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Abstract: Categorical structure of unitary representations of compact quantum
groups is studied with relation to a metrical structure encountered in the monoidal
category of bimodules of finite Jones index.

Introduction

It has been long believed that there exists a close relationship between Jones index
theory and quantum groups (see [Jo]). One of the striking results is due to
H. Wenzl [Wei], where a new series of subfactors are constructed via representa-
tions of Hecke algebras at roots of unity. The subfactors of this type are further
studied in [We2, We3, EK]. All these works are concerned about ^-deformation of
universal enveloping algebras of classical groups with q a root of unity. When the
deformation parameter q takes real values, these quantum groups fit into the
formalism of compact quantum groups of Woronowicz.

The purpose of the present paper is to clarify the relationship between compact
quantum groups and the Jones subfactor theory. More precisely, we shall describe
(unitary) Tannaka duals of compact quantum groups in the framework of subfac-
tor theory. To this end we need to adopt the bimodule-approach to Jones index
theory developed by A. Ocneanu; given an inclusion relation of factors N a M, the
associated bimodule NL2(M)M (here L2(M) denotes the regular representation of
M) and its iterated tensor products determine the whole combinatorial informa-
tion of the inclusion N a M.

More generally we can work with monoidal categories which retain the combi-
natorial structure of bimodules. Indeed, in our previous paper [FRTC], the
combinatorial structure of bimodules of the finite Jones index is extracted into a set
of categorical axioms: other than rather obvious monoidal structure including
conjugation operation, we have encountered a metrical structure arising from
minimal expectations, which is called ^-structure there and will be used in the
present paper. The monoidal category of finite dimensional unitary representations
of a compact group is a typical and important example fulfilling these axioms. So it
would be a natural question to ask whether the same structure remains existing for
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compact quantum groups. (Since we will mostly work with the "group algebra" of
compact quantum groups, it might be appropriate to call them "discrete quantum
groups" as considered in [PW, ER, VD].)

Our main result in the present paper is then to give an affirmative answer to this
question.

In that process, we found that compact quantum groups admit a distinguished
group-like element inside its group algebra, which is characteristic in the non-
unimodularity of compact quantum groups and is directly linked to the ε-structure in
the Tannaka duals. Moreover, it turns out to the dualized object of Woronowicz's
characters fz constructed for compact matrix pseudogroups. With these reasons, this
distinguished element is referred to as a characteristic element in this paper and will
play a significant role in the following. Since its existence is easily checked in the
known examples, we shall take characteristic elements as ingredients of the compact
quantum group. In other words, we shall assume the existence (and a choice) of
characteristic elements for compact quantum groups from the outset.

Such an assumption is particularly natural from the viewpoint of subfactor
theory and, even in the purely representation-theoretical study of quantum groups,
it will deserve much attention. In fact, an explicit use of the characteristic element
enables us to define the conjugation of unitary representations in the ideal way and
provides the canonical ε-structure in the (unitary) Tannaka duals. Conversely,
starting from a monoidal category with ε structure which is realized as a sub-
category of finite-dimensional Hubert spaces, we can smoothly recover the group-
von Neumann algebra of a compact quantum group, which should be compared
with the elaborate construction in ([Wo2]). Furthermore, utilizing the character-
istic element, we can easily show the existence and the uniqueness of Plancherel
weights for compact quantum groups as well as its explicit formula due to Podles
and Woronowicz ([PW, Sect. 3]).

In a subsequent paper, we shall even prove a generalized version of the
Hermann-Ocneanu conjecture on a characterization of crossed products in the
framework of subfactor theory as a direct application of the present formalism
([CPB, OCCP]).

Other than the fundamental papers [Wol, Wo2] by Woronowicz, a number of
papers are now available in this field. Among them we are indebted to an article by
Nakagami ([N]), where characteristic elements are dealt with in the form of
1-parameter automorphism groups and it was in fact the starting point of the
present work. In the final stage of the present paper, we noticed the works [ER,
VD] on discrete quantum groups, where related topics, including the existence and
uniqueness problem of invariant weights, are investigated.

The author is grateful to Professors E. Eίfros, Y. Nakagami, and A. Van Daele
for useful information and discussions on the present subject.

Notation and Terminology. A complex vector space C is called a coalgebra if C is
furnished with two linear maps Δ:C -> C® C and ε: C ->(C (called comultiplica-
tion and counit respectively) such that (A ®lc)° A = ( l c ® A)° A and (ε ® l c ) ° A
= id c = ( l c ® ε) ° A: the following diagrams commute.

c -ί> c®c

A I lie® A

c®c —• c®c®c



Unitary Representation Theories of Compact Quantum Groups 511

Given a coalgebra C, the algebraic dual C 'o f C is in a natural way an algebra: the
multiplication in C" is given by

v'W = (V ® w') ° A, v\ w' e C .

The counit ε of C is nothing but the unit of this algebra.
An algebra B with unit 1B is called a bialbegra if it is a coalgebra at the same

time in such a way that

Δ(ab) = Δ(a)A{b)9 ε{ab) = ε{a)ε{b), Δ(1B) = 1*® l β .

(Here the multiplication in B ® 5 is given by (α ® fc)(α' ® b') = (aar) ® (bbf)).
A bialgebra (B, A, ε) is called a Hopf algebra if it admits an invertible linear map

σ: B -» B satisfying

m°(σ® 1B)° A = ε(')\B = m°(\B® σ)° A .

Here rn: B® B ->B denotes the multiplication in B.
Such an operator σ is, if it exists, unique and called the antinode of the Hopf

algebra (£, A, ε). Antipode is known to be anti-multiplicative and anti-comultip-
licative in the following sense (see [Sweedler]):

σ(ab) = σ(b)σ(a), σ(lB) = 1B ,

~ °(σ ® σ)° A = A °σ, ε°σ = ε.

Here ~:B®B-*B®B denotes the flip map, i.e., (a ® b)" = b® a.
A bialgebra (£, zl, ε) is called a *-bialgebra if β is a *-algebra with A and

ε preserving the ^-operation:

where the ^-operation in JB ® B is defined by

(a®b)* = a*®b* .

When (5, Zl, ε) is a Hopf-algebra with antipode σ, a ^-operation is said to satisfy the
Woronowicz condition if

σ(σ{b)*) = b*9 beB.

A Hopf *-algebra is, by definition, a *-bialgebra with antipode which satisfies the
Woronowicz condition.

Here are a few remarks on topology: On occasion it is not easy to deal with
tensor products in a topological way. This is particularly the case when one
considers C*-algebras. On the other hand, for von Neumann algebras, the tensor
products are neatly defined and behave well mostly. So a *-bialgebra (B, A, ε) is
called a W*-bialgebra if B is a W*-albegra with A:B-+B®B and ε : £ - > C
supposed to be weakly continuous. Here B® B means the tensor product of
W*-algebras, which is again a VK*-algebra.

By a *-category we mean an abelian category such that Horn-sets are vector
spaces and they admit *-operation: given a morphism T: X -• Y, we are assigned
a new morphism T*: Y -+ X in such a way that (i) T -> Γ* is conjugage-linear,
(ii) (T*)* = T, and (iii) (S°Γ)* = T * 0 ^ * . If a *-category is provided with a
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monoidal structure (i.e., tensor products with unit objects) in a compatible way
with the *-structure, then we call it a monoidal *-category. Unit objects in monoidal
categories are denoted by * in the following. A monoidal *-category is said to have
conjugation if we are given an assignment X=>X* on objects together with
a correspondence on morphisms T : X -+ Y =>T: X* -• Γ * in such a way that
{X*)* = X, (T) - T, and T ^ = ( f )* (this new morphism is often denoted by ιT
and called the transposition of T). Moreover we assume the existence of coherent
(i.e., satisfying hexagonal relations) isomorphisms ( X ® Γ ) * - > Y * ( χ ) X * under
which (X ® Y)* and Y* (g) X* are naturally identified and we do not distinguish
them in this paper.

A monoidal *-category with conjugation is simply referred to as a *-monoidal
category in the following.

In a *-monoidal category %?, a family of morphisms {εx: X (x) X* -> *}χ6object
is called an ε-structure if

(i) εx<g)y = εχo(l x(8)ey(8)lχ*) (multiplicativity),
(ii) εx(T <g) lx.) = fiy(ly (x) rT) for T : Y -> X (centrality),

(iii) ε x (T ® l x*) = 0 iff T = 0 for T: 7 -* X (faithfullness).

The following is a useful identity which is easily deduced from the above three
axioms (see [FRTC, Lemma 2.4]):

An ε-structure is called self-adjoint if ε~^ = εx for any X.
When the unit object is irreducible, i.e., End(+) = (Cl, we can introduce the

quantum dimension (or statistical dimension) d(V) e 1R of V by

d(V)l =εvεf .

Quantum dimension takes positive values when *-monoidal categories are related
to Hilbert spaces in a suitable way (see [FRTC] for more precise information).

1. Characteristic Elements

In this section, we introduce some extra information on the Hopf *-algebra referred
to as characteristic elements in the Introduction. Before going into the formal
definition, let us begin with some heuristic arguments. Suppose that we are given
a Hopf *-algebra A with antipode σ. Then σ2 = σ ° σ is an automorphism of A, i.e.,
σ2 is an automorphism with respect to the algebra and coalgebra structure in A at
the same time. Taking the square of the Woronowicz condition, we have

Here we assume that the automorphism σ2 admits a suitable square root: we can
find an automorphism θ in A (i.e., θ preserves multiplication and comultiplication)
such that

σ

2 = θ2,*oθo* = θ~\ σθ = θσ .
Put
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Then τ is an antiautomorphism of A, i.e.,

τ ( a b ) = τ ( b ) τ ( a \ A n = - ° ( τ <g> τ ) ° A

and satisfies τ 2 = σθ~ 1 σθ~ 1 = σ26>~2 = id, i.e., τ is an involution. Moreover it
commutes with *-operation;

τ(α*) = τ(α)*, α e A .

This follows from

= σ - 1 (θ(α)) (use Woronowicz condition)

= τ(α) (use τ 2 = id) .

Clearly τ and θ commute.
Now we further assume that 0 is inner, i.e., there is an invertible element h in

A such that θ(a) = hah~ι for aeA.ln this case, looking at the property of θ, it is
natural to require that h is hermitian and satisfy

τ(h) = h~\ Δ(h) = h®h .

Thus we come to the following definition.

Definition 1.1. Let A be a Hopf *-algebra with antipode σ. An invertible hermitian
element h in A is called a characteristic element if

A(h) = h®h, σ(h) = h~\ σ2(a) = h2ah~2 foraeA.

Given a characteristic element h, an antiautomorphism τ is A is defined by

τ(a) = σ(h~1ah)

and called the transposition.

As will be checked later, Drinfeld-Jimbo's ^-deformation of simple Lie algebras
with q E IR especially fits the above definition. Since the characteristic elements in
these examples turn out to have representations as unbounded linear operators, it
is more convenient to work with the unitarized version:

Definition 1.2. Let M be a von Neumann algebra isomorphic to a direct sum of
finite-dimensional matrix algebras. A W*-bialgebra (M,A9ε) is called a compact
quantum group-von Neumann algebra if it is furnished with an involutive ^-anti-
automorphism τ (called transposition) and a one-parameter (continuous) group of
unitaries {ut}ίeJR in M such that

A(ut) = ut®uu τ(ut) = u-t ,
and

m(\ ® (τ o 0_.)) oA(a) = ε(a) 1M - m((τ ° 0f) ® 1)o Λ(a)

for a e Jί. Here Jί is a dense *-subalgebra of M consisting of elements in M with
finitely many simple (i.e., factorial) components and 0_f denotes the analytic continua-
tion of θt = Ad ut to t = — i.
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Remark, (i) Let M ~ ®j^x Mj with Mj isomorphic to a matrix algebra M(dj, C).
Then the analytic continuation 0_f is well-defined on any component Mj and the
condition about τ°θ-i should be understood in the following sense: for any
7, k ^ 1, denote by Ajk(a) the Mj (x) Mk-component of Δ{ά) in the decomposition
M (x) M = ©j f k ^ ! Mj ® Mk. Then we have

for any j ^ 1.

(ii) Since τ(ut) = u-u τ and θt commute.
(iii) The one-parameter group {θt} of automorphisms play a fundamental role

in the formulation of duality of quantum groups by Masuda and Nakagami
([MN]). The above definition is therefore a specialized and strengthened version of
their formalism to the case of the group-von Neumann algebra of compact
quantum groups.

2. Examples

Let us begin with a review of definitions on quantum groups introduced in
[Drinfeld, Jimbo]. Let A = {^7)1 ^ij^i be a Cartan matrix with a symmetrizing
diagonal matrix D = diag(d1? . . . , dt): d{ Φ 0 and diCij = djCji for 1 ^ ij ^ /.

Let Uq be a C-algebra having unit with generators e^fi.kc1 (1 ^ i ^ /) and
relations

b.p.hΓ1 — ndiCιJp k f k ' 1 — π~dίCιj f-

/c - k
^i/j ~Jjei ~ Vij 2di _ Q-2dι

v = 0

Here

[«]!« = (9 - «~1)(€2 - <Γ2)

for 0 ^ m ^ n.
The algebra Uq is furnished with a Hopf-algebra structure by

= etkf1 + kt (x) eh Δ(fd =f, ® Λf1 + fcf ®/,, -d(fc,) = /c, ® k,,

ε(et) = βί/,) = 0, e(k,) = 1 ,

σ(e,)= -q-2d'e,, σ(f,)= - q2ilf,, σ(ki) = kΓ1.
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Lemma 2.1. We can define an anti-automorphism τ (i.e., an anti-multiplicative and
anti-comultiplicative linear bijectioή) of Uq by

τ(ki) = kr\ τ(et)= - eh τ(f) = - f .

Clearly τ is involutive and commutes with σ.

'.') This is checked by showing that τ preserves the generating relations in the
generating ideal. The details are left to the readers. •

In the following we assume q is real and introduce a ^-operation in Uq so that

This is well-defined because the above assignment preserves the generating rela-
tions which can be checked by a direct computation (note that geIR and
didj = djCβ). It is also easy to check that this ^-operation satisfies the Woronowicz
condition. In the following Uq is considered to be a Hopf *-algebra with this
*-operation.

The following can be checked by a direct computation.

Lemma 2.2. Let {bt}i ^ ^ / cz Q be defined by ^] bid^j = 2djforj = 1, . . . , / (note
that as the Cartan matrix of a semi-simple Lie algebra, A is inυertible). Then ^ e Z
for i - 1, . . . , /.

The following are also immediate from the definition.

Proposition 2.3. Let {bi}ι<i<ιbe the sequence of integers in the above lemma and set

h = Π kΓb e Uq .
i

Then h satisfies the property for the characteristic element for the Hopf *-algebra Uq:
(i) σ2 = Adh2, (ii) σ(h) = h~\ (iii) Δ(h) = h® h, and (iv) τ = σ-Adh~γ =
Adh~ι°σ.

Remark. The above element h coincides with the ^-deformation of the element in
the Cartan subalgebra corresponding to the half sum of positive roots (cf. [R3]).

In the following we use the term compact quantum group to designate a Hopf
*-algebra A with a characteristic element which admits sufficiently many finite-
dimensional unitary representtions: for a φ b e A, there exists a finite-dimensional
unitary representation π such that π(a) φ π(b) (see the definition at the beginning
of Sect. 3).

3. Unitary Representations

By a ^representation of a Hopf *-algebra (or a Hopf-von Neumann algebra) A, we
mean a Hubert space V together with a left action of A on V which satisfies

(av\w) = ( υ | α * w ) , aeA, υ,weV.

When A is furnished with a characteristic element h, we assume that h is repre-
sented by a positive operator.
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Given two ^representations V and W, we define their tensor product (repre-
sentation V ® W by

a(v ® w) = zl(α)(ι; ® w) .

Here the right-hand side is defined by restricting the action of A ® A on V ® W.
Since zi is a *-homomorphism, this gives a ""-representation of A The conjugate
representation of V is by definition the dual Hilbert space K* ( = the conjugate
space of V by the "self-duality" of Hilbert spaces) together with the action of
A defined by

av* = (τ(a*)υ)* ( = υ*τ(a))9 aeA.

Here v* eV* denotes the linear functional on V obtained from veV through the
inner product. Note that this, in fact, gives a ^-representation because τ commutes
with the ^-operation.

Suppose that A is furnished with a characteristic element h. Then a ^repre-
sentation V of A is called unitary if h is represented by a positive operator in V.

Remark. Since τ = σ°Adh, the conjugate representation F * is, forgetting the
*-structure, equivalent to the contra-gradient representation defined by antipode
σ([L,R,Wol]) .

Proposition 3.1. Let U, V, W be *-representations. Then we have

(i) (U® V)®W = U®(V® W).
(ϋ) (F*)* = V.

(Hi) (V ® W)* = W*® F * (for veV and weW, the element (υ®w)* in
(V ® W)* is identified with the element ω* ® v* in W* ® V*).

'.') (i) is a consequence of coassociativity of A while (ii) follows from the involu-
tiveness of τ. Property (iii) is checked as follows: Write Δ(a) — £ α x ® a2. Then

α(w* ® v*) = A{a)(w* ®v*) = Σ aiw*

= (τ(α)*(t;(8)w))*

= a(v ® w)* .

D

In accordance with the operations on representations just defined, we can
introduce the accompanying operations on intertwiners: if T: V -> W and
T':V^-+W are interwiners, then new intertwiners T ® T ' : F ® F / - > P ^ ® P F /

and f: F * -> FF* are defined by

(T ® T')(v ® υ') = (Tv) ® (T'Ό'\ TV* = (Tv)*

and satisfies the properties required in the *-monoidal category.
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In this way we see that the category of unitary representations of a Hopf
*-algebra A with characteristic element has the structure of a *-monoidal category.

From here on we restrict ourselves to finite dimensional ^-representations and
see how the assumed characteristic element in the Hopf *-algebra defines
an ε-structure in a canonical way. Let us begin with some heuristic computations to
capture the characteristic element within the monoidal category of ^representa-
tions.

Since the unit object is given by the counit ε if it is regarded as a *-representa-
tion of A on (C, we need to seek for an element ξeV®V* which is invariant under
the action of A: at — ε(a)ξ for a e A.

Now suppose that such ξ is given in the form

with C e &(V) a positive invertible operator and {VJ} an orthonormal basis in V.
Note that ξ does not depend on the choice of an orthonormal basis.

For a e A, write A (a) = Σ a± (g) a2. Then the A-'mvariance of ξ is expressed by

Σ Σ β i C s j ® a2vj = ε(a)Σ Cvj<g> vf .
j j

Taking partial inner products in the second factor, we see that this relation is
equivalent to

a2v*\v*)ciiCVj = ε(a)Cvi9 i = 1, . . . ,d — dim V .

Since (υf\a2vf) = (υf\(τ(a^)υj)*) = (τ(aξ)υj\υi) = (τ(a2)*Vj\υi), this condition is
written as

Σ ai Cτ(a2) = ε(a)C for a e A

with A(a) = Σai® a2 Comparing this with the relation for the antipode
σ = τ° Adh,

Σa1τ(ha2h-1) = ε(a)l ,
i.e.,

Σ = ε(a)h ,

we see that ξ is ^-invariant if we take C = h on F.

Proposition 3.2. Define a linear map εv: V (g) F * -> C as the adjoint of

with {VJ} an orthonormal basis ofV. Then εv does not depend on the choice of {VJ}
and gives an intertwiner between V ® V * and C ε (i.e., the trivial representation of
A given by the counit ε).

Theorem 3.3. Let (A, A, ε) be a Hopf *-algebra with a characteristic element h and
01 be the *-monoidal category of finite dimensional *-representations of A. Then the
family {εi/}κeθbject gives a self-adjoint ε-structure in &.

Analogously, a compact quantum group-von Neumann algebra determines the
*-monoidal category with ε-structure.
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V) We need to check that {εv} satisfies multiplicativity, centrality, and self-
adjointness (the faithfullness is obvious). The multiplicativity is a consequence of

> W ? ι
j.fc

The centrality can be seen as follows: Identify elements in W ®V* with linear
maps from V into W in the obvious manner. Then (T ® lκ*)ε£(l) is identified with

while (lWr®ίT)εSr(l)is identified with

Since T: V -> FF is an intertwiner, the above two operators coincide.
The self-adjointness follows from the next lemma. •

Lemma 3.4. For any orthonormal basis {VJ} in V,

εUί) = Σ ( h l l 2 v j ) ® (hll2vj)* = Σ»j® (Λ»j)*
7 7

'.') Immediate. Π

Example 3.5. (cf. [L, Rl, R2]). Let Uq be the q-deformed Hopf *-algebra of
a semi-simple Lie algebra. Then finite dimensional irreducible *-representations ofUq

are parametrized by the sequences m = {mi}ίsiύι of non-negative integers: a vector
space 0 φ v0 in V is called a highest weight vector with highest weight m if e{v^ = 0
and kiV0 = qdιTHιv0 (1 ^ i g /). Then any irreducible finite dimensional ^-representa-
tion V has a highest weight vector with highest weight meΈι+ and conversely, for any
weight meZι

+, there is an irreducible finite dimensional *-representation V with
m the highest weight. Note that the fourth root of\ is excluded because we suppose /ct

to be positive (1 ^ i ^ I).

Lemma 3.6. In the above example, the associated *-manoidal category satisfies the
self-duality in [FRTC]: For any irreducible V,

\\Bv\\ = \\ey.\\ •

'.') First note that

| |8 F | | 2 = ||ε*(l)| |2 = Σ > , ® t t f =tracev(Λ2) .
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Since to* = (τ(h)*υ) = (h~1v)* for v e V, a similar calculation shows that

Here note that the spectra of hv and hγι are completely symmetric. This follows
from the existence of an element in the Weyl group which just changes the sign of
roots up to permutation (see [V] for example) and the fact that the multiplicity of
weights in V remains invariant under the action of Weyl group ([Rl]). In particu-
lar we have traceF(/i2) = traceF(/z~2). •

Example 3.7. Consider the case A = (2) with D = (1), i.e., g = si(2, (C). The paramet-
rizing weight set is just Z+ = {0, 1, 2, . . .} and, for meZ + ,h = kis represented on
the associated representation space V by the diagonal matrix

jqm \
am~2

hv =

\ q'

Thus the quantum dimension of V is given by

traceF(/z2) = q2m + q2{m~2) + + q~2m

4. Tannaka-Krein Duality

The Tannaka-Krein type duality has been already established by Woronowicz
based on his formulation of compact quantum groups. In this section, we present
a dualized version of the corresponding theorem for compact quantum groups. The
assumption of the existence of the characteristic element may restrict the class of
compact quantum groups but we can give a simpler proof of the Tannaka-Krein
duality.

Definition 4.1. A *-monoidal category 01 with ε-structure {εv} is called unitary
representation theory if

(i) objects of 01 are finite dimensional Hilbert spaces,
(ii) Hom( V, M) in M is a linear subspace of the vector space ££{V, W) of linear maps

from V into W with *-operation inherited from J£?(F, W),
(iii) the monoidal structure is also inherited from ^(V, W):for V, V, W, W e Ob-

ject and S e Hom(V, V), T e Hom(W, W), the monoidal operation V ® W is
given by ordinary tensor product of Hilbert spaces and S ® T e Hom(V ® W,
V (x) W) is given by the ordinary tensor product of linear maps. The unit object
is given by C,

(iv) F * is the dual space of V with the conjugation of T e Hom(V, W) given by

Tv*={Tυ)*, veV,

(recall that D * e F * is the linear form on V obtained from veV by the inner
product in V),
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(v) the ε-structure {εv} is positive in the sense that

εv(v®v*)^0 forVVandVveV .

With this terminology, the result in Sect. 3 is summarized in the following form:
the monoidal category of finite dimensional unitary representations of a compact
quantum group gives a unitary representation theory.

Now conversely suppose that we are given a unitary representation theory M.
Since End{V) is a *-subalgebra of 36{V\ adding subspaces corresponding to
projections in End(V) to objects if necessary, we may assume that every object in
01 is a direct sum of irreducible ones. Denote by ̂  the set of equivalence classes of
irreducible objects in 0% and set

{ { } ) a n d Txv = xwT if TeHom(V,W)} ,

which is a *-algebra by object-wise operations. Take a set of representatives of
$ and simply write V e Jl if V is in that set. Then it is easy to check that

is a bijection and, if we set

Ji = {x e M\ xv = 0 for F e l except for finitely many F's in

eM\ sup | |x v | | < + oo

then M and M do not depend on the choice of representatives of $.
Clearly M is a (discrete) von Neumann algebra with Jί a dense *-subalgebra,

which is identified with φ r e j ^ ( K ) through the above isomorphism on occasion.
Define a comultiplication Λ in M by

A(x)= 0 f Σ TxT

Vx,V2e

which is sitting in

F2βj

Here F and T: V -+ Vγ ® V2 runs through a family of isometric intertwiners which
gives an irreducible decomposition of V1®V2- It is immediate to see that the
above formula gives a ̂ -isomorphism from M into M ® M with Δ(\M) = 1M ® 1M.
It is also easy to check that A depends on neither choices of representatives in
§1 nor choices of intertwiners in the decomposition of V1®V2

More generally we can show the following:
H-times

Lemma 4.2. Define a linear map Δ(n~ '\ M -> M ® - ® M by

V1,...,Vneί

x) " ® Vn) = M ® ' ' ' ® M .
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Then A{n~1] is a *-isomorphism and independent of the choice of inter twiners in the
decomposition of V±® ® Vn.

Remark. If x e M is supported by V e .^, then the component of A{n~ υ (x) in

®iyγ® ®Vn) = ^(V1)® • • • ® J ( K J c M ® ®M

is given by

0 otherwise .

Corollary 4.3. A gives a comultiplication.

Y) Write

A(x) = 0

Then

Σ
S,T

= Ai2)(x).

In the last line, we have used the fact that {(1 ® S)T}SfT gives an irreducible
decomposition of Vγ ® V2 ® V3.

Similarly we have (A ® l)A(x) = A{2)(x). Π

Remark. If we understand the meaning of the tensor product Jϊ ® Jt as the vector
space which is isomorphic to the set of doubly indexed sequences of finite-dimen-
sional operators in {&(V) ® &( W)}v, We#, then the above A is obviously extended
to the injective *-homomorphism Jί -> Ji ® Jί and gives a commultiplication
in Jί.

The counit of A is given by the evaluation map

ε: M3χ\-^>xι e (C .

Here 1 denotes the unit object which is nothing but C as a vector space. Since ε is
obviously a normal *-homomorphism, we have obtained a W*-bialgebra (M, A, ε).

Next we define a transposition τ in M as the ordinary transposition in

τ(x)v = l{xv*\ xe Jί .

Clearly τ is an involutive antimultiplicative map. Its anticomultiplicativity is
checked by

~o{τ®τ)oΔ(χ)= 0 Σ '(TxT*)

φ Σ
Vι>V2 T

= Δ(τ(x)).

Note that { f :F*->Kf(χ)Ff} gives a decomposition of Ff ® Ff.
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Let us now construct a characteristic element of the Hopf-von Neumann
algebra (M, A, ε, τ). First, to each sv(l) e V ® V*, associate a positive invertible
operator hv in 0$(V) by

(ε?(l)|i;®w*) = (w|M«)λ v,weV

(the qualified properties follow from the faithfullness and the positivity of the
ε-structure {εF}).

Lemma 4.4. Let hv, t e IR be the exponentiated unitary operator of hv. Then the
family hiι = {hv}v belongs to M and satisfies (i) A(hil) = hιt <g) hlt and
(H) τ(hίt) = h-it.

'.') From the property of ε-structure

(T ® l)εv = (1 (x) r T ) ε ^ for T : V -> Ĥ  ,

we obtain the relation on operators hv\

Thv = hwT ,

which implies

Thus the family {hv} defines an element hu in M.
The multiplicativity of ε-structure sVι0y2 = ε F i (l F i (x) ε^2 (x) lv*) entails the op-

erator relation hVι ®v2 = hVι ® hVz which in turn implies

Lit Ί.it /ς\ Lit

Using these relations,

^i ® v2
(use the additivity of ε-structure)

which proves (i).

The desired relation in (ii) is equivalent to

(Λ^ϋ*)* = hvv for t; e V ,

which is furthermore equivalent to

( h v v ) * = h v ' * 1 v * , v e V

by analytic continuation.

Now this last relation follows from the identity
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mentioned in the last part of Notation and Terminology. In fact, making use of this
identity, we can deduce as follows:

(w*|ϋ*) - {v\w) = ({εv

v\w ® εv*(l))

= {(hv.v*)*\hvw)

= ((hyW)*\hV*V*),

w h i c h m e a n s

/ i F *(/z F w)* = w * , w e F .

D

Remark. At the starting definition of unitary representation theory, we may allow
possibly infinite dimensional representations. Even in that case, the assumed
e-structure gives rise to a family of positive Hilbert-Schmidt operators {hv}. The
last part in the above proof then shows that hv must have the bounded inverse,
whence the allowed representation spaces must be finite-dimensional.

Finally we check that the defining relation of antipode is satisfied by

Here h = {hv} is a positive invertible element in Jt and the adjoint Ad h is taken on
Jt. Although this operator does not preserve M generally, the dense *-subalgebra
Jt is invariant under Ad h and can be used as the defining domain of Ad h. Note
that, thanks to the algebraic nature of the von Neumann algebra M, there is no
analytical difficulty in dealing with the unbounded operator algebra Jt.

Since τ(xV = ' (%*) for xeM and h = {hw}, the t^-component of
m(\ ® τ° Adh)A(x) is given by

m(ίw ®t)( X (1 ® hw*)TxT*(l ® hw
\T:V->W®W*

for W e M. Here m denotes the (object-wise) multiplication map M ®M -> M.
Take an orthonormal basis {w,-} in W. Then for y e M(W) and z e $(W*)9 we

have
(w'\m(y ® ιz)w) = X (wr (x) W^KJ; ® ίz)(w7 ® w))

- X (w' ® w*
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Using this relation, we now calculate as

{W\\_m{\®τ-Adh)Δ{x)~]w)

T:V->W®W*

X (w' ® w*|(l ® h
T.V^W ®W*

= (w' ® w*|(l ® hw,)TxιT*εl{\))

(here T : 1 -> W ® W* and note that T*ε^(l) = 0 if V ψ 1)

= ε(x)(w' ® w*|(l

( T T * is the range projection to

= e(x) Σ (w' ® w*|(l ® V J ( 1 ® hwi)(wj ® w*))

= ε(x)(w'|w) ,

proving that the VF-component of m(l ® τ°>ld/ι)/4(x) is given by ε(x)lw, i.e.,

m(l®τ°Adh)Δ(x) =

Similarly we can show that m(τ°Adh ® l)zί (x) = ε(x)l M

In this way we have obtained the compact quantum group von Neumann
algebra (M, A, ε,τ, {h*}). By the construction, the starting unitary representation
theory coincides with (a full subcategory of) the unitary representation theory of
(M,zl,ε,τ, {hit}).

Theorem 4.5. Any unitary representation theory is given by finite dimensional unitary
representations of a uniquely determined compact quantum group-υon Neumann
algebra.

Remark. If we start with a Hopf *-algebra A with characteristic element, the
Hopf-von Neumann algebra constructed from the unitary representation theory of
A can be interpreted as the W*-completion of A.

5. Invariant Weights

Let (M, A, ε) be a compact quantum group-von Neumann algebra. A weight ω of
M is called the left Haar weight if

<(1 ® x)A(y))10ω = σ(<Zl(x)(l ® j / ) > 1 @ ω ) , x, y e Jί .

Here < > 1 ® ω denotes the slice map Jί ® Jt relative to the restriction of ω to
Jί and σ = τ°θ-1 denotes an antipode-like operation in Jί (cf. Definition 1.2 and
the following remarks). Note that (1 ® x)A(y) and A(x)(l ® y) belong to Jί ® M
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for x,yeJί. Similarly a right Haar weight is defined to be a weight ω fulfilling

< ( x ® l ) J ( } ; ) > ω @ 1 = σ - 1 « ^ ( x ) ( 3 ; ( χ ) l ) > ω 0 1 ) ? x, y e J( .

The existence and uniqueness for Haar weights are established by Effros and Ruan
for "discrete quantum groups" ([ER]) which are essentially the same class as our
compact groups arising from unitary representation theories. These are also
checked by Masuda and Nakagami for the group von Neumann algebra of SUq(n)
([MN]), where a more general definition for Haar weights is also provided.

Here we present a proof of the existence and uniqueness of invariant weights for
the quantum group-von Neumann algebra M arising from a unitary representation
theory as an applicability of the present formalism. Remark here that we have to
take care of the domain problem in an invariant wieght on the von Neumann
algebra as well as the meaning of its invariance generically. In the present situation,
however, due to the specific structure of M, we can avoid the analytical complexity
by replacing M with the dense *-algebra M of M. Then the above definition for the
invariance of weights makes sense by taking x, y e Jί.

Recall that M is isomorphic to ®ve.M^(V) a s a v o n Neumann algebra and
Ji is identified with the algebraic sum. Hence any weight w on M is determined by
the restriction to Jί and takes the form

vφθ= Σ

with pv a positive operator in $(V) (the so-called density matrix). Here <•>
denotes the ordinary trace in matrix algebras.

First we show the uniqueness: Take x and y e M in the definition of right
invariance so that x and y are supported by (Cε and W e Φt respectively, and then
compare the PF-component:

r.h.s. =

Here < >w®i refers to the partial trace in the VF-component and Te
Hom(<Cε, W ® W*) is an isometry. To rewrite the inside of the transposition, we
calculate for u, w e W as follows:

T*(ywPw <g> 1) V β Jw) = (w*|« Γxi T*(ywPw ® ί)V9l)u*)
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j

= xλd{W)~1

j

= xιd(W)~1{u\hwywρwhww) ,

which shows that

r.h.s. - Xιd(W)-γywpwh%r.

Now comparing the left and right sides, we conclude that

pw = Pld(W)hιv

2,

proving the uniqueness of right invariant weights.

Now conversely suppose that the weight ω on M is defined by

ω(x)= Σ d(VKhy2xv).
VeM

To show the right invariance, we may assume that x and y e Ji are supported by
V and W e & respectively. Then for U e §1,

[<(x® l)4()0>α,®l]l7 = d(V) X {(hy2Xy® 1 ) T ^ T * > F 0 1 .
T .W^V® V

Let R\ V-> W (x) 17* be the right Frobenius transform of T*, i.e., £ =
(T*®lu*)(lv<g)εi). Then Γ * = ( l ® ε l 7 . ) ( Λ ® 1) and we have

® 1)(1 ® ef.)yw(l

(note that Rhγ2R* = hw%u*)

(note that ft^® ι;* = hw2 ® /i[/*2).
Since {#0 = rf(F)1/2J(PF)"1/2.R} are isometries and give a decomposition of

W ® 17* into pair-wise orthogonal F-components (see [FRTC, Lemma 4.8] and
[NOA, Corollary 1.6]), the last equation is further computed as

= d(W) Σ

(putting z = <J(x)(y ® l)>ω®i e M)
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Now take u, u' e U and calculate as

= Yι(uf\zu.hv.u*)(hϊ.1u'*\uf)
j

= (u'*\hΰ*1zu*hu*u*)

= {u\hvlτ{z)uhυu').

Thus we have obtained

for x, y e Jί, proving the right invariance of ω.
Similar calculations work for the left invariance of weights and we finally obtain

the following result:

Theorem 5.1. Let (M, Δ,ε9 τ, {hιt}) be the quantum group-von Neumann algebra
associated to a unitary representation theory &. Then there exists right (resp. left)
Haar weights ωR (resp. ωL) on M, which are unique up to a scalar multiple and given
by the following formula:

Ve

and
ωL(x)=

Here d(V) denotes the quantum dimension of V, < > denotes the ordinary trace, and
hγ 2 is the square or the squared inverse of the positive invertible operators in $(V)
associated to the ε-structure

Remark, (i) The above formula for the invariant weights has been known in the
context of compact matrix quantum groups and their Pontryagin duals ([PW]).

(ii) If the unitary representation theory is the one given by finite dimensional
unitary representation of a compact group G, then the above for the invariant
weight is reduced to the one for Plancherel weight (note that d(V) = dim V and
hv = \v in this case). In this respect, it would be appropriate to call them Plan-
cherel weight rather than Haar weight.

(iii) A weight coona compact quantum group-von Neumann algebra is called
left (resp. right) invariant if

>i®ω = ω(x)l (resp. <zJ(x)>ω(g)1 = ω ( x ) l ) , for x e M .
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Owing to the results in [VD], this condition is sufficient to deduce the strong
invariance required in the definition of Haar weights.

(iv) With the above explicit formula, it is easy to check the requirements of
Haar weights in [MN, Definition 1.1] for our somewhat simple-minded Haar
weights.

Corollary 5.2. For a right-invariant weight ω on M, the weight ω°τ is left-invariant.
Ifd(V*) = d(V)for any irreducible V, we further have

ω(τ(x)) = ω(xh4r), x e M+ .

'.') The first assertion is a consequence of the fact that the conditions of left and
right invariances on weights are interchanged by applying the transposition τ.

To see the second assertion, first recall the definitions τ(x)v = ι{xv*\ [hιt)v = hv
and then calculate as follows:

ω(τ(x)) = Σ d(V)(hy 2 V*> = Σ d(v) Σ (xv*vj\hv1vi)

D
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