Commun. Math. Phys. 168, 23 - 38 (1995)

Toeplitz Algebras and Rieffel Deformations

L. A. Coburn, Jingbo Xia

Department of Mathematics, State University of New York, Buffalo, NY 14214

Received: 20 September 1993/in revised form: 7 May 1994

Abstract: We establish a representation theorem for Toeplitz operators on the Segal-Bargmann (Fock) space of \mathbb{C}^n whose "symbols" have uniform radial limits. As an application of this result, we show that Toeplitz algebras on the open ball in \mathbb{C}^n are "strict deformation quantizations", in the sense of M. Rieffel, of the continuous functions on the corresponding closed ball.

1. Introduction

In [R], Rieffel proposed a general scheme for producing "strict deformation quantizations" of C^* -algebras with \mathbf{R}^{2n} action. His scheme is modelled on classical Weyl quantization. As one example, Rieffel showed, following earlier work of Sheu [S], that the Toeplitz algebra $\tau(\mathbf{D})$ on the unit disc \mathbf{D} arises from his scheme as a strict deformation quantization of the sup norm algebra $C(\mathbf{D})$ of continuous functions on the closed unit disc. In this note, we extend Rieffel's analysis to show that the Toeplitz algebra $\tau(\mathbf{B}_{2n})$ of the unit ball \mathbf{B}_{2n} (in \mathbf{C}^n) is a strict deformation quantization of the algebra $C(\mathbf{B}_{2n})$ of continuous functions on the closed unit ball.

Let \mathbb{C}^n be the vector space of *n*-tuples of complex numbers with elements $z = (z_1, \ldots, z_n)$ and the usual norm $|z| = (|z_1|^2 + \cdots + |z_n|^2)^{1/2}$. We denote by \mathbb{B}_{2n} the (real) 2*n*-dimensional open unit ball in \mathbb{C}^n , $\mathbb{B}_{2n} = \{z \in \mathbb{C}^n : |z| < 1\}$, and write $S^{2n-1} = \{z \in \mathbb{C}^n : |z| = 1\}$ for the unit sphere with $\overline{\mathbb{B}}_{2n} = \mathbb{B}_{2n} \cup S^{2n-1}$.

In what follows, we consider three related Hilbert spaces of functions on \mathbb{C}^n . The first is the Bergmann space of Lebesgue volume (dv)-square-integrable holomorphic functions on the open unit ball \mathbf{B}_{2n} , $H^2(\mathbf{B}_{2n})$. The next, is the space of Lebesgue surface area $(d\sigma)$ -square-integrable functions on the unit sphere S^{2n-1} which extend to be holomorphic in \mathbf{B}_{2n} , $H^2(S^{2n-1})$. Finally we have the Segal-Bargmann space $H^2(\mathbb{C}^n)$ of entire functions on \mathbb{C}^n which are square integrable with respect to the Gaussian measure $d\mu(z) = e^{-|z|^2/2}(2\pi)^{-n}dv(z)$. Here dv and $d\sigma$ are normalized by $v(\mathbf{B}_{2n}) = \pi^n/n!$ and $\sigma(S^{2n-1}) = 2\pi^n/(n-1)!$.

These spaces have the common feature that an orthonormal basis for each can be constructed in the form

$$a_k z^k$$
,

where $k = (k_1, ..., k_n)$ and k_j are integers, $k_j \ge 0$. Here a_k is some complex scalar and

$$z^k \equiv z_1^{k_1} z_2^{k_2} \dots z_n^{k_n}$$

is the standard monomial. Of course, the weights a_k vary, depending on the space of functions. It is known [C1, BC1] that on $H^2(\mathbf{B}_{2n})$, we have the orthonormal basis

$$ilde{e}_k = (\pi^n)^{-1/2} igg\{ rac{(|k|+n)!}{k!} igg\}^{1/2} z^k \; ,$$

while on $H^2(\mathbb{C}^n)$, we have the orthonormal basis

$$e_k = \left(2^{|k|}k!\right)^{-1/2} z^k$$

where $|k| \equiv k_1 + k_2 + \dots + k_n$ and $k! \equiv k_1!k_2!\dots k_n!$.

Our key technical result is that the canonical isometry V from $H^2(\mathbf{B}_{2n})$ to $H^2(\mathbf{C}^n)$ defined by

$$V\tilde{e}_k = e_k$$

induces a representation in $\tau(\mathbf{B}_{2n})$ of Toeplitz operators on $H^2(\mathbf{C}^n)$ whose "symbols" have uniform radial limits. A related result, on Toeplitz operators whose symbols vary in the radial direction only, was obtained in [G, Theorem 10.1]. See also [H].

2. Representation of Toeplitz Operators on $H^2(\mathbb{C}^n)$

In [C1, BC1], Toeplitz operators on $H^2(S^{2n-1})$, $H^2(\mathbf{B}_{2n})$, $H^2(\mathbf{C}^n)$ are defined and studied. For f a bounded measurable function on the underlying space, the Toeplitz operator $T_f(\tilde{T}_f)$ is given by

$$T_f g = P(f \cdot g) ,$$

where *P* is the orthogonal projection from L^2 onto the corresponding H^2 space. There are natural isometries from $H^2(S^{2n-1})$ to $H^2(\mathbf{B}_{2n})$ and from $H^2(\mathbf{B}_{2n})$ onto $H^2(\mathbf{C}^n)$ which map $\tilde{e}_k \to e_k$. In [C1, Theorem 1], it was shown that the natural isometry from $H^2(S^{2n-1})$ to $H^2(\mathbf{B}_{2n})$ "intertwines" Toeplitz operators in a suitably weak sense. Here, we consider the corresponding problem for $H^2(\mathbf{C}^n)$.

For f a bounded measurable function on \mathbf{B}_{2n} , we write \tilde{T}_f for the Toeplitz operator on $H^2(\mathbf{B}_{2n})$. Similarly, for f bounded measurable on \mathbf{C}^n , we write T_f for the Toeplitz operator on $H^2(\mathbf{C}^n)$.

Key Lemma 1. The operators $T_{z_j/|z_j} - V\tilde{T}_{z_j}V^{-1}$ are compact for all $j, 1 \leq j \leq n$.

Proof. By symmetry, it suffices to consider j = 1. Direct calculation shows that

$$\widetilde{T}_{z_1}\widetilde{e}_k = \beta_k \widetilde{e}_{k+\delta_1} ,$$

 $T_{z_1/|z|}e_k = \alpha_k e_{k+\delta_1} ,$

where $\delta_1 = (1, 0, 0, \dots, 0)$. It follows that

$$T_{z_1/|z|} - V \tilde{T}_{z_1} V^{-1} = S_{\delta_1} D$$
,

where

$$S_{\delta_1}e_k=e_{k+\delta_1}$$

and

$$De_k = (\alpha_k - \beta_k)e_k$$
.

Thus, it will suffice to check that D is compact, i.e. that for arbitrary $\varepsilon > 0$,

$$|\alpha_k - \beta_k| < \varepsilon$$

for k outside of some finite set of multi-indices F_{ε} .

We need very precise estimates on $\alpha_k - \beta_k$. It is not hard to check (as in [C1]) that

$$\beta_k = (k_1 + 1)^{1/2} (|k| + n + 1)^{-1/2}$$

The calculation of a useable value of α_k is more complicated. Direct calculation shows that

$$\alpha_k = \{2(k_1+1)\}^{-1/2} (2^{|k|}k!)^{-1} \mathscr{I},$$

where

$$\mathscr{I} = \int_{0}^{\infty} \cdots \int_{0}^{\infty} \frac{r_{1}^{2(k_{1}+1)+1}r_{2}^{2k_{2}+1} \dots r_{n}^{2k_{n}+1}}{\sqrt{r_{1}^{2}+\dots+r_{n}^{2}}} e^{-(r_{1}^{2}+\dots+r_{n}^{2})/2} dr_{1} \dots dr_{n} .$$

Making a change of variables in the first two coordinates to polar form, and proceeding inductively, we obtain

$$\mathscr{I} = \int_{0}^{\infty} s^{2(|k|+n)} e^{-s^2/2} ds \cdot \prod_{m=1}^{n-1} \int_{0}^{\pi/2} \cos^{2(k_1+\dots+k_m+m)+1} \theta \sin^{2k_{m+1}+1} \theta d\theta$$

It is a standard calculation [BC1] that

$$\int_{0}^{\infty} s^{2(|k|+n)} e^{-s^2/2} ds = \frac{\{2(|k|+n)\}!\sqrt{\pi}}{2^{|k|+n}(|k|+n)!\sqrt{2}}$$

A beautiful classical result of Euler [WW] is that

$$\int_{0}^{\pi/2} \cos^{2m_1+1}\theta \,\sin^{2m_2+1}\theta \,d\theta = \frac{1}{2} \frac{m_1!m_2!}{(m_1+m_2+1)!}$$

It follows that

$$\prod_{m=1}^{n-1} \int_{0}^{\pi/2} \cos^{2(k_1+\dots+k_m+m)+1} \theta \sin^{2k_{m+1}+1} \theta \ d\theta = \frac{1}{2^{n-1}} \frac{k!(k_1+1)}{(|k|+n)!}$$

Putting the pieces together, we have

$$\alpha_k = \sqrt{\pi}(k_1 + 1)^{1/2} \frac{\{2(|k| + n)\}!}{4^{|k| + n} [(|k| + n)!]^2}$$

To complete our analysis, we need Stirling's Formula in the form [WW]

$$m! = m^{m+1/2} e^{-m} e^{\theta(m)/12m} \sqrt{2\pi}$$
,

where $0 < \theta(m) < 1$. This gives

$$\alpha_k = (k_1 + 1)^{1/2} (|k| + n)^{-1/2} e^{\delta(|k|)/(|k| + n)}$$

where $|\delta(|k|)| \leq 1/6$. Thus, we have

$$\alpha_k - \beta_k = (k_1 + 1)^{1/2} \left\{ (|k| + n)^{-1/2} e^{\delta(|k|)/(|k| + n)} - (|k| + n + 1)^{-1/2} \right\}$$

with $|\delta(|k|)| \leq 1/6$. Using $e^{-x} \geq 1 - x$ for $x \geq 0$, we see that

$$\alpha_k - \beta_k \ge 0$$

and, using $e^x \leq 1 + 3x$ for $0 \leq x \leq 1$, we can check that

$$\alpha_k - \beta_k \leq (|k| + n)^{-1} .$$

This allows us to conclude that D is compact.

We also have

Lemma 2. If p is any polynomial in $z_1, \ldots, z_n, \overline{z_1}, \ldots, \overline{z_n}$ which is homogeneous of degree k, then

$$T_{|z|^{-k}p} - V\tilde{T}_p V^{-1}$$

is compact.

Proof. The functions $z_j/|z|$ are ESV in the sense of [BC2, Theorem 3]. Note that by [BC2, Theorem 11],

$$T_f T_g - T_{fg}$$

is compact for f, g in ESV and ESV is a *-algebra under the usual pointwise operations on functions. It follows from [C1, Theorem 1] and Lemma 1 that the desired result holds.

For g in the sup-norm algebra $C(S^{2n-1})$ of continuous complex-valued functions on S^{2n-1} , we define

$$\hat{g}(z) = g(z/|z|)$$

on $\mathbb{C}^n \setminus \{0\}$. Note that for p(z) a homogeneous polynomial in $z_1, \ldots, z_n, \overline{z_1}, \ldots, \overline{z_n}$ of degree l,

$$\hat{p}(z) = |z|^{-l} p(z)$$

for all z in $\mathbb{C}^n \setminus \{0\}$. It is known that \hat{g} is in ESV of [BC2].

We write $\tau(\mathbf{B}_{2n})$ for the C^{*}-algebra generated by all \tilde{T}_f with f continuous on $\mathbf{\bar{B}}_{2n} = \mathbf{B}_{2n} \cup S^{2n-1}$. This algebra was studied in [C1] and [V].

We will use the definitions of [BDF] without much discussion. Recall that an exact sequence of C^* -algebras

$$0 \to \mathscr{K} \to \mathscr{A} \to C(X) \to 0$$
,

where \mathscr{K} is the full algebra of compact operators and C(X) is the sup-norm algebra of all continuous complex-valued functions on the compact, separable metric space

X, defines an element of Ext(X). For a Hilbert space H, let B(H) denote the collection of all bounded operators on this space. Let π denote the quotient map from B(H) to the Calkin algebra $B(H)/\kappa$. It is well-known that $\tau(\mathbf{B}_{2n})$ is an element of $Ext(S^{2n-1})$ [C1, V]. Indeed this element is represented by the *-isomorphism

$$\tau(f) = \pi(\tilde{T}_{f_e})$$

from $C(S^{2n-1})$ into the Calkin algebra $B(H^2(\mathbf{B}_{2n}))/\kappa$, where f_e is any continuous extension of f to $\mathbf{\overline{B}}_{2n}$.

We now have our main technical result.

Representation Theorem 1. For g in $C(S^{2n-1})$,

$$V^{-1}T_{\hat{g}}V - \tilde{T}_{g_{e}}$$

is compact for g_e any continuous extension of g to $\mathbf{\bar{B}}_{2n}$.

Proof. This is immediate from Lemma 2 above and [C1,Theorem 1]. We simply choose a sequence of polynomials $\{p_k\}$ so that

$$p_k|_{S^{2n-1}} \to g$$

uniformly. It follows that

$$V^{-1}T_{\hat{p}_k}V \to V^{-1}T_{\hat{g}}V$$

in norm. By Lemma 2, $V^{-1}T_{\hat{q}}V$ is in $\tau(\mathbf{B}_{2n})$. Moreover,

$$\pi(\tilde{T}_{p_k}) \to \pi(V^{-1}T_{\hat{g}}V)$$

and

$$\pi(\tilde{T}_{p_k}) \to \pi(\tilde{T}_{g_e})$$

in norm, and the desired result follows.

We now have, for M_r the full algebra of $r \times r$ matrices and matrix Toeplitz operators defined in the obvious way:

Corollary 1. For g in $C(S^{2n-1}) \otimes M_r, T_{\hat{g}}$ is Fredholm if and only if g is invertible-valued. If g is invertible-valued, then

 $index(T_{\hat{g}}) = (-1)^n mapping degree(g)$.

Proof. Immediate from Theorem 1 above and [V,Theorem 1.5].

For $z = (z_1, \ldots, z_n)$ in \mathbb{C}^n , we write $t_1(z) = z_1$ and

$$t_j(z) = \begin{pmatrix} t_{j-1}(z) & -\bar{z}_j I \\ z_j I & t_{j-1}^*(z) \end{pmatrix},$$

where I is the $2^{j-2} \times 2^{j-2}$ identity matrix and $2 \leq j \leq n$. Then the $2^{n-1} \times 2^{n-1}$ matrix function $t_n(z)$ is unitary on the unit sphere S^{2n-1} and generates $K^1(S^{2n-1})$ [V]. Moreover, the entries of $t_n(z)$ are either 0 or polynomials of degree one in $\{z_j, \bar{z}_j : j = 1, 2, ..., n\}$. It follows that

$$t(z)\equiv |z|^{-1}t_n(z)$$

L.A. Coburn, J. Xia

is a homogeneous function of degree 0 and

$$t|_{S^{2n-1}} \equiv t_n|_{S^{2n-1}}$$
.

Corollary 2. The operator T_t on $H^2(\mathbb{C}^n) \otimes M_{2^{n-1}}$ is Fredholm with

 $\operatorname{index}(T_t) = (-1)^n$.

Proof. By Theorem 5.1 of [V], we have \tilde{T}_{t_n} Fredholm with $index(\tilde{T}_{t_n}) = (-1)^n$. It follows immediately from Theorem 1 that T_t is also Fredholm, with

$$\operatorname{index}(T_t) = \operatorname{index}(\tilde{T}_{t_n}) = (-1)^n$$
.

3. Rieffel Deformations

In the interest of completeness, we provide a brief discussion of certian aspects of the Rieffel construction which are central to this application.

Suppose that A is a C^* -algebra on which a vector space V of real dimension 2n acts via a group of automorphisms $\alpha = \{\alpha_x : x \in V\}$. Assume that V is equipped with the usual topology which makes it a topological vector space and that the action of α is strongly continuous. That is, for every $a \in A, x \mapsto \alpha_x(a)$ is a continuous map from V to A. Suppose that J is a skew-symmetric operator on V. Rieffel showed in [R] that given such data $\{A, V, \alpha, J\}$, one can always produce a new C^* -algebra A_J by deforming the original product on a smooth subalgebra of A. The C^* -algebra A_J is constructed in the following way.

Let \mathscr{S}^A denote the collection of A-valued functions f on V which, together with its partial derivations of all orders, rapidly decrease to 0 at infinity. For $f \in \mathscr{S}^A$, define

$$||f||_2 = \left\| \int_V f(x)^* f(x) dx \right\|^{1/2}.$$

Let A^{∞} denote the collection of elements $a \in A$ such that the A-valued function $x \mapsto \alpha_x(a)$ is C^{∞} on V. Each $a \in A^{\infty}$ gives rise to an operator

$$(L_a f)(x) = (2\pi)^{-(\dim V)/2} \iint_{V} \alpha_{x+Ju}(a) f(x+v) e^{iu} \cdot v dv du$$

on \mathscr{S}^A . It is easy to check that for any $a, b \in A^{\infty}$, we have

$$L_a L_b = L_{a \times I b} ,$$

where

$$a \times_J b = (2\pi)^{-(\dim V)/2} \int\limits_V \int\limits_V \alpha_{Ju}(a) \alpha_v(b) e^{iu} \cdot {}^v dv du$$
.

The above is known as an oscillatory integral and its convergence for $a, b \in A^{\infty}$ was shown in [R]. Rieffel also showed in [R] that

$$||a||_{J} = ||L_{a}|| = \sup\{||L_{a}f||_{2} : f \in \mathscr{S}^{A}, ||f||_{2} = 1\}$$

is a C^* -norm on A^{∞} . Therefore with the product \times_J and the norm $\|\cdot\|_J, A^{\infty}$ becomes a pre- C^* -algebra. The C^* -algebra A_J , i.e., the Rieffel deformation of A, is defined to be the completion of A^{∞} with respect to the norm $\|\cdot\|_J$. We may,

of course, also regard A_J as the completion of $\{L_a : a \in A^\infty\}$ with respect to the operator norm on \mathcal{S}^A .

Given $\{A, V, \alpha, J\}$ a Poisson bracket $\{\cdot, \cdot\}$ can be constructed on A^{∞} as follows. Fix a basis x_1, \ldots, x_d for V so that J is represented by a skew-symmetric matrix (J_{jk}) with respect to this basis. Let X_1, \ldots, X_d be the basis dual to x_1, \ldots, x_d in the Lie algebra L of V. Accordingly, we have the infinitesimal generators $\alpha_{X_1}, \ldots, \alpha_{X_d}$ of the automorphism group α . That is, for any $a \in A^{\infty}$,

$$\alpha_{X_j}(a) = \lim_{t\to 0} \frac{1}{t} (\alpha_{tx_j}(a) - a) ,$$

 $1 \leq j \leq d$. Then

$$\{a,b\} = \sum_{1 \leq j,k \leq d} J_{jk} lpha_{X_j}(a) lpha_{X_k}(b), \quad a,b \in A^{\infty} \ ,$$

defines a Poisson bracket on A^{∞} .

For \hbar a real parameter, $\hbar J$ is also a skew-symmetric operator on V. Therefore we also have the deformed product $\times_{\hbar J}$ and the norm $\|\cdot\|_{\hbar J}$ on A^{∞} . It was shown in [R] that the family $\{(A^{\infty}, \times_{\hbar J}, \|\cdot\|_{\hbar J}) : 0 < |\hbar| \leq 1\}$ forms a *strict deformation quantization of* A^{∞} *in the direction of* $\{\cdot, \cdot\}$ in the following sense:

For every a ∈ A[∞], the map ħ → ||a||_{ħJ} is continuous.
 For every pair, a, b ∈ A[∞],

$$\lim_{\hbar\to 0} \left\| \frac{1}{i\hbar} (a \times_{\hbar J} b - ab) - \{a, b\} \right\|_{\hbar J} = 0$$

It turns out that the deformed algebra A_J can be quite interesting even when A itself is rather ordinary. For example, if one takes $A = A(\mathbf{R}^2)$ to be the collection of continuous functions f on $\mathbf{C} = \mathbf{R}^2$ such that the limit

$$\lim_{R\to+\infty}f(Rz)$$

exists uniformly on the circle $\{z \in \mathbf{C} : |z| = 1\}, \alpha$ to be the natural translation of \mathbf{R}^2 , and J(x, y) = (y, -x), then, as was shown in [R], $A_J = A_J(\mathbf{R}^2)$ is isomorphic to the Toeplitz algebra on the Bergmann space of the unit disc. The main purpose of this paper is to show that the analogous result holds for $\mathbf{C}^n = \mathbf{R}^{2n}$.

We now make precise the connection to Rieffel's construction of $A_J(\mathbf{R}^{2n})$. To ease notation, we will simply write A_J instead of $A_J(\mathbf{R}^{2n})$ for the rest of the section.

From now on we let A be the collection of continuous functions f on \mathbb{R}^{2n} which have the property that the radial limit

$$f_{\text{radial}}(w) = \lim_{R \to +\infty} f(Rw)$$

exists uniformly on the sphere S^{2n-1} . The vector space $V = \mathbf{R}^{2n}$ acts on A by the natural translation. Let J be the standard simplectic operator on \mathbf{R}^{2n} . That is,

$$J(x_1, y_1, \ldots, x_n, y_n) = (y_1, -x_1, \ldots, y_n, -x_n)$$
.

Let A^{∞} denote the collection of $f \in A$ such that $z \mapsto f(.+z)$ is a C^{∞} -map from \mathbb{R}^{2n} into A Accordingly \mathscr{S}^{A} consists of A-valued smooth functions on \mathbb{R}^{2n} which.

together with all their derivatives, are rapidly decreasing. By Rieffel's construction, each $f \in A^{\infty}$ gives rise to an operator L_f on \mathscr{S}^A :

$$(L_f g)(x,z) = (2\pi)^{-n} \int_{\mathbf{R}^{2n}} \int_{\mathbf{R}}^{2n} f(z+x+Ju)g(x+v,z)e^{iu} \cdot v du dv .$$

(For each $x \in \mathbf{R}^{2n}$, $g(x, \cdot)$ denotes the value of g at x, which is an element in A.) The C^* -algebra A_J is defined to be the completion of $\{L_f : f \in A^\infty\}$ with respect to the norm $||f||_J = ||L_f|| = \sup\{||L_fg||_{\mathscr{S}^A} : g \in \mathscr{S}^A, ||g||_{\mathscr{S}^A} = 1\}$. Let $\mathscr{S}(\mathbf{R}^{2n})$ denote the collection of smooth, rapidly decreasing functions on \mathbf{R}^{2n} . For each $f \in A^\infty$ and each $z \in \mathbf{R}^{2n}$, we can define a Weyl operator

$$(W_f^z\eta)(x) = (2\pi)^{-n} \int\limits_{\mathbf{R}^{2n}} \int\limits_{\mathbf{R}^{2n}} f(z+x+Ju)\eta(x+v)e^{iu} \cdot v dudv$$

on $\mathscr{S}(\mathbf{R}^{2n})$. W_f^x extends to a bounded operator on $L^2(\mathbf{R}^{2n})$. Indeed because $\mathscr{S}(\mathbf{R}^{2n})$ is actually a subset of \mathscr{S}^A , by the definition of the norm on \mathscr{S}^A and the definition of the L^2 -norm, it is obvious that $||W_f^z|| \leq ||L_f||$. The norm $||W_f^z||$ is independent of z. This can be seen in the following way.

Define the unitary operator $(U_z\xi)(x) = \xi(x+z)$ on $L^2(\mathbf{R}^{2n})$. Then it is straightforward to verify that

$$U_z W_f^0 U_{-z} = W_f^z$$

This equality also implies that

$$||W_f^z|| = ||L_f||$$
.

Indeed by the definition of the norm on \mathcal{S}^A , we have

$$\begin{split} \|L_f g\|_{\mathscr{S}^A}^2 &= \sup_{z \in \mathbf{R}^{2n}} \int_{\mathbf{R}^{2n}} |(2\pi)^{-n} \int_{\mathbf{R}^{2n} \mathbf{R}^{2n}} \int_{\mathbf{R}^{2n}} f(z+x+Ju)g(x+v,z)e^{iu \cdot v} du dv|^2 dx \\ &= \sup_{z \in \mathbf{R}^{2n}} \|W_f^z g_z\|_2^2 \leq \|W_f^0\| \sup_{z \in \mathbf{R}^{2n}} \|g_z\|_2^2 = \|W_f^0\| \|g\|_{\mathscr{S}^A}^2 , \end{split}$$

where g_z denotes the element $g_z(x) = g(x,z)$ in $\mathscr{S}(\mathbb{R}^{2n})$.

It is straightforward to verify that for $f_1, f_2 \in A^{\infty}$,

$$W_{f_1}^z W_{f_2}^z = W_{f_1 \times_J f_2}^z$$
,

where $f_1 \times_J f_2$ is the deformation product described earlier. Hence for every $z \in \mathbf{R}^{2n}$, the map

$$\pi_z: L_f \mapsto W_f^z$$

extends to a C^* -algebra isomorphism from A_J onto a subalgebra of $B(L^2(\mathbb{R}^{2n}))$. We will next show that each $\pi_z(A_J)$ is isomorphic to a C^* -algebra of pseudo-differential operators of order zero on $L^2(\mathbb{R}^n)$. Obviously it suffices to do this for the case z = 0.

For each $j = 1, \ldots, n$, define

$$(M_j^1 f)(s_1, t_1, \dots, s_n, t_n) = s_j f(s_1, t_1, \dots, s_n, t_n) , (M_j^2 f)(s_1, t_1, \dots, s_n, t_n) = t_j f(s_1, t_1, \dots, s_n, t_n) , (\partial_j^1 f)(s_1, t_1, \dots, s_n, t_n) = -i \frac{\partial}{\partial s_j} f(s_1, t_1, \dots, s_n, t_n) ,$$

and

$$(\partial_j^2 f)(s_1, t_1, \ldots, s_n, t_n) = -i \frac{\partial}{\partial t_j} f(s_1, t_1, \ldots, s_n, t_n)$$

Furthermore, we define

$$D_j^1 = M_j^1 - \partial_j^2$$

and

$$D_j^2 = M_j^2 + \partial_j^1 ,$$

 $j = 1, \ldots, n$. We have the commutation relations

$$D_j^1 D_j^2 - D_j^2 D_j^1 = 2i (1)$$

for all j and

$$D_{j}^{p}D_{k}^{q} - D_{k}^{q}D_{j}^{p} = 0 (2)$$

for all $j \neq k$ and p, q = 1, 2. Let e_j^1 (resp. e_j^2) be the vector in \mathbf{R}^{2n} whose $(2j-1)^{\text{st}}$ (resp. $2j^{\text{th}}$) coordinate is 1 and whose other coordinates are 0. Then it is straightforward to verify that

$$(\exp(is_j D_j^1)\eta)(x) = \frac{1}{2\pi} \int_{\mathbf{R}} \int_{\mathbf{R}} \exp(is_j (x_{2j-1} + u_{2j})) \eta(x + v_{2j} e_j^2) \exp(iu_{2j} v_{2j}) du_{2j} dv_{2j}$$

and

$$(\exp(it_j D_j^2)\eta)(x) = \frac{1}{2\pi} \int_{\mathbf{R}} \exp(it_j (x_{2j} - u_{2j-1})) \eta(x + v_{2j-1}e_j^1) \exp(iu_{2j-1}v_{2j-1}) du_{2j-1} dv_{2j-1}$$

for every $\eta \in \mathscr{S}(\mathbf{R}^{2n})$. By the commutation relation (1), we have

$$(\exp(is_{j}D_{j}^{1})\exp(it_{j}D_{j}^{2})\eta)(x)$$

$$= \exp(is_{j}D_{j}^{1})\exp(it_{j}M_{j}^{2})\frac{1}{2\pi}\int_{\mathbf{R}}\int_{\mathbf{R}}\exp(-it_{j}u_{2j-1})\eta(x+v_{2j-1}e_{j}^{1})$$

$$\times \exp(iu_{2j-1}v_{2j-1})du_{2j-1}dv_{2j-1}$$

$$= \exp(-is_{j}t_{j})\exp(it_{j}M_{j}^{2})\exp(is_{j}D_{j}^{1})\frac{1}{2\pi}\int_{\mathbf{R}}\int_{\mathbf{R}}\exp(-it_{j}u_{2j-1})\eta(x+v_{2j-1}e_{j}^{1})$$

$$\times \exp(iu_{2j-1}v_{2j-1})du_{2j-1}dv_{2j-1}$$

$$= \exp(-is_{j}t_{j})\exp(it_{j}x_{2j})(2\pi)^{-2}\int_{\mathbf{R}}\int_{\mathbf{R}}\int_{\mathbf{R}}\exp(is_{j}(x_{2j-1}+u_{2j}))\exp(-it_{j}u_{2j-1})$$

$$\times\eta(x+v_{2j-1}e_{j}^{1}+v_{2j}e_{j}^{2})\exp(i(s_{j}e_{j}^{1}+t_{j}e_{j}^{2})\cdot(x+J(u_{2j-1}e_{j}^{1}+u_{2j}e_{j}^{2})))$$

$$\times\eta(x+v_{2j-1}e_{j}^{1}+v_{2j}e_{j}^{2})\exp(i(u_{2j-1}e_{j}^{1}+u_{2j}e_{j}^{2})$$

$$\times\eta(x+v_{2j-1}e_{j}^{1}+v_{2j}e_{j}^{2})\exp(i(u_{2j-1}e_{j}^{1}+u_{2j}e_{j}^{2})$$

$$\times\eta(x+v_{2j-1}e_{j}^{1}+v_{2j}e_{j}^{2})\exp(i(u_{2j-1}e_{j}^{1}+u_{2j}e_{j}^{2})$$

$$\times\eta(x+v_{2j-1}e_{j}^{1}+v_{2j}e_{j}^{2})\exp(i(u_{2j-1}e_{j}^{1}+u_{2j}e_{j}^{2})$$

$$\cdot(v_{2j-1}e_{j}^{1}+v_{2j}e_{j}^{2}))du_{2j-1}dv_{2j-1}du_{2j}dv_{2j}.$$

Suppose that $s = (s_1, ..., s_n)$ and $t = (t_1, ..., t_n)$. By the commutation relation (2) and the above identity, we have

$$\begin{pmatrix} \prod_{j=1}^{n} \exp(is_j D_j^1) \exp(it_j D_j^2) \eta \end{pmatrix}(x) = e^{-is \cdot t} (2\pi)^{-n} \int_{\mathbf{R}^{2n}} \int_{\mathbf{R}^{2n}} e^{i(As+Bt) \cdot (x+Ju)} \eta(x+v) e^{iu \cdot v} du dv .$$

Here, A, $B: \mathbf{R}^n \to \mathbf{R}^{2n}$ are the linear transformations defined by the formulas

$$A(s_1, \ldots, s_n) = (s_1, 0, \ldots, s_n, 0)$$

and

$$B(t_1, \ldots, t_n) = (0, t_1, \ldots, 0, t_n)$$
.

If
$$b \in \mathscr{S}(\mathbf{R}^n \times \mathbf{R}^n) \cong \mathscr{S}(\mathbf{R}^{2n})$$
, then

$$\left(\left[\int_{\mathbf{R}^n} \int_{\mathbf{R}^n} b(s,t) \prod_{j=1}^n \exp(is_j D_j^1) \exp(it_j D_j^2) ds dt \right] \eta \right)(x)$$

$$= (2\pi)^{-n} \int_{\mathbf{R}^{2n}} \int_{\mathbf{R}^{2n}} \left[\int_{\mathbf{R}^n} b(s,t) e^{i((As+Bt)} \cdot (x+Ju) - s \cdot t)} ds dt \right] \eta(x+v) e^{iu \cdot v} du dv .$$

In other words, if we define

$$(\Phi b)(x) = \int_{\mathbf{R}^n \mathbf{R}^n} \int b(s,t) e^{i((As+Bt) \cdot x - s \cdot t)} ds dt , \qquad (3)$$

then

$$\int_{\mathbf{R}^n \mathbf{R}^n} \int b(s,t) \prod_{j=1}^n \exp\left(is_j D_j^1\right) \exp\left(it_j D_j^2\right) ds dt = W_{\Phi b}^0 .$$

Suppose now that $a, b \in \mathscr{S}(\mathbb{R}^n \times \mathbb{R}^n)$. Then, by (1) and (2), we have

$$\begin{split} & \mathcal{W}_{(\Phi a) \times_{J}(\Phi b)}^{0} = \mathcal{W}_{\Phi a}^{0} \mathcal{W}_{\Phi b}^{0} \\ &= \int_{\mathbf{R}^{n} \mathbf{R}^{n} \mathbf{R}^{n} \mathbf{R}^{n}} \int_{\mathbf{R}^{n}} a(s',t') b(s,t) \left[\prod_{j=1}^{n} \exp\left(is'_{j} D_{j}^{1}\right) \exp\left(it'_{j} D_{j}^{2}\right) \right] \\ &\times \exp\left(is_{j} D_{j}^{1}\right) \exp\left(it_{j} D_{j}^{2}\right) \right] ds' dt' ds dt \\ &= \int_{\mathbf{R}^{n} \mathbf{R}^{n} \mathbf{R}^{n} \mathbf{R}^{n}} \int_{\mathbf{R}^{n}} a(s',t') b(s,t) \left[\prod_{j=1}^{n} \exp\left(is'_{j} D_{j}^{1}\right) \exp\left(is_{j} D_{j}^{1}\right) \exp\left(it'_{j} D_{j}^{2}\right) \exp\left(2is_{j} t'_{j}\right) \right] \\ &\times \exp\left(it_{j} D_{j}^{2}\right) \right] ds' dt' ds dt \\ &= \int_{\mathbf{R}^{n} \mathbf{R}^{n} \mathbf{R}^{n} \mathbf{R}^{n}} \int_{\mathbf{R}^{n}} a(s',t') b(s,t) e^{2is \cdot t} \left[\prod_{j=1}^{n} \exp\left(i(s'_{j}+s_{j}) D_{j}^{1}\right) \right] \\ &\quad \exp\left(i(t'_{j}+t_{j}) D_{j}^{2}\right) \right] ds' dt' ds dt \end{split}$$

$$= \int_{\mathbf{R}^{n}\mathbf{R}^{n}} \left[\int_{\mathbf{R}^{n}\mathbf{R}^{n}} \int_{\mathbf{R}^{n}\mathbf{R}^{n}} a(s',t')b(s-s',t-t')e^{2i(s-s')\cdot t'}ds'dt' \right]$$

$$\times \left[\prod_{j=1}^{n} \exp\left(is_{j}D_{j}^{1}\right)\exp\left(it_{j}D_{j}^{2}\right) \right]dsdt$$

$$= \int_{\mathbf{R}^{n}\mathbf{R}^{n}} \left(a*b\right)(s,t) \left[\prod_{j=1}^{n} \exp\left(is_{j}D_{j}^{1}\right)\exp\left(it_{j}D_{j}^{2}\right) \right]dsdt ,$$

where

$$(a * b)(s,t) = \iint_{\mathbf{R}^{n} \mathbf{R}^{n}} \int_{\mathbf{R}^{n}} a(s',t') b(s-s',t-t') e^{2i(s-s') \cdot t'} ds' dt' .$$

Hence

$$(\Phi a) \times_J (\Phi b) = \Phi(a * b)$$

We will now establish the relations between W_f^x and the Weyl operators on $L^2(\mathbf{R}^n)$. Following [R], we define a Weyl operator on $L^2(\mathbf{R}^n)$ with symbol function $\alpha \in \mathscr{S}(\mathbf{R}^n \times \mathbf{R}^n)$ by the formula

$$(\Psi_{\alpha}\xi)(x) = (2\pi)^{-n} \int_{\mathbf{R}^n} f^{\alpha}(x+y,v) e^{i(x-y)} \cdot {}^{v}\xi(y) dy dv$$

for $\xi \in \mathscr{S}(\mathbf{R}^n)$. Also recall that for $\alpha, \beta \in \mathscr{S}(\mathbf{R}^n \times \mathbf{R}^n)$, the Weyl symbol calculus $\alpha \times_W \beta$ is defined by the relation

$$\Psi_{lpha imes _W eta} = \Psi_{lpha} \Psi_{eta}$$
 .

This relation is still valid if one of α , β is only a function in A^{∞} .

It follows from (1) and (2) that there is a unitary operator $Y: L^2(\mathbb{R}^{2n}) \to L^2(\mathbb{R}^{2n})$ such that

$$YD_j^1Y^* = 2M_j^1$$
 and $YD_j^2Y^* = \partial_j^1$. (4)

(Because of (2), one only needs to prove this in the case n = 1. But in this case such a Y can be constructed explicitly. See, for example, [X].) We can identify M_j^1 with $m_j \otimes 1$ and ∂_j^1 with $d_j \otimes 1$, where m_j and d_j are the operators

$$(m_j f)(x_1, \ldots, x_n) = x_j f(x_1, \ldots, x_n)$$

and

$$(d_j f)(x_1, \ldots, x_n) = -i \frac{\partial}{\partial x_j} f(x_1, \ldots, x_n)$$

on $L^2(\mathbf{R}^n)$. Thus, we have shown that for any $b \in \mathscr{S}(\mathbf{R}^n \times \mathbf{R}^n)$,

$$YW^0_{\Phi b}Y^* = \left[\int\limits_{\mathbf{R}^n \mathbf{R}^n} \int b(s,t) \prod_{j=1}^n \exp\left(2is_j m_j\right) \exp\left(it_j d_j\right) ds dt \right] \otimes 1 .$$
⁽⁵⁾

Since

$$b(s,t) = \exp(is \cdot t)(2\pi)^{-n} \int_{\mathbf{R}^n \mathbf{R}^n} (\Phi b)(Au + Bv) e^{-i[s \cdot u + t \cdot v]} du dv ,$$

for any $\xi \in \mathscr{S}(\mathbf{R}^n)$, we have

Here, we use the notation

$$(TF)(u,v) = F(Au + Bv), u, v \in \mathbf{R}^n$$

for functions F defined on \mathbf{R}^{2n} (¹). Hence it follows from this calculation and (5) that

$$Y W^0_{\Phi b} Y^* = \Psi_{T \Phi b} \otimes 1 .$$
(6)

It follows from (4) and the commutation relations (1) and (2) that, for any $a, b \in \mathscr{S}(\mathbb{R}^n \times \mathbb{R}^n)$,

$$\begin{split} \Psi_{(T\Phi a)\times_{W}(T\Phi b)} &= \Psi_{T\Phi a}\Psi_{T\Phi b} \\ &= \int_{\mathbf{R}^{n}} \int_{\mathbf{R}^{n}} \int_{\mathbf{R}^{n}} a(s',t')b(s,t) \\ &\times \left[\prod_{j=1}^{n} \exp\left(2is'_{j}m_{j}\right) \exp\left(it'_{j}d_{j}\right) \exp\left(2is_{j}m_{j}\right) \exp\left(it_{j}d_{j}\right) \right] ds' dt' ds dt \\ &= \int_{\mathbf{R}^{n}} \int_{\mathbf{R}^{n}} (a*b)(s,t) \left[\prod_{j=1}^{n} \exp\left(2is_{j}m_{j}\right) \exp\left(it_{j}d_{j}\right) \right] ds dt \\ &= \Psi_{T\Phi(a*b)} = \Psi_{T[(\Phi a)\times_{J}(\Phi b)]} . \end{split}$$

That is,

$$(T\Phi a) \times_W (T\Phi b) = T[(\Phi a) \times_J (\Phi b)]$$
.

¹ It may seem that the introduction of T does nothing but create inconvenience. After all, why don't we simply identify F(u,v) and F(Au + Bv)? What is implicit in such an identification of functions, however, is an identification of $\mathbb{R}^n \times \mathbb{R}^n$ with \mathbb{R}^{2n} through a rearrangement of coordinates. There are (2n)! ways to do so. The presence of T serves as a reminder of our particular rearrangement of coordinates which was actually dictated by the choice of the operator J.

If $f \in A^{\infty}$ (technically, elements of A^{∞} are functions on \mathbb{R}^{2n} , not functions of the form F(u, v), $u, v \in \mathbb{R}^{n}$), then for any $b \in \mathscr{S}(\mathbb{R}^{n} \times \mathbb{R}^{n})$, we also have

$$(Tf) \times_{W} (T\Phi b) = T[f \times_{J} (\Phi b)]$$

and

$$\Psi_{(Tf)\times_{W}(T\Phi b)}=\Psi_{Tf}\Psi_{T\Phi b}.$$

Hence it follows from (6) that

$$YW_{f}^{0}W_{\phi b}^{0}Y^{*} = YW_{f \times_{J}(\phi b)}^{0}Y^{*} = \Psi_{T[f \times_{J}(\phi b)]} \otimes 1$$
$$= \Psi_{(Tf) \times_{W}(T\phi b)} \otimes 1 = [\Psi_{Tf}\Psi_{T\phi b}] \otimes 1$$

for any $f \in A^{\infty}$ and $b \in \mathscr{S}(\mathbb{R}^n \times \mathbb{R}^n)$. By choosing a sequence $\{b_n\} \subset \mathscr{S}(\mathbb{R}^n \times \mathbb{R}^n)$ such that $\{\Psi_{T\Phi b_n}\}$ converges to the identity operator strongly, we may conclude that

$$YW_f^0Y^* = \Psi_{Tf} \otimes 1$$

It follows from Rieffel's construction that $\{L_f : f \in A^{\infty}\}$ is dense in A_J . Hence the map

$$\pi_J: L_f \mapsto \Psi_{Tf}, \ f \in A^{\infty}$$

extends to a C^{*}-algebra isomorphism from A_J into $B(L^2(\mathbf{R}^n))$.

For f a bounded function (or matrix of such functions) on \mathbb{C}^n , we recall that the *Bargmann isometry* [B; F, p. 40; BC3]

$$B: L^2(\mathbf{R}^n, dv) \to H^2(C^n, d\mu)$$

has the property that

$$B^{-1}T_f B = W_\beta ,$$

where

$$\beta(\xi, x) = \tilde{f}(x - i\xi) = \frac{1}{\pi^n} \int_{\mathbf{C}^n} f(w) e^{-|w - (x - i\xi)|^2} dv(w), \quad x, \ \xi \in \mathbf{R}^n$$

is defined to be the solution of the heat equation at time t = 1/4 with initial-value f, and W_{β} is the Weyl operator on $L^2(\mathbf{R}^n, dv)$ given by

$$(W_{\beta}g)(x) = (2\pi)^{-n} \int_{\mathbf{R}^n} \int_{\mathbf{R}^n} \beta\left(\xi, \frac{x+y}{2}\right) e^{i(x-y)} \cdot \xi g(y) dy d\xi$$

[F, p. 141; BC3].

The definition of the Weyl operator W_{β} with the symbol function β is slightly different from the definition of Ψ_{β} . However the two sets of pseudo-differential operators $\{\Psi_{Tf} : f \in A^{\infty}\}$ and $\{W_{Tf} : f \in A^{\infty}\}$ are identical and, therefore, generate the same C^* -algebra. This fact can be seen from a transformation on A. For any $\lambda >$ 0, define the linear operator S_{λ} on \mathbb{R}^{2n} by the formula $S_{\lambda}(x_1, \ldots, x_n, x_{n+1}, \ldots, x_{2n}) =$ $(x_{n+1}, \ldots, x_{2n}, \lambda x_1, \ldots, \lambda x_n)$. Also define $(S_{\lambda*}f)(x) = f(S_{\lambda}x)$ for $f \in A$. If we denote $(\alpha_z(f))(x) = f(x+z)$, then we have $\alpha_z(S_{\lambda*}f) = S_{\lambda*}\alpha_{S_{\lambda}z}(f)$. Hence if $z \mapsto \alpha_z(f)$ is an A-valued C^{∞} -function, then so are $z \mapsto \alpha_{S_{\lambda}z}(f)$ and $z \mapsto S_{\lambda*}\alpha_{S_{\lambda}z}(f)$. In other words, the operator $S_{\lambda*}$ maps A^{∞} to itself. For any $f \in A^{\infty}$, we have

$$\Psi_{TS_{1/2*}f} = W_{Tf} \quad \text{and} \quad W_{TS_{2*}f} = \Psi_{Tf} \quad . \tag{7}$$

Let I denote the ideal $C_0(\mathbf{R}^{2n})$ in A. We have an exact sequence

$$0 \to I \to A \to C(S^{2n-1}) \to 0$$
.

It is clear that I is invariant under the action of \mathbb{R}^{2n} and that the induced action of \mathbb{R}^{2n} on the quotient algebra $C(S^{2n-1})$ is trivial. Hence by Theorem 7.7 of [R], we have an induced exact sequence

$$0 \rightarrow I_J \rightarrow A_J \rightarrow C(S^{2n-1}) \rightarrow 0$$
.

If π denotes the quotient map from A_J onto $C(S^{2n-1})$, then, by Rieffel's construction,

$$\pi(L_f) = f_{\text{radial}}$$

for every $f \in A^{\infty}$. We have shown that π_J is an isomorphism from A_J onto the C^* algebra generated by $\{\Psi_{Tf} : f \in A^{\infty}\}$. Because $\pi_J(L_f + I_J) = \Psi_{Tf} + \pi_J(I_J)$, we see that the image of Ψ_{Tf} under the quotient map $\pi_J(A_J) \to \pi_J(A_J)/\pi_J(I_J)$ is also f_{radial} for every $f \in A^{\infty}$.

The ideal $\pi_J(I_J)$, which is generated by $\{\Psi_{Tf} : f \in I^\infty\}$, is the collection of compact operators on $L^2(\mathbb{R}^n)$. In fact, if $\alpha \in \mathscr{S}(\mathbb{R}^n \times \mathbb{R}^n)$, then obviously Ψ_α is a compact operator. From this it is easy to see that $\pi_J(I_J)$ at least contains all the compact operators on $L^2(\mathbb{R}^n)$. Now, because I_J is the completion of I^∞ with respect to the *J*-norm, to establish that every operator in $\pi_J(I_J)$ is compact, it suffices to verify that $\{L_f : f \in \mathscr{S}(\mathbb{R}^{2n})\}$ is dense in $\{L_f : f \in I^\infty\}$. For this purpose, we fix a C^∞ -function $0 \leq \eta \leq 1$ on $[0, \infty)$ such that $\eta = 1$ on [0, 1] and such that $\eta = 0$ on $[2, \infty)$. For each $k \in \mathbb{Z}_+$, define $\eta_k(t) = 1$ if $|t| \leq k$ and $\eta_k(t) = \eta(|t| - k)$ if |t| > k. Let

$$\xi_k(t_1,\ldots,t_{2n})=\eta_k(t_1)\ldots\eta_k(t_{2n}).$$

Then straightforward differentiation shows that for any $f \in I^{\infty}$, any mixed partial derivative of $(1 - \xi_k)f$ of arbitrary order tends to zero uniformly on \mathbb{R}^{2n} as $k \to \infty$. By Proposition 4.10 of [R], this means

$$\lim_{k\to\infty} \|L_{\xi_k f} - L_f\| = 0 \; .$$

Hence $\{L_f : f \in \mathscr{S}(\mathbb{R}^{2n})\}$ is dense in $\{L_f : f \in I^{\infty}\}$ and $\pi_J(I_J)$ consists of the compact operators on $L^2(\mathbb{R}^n)$.

4. Main Result

We have, for Rieffel's algebra $A_J(\mathbf{R}^{2n})$ discussed in Sect. 3,

Theorem 2. The C*-algebras $A_J(\mathbf{R}^{2n})$ and $\tau(\mathbf{B}_{2n})$ are *-isomorphic via $\operatorname{ad}_V^{-1} \circ \operatorname{ad}_B \circ \pi_J$. Here, as usual, ad_U denotes the conjugation by U.

Proof. Recall that every element in $\tau(\mathbf{B}_{2n})$ is the sum of a Toeplitz operator whose symbol is continuous on \mathbf{B}_{2n} and a compact operator. We also recall that for f in $C(S^{2n-1})$,

$$B^{-1}T_{\hat{f}}B=W_{\alpha_f},$$

36

where W_{β} was defined earlier as was the Bargmann isometry B and

$$\alpha_f(\xi,x) = \tilde{\hat{f}}(x-i\xi)$$
.

We consider the C^* -algebra Weyl (S^{2n-1}) generated by the full algebra \mathscr{K} of compact operators on $L^2(\mathbf{R}^n)$ and the operators

$$\{W_{\alpha_f}: f \in C(S^{2n-1})\}$$

Using Theorem 1, it is not hard to check directly that conjugation by the unitary operator

$$B^{-1}V: H^2(\mathbf{B}_{2n}) \to L^2(\mathbf{R}^n)$$

implements an isomorphism from Weyl(S^{2n-1}) on $L^2(\mathbf{R}^n)$ onto $\tau(\mathbf{B}_{2n})$ on $H^2(\mathbf{B}_{2n})$.

In Sect. 3, we checked that Rieffel's algebra $A_J(\mathbf{R}^{2n})$ is *-isomorphic via π_J to the C*-algebra $\pi_J(A_J(\mathbf{R}^{2n}))$ on $L^2(\mathbf{R}^n)$ generated by the operators

$$(\Psi_{T\gamma}g)(x) = (2\pi)^{-n} \int_{\mathbf{R}^n} \int_{\mathbf{R}^n} (T\gamma)(x+y, \xi) e^{i(x-y)} \cdot \xi g(y) dy d\xi ,$$

where γ is in A^{∞} with (uniform) radial limit function γ_{radial} in $C(S^{2n-1})$. Moreover, comparing [R] and Sect. 3, $\pi(\Psi_{T\gamma}) = \gamma_{\text{radial}}$.

Because α_f is convolution of \hat{f} with a Gaussian, it is easy to check that $T^{-1}\alpha_f$ is in A^{∞} of [R] for arbitrary f in $C(S^{2n-1})$. This fact was already observed for n = 1 in [R]. Using Eq. (7) of Sect. 3 and the fact that

$$(\alpha_f)_{\text{radial}}(x,\xi) = f(\xi,-x)$$
,

it is easy to check that $Weyl(S^{2n-1}) = \pi_J(A_J(\mathbf{R}^{2n}))$. Hence, $A_J(\mathbf{R}^{2n})$ and $\tau(\mathbf{B}_{2n})$ are *-isomorphic.

5. Problems and Remarks

It would be of some interest to know if other standard Toeplitz algebras arise as strict deformation quantizations of commutative algebras. In this connection, we should mention [BLU] where an "intrinsic" Toeplitz quantization on bounded symmetric domains is described following earlier work of [KL] and [C2]. The Toeplitz quantization of [KL, C2], [BLU] satisfies a weaker version of the strict deformation conditions required by [R].

Problem 1. Can the Toeplitz algebra on the polydisc, $\tau(\mathbf{D} \times \mathbf{D})$, be realized as a strict deformation quantization of $C(\mathbf{D} \times \mathbf{D})$,

While we have exhibited a *-isomorphism

$$\mu: A_J(\mathbf{R}^{2n}) \to \tau(\mathbf{B}_{2n})$$
,

it is not obvious precisely what elements of $\tau(\mathbf{B}_{2n})$ are in $\mu\{A_I^{\infty}(\mathbf{R}^{2n})\}$.

Problem 2. Can $\mu\{A_J^{\infty}(\mathbf{R}^{2n})\}$ be precisely identified?

References

- [B] Bargmann, V.: On a Hilbert space of analytic functions and an associated integral transform. Commun. Pure and Appl. Math. 14, 187–214 (1961)
- [BC1] Berger, C.A., Coburn, L.A.: Toeplitz operators and quantum mechanics. J. Funct. Anal. 68, 273–299 (1986)
- [BC2] Berger, C.A., Coburn, L.A.: Toeplitz operators on the Segal-Bargmann space. Trans. Am. Math. Soc. 301, 813-829 (1987)
- [BC3] Berger, C.A., Coburn, L.A.: Heat flow and Berezin-Toeplitz estimates. Am. J. Math. 116, 563-590 (1994)
- [BDF] Brown, L.G., Douglas, R.G., Fillmore, P.A.: Extensions of C*-algebras and K-homology. Ann. Math. 105, 265–324 (1977)
- [BLU] Borthwick, D., Lesniewski, A., Upmeier, H.: Non-perturbative deformation quantization of Cartan domains. J. Funct. Anal. **113**, 153–176 (1993)
- [C1] Coburn, L.A.: Singular integral operators and Toeplitz operators on odd spheres. Indiana Univ. Math. J. 23, 433–439 (1973)
- [C2] Coburn, L.A.: Deformation estimates for the Berezin-Toeplitz quantization. Commun. Math. Phys. 149, 415-424 (1992)
- [F] Folland, G.B.: Harmonic analysis in phase space. Annals of Math. Studies. Princeton NJ, Princeton Univ. Press, 1989
- [G] Guillemin, V.: Toeplitz operators in *n*-dimensions. Int. Eq. and Op. Thy. 7, 145–205 (1984)
- [H] Howe, R.: Quantum mechanics and partial differential equations. J. Funct. Anal. 38, 188– 254 (1980)
- [KL] Klimek, S., Lesniewski, A.: Quantum Riemann surfaces I, The unit disc. Commun. Math. Phys. **146**, 103–122 (1992)
- [R] Rieffel, M.A.: Deformation quantization for actions of \mathbf{R}^d . Memoirs of the Am. Math. Soc. **106**, No. 506 (1993)
- [S] Sheu, A.J.: Quantization of Poisson SU(2) and its Poisson homogeneous space-the 2-sphere. Commun. Math. Phys. 135, 217–232 (1991)
- [V] Venugopalkrishna, U.: Fredholm operators associated with strongly pseudoconvex domains in Cⁿ. J. Funct. Anal. 9, 349–373 (1972)
- [WW] Whittaker, E.T., Watson, G.N.: Modern Analysis. London: Cambridge Univ. Press, 1940
- [X] Xia, J.: Geometric invariants of the quantum Hall effect. Commun. Math. Phys. 119, 29–50 (1988)

Communicated by A. Jaffe