) is the Euclidean length of a bond b; the models for all values of
r are then naturally coupled.

Example 1.3. In the "random connection model" of continuum percolation, exam-
ined in [16] and [5], the sites are those of a Poisson process of intensity λ in JRd,
and there is a nonincreasing right-continuous function φ: (0, oo) -> [0,1] such that
for each pair of sites x,y, the bond {x,y} is occupied with probability φ(\x — y\),
independently of other bonds and of the site configuration. It is typically assumed that

φ(s)sd~1ds < oo
o

to ensure that the graph of occupied bonds is locally finite. The intensity λ is the
order parameter, or equivalently, instead of varying λ one can fix the intensity, say at 1,
choose a value r > 0 and occupy each bond <x, y) with probability φ(\x — y\/r). Let
φ~1(t):= inf{x ^ 0; φ(x) ^ ή, let {Y<xy>: x,y e V} be iid uniform in [0,1], and let
/Kx,y» := |x - yl/φ-'iY^yy). Note/(<x,j;» S r if and only if Y<x,y} S φ{\x ~ y\/Λ
which has probability φ(\x — y\/r). Thus this process couples all values of r, or
equivalently all values of the intensity λ. When r, rather than λ, is the order
parameter, the site process can be an arbitrary stationary point process, as in [5].

Example 1.4. In a more general version of the lily pad model of Example 1.2, the
ball centered at each site x of a stationary point process has a random radius px;
these radii are iid. For a Poisson process, as in Example 1.3 the order parameter is
the intensity λ. Equivalently, and for general stationary point processes, we can fix
the point process, choose a value r > 0 and for each pair of sites x, y declare the
bond <x, y} to be occupied if px + py ^ |x — y\/r. This means that the label

Example 1.5. Let ( F , ^ ) be the d-dimensional hypercubic lattice. Grimmett [10]
has shown that for fixed q > 1, there exists a stationary process {/(&): b e &} of
[0, l]-valued random variables such that for each r e [0,1], {b e &:f(b) ^ r) is the
set of occupied bonds of the wired Fortuin-Kastelyn random cluster model [7]
with parameters (r, q). The parameters here are such that the probability of a given
configuration in a finite box is proportional to the independent-percolation prob-
ability at level r, multiplied by qn, where n is the number of clusters in the
configuration; see [7] for the full definition of the process.

Properties of such coupled percolation models are relevant to the study of infinite
analogs of the minimal spanning tree; see [2] and [3]. In particular, as
implicitly observed in the final section of [2], it is of interest to know whether
uniqueness of the infinite cluster a.s. holds simultaneously for all values of r for



Simultaneous uniqueness of Infinite clusters 41

which percolation occurs. Here we will answer this question in the affirmative; this
result is applied in [3]. A result of Gandolfi, Keane, and Newman [8] ensures that
for lattice models with what those authors call "positive finite energy," which
include Examples 1.1 and 1.5, for each fixed r, there is a.s. at most one infinite
cluster. Their proof does not yield simultaneous uniqueness. Meester and Roy [13]
and Burton and Meester [5] proved similar results for the "lily pad" model of
Examples 1.2 and 1.4, and for the random connection model of Example 1.3,
respectively. Our goals here are twofold: first, find a unifying framework, including
in particular an appropriate definition of positive finite energy, which will en-
compass all of the above examples; second, show that the uniqueness does hold
simultaneously.

Let us first describe the sort of process to which our result will apply. The
underlying space is either IRd or a lattice L in Rd, by which we mean a periodic
graph as defined in [12]. By a counting measure we mean a sum of at most
countably many unit point masses at distinct points. Let IRd Λ R d denote the set of
pairs <x, y>, x,y e Rd, with <x,y> and <y,x> identified. A random labeled graph
X in R d can be viewed as a point process in the disjoint union
§<*:= IRdu((]Rί/ Λ IRd) x IR). More precisely, X is a random element of the space
yM(βd) of Radon measures on Sd, defined on a probability space (Ώ, J% Pr), with the
following properties a.s.:

(i) X is a counting measure:
(ii) the sets V = V(X):= {x e Rd:X({x}) = 1} and ® = @(X):= {<x,y> e

Ί&d Λ JR.d: X({((x9y}9r)}) = 1 for some r e IR} are such that if <x,y> e & then
x,ye V;

(iii) If X({(O,j/>,r)}) - 1 and X({((x,y},s)}) = 1 then r = s.

Elements of V are sites (or vertices) of X, and elements of 0b are bonds (or edges.)
We call a fixed Radon measure in Jί(Sd) a labeled graph if it has the properties
prescribed for X in (i)-(iii). JP(§d) is endowed with the topology of weak conver-
gence and the σ-algebra £fd of corresponding Borel sets. Because of (iii), given
X there is a labeling function/: 3β -+ IR such that X({«x,y>,r)}) = 1 if and only if
/(<x,)>» = r.X can then be identified with the triple (V9@,f).

At times we will consider unlabeled graphs, in which case we will use the same
terminology without the word "labeled."

Note that X being a Radon measure means that there are only finitely many
sites in each bounded region, though infinitely many bonds may emanate from
a single site, and the mean number of sites per unit volume may be infinite. Our
definition allows bonds of form <x, x>, but multiple bonds between the same pair of
sites are not possible.

For t e IRJ the transformation τt acts on § d by

τtx\=x-t forxelR^;

τt{<x,yy,r):= « x - t,y - t\r) for (<x,)/>,r) e (Kd Λ IRd) x IR .

This induces a transformation θt which acts on Jt(Sd) by

(Otm)(B):=m(τtB\ B cz Sd .

We say X is stationary if the distribution of X is preserved by 0t for all t e IRd. When
the underlying space is a lattice L in IRd, these definitions remain the same but with
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R d replaced by L, and with the added requirement that all bonds in $ be bonds of
L; τt9 θt are defined only for sites t of L. If X is stationary, we may assume the
following: there is a family H of ergodic stationary probability measures on Jί{βd\
endowed with the topology of weak convergence and with a corresponding class
J f of Borel sets, and a probability measure μ on (H, J f); X is the first coordinate of
a random element (X, P) of Ji{βd) x # such that P has distribution μ; the probabil-
ity space is

(Ω,iF,Pr) = (Jί(Sd) xH,^dx jίT9Pr),

where

Pr(C):=j f Icdvdμ{y)
H J

and Ic denotes the indicator of an event C, so that

Pr(X eA\P) = P(A)μ-2i.s., for all A c

We tacitly here and henceforth restrict to measurable A. We let P denote the
distribution of X, so

P(A) = J v(A) dμ{v) for all A c ^ ( § d ) .

A general nonrandom element of H (that is, a possible value of P) is denoted v, and
a general nonrandom element oϊJf(§d) (that is, a possible value of X) is denoted m.

For each such stationary probability measure P on JHβd) there is a σ-finite
Palm measure Po on «^(Sd) with the following property. Let λ denote Lebesgue
measure and for each B a Rd, m e JK(Sd) and 4̂ c

NA(m,B):= \{seV(m)nB: θsme A}\

then for bounded 5,

NA{m,B)dP{m). (1.1)
)

That is, if we shift the origin successively to each graph site in B, and check for each
resulting configuration whether A occurs, then P0(A) is the mean number of
occurrences per unit area, which does not depend on B. This is a slight variation on
the usual context for defining Palm measures, as we consider only point mass
locations in R d and not in all of §>d, but the proof of (1.1) in [14] (Theorem II.4) goes
through here. For 0 ^ n ^ oo, let An denote [ — n, ή]d; for finite n we can also
define random measures Pn(X, •) on Ji{Sd) by

Pn(X,A):= λ{Any
ι NA{X,Λn) .

The integer lattice divides R d into unit cubes z + [0, l)d, z e Zd, and we can set
Yz:= NA(X,z + [0, l)d) and obtain from the ergodic theorem that

PH(X9A) = \ΛnnZdΓ1 Σ γ*
zeΛnnZd

-+ Ep(Y0) = P0(A) = EpPk( , A) as n -> oo a.s. (Pr)

for each A cz Jΐ(Sd) and fc ^ 1; (1.2)
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here Ev denotes expected value with respect to the measure v. This means that,
letting

Hk:={veH:EvPk( ,A) = 0}9

we have

Pr(Pn(X, A) -> 0, NA(X, R d) φ 0) ^ lim sup Pv(EPPk( , A) = 0, NA(X, Λk) + 0)
k

= lim sup j v{NA(X9Λk) φ 0) dμ(v)
k Hk

= 0, for all A <= J((§d). (1.3)

When it exists, we call \imnPn(X,Ά) the density of A (in X), or the density of the set
{t; G V(m)\ θvm e A}. Thus, roughly, events which occur with 0 density actually
never occur. It is also important for our purposes that there is a measure, not just
a finitely additive function, which for each fixed A a.s. coincides with the density;
this means that the density of the limit is a.s. equal to the limit of the densities, for
increasing families of events. All of this is of course well-known for stationary point
processes in IR**; we have included it here to show that the extra structure (bonds
and labels) present here does not alter these facts.

We call λγ(X):= limnPn(X,J((Sd)) the site density of X.
Instead of shifting the origin to each graph site, we will at times wish to shift it

to every possible point, or to each site of some multiple of the integer lattice. Thus
define

NA(X,n,ή:=\{zeAnnZd:θ2tzXeA}l 0 S n S oo ,

Pn,t(X,A):=\AnnZd\~1NA(X,n,tl 0 ^ n < oo ,

P ' t X ^ H Λ Γ 1 ί W e A j ώ , ί > 0 ,
Λt

P'n (X, A): = lim P't' (X, A), if this limit exists.
t

As in (1.2) and (1.3) we have

Pτ(P'ntt(X, A) -+ 0 as n -> oo, NA(X, oo, t) φ 0) = 0 for all A c Jί{Sd) and t > 0.

(1.4)

An r-cluster is a connected component of the graph denoted X g r which has site
set V and bond set {b e &:f(b) S r} We say percolation occurs at level r in X if
there is an infinite r-cluster, and set

rc(X):= inf{r: percolation occurs in X at level r} .

We say uniqueness holds at level r in X if there is at most one infinite r-cluster. The
a.s. uniqueness results of [4, 5, 8 and 13] are valid for each fixed level r in certain
categories of stationary random labeled graphs. Our first goal is to extend those
results to our unified context. A major ingredient is an appropriate definition of
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"positive finite energy." Loosely, the idea is that conditioning on the configuration
outside some Λt cannot rule out the connecting together of all the sites inside Λt.
But there are more complications than in the nearest-neighbor lattice case of [4],
or the long-range lattice case of [8], principally for three reasons: (1) bonds can
cross dAt and connect to arbitrarily distant sites; (2) in models like Example 1.4,
connecting sites inside Λt together may result in the creation of additional bonds
which cross dΛt; (3) in continuum models one cannot in general make sense of
conditioning on "the entire configuration except one bond."

In particular in our definition we cannot simply condition on what is strictly
outside Au or on what is outside Λt together with all bonds which cross dΛt.
Instead, we want to condition on what is outside Λt, together with the existence of
at least certain bonds crossing dAt. This motivates the following preliminaries to
our definition. Given a labeled graph m e Ji{Sd) or the equivalent triple
(F(m), J*(m),/m), we define the restriction m\B of m to B to be the labeled graph with

V(m\B) = V(m)nB9 @{m\B) = {(x,y) e a(m): x,yeB} ,

and with label function/W(B the restriction of/m to 3S(m\B). We call an infinite
component C of a graph a galaxy if C includes a finite, nonempty set of sites, called
a core, such that removing all these sites, and all bonds emanating from them, from
C decomposes C into infinitely many disjoint components, all of which are finite.
Later we will show galaxies a.s. do not occur, but for now, let ί > 0 and q e Q, and
consider the event J:= {rc(X) < q < rc(X\Λc)~]. If the only infinite ^-cluster is
a galaxy with core in Λt, then J can occur. However, it is easily verified that, since
each bounded region contains only finitely many sites, there can be at most one
z eZd for which percolation occurs at level q in θ2tzX but not in (θ2tzX)\Λc, and
hence at most one for which θ2tzX e J. It follows from (1.4) that P(J) = 0, and
hence that

rc(X) = rc(X\Λί) P-a.s.

Further, for each v e H there is a critical point pc(v) such that

rc(X) = Pc(P) Pr-a.s.

Applying similar reasoning to the value pc(P) in place of q we see that with
probability one, for all r e 1R and t > 0,

percolation occurs at level r in X if and only if percolation occurs at level r in X\Λc.

(1.5)

Next we need the concept of a (5-approximate connection event from a bounded
set Γ to a set A in IRA Let Sfδ\= {δx + [0,5)d: x e TLd). Suppose A c Jί(§d) is an
event of the following form: ^ is a finite collection of cubes from 2δ, each contained
in Γ; for each Q e <&, rQ = rQ(X\Λc) is a real-valued function of X\ΛC; A is the
event that

(i) every cube in Ή contains exactly one site, and
(ii) for each Q e <& there is a bond at level rQ between this site in Q and some site

in A.

We then call A a δ-approximate connection event from Γ to A. Note that (a) there
are only finitely many such events for fixed Γ, A, δ and functions {rQ: Q e @δ}; (b)
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the (5-approximate connection event does not rule out the existence of other bonds
and sites in ΓKJΛ not specified by the event; and (c) %? can be empty, in which case
A is the whole space. The functions rQ( ) are called the connection levels of the event A.

We can now give our definition: we say X (or P) has positive finite energy if for
every t > s > 0, every r > 0, every δ > 0 and every ^-approximate connection event
A from At\As to As,

P(A I X\Λc) > 0 and percolation at level r in X\Λc imply

P(A; X\Λs is connected at level r \ X\Λc) > 0, P-a.s. (1.6)

Here by a statement of the form "J and J imply K, P-a.s.," we mean
P(InJr\Kc) = 0. The restriction to r for which percolation occurs is made because,
in models like Example 1.2 or 1.4, if the sites come from a "hard sphere" point
process, there may be values of r where no connection is possible in X\Λs, regardless
of X\Λc. Note that (1.5) makes it easy to verify the percolation condition in (1.6).

It would actually be sufficient for out purposes to require in the definition of
positive finite energy only that (1.6) be valid for sufficiently large 5, where "suffi-
ciently large" may depend on X, but lacking an example to motivate this added
complexity, we will forego it.

The following theorem encompasses results in [4, 5, 8 and 13] in the case of
finite site density. The proof we will give in Sect. II is based on that in [8] for lattice
models.

Theorem 1.6. Suppose X is a stationary random labeled graph, in lRd or in a lattice L,
with positive finite energy and finite site density. Then for each reIR,

P[X includes at most one infinite r-cluster] = 1.

In Example 1.4 it is clear that the graph has positive finite energy if the support
of the radius distribution is not bounded above; everything in As can then be
connected by increasing the associated radii sufficiently for sites in or near Λs. Thus
our theorem does contain the occupied-cluster result in [13], if the site density is
finite; Roy and Meester [13] did not need to assume finite site density in some of
their uniqueness results. Similar considerations apply to [5] and Example 1.3. But
this is an artifact of the particular models being studied; Theorem 1.6 is not valid
for general stationary random labeled graphs without the assumption of finite site
density, as the following example shows. It is possible that some other assumption
can substitute for finite site density in our results, such as perhaps finite degree of
every site, but we have not investigated this.

Example 1.7. Let Y'„, n e Z, be an iid sequence of nonnegative integer valued r.v.'s
with infinite mean, and {qn,neZ} a sequence of nonnegative constants such that

Σnqn = 1 and ΣnqnYn = GO a.s. (1.7)

This will hold if, for example, EYQ/2 = oo and qn ~ c/n2. For each n let Vn be a set
of Yn iid uniform points in (π, n + 1). We construct a stationary random graph in
1R with site set V := Zu\Jn ^ 1 Vn.

Consider first a long-range bond percolation model on Έ as follows: we choose
pk e [0,1] for each k ^ 0, and for each m Φ n eΈ put an (occupied) bond between
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m and n with probability P\n~ml. Let us choose {pk} so that each pk is strictly
positive, but percolation a.s. does not occur. This is true if maxfcpfc is small and pk

decreases like k~a with α > 2; see [1].
For our stationary random graph in IR, we will not use a realization of the

above model, but only the values pk with the prescribed properties. As a first stage,
for each n and each υ e Vm we select a single site of TL and connect v to it with an
occupied bond, choosing site n + k with probability qk for all v eVn and keZ,
independently for distinct v. We call the result the first-stage graph and denote it
Xt. Every component of the first-stage graph clearly contains a single integer site,
and we claim that every component is infinite a.s. By stationarity it is sufficient to
show this for the component of 0. But

Σn Pr(there is a bond in Xλ from (w, n + 1) to 01 {Yn9 n e Έ})

= oo a.s.

by (1.7), so the claim follows from the Borel-Cantelli Lemma.
Next let Cn denote the component of n in Xί. As a second stage, for each m and

n, including m = n, we order the bonds {<x, y}: x e Cm, y e Cm x Φ y} by increasing
value of max[<i(x,{m, n})9 d(y,{m, n}))], breaking ties using increasing value of
min[d(x,{m, n}), d(y,{m, ft}))]; note that with probability one this does break all
ties. Here d denotes Euclidean distance. For each m and n we then independently let
the fcth bond in this ordering be occupied with probability 2~kpln-ml. We let
X denote the resulting graph consisting of all sites of V and all occupied bonds. (All
occupied bonds can be labeled with a fixed constant, say 0, to make a labeled
graph.) For m φ n the probability that there is at least one occupied bond between
Cm and Cn is then less than P\n-m\, so comparison to the long-range model on
7L shows that, with probability one, only finitely many integer sites are in each
component, and there are therefore infinitely many infinite clusters. However, it is
easy to see that X has finite energy.

Of course the graph X is invariant only under integer shifts, but we can shift the
entire configuration by a random amount U uniform in [0,1] to obtain stationary
random graph in IR. Alternatively we could replace TL with the set of sites of
a Poisson process, and adjust Vn accordingly. Π

The following improvement of Theorem 1.6 is our main result.

Theorem 1.8. Suppose X is a stationary random labeled graph, in IRd or in a lattice L,
with positive finite energy and finite site density. Then

Pr[X includes at most one infinite r-cluster for each r e IR] = 1 .

The following example shows that one can have finite site density and a.s.
uniqueness for each fixed r, but yet not have simultaneous uniqueness. The graph
does not have positive finite energy.

Example 1.9. Consider a random labeled graph in IR2 with site set TL1. Vertical
bonds are nearest-neighbor; horizontal bonds are long-range. Let us call the
subgraph in the vertical line at m, column m. Let {Ym:meZ} and {Zmnk: m,n,ke TL,
m φ n} be independent families of uniform [0,1] random variables. We label bonds
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as follows: all vertical bonds in column m get label Ym. Each horizontal bond
<(m, k\ (n, k)) gets label max(7m, Yn) + Zmnk. Observe that as the level r increases,
all of column m becomes occupied when r reaches 7m, but no horizontal bond
emanating from column m is occupied at level Γm, so column m is a separate infinite
cluster at level Ym. But as soon as r strictly exceeds the level max(Ύm, Yn) where
columns m and n are both occupied, there are a.s. many bonds between column
m and column n, since inϊkZmnk = 0 a.s. Therefore, with probability one, at all levels
rφ{Ym: meZ} there is at most one infinite cluster.

As in Example 1.7, one can shift the entire graph by an amount U uniform in
[0,1]2 to obtain a stationary random labeled graph in 1R2.

Remark 1.10. One could as well define r-clusters using a strict inequality, that is,
using bond set {b e @\f{b) < r) instead of {b e St\f% ^ r). Theorems 1.6 and 1.8
remain valid with this change, with no material difference in the proofs.

II. Proofs

We let v(/) denote j/dv for functions/and measures v. We say an event A a Jί(§d)
is local if there exists t such that meAiϊ and only if m\ΛteA. There exists
a countable collection si of local events which generates the Borel σ-field in Jί(βd)\
we may take si to be a field. Let

Jί0 := {me Jΐ{§d): t h e r e exists veH w i t h P ^ ( m , A) = v(A) for all Aesi)

and for m e Jt§ let vm denote the corresponding, necessarily unique, value of v e if.
From the ergodic theorem,

Pr[Xe^ 0 ,Vχ = P] = l . (2.1)

Fix some element v of H and for mφJί0, let vm := v, to complete the definition. Since
the events in sd are local, letting

mt:= m\Λc

we have
vm = vmt for all t and m . (2.2)

Let us verify that vm is a measurable function of m. It is sufficient to show that
vm(φ) is measurable for each φ e Cb(J((§d)); for this it suffices to show that vm(A) is
measurable for each Borel set A a Jt(Sd). But this follows from the fact that the
class of A for which vm(A) is a measurable function of m is a monotone class
containing si.

Our first lemma is an analog of Lemma 1 of [8].

Lemma 2.1. Suppose X is a stationary random labeled graph, in lRd or in a lattice L.
For each t > 0 and each event A a J#(§d), for μ-almost every v e H,

P(A\Xt) = v(A\Xt) v-a.s.

Proof. This proof would be quite straightforward if we knew that a version of
v(A\Xt) could be chosen for each v so that v(A \Xι = m) became a measurable
function of v for fixed m; unfortunately this does not seem to be an easy fact.
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Fix A and let Ao := A x H. It is easily checked that

P(A\Xt) = Pτ(A0\Xt). (2.3)

Let J o c ^(S^) x H with Jo e σ(Xt)\ Jo is necessarily of the form J x H for some
event J cz ̂ ( § d ) . Let

W:= {v e i/: j Pr(yl0 |X')dv > v(^lnJ)} ,
J

W0:=Jί(Sd)x W .

Note that by (2.1) and (2.2), Wo and [_vχt eW] differ by a Pr-null set. Therefore if
Pv(W0) > 0, then

JonAo) = S J IAodvdμ(v)
H Jn[vx'eW]

= f J
i ϊ Jn[vΛτ'e

= Pr(WonJonAo),

a contradiction. Thus Pr( Wo) — 0, and the same is similarly true if we reverse the
inequality in the definition of W. Letting sίt\= {[X* e C ] : C e stf), where si is
a countable field which generates the σ-algebra in J?(Sd)9 we therefore have

μ({veH: \Vx{A0\Xt)dv = v(AnJ) for all J e J / J ) = 1 .
J

But equality for all J e s/t implies equality for all J e σ(Xt), so the lemma follows
from (2.3). •

Lemma 2.2. Suppose X is a stationary random labeled graph, in lRd or in a lattice L,
with finite site density. Suppose A cz Ji{βd) is a set of labeled graphs in which the
origin is a site of an infinite component, and [x e C: ΘXX e A} is finite for each infinite
component C of X a.s. Then

P[ΘXX e A for some x e F ] = 0 .

In Example 1.7, if we take A to be the set of all graphs in which every integer is
a site, then ΘXX e A if and only if x is an integer shifted by U, which is true for only
finitely many x in each infinite cluster. Thus Lemma 2.2 is false without the
assumption of finite site density.

Proof of Lemma 2.2. Let Z be the set of sites xeV, necessarily in infinite compo-
nents of X, for which ΘXX e A. Fix k ^ 1. We wish to associate k sites of V to each
site of Z, in a translation-invariant way. Given an infinite component C of X,
we can order the sites of C in order of increasing distance from the finite set CnZ,
breaking ties by an arbitrary method, say using lexicographic order, and thereby
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obtain

C = {υl9v2, ... }

with

CnZ = {υl9 ... ,υn} ,

where n = \CnZ\. We can then associate to each site v = v t of Cc\Z the set
Wv:= {vjn + hj = 0, ... , k — 1}. Doing this for all infinite C, we obtain a collection
{Wy, veZ} of disjoint fc-site sets, each containing exactly one site of Z. Let
Z α := {v e Z: PFy <= z; + Λ j . Then for s > 0,

Dividing by |ΛS| and letting s -• oo shows Po(0 e Z α ) ^ fc~ * /^(X) a.s. Since P o is
a measure, letting t -> oo and then k -> oo shows Po(0 e Z) = 0, which by (1.3)
proves the lemma. •

For each site x in a graph m, let C(m, x) denote the connected component of x in
m. If F is a finite set of sites in a single component, we write C(m,F) for this
component. Let Vm denote the vertex set of m. For F a finite set of sites of m, let m\F
denote the subgraph of m obtained by deleting F and all bonds emanating from F.
If F is contained in an infinite component of m, we define

hm(F):= {v G Vm\F: C(m9 t;)is infinite, C(m\F,v) is finite} .

We call F a core in m if hm(F) is infinite, i.e. removing F from m creates infinitely
many new finite clusters. Note our previous definition of a core of a galaxy is
a special case of this. Sites in hm(F) are called satellites of F. A given site may be
a satellite of more than one core.

Clearly cores can exist only when there are sites of infinite degree. But finite
degree of all sites is not necessary to prohibit cores; the next lemma shows
stationarity does so as well.

Lemma 2.3. Suppose X is a stationary random graph, in IRd or in a lattice L, with
finite site density. Then with probability one, X contains no core, and every site which
is in an infinite component of X is the starting point of an infinite self-avoiding path
inX.

In Example 1.7, with probability one there are at most finitely many occupied
bonds between C{ and C7 for each ί and). It follows easily that each integer, shifted
by U, is a core, and there are a.s. no infinite self-avoiding paths in X. Thus
Lemma 2.3 is false without the assumption of finite site density.

Proof of Lemma 23. Let us call a core F minimal if no proper subset of F is a core.
Let Z be the set of all sites which are in minimal cores, and W the set of all sites
which are satellites of minimal cores. It is easily seen that every site in Z has infinite
degree, and every site of W has finite degree. Let Y be the subgraph of X consisting
of site set W and all bonds with both endpoints in W. If F is a minimal core and
qehχ(F), then since no bond emanating from F is in Y, C(X\F,w) contains
C(Y, w). It follows that Y has only finite components. Since each site of Y (i.e. of W)
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has finite degree, if w e W then

gχ(γή\= [z e Z: there is a bond in X from z to C(Ύ, w)}

is finite and nonempty. Hence we can define a mapping φ from W to Z by letting
φ(w) be the closest site to w in gx(w), with ties broken as usual by lexicographic
order.

Suppose w is a satellite of a minimal core F. We claim that gχ(w) a F. To see
this, suppose z e Z \ F and there is a bond in X from z to C(7, w). Then z has infinite
degree in X, hence also in X\F, and z e C(X\F, w), so C(X\F, w) is infinite,
contradicting our assumption that w is a satellite of F and proving the claim. If
follows that φ~1(F) is infinite for every minimal core F. Let

Z o := {z e Z: φ~1(z) is infinite}

then Z o is nonempty if cores exist. For k ^ 1 and ί > 0 let

Then for s > 0,

As in the proof of Lemma 2.2, it follows that Z o has density 0, so Z o is empty a.s., so
no cores exist a.s.

Suppose C is an infinite component of X and X contains no cores. Then we can
start at an arbitrary v0 e C and, since {v0} is not a core in C, move to an adjacent v1

which is in an infinite component CΊ of C\{vo}9 then delete v0. Since C contains no
cores, neither does Cί9 so we can iterate to find v29 v3, etc. which form an infinite
self-avoiding path in C. •

Proof of Theorem 1.6. This is an adaptation of the proof of Theorem 1 of [8].
By Lemma 2.1, X also has positive finite energy under the law v in place of P, for

μ-almost every v e H, so we may assume P is ergodic, and write rc for pc(P).
Fix r^rc. There exists a constant k such that with probability one there are

exactly k infinite r-clusters in X; as in [4, 8, and 15], positive finite energy implies
that k must be 0, 1, or oo, so we need to rule out k = oo.

Thus suppose there are infinitely many infinite r-clusters, a.s. Then for s suffi-
ciently large, there is a positive probability that at least three distinct infinite
r-clusters meet Λs. Fix such an s. Then since by Lemma 2.3 there are a.s. no galaxies
in X < r, the following also occurs with positive probability, if t > s is chosen
sufficiently large: in X\Λc, at least three distinct infinite r-clusters meet Λt\Λs

m

9 for
each of these clusters there is a bond in X from one of its sites in Λt\Λs to a site in
Λs; and there are no sites in dΛs. When all this occurs, and t is increased slightly if
necessary, for sufficiently small δ > 0 there exists a finite collection # of cubes, each
of the form δx + [0, δ)d for some xeZd and each contained in Λt\ΛS9 such that
(i) each cube in ^ contains exactly one site; (ii) each of these sites is in a different
infinite r-cluster in X\Λc9 and (iii) each of these sites has a connection at level r in
X\Λt to a site in Λs. Because there are only finitely many possible collections ^ for
fixed (5, there exist δ and ^ for which the probability that (i)—(iii) all occur is
positive. Let A be the event that (i) and (iii) occur, F the event that (i) and (ii) occur,
and G the event that X\Λs is connected at level r. Then P(A\F) > 0, and A is
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a ^-approximate connection event from Λt\Λs to Λs, so positive finite energy yields
that

P(AnGnF) > 0 . (2.4)

Let us call Λs a branch node if (a) there exist three or more infinite r-clusters in
X\Λc which are all part of a single larger infinite r-cluster in X, and (b) X\Λs is
connected at level r. Then

P(ΛS is a branch node) ^ P(AnGnF) . (2.5)

For z e Zd we call 2sz + /Ls a branch node if Λs is a branch node in θ2szX. Let

Z := {2sz: z e 2£d, 2sz + Λs is a branch node} .

For v e Z let nv ^ 3 denote the number of infinite r-clusters in the restriction of
X to the complement of the corresponding branch node which are all part of
a single infinite r-cluster in X, and let D^ , i = 1, ... ,nv, denote the sets of sites of
these r-clusters from the complement of the branch node. Define for q > 0 and

Zqy= {v e Z: \Dfn{υ + Λq)\ ^ k for all i ^ nv\ .

Then for u > 0, the hypotheses of Lemma 2 of [8] are satisfied for VnΛu+q (in place
of S), Z^fen/LM (in place of R), and D[7

ι)n/lM+ί (in place of C^), yielding

As in the proof of Lemma 2.2, we obtain from this that Z is empty a.s., that is, there
are no branch nodes; by (2.4) and (2.5), it cannot be that there are infinitely many
infinite r-clusters a.s., and the theorem follows. •

For each site x in a labeled graph m, and r e R, let Cr(x\ or Cr(m, x), denote the
r-cluster of x in m, and let C^r), or C^m.r), denote the union of all infinite
r-clusters in m. To set up the proof of Theorem 1.8 we begin with some observations
about the structure X would have to have for uniqueness to hold for fixed r but not
simultaneously for all r.

Lemma 2.4. Suppose X is a random labeled graph, n R d or in a lattice L. Suppose
that

for each r e R, P[X includes at most one infinite r-cluster] = 1. (2.6)

Then with probability one the following holds: for each r > rc(X) there is a unique
main infinite r-cluster C^(r) which contains us<rCO0(s). If T is an ephemeral, i.e.
non-main, infinite r-cluster for some r > rc(X), then for all sites x in T, Cs(x) is finite
for all s < r, and Cs(x) = C^isjfor all s > r. Each site ofX is in an ephemeral infinite
r-cluster for at most one value ofr.

An ephemeral infinite cluster, to motivate the name, can thus be thought of as
follows: as r is increased, at some level some finite clusters coalesce into an infinite
cluster outside the main one, but as r continues to increase, this cluster is immedi-
ately absorbed into the main one. Example 1.9 illustrates this; to better illustrate
this heuristic, instead of giving every vertical bond in column m the label Ym, one
can let the labels on the vertical bonds in column m be (conditionally) iid uniform in
[0, Ym).
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If T is an ephemeral infinite cluster, we call the unique value of r such that T is
an ephemeral infinite r-cluster the index of T. Lemma 2.4 ensures that, even if they
have different indices, distinct ephemeral infinite clusters are disjoint.

Proof of Lemma 2.4. By (2.6), with probability one, there is a unique infinite
g-cluster for each rational q > rc(X); we assume this event, which we denote U9

occurs. Note that the graphs C^s), s e IR, form a nested collection, C^iq) is
connected for rational q, and

[jcoo(s)= U coo(q).
s<r q<r,q e Q

It follows that lJ s< rC0 0(5) is connected, and hence it is contained in a unique
infinite r-cluster if r > rc(X).

Suppose U occurs and x is a site of an ephemeral infinite r-cluster T.lϊ s < r,
then T does not meet CΌ^s), so Cs(x) is finite. If s > r then there is an infinite
s-cluster containing T; this s-cluster meets C^r) so must be C«(s).

The last statement of the lemma follows from the fact that if x is a site in an
ephemeral infinite r-cluster, then r = inf{r': Cr\x) is infinite} so there is only one
such r. •

In Example 1.1, it follows from Lemma 2.4 that invasion percolation started in
an ephemeral infinite r-cluster for some r > rc(X) will never meet C^q) for any
rc(X) < q < r, since the invasion process never leaves the infinite r-cluster it starts
in. But results in [6] and [11] imply that invasion percolation does meet C^q) for
all q > rc(X) a.s., which shows that ephemeral infinite clusters do not exist, a.s., and
thereby proves Theorem 1.8 for Example 1.1. Unfortunately this result on invasion
percolation uses the rather deep fact from [11] that the half-space and full-space
percolation critical points are the same, a fact which is presumably true but very
technical and as yet unproved in models like Examples 1.2 and 1.4 where there is
sufficient independence, and which could conceivably be false in some stationary
models. Therefore it is desirable to have a proof of Theorem 1.8 based purely on
stationarity and positive finite energy.

Proof of Theorem 1.8. Because of Lemma 2.4, the main task is to rule out the
existence of ephemeral infinite clusters. The idea, roughly, is to attach an ephemeral
r-cluster, if such exists, to the unique infinite ^-cluster using positive finite energy,
much as three or more infinite clusters were attached to each other in the proof of
Theorem 1.6; here q e (rc(X), r) is rational. The resulting "attached cluster" is the
"arm" we define below. As only finitely many sites are involved in the attachment,
one can associate arbitrarily many arm sites to each attachment site. An analog of
Lemma 2.2 can then be used to show there are no ephemeral infinite clusters. The
complications arise from the fact one needs to be able to identify the attachment
sites by looking at the "attached" configuration only. This is problematic, for
example, if the ephemeral infinite cluster has an "infinite string of beads" structure,
and finite bead strings, attached at one end, form part of the infinite ^-cluster; one
cannot then tell between which two beads the attachment was made. To solve this
problem we will use the notion of "pivot-free" arms.

STEP 1. As in the proof of Theorem 1.6, we may assume P is ergodic, and write
rc for pc(P). With probability one, there is a unique infinite g-cluster in X for each
rational q > rc and at most one for q = rc. Fix a rational q > rc and suppose that
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with positive probability, an ephemeral infinite r-cluster exists for some r > q. Then
for 5 sufficiently large, there is a positive probability for the event, denoted Aί9 that
in X both C ^ X , q) and (for some r > q) an ephemeral r-cluster meet Λs. Fix such
an s. Let us call an infinite r-cluster R in X\Λc pre-epherneral (with respect to As) if
for every r' <r,R does not contain an infinite r'-cluster in X\A%- Then

for every x e R, r = inf{r': x e C^X^, r')} . (2.7)

Let A2 be the event that, for some r > q,

(a) there is a pre-ephemeral infinite r-cluster R in X\Λc;

(b) there is a bond at level r in X from a site of R to a site in Λs;
(c) Coo(X, q) meets Λs.

Note that r and i? are not necessarily unique. Since C^fX, q) is a.s. not a galaxy, (c)
is a.s. equivalent to

(c') there is a bond at level q in X from a site of C ^ X ^ , q) to a site in Λs.

Let 4̂ 3 be the event that (a)-(c) occur for some r > q and

(d) X\Λs is connected at level q;

when A3 occurs we say that As is a pii oί node or r-pivot node in X. We then call the
R of (a) and (b) an arm or r-arm corresponding to Λs. By translation we can apply
similar terminology to 2sz + Λs for arbitrary z e Zd. Roughly, an arm is like an
ephemeral infinite cluster, except that it is attached to the infinite ^-cluster, with the
only such attachment occurring inside the corresponding pivot node. As a short-
hand we say an arm contains a pivot node if it contains some, and hence every, site
in that node. The value r is called the index of the arm or pivot node; note this index
need not be unique for pivot nodes. We call As a shoulder node or r-shoulder node if
As is a pivot node and the arm R as in (a) and (b) can be chosen to contain no pivot
node; we call such an arm pivot-free. Again similar terminology applies to 2sz + Λs.

Recall that, from Lemma 2.4, distinct ephemeral infinite clusters of all indices
are disjoint. It follows from Lemma 2.4 applied to X, and from Lemma 2.3 applied
to the stationary random graph Y which is the union of all ephemeral infinite
clusters of all indices (without labels), that with probability one, no ephemeral
infinite cluster in X is a galaxy. Therefore if T is an ephemeral infinite r-cluster in
X for some r > q, then T\Λc3 contains an infinite r-cluster R, which is necessarily
pre-ephemeral. It follows that iΐAί occurs, then with probability one so does A2, so
P(A2) έ P(Aι) > 0. As in the proof of Theorem 1.6, it then follows from positive
finite energy that P(A3) > 0. Here we use the fact that, if one specifies the site
locations in (b) and (c') to within a (5-cube, the result is a ^-approximate connection
event, because by (2.7) the connection level r of (b) is a function of X\Λc

STEP 2. We claim that for each r > q,to each pivot-free r-arm there corresponds
a unique shoulder node; thus pivot-free arms avoid the identifiabilty problem
discussed preceding Step 1. By definition there is at least one such r-shoulder
node, so suppose 2sy + Λs and 2sz 4- Λs are both shoulder nodes corresponding
to the same pivot-free r-arm R, with y + z. Then R is contained in
((2sy + As)v(2sz + As))\ but by (b) there is a bond in X at level r from R to
2sz + As. This bond is part of X\{2sy+Λsγ, so R is not an r-cluster in X\{2sy+Λs)^
which is a contradiction.
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STEP 3. We have seen that if ephemeral infinite clusters exist then so do arms and
pivot nodes, but we need to show that pivot-free arms exist. Let us write
2sy + s»(R)2sz + Λs if 2sy + Λs and 2sz + Λs are pivot nodes, with 2sz + Λs

contained in an arm JR corresponding to 2sy + Λs. Note we do not claim this
relation is transitive. We claim (1) there then exists an infinite self-avoiding path at
level q in X which starts in 2sz + Λs; (2) every infinite self-avoiding path at level q in
X which enters R must later enter 2sy + Λs; and (3) there is a path from 2sz + Λs to
2sy + Λs at level q, with all sites except its last one in R. Claim (1) is immediate from
(c) and Lemma 2.3. For (2), suppose y is an infinite self-avoiding path at level q in
X which enters R but does not later enter 2sy + Λs. Removing an initial segment if
necessary, we may assume y starts in R and never enters 2sy + Λs. Then since r > q
and R is an r-cluster in X\(2sy+Λs)

c, 7 is contained in R. But then R is not
pre-ephemeral, a contradiction. For (3), the existence of a path from 2sz + Λs to
2sy + Λs at level q is immediate from (1) and (2). Since r > q and R is an r-cluster in
X\(2sy+Λs)

c t n e portion of this path before its first visit to 2sy + Λs is contained in R.
But we can end the path at this first visit, and (3) follows.

Next suppose there is an infinite sequence 2sy^ + Λs»{Rl)2sy2 + Λs»iRz) ... of
pivot nodes. By Claim (1) there exists an infinite path α at level q in X which starts
in 2syγ + Λs. Let Ro denote 2syx + Λs. If α enters Rι for some ί ^ 1 then by Claim
(2) α later enters 2syt + Λs c Ri-^ Iterating we see that every visit by α to some
Rt is followed by a return to Ro = 2syx + Λs. Since α is self-avoiding and 2syι + Λs

contains only finitely many sites, there can be only finitely many such visits and
returns. Hence by removing an initial segment from α if necessary, we obtain an
infinite self-avoiding path at level q in X which starts in 2syi + Λs and never
visits (Ji^i-Rj. It follows that 2syi + As is not contained in, and therefore
by (d) does not meet, any Rit Thus yt φ y^ for all i φ 1. Applying this fact to the
sequence of pivot nodes starting from 2syj + Λs for arbitrary), we see that all yt are
distinct.

By Claim (3) for each i ^ 1 there is a path yt from 2syi-1 + Λs to 2syt + Λs

in Ri-iKjRi, with only the initial site in Ri-i. Let yx denote γt with the first site
and bond removed, so ^ is contained in Rί. By (d), Q:= 7iu((Jj^ 2 7i)^ (Uΐ^2^l
(2syi+Λs)) is a graph in (J, ̂  ii?/ c (25^1 + Λs)

c, connected at level q, which meets # ! .
Since the nodes 2syt + yls are distinct and each contains at least one site, Q is
infinite. Since # ! is an r-cluster in X\(2Syi+Λsy> Q is part of Rίm But this means Ri is
not pre-ephemeral, a contradiction. Thus there can be no infinite sequence
2syι + Λs»iRί)2sy2 + ΛS»{R2) ... of pivot nodes.

But if 2sy + Λs is a pivot node and there is no arm # and pivot node 2sz + Λs

with 2sy + /l s» ( Λ )2sz + /ts, then there is a pivot-free arm corresponding to
2sy + Λs. It follows that if pivot nodes exist, then so do pivot-free arms. Thus with
probability one, the existence of ephemeral infinite clusters implies the existence of
shoulder nodes and pivot-free arms.

STEP 4. Next let us verify that each site of X is in at most one pivot-free arm, and
that this arm has a unique index. Suppose w is a site of RnRf, where r ^ r', R is
a pivot-free r-arm corresponding to some shoulder node 2su 4- Λs, and Rr

is a pivot-free r'-arm corresponding to a shoulder node 2suf + Λs. Since R is pivot-
free, JR does not meet 2su' + Λs. Hence in X\{2SU'+ΛS)

C> R' is an r'-cluster containing
w, and R is connected at level r', so J?r contains R. But this means Coo(X,r)n.R'
contains R so is not finite. Since R' is pre-ephemeral, we must then have r = r'. But
then i^ and Rf are non-disjoint connected components of X < r, so R = Rf.
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STEP 5. Let W be the set of all sites of all pivot-free arms in X with index greater

than q, and

Z:= {z eZd: 2sz + Λs is a shoulder node} .

By Steps 2 and 4, there is a mapping φ of W onto Z which takes each pivot-free arm

site w to the unique z such that 2sz + Λs is the shoulder node corresponding to the

unique pivot-free arm containing w. Since φ~ 1(z) is infinite for all z e Z, we can fix

k ^ 1 and define Wz to be the set consisting of the k closest sites to 2sz in φ ~* (z), as

usual breaking ties using lexicographic order. Then as in the proof of Lemma 2.2,

we obtain that Z has density 0 and is therefore empty a.s. Therefore by Step 3 there

are no ephemeral infinite clusters with index greater than q9 a.s. Since q > rc is an

arbitrary rational, and by Theorem 1.6 there is a.s. at most one infinite rc-cluster,

the theorem follows. •

The author would like to thank M. Keane for helpful discussions regarding

Lemma 2.1 and the "random counting measure" formulation of random graphs.
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