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Abstract: The canonical quantization of any hyperbolic symplectomorphism A of
the 2-torus yields a periodic unitary operator on a JV-dimensional Hubert space,
N =•£. We prove that this quantum system becomes ergodic and mixing at the
classical limit (N -• oo, N prime) which can be interchanged with the time-average
limit. The recovery of the stochastic behaviour out of a periodic one is based on the
same mechanism under which the uniform distribution of the classical periodic
orbits reproduces the Lebesgue measure: the Wigner functions of the eigenstates,
supported on the classical periodic orbits, are indeed proved to become uniformly
spread in phase space.
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0. Introduction

The quantization of any linear hyperbolic symplectomorphism A of the 2-torus T 2

yields a unitary operator VA acting on a Hubert space of finite dimension N = h'1,
in agreement with the well known physical intuition that a compact phase space
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allows only for a finite number of quantum states. Moreover, VA is periodic, i.e.
there is p = p(N) e N such that VP

A — Id (up to a phase). Since the linear hyperbolic
symplectomorphisms of the 2-torus represent the best known examples of "cha-
otic" systems [AA], this periodicity makes the classical limit N -> GO , in which the
stochastic properties should be recovered, an apparently non-trivial one (see, e.g.,
[FMR]).

The purpose of this paper is to take on the problem for the two most basic
stochastic properties, namely ergodicity and mixing, and to prove that, at least on
subsequences {Nk} of prime numbers, they can be actually recovered in the
strongest possible sense, namely: the "classical limit" Nk —• oo can be interchanged
with the "time-average" limit m -* oo . The mechanism underlying this recovery is
exactly the same one generating the intrinsic, i.e., maximal entropy ergodic invari-
ant measure of the symplectomorphism, out of the uniform spreading over the
torus of periodic orbits of increasing period. This can be directly transported to the
quantum case via support and invariance properties of the Wigner functions
corresponding to the eigenstates of VA. Concerning the above table of contents, we
remark:

Sect. 1: A difficulty in the quantum ergodicity notion of von Neumann [VN]
(which on the other hand trivially holds whenever the propagator spectrum is
pure-point and simple) lies in its non-obvious reducibility to the classical definition
(see e.g. [E2]), which is instead here explicitly verified.

Sect. 2: The weak-* convergence to the Lebesgue measure dμ on ΊΓ2 of the
averaged atomic measures concentrated on all periodic points of any hyperbolic
A e SL(2, Έ) is a classical result of Bowen and Sinai (see e.g. [M,PP]). For the
particular case under examination, by reducing the integrals over the periodic
orbits to Kloosterman sums (see e.g. [Kal]) we prove a stronger result: namely, the
weak-* convergence dμγ -> dμ, where dμ, is the invariant measure supported on any
single periodic orbit sequence {yN} belonging to the invariant lattice of all points of
rational coordinates with common denominator JV, and N -• oo over splitting
primes relative to A. We also determine the spectral properties of the Koopman
operator restricted to the L 2 spaces of the invariant atomic measures, concentrated
on the sublattices of ΊΓ2 generated by the points of rational coordinates.

Sect. 3: The first quantization of a subclass of matrices in SL(2, Έ) in a Λf-dimen-
sional Hubert space, N = h~x, was obtained by Berry and Hannay [BH]; the
canonical quantization of the observables valid for any AeSL(2,Έ) has been
obtained in [DE]. The spectral, periodicity and arithmetic properties of the
quantum propagator VA are studied in [BV,El,Kel,Ke2,Ke3,PV] in addition to
[BH,DE]; if representations and classical limits are ignored, and the torus is
instead the configuration space, the corresponding quantum system can be studied
as a pure Weyl algebra automorphism also for h irrational [BNS,N]. We employ
here the canonical quantization procedure of [DE], based on the representations of
the Heisenberg group Hn(Z"), in complete analogy with the well known construc-
tion of the Schrόdinger representation out of the Heisenberg group HM(IR") (see
[F]). The discrete Wigner transform has also been first introduced in [BH],
essentially as a discretization of the standard one defined on R 2 , and its most
relevant properties, including the support on the classical periodic orbits, have
been studied also in [BV,El,Kel,Ke2,Kn,PV,LV]. Here the discrete Wigner
transform is directly defined out of the representations of Mn(Z2); in particular, this
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makes possible to remove the restriction to N even of [BH] as well as to determine
the normalization factor. The invariance of the Wigner functions of the eigenvec-
tors of the quantum propagator allows us to relate its spectral properties to those
of the Koopman operator generated by the classical dynamical system. Moreover,
a simplified version is presented of the construction (obtained in [E1,DE]) of the
(even) eigenvectors of the quantum propagator in terms of the evolution under A of
well determined subsets ("straight lines" or "Lagrangian manifolds" and "ideal
straight lines") of classical periodic points. This construction yields a representa-
tion of the Wigner functions which illuminates the suppression of its sign alter-
nance at the classical limit.

Sect. 4: The proof of the results rests on the convergence of the diagonal matrix
elements of the quantum observables to the ergodic mean of the corresponding
classical symbols at the classical limit. Results of this type, at least on subsequences,
have been proved in [S, CdV, HMR, Z] in the context of geodesic flows on compact
manifolds with negative curvature and of ergodic flows on constant energy sur-
faces, respectively. Here we give two independent convergence proofs. The first is
based on a direct computation of the matrix elements in terms of exponential sums
fulfilling the Weil-Deligne estimates (see e.g. [Del,De2, Sc]); the second is based
on the representation of the matrix elements as Fourier coefficients of the Wigner
functions, which are shown to tend to a constant limit. The intuition behind this
result is that, since the Wigner functions are supported on classical periodic orbits,
their weak-* convergence to the Lebesgue measure follows from the uniform
distribution of all classical periodic orbits in phase space.

Appendix A. We collect here, for convenience of exposition, the basic
definition and results on Gaussian sums, quadratic residues, and exponential sums
of rational functions (in particular, Kloosterman sums) needed for the proofs of
Sects. 4, 5.

1. Basic Definitions, Notation and Statement of the Results

In analogy to the standard concept of classical discrete dynamical system, i.e. the
triple (M, T, μ), where T is an automorphism of the measure space M leaving the
measure μ invariant, the triple (Jf, si, V), where Jf is a separable Hubert space, V:
Jf^Jt? a unitary bijection in Jf7 with σ c s s(F) = 0, and si the algebra of the
observables in Jf will be referred to as a quantum discrete dynamical system. Then
the definition of quantum ergodicity of von Neumann [VN] in the present case
reads:

Definition 1 (Ergodicity). The quantum discrete dynamical system (Jf, si, V) is
ergodic iff, for any observable j e sέf:

i m— 1 oo

j™ m ? < ^ p / ί l / F " ^ > = Σ \an\
2<en,fen) , (1.1)

where ψ =Σco

=Qanen is any vector in ,W expanded on the eigenstates {en}
of V.

Setting/(fc) = VkfV~k the consequent definition of mixing is then given by:
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Definition 2 (Mixing). The quantum dynamical system (Jf, J / , V) is mixing iff, for
any pair of observables f g:

lim lim - \ {φ,Vιf\k)V~ιg{k)φy
/—•oom—•(» m k=o

/ 1 ro-1 \ / i m-ί \

= lim - Σ <ΦJ(k)Φ> lim - £ (φ, g(k)φ} . (1.2)
\m->co m k=Q j ym-+oo m k = Q j

Remark. It is a well known simple fact that (1.1) holds provided either the eigen-
values of V are simple, or the matrix elements (er,fesy among different eigenvec-
tors corresponding to the same eigenvalues vanish identically. Even in this case,
however, the "time average" depends on \as\:s = 1, ... , and hence on the initial
state φ. By the normalization condition, the dependence on the initial state
disappears if for instance <es,/es> is independent of s. This property does not hold
in general, but only at the classical limit, provided one deals with the quantization
of a classically ergodic system as verified in [CdV, HMR, S, Z]. Moreover under the
assumption σe s s = 0 the quantum system is obviously quasi-periodic, which pre-
vents the validity of the mixing property. This definition becomes interesting only
at the classical limit.

To state the results of the present paper, we assume from now on:

(1) Classical dynamical system (M, T,μ): let M be the 2-torus T 2 = WL2/Z2 (points
on TΓ2 are denoted by x = (p9q) e [0,1] x [0,1]); μ the Lebesgue measure on TΓ2;
T the hyperbolic automorphism of ΊΓ2 generated by the matrix

such that A e SL(2,Z), i.e., (a9b,c,d) eZ,ad-bc = l and \a + d\ > 2.
Via periodicity and Fourier expansion, A acts on points x = (q9p) and on

suitably smooth functions/(x) on M respectively as:

\Ax = ((aq + bp) mod 1, (cq + dp) m o d i ;

\f(Ax)= Σ fme2«<Λ<n.X>

where A* is the transposed matrix of A. μ is invariant because det(^4) = 1;

(2) The quantum dynamical system (Jf, srf, VA) is the canonical quantization of the
former one. Namely (details in Sect. 3 below), with h = ^, J f = jfN = L 2 (S\μ N ),
where μN is the atomic measure on S1 given by (e2πiq e S1):

The Hubert space JίfN = L 2 ^ 1 ,^^) is AΓ-dimensional; the vectors |fe> = δq

kjΉ for
fce {0,1,. . ., JV - 1} = ZN = Έ/NTL are a basis of j ^ Ή , and the inner product
between/,^ e JfN is given by:
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The algebra J / is the *-algebra of the observables on J^v generated by the
canonical quantization: let Λ(W2) be the Banach space of all functions/:TΓ2 -• (C
such that

I l / L : = Σ l/»l< + °° ( L 7 )
neZ2

Then, if f(ή):n e TL2 is the canonical quantization of the basic observables

T(n) = exp(2πi<w,x» = exp[2πί(w!g + n2p)~\ , (1.8)

the quantization of any/e Λ(Έ2) is

/ = Σ fnf(n), (1.9)
neZ 2

and (construction recalled in Sect. 3.3)

N - l 2 2 k m

W(φ,φ)(m) = X e—^-φ{mι^rk)\j/{mι-k)\meΈ2

N (1.10)

is the (discrete) Wigner transform of the vectors (φ,ψ) e Jί?N.

(3) The unitary bijection VA is the "quantum propagator," i.e. the quantization
(construction recalled in Sect. 3.1) of the action of the symplectomorphism A on the
"classical observables": this means that, if/1—> /under canonical quantization, then
f(Ax) \-» VAfVA

1. Therefore the quantum discrete dynamics of any observable/is
defined as

/>- VϊfV^ .keΈ. (1.11)

We denote by expϊ(ΛiN)):n = 0,. . .,N — 1 the (repeated) eigenvalues of VA, by
e{

n

N): n = 0,. . ., N — 1 the corresponding (orthonormal) eigenvectors and by
p = p(N) the period, namely the minimum p > 1 such that VA = Id.

(4) The prime number N is decomposed or splitting (for this notion see e.g. [H],
Sect. 26) with respect to the characteristic polynomial of A, i.e. there exists xeZN

such that Tr.42 — 4 = x2 modiV.

Then we have:

Main Theorem. Let /, g e A(Έ2) and let N e Γ, Γ being any increasing sequence of
N

primes such that ——- < C for some C independent of N e Γ. Let furthermore
p{N)

e{

n

N):n = 0,. . .,N — 1 be a normalized eigenvectors basis of VA. Then, whenever

(1) The following integral representations hold:

<iΩ^(χ) , (1.12)

<eίN\ VXnfVn

Agef > = J f(A"x)g(x)dΩ^4x) + R(f,g;n,N), (1.13)

where the sequences {R(fg',n,N)}NeΓ -» 0 as N -» oo uniformly with respect to
n and dΩ ^βs(

χ) ί 5 ^ ^ complex-valued measure on ΊΓ2 defined as follows:

dΩ iN!es(x): = H/(e<
N), 4N )) (p, q)dμN(q) x dμN(p) . (1.14)
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(2) άΩ {^es{x) converges vaguely to the Lebesgue measure onΈ2 as N -> oo ifr = s,
and to the null measure ifr + s.

(3) There is D > 0 independent of N such that

(1.15)

Remarks.

(1) Since dμN(q) x dμN{p) is obviously vaguely convergent to the Lebesgue measure
as k -> oo , it is enough to prove, confirming earlier numerical evidence (see e.g.
[LV] the "equidistribution" of the Wigner functions, namely that they converge
vaguely either to 1 (r = s) or to 0 (r + s).

(2) By (1.12), Assertion (2) implies

lim (eψ\f

and, conversely, (1.15) implies Assertion (2). However, the two statements will
be proved independently.

(3) The existence of at least a sequence Γ fulfilling the condition of the Main
Theorem (actually, the fact that almost any sequence of primes has the above
property) is a consequence of the Artin conjecture, whose falsity would imply
the falsity of the Generalized Riemann hypothesis (see e.g. [RM]). Detailed
heuristic and numerical investigations on the behaviour of p(N)/N supporting
the above genericity are performed in [K2, BV].

Any easy consequence of the Main Theorem will be the following
Main Corollary. Under the same assumptions of the Main Theorem we have:

lim lim — Y ^ψ{N\V^fV^sιl/{N)y
IV^oc m-+oo m s = 0

i m— 1

= lim - lim X <φιN),Vϊfv;ψm> = \fdμ, (1.16)
m-> oo m iV->oo S - Q Ίp2

and moreover

1 m~ι . ,
lim lim lim — £ (ψ(N\ V,
/—> oo N~*oo m—>oo m S — Q

i m— 1

= lim lim — lim £
l-> co m->oo m Λ/-+00 ^ = π

(1.17)
TΓ 2 T 2

Remarks.

(1) The Main Theorem is the result analogous to those of [S,CdV, HMR,Z]
recalled before, in a stronger form because it holds for all eigenfunctions. The
methods of proof are however entirely different from those of [CdV,HMR,Z],
because in this case the canonical quantization procedure (Sect. 3) does not
preserve positivity and this prevents the direct utilization of the classical
ergodicity property.



Quantum Hyperbolic Automorphisms in the Classical Limit 477

(2) Formulae (1.1), (1.2) and the Main Corollary show that, although the quantum
system is neither mixing nor ergodic, both these properties are recovered at the
classical limit.

2. Hyperbolic Automorphisms of ΊΓ2. Classical Properties

In this section we first recall the basic properties of the hyperbolic automorphisms
of ΊΓ2 implemented by the group of 2 x 2 matrices of the form (1.3) and then prove
some results concerning the equidistribution of the periodic orbits which might be
of some interest in their own, beyond their essential importance in the discussion of
the classical limit.

2.1 Koopman Operator on Invariant Lattices and Periodic Orbits. Consider the
dynamical system (M, T, μ) defined in (1), Sect. 1. The condition \ΎxA\ > 2 makes
this dynamical system an Anosov one and hence, in particular, ergodic and mixing
with respect to μ. First recall that an orthonormal basis in L2(Έ2,dμ) is given by
the set

D = {T(n) = e2πί<n>x>\neZ2} . (2.1)

Consider then in L2(ΊΓ2,<iμ) the unitary Koopman operator °UA defined by

{WAf)(x): = f(Ax) = Σ fnΆA'n) , (2.2)
neZ2

and recall (see e.g. [AA]) that T is ergodic iff 1 is a simple eigenvalue of όUA, i.e., if
there is h e L2(TΓ2,<iμ) such that %Ah = h, then h is constant (almost everywhere
w.r.t. μ). Moreover, it is mixing iff, for any pair f,g e L2(TΓ2,dμ),

lim < Φ ί ^ > = < / , l > < ^ > . (2.3)
k-+oo

This property makes oψUA) continuous on the unit circle, but for eigenvalue 1.
There is another important property of A which will be largely used in the

sequel. We say that x e X is a periodic point of A, of period w, if it is a. fixed point of
An, i.e. Anx = x. We denote by FixM the set of such points. It is then easy to see that
the set of periodic points of A is dense in ΊΓ2, because it coincides with the subset of
TΓ2 formed by all points having rational coordinates.

In particular, consider any point on ΊΓ2 having coordinates (r/N,r'/N), with
r,r',N e N and 0 ^ r,r' < N. There are exactly N2 points of this type and they
belong to the N x N subgroup of ΊΓ2 given by:

lN:={(q,p)eτ2\Nq,NpeZ). (2.4)

It is immediate to realize that ΊLN is invariant under the action of A, so that any
point in 1LN is periodic with period ^ N2. The origin is the only fixed point of A. Of
course, any point x e Fixπ belongs to a periodic orbit whose period divides n. This
means that ILjy splits into periodic orbits (which in general may have different
periods) of A.

We now consider once again the atomic measure μN(q) on the circle defined by
(1.5) and characterize the spectrum oϊ%A when acting on L2(TΓ2, dμN x dμN) instead
of L2(Έ2,dμ). Let MN be the number of distinct periodic orbits of A1 which live on
]Ljv\{0,0}. This number is the same as that corresponding to A (see [I]). Let y cz 1LN
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be any one of such orbits with period p(γ) and x = (r1/N,r2/N) e γ. Then, asso-
ciated to each orbit γ there are p(γ) linearly independent vectors in (CN2 given by:

fι(k)= Σ V s exp— <μ?r,fc> r = (rur2), keZ2 , (2.5)

where λι = e~
2πil/p(γ) and / = 0,. . .,p(γ) - 1, and they satisfy

®Afi(k) = λtMk) . (2.6)

Thus, there are N2 — 1 eigenvectors of ̂  of the form (2.5) which, together with the
constant function 1, provide a canonical basis of L 2 ( T 2 , μ N x μN). Among them,
there are exactly MN non-constant functions which are invariant. This is in account
of the fact the dynamical system (Ίί2,A,μNxμN) is not ergodic: the invariant
measure μN x μN obviously admits a decomposition into invariant ergodic
measures of the type

I p ( y ) - l

/V=T7T Σ δAί{x):xey. (2.7)
Pu) j = o

In the rest of the paper we shall mainly consider the case of N prime. In such case,
as shown by [PV], all the periodic orbits have the same period, i.e. p(y) = p(N) for
any γ a ILjv\{0,0}. The relation among p{N), MN and N clearly is:

p(N)-MN = N2 - 1 . (2.8)

We can now sum up the above arguments in the following way:

Proposition 2.1. Let N be a prime number and let p(N) be the period of the cycles
living on ΊLN\{0,0}. Then σ(tf/Λ) is given by the eigenvalues

λι = e2πil/piN) / = 0,1,. . ., p(N) - 1 . (2.9)

To each λx is associated an eigenspace Ex of non-constant functions to which all the
periodic orbits of ΊLN\{0,0} contribute. Accordingly, the following decomposition
holds:

/P(N)~1 \

L2(Έ2,μNxμN)=i@( 0 E, , (2.10)
\ ι = o /

where:

1 is the one-dimensional subspace spanned by the function 1 and dim(£j) —

2.2. The Case of N Prime: Structure and Uniform Distribution of Periodic Orbits. We
specialize now to the sublattices JL^ with N prime defined by (2.6). Since ZN

becomes a finite field, this amounts to operate on a modiV arithmetics. Now,
following [DE], for (p, q)e<QNx<$N = ΊLN, Q^ = {x: x = jj9 r = 0,. . ., N - 1} and
/ e ΈN, k e Z N u{ oo } = 2£N, let us define the family of subsets AkΛ c IL^ ("straight
lines of slope 2k"):

{ ( ) \ 2 k i ( d N l e<$N}, k Φ αo

(2.11)
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Remark that k = oo corresponds to the vertical "line" ("q = const."). Notice also that
A,i = A , r if and only if k = k!, I = ϊ. Recalling that the prime number N is splitting if
there is n e ZN such that (ΎrA)2 — 4 = n2 mod N, and is otherwise inert, we have

Lemma 2.1.
(a) Straight lines are mapped into each other under A, i.e. V(fe, ί) there are (kf, Γ) such

that AAkj = Ak'ty. Moreover AAk — Ak>.

Let N be splitting, i.e. (Tr,4)2 — 4 = n2 mod N for some neZN. Then there exists
m e N such that:

N - 1
(b) p(N) = , and there are exactly m(N + 1) orbits of period p(N).

(c) The lines A±k = {(p,q)\p= ± 2kq) a ]LN are invariant, i.e. AA±k = A±k,
where 4/c = n mod N.

(d) Both Ak and A-k are unions of periodic orbits. The total number of such periodic
orbits is 2m.

If N is inert, then

N + 1
(e) p(N) = , and there are m(N ~ 1) orbits of period p(N).

m

Remark. Let N be splitting. Then the 2m orbits of Assertion (d) coincide with the
ideal orbits of [BV, PV]. Consequently, the remaining m(N — 1) are the free ones. If
N is inert, all orbits are free (see [BV, PV]).

Proof. First remark that the subsets Ak can be described as orbits of the natural ZN

multiplicative action on IL^. In fact, for each x e LN\{0,0} let us define

A(x) = {ux\ueZN} .

Clearly AA(x) = A (Ax). Moreover A(x)nA(y) Φ {0,0} is equivalent to y = vx for
some v eZN which is in turn equivalent to A(x) = A(y). This means that we have

N2 - 1
N + 1 = — distinct subsets of the form A(x). Moreover it is trivial to see that,

for any x e EV\{0,0}, there exists a unique keZN such that A(x) = Ak. The subsets
AkJ are now obtained by composing the ZN action on 1LN with constant transla-
tions. This proves (a).

For the remaining assertions see [PV] ((b)) and (e)) and [BV, DE] ((c) and (d)).

D
Lemma 2.2. Let ΉίN be the complement of1LN\{0,0} with respect to the 2m possible
ideal orbits. Then

(a) Ifp(N) is odd, there are fe0 Φ k1 ... φ km-± e ZN such that

m—1 p—1

y U AsAk/ = MN .
7 = 0 s = 0

(b) If p(N) is even, p = 2q, there are k0 Φ kt ... φ km-ι eZN,i0 φ ιΊ ... φ im-.γ e
ZN such that

/m-ί q-1 \ / m - 1 q-1 \

U U ^ U ί U Ό^Λ, ) = MN. (2.12)
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Remark. Consider on WίN the straight line p = 2kq. For any fixed q0 e Q^, the map
φu(q0,2kq0) = u(q0,2kq0), ueΈN yields all points of the line. Since any two points
on the line belong to distinct periodic orbits, given a periodic orbit we can generate
all others (distinct from the 2m possible ideal ones, assuming without loss p(N) odd)
just by considering all iterates of all points having the form φu(q0, 2kjq0): u e ΈN,
j = 0,. . .,m — 1, where (q0, 2kq0 = p0) is the intersection of the given orbit with
Ak. Namely we have

m—1p—1
MN= U U U uAs(q0>2kjq0) .

ueZ% 7 = 0 s = 0

Proof. Suppose AsΛ(x) = Λ(x) for some s,s = 1,. . . ,p. Then either Λs Φ ± ld

mod N or Λs = ± Id mod N. In the first case A(x) is the union of ideal orbits of As

which are also ideal orbits of A; that is, A(x) = A + k9 k as in Lemma 2.1(c). In the
other case, s = p if p is odd, or 5 = g = f if p is even, and Aq = — ld mod JV.
Therefore, if p is odd, the disjoint union

iV -f 1
is invariant and contains 1 -I- p(N — 1) points. If N is inert, p — , and £fk

contains exactly 1 H points independently of k e ZN. On the other hand,
m

each set £fk is the union of N — 1 disjoint periodic orbits generated by the orbits
Uf=o Asx, of any one of the N — 1 points x e Ak, x φ (0,0). Since the total number
of orbits is m(N — 1), we can immediately conclude that there is at least one choice
of indices k0 φ /cx Φ ••• Φ km-1 such that:

p — 1 m—1 p—1

M* = U ̂ , = U U ΛSΛ, .
7 = 0 7 = 0 s = 0

The extension to iV splitting is immediate, and this proves (a),
(b) If p = 2q, remark once more that AqAk = ylk because Aqx — — x mod N
Vx e ILJV, i.e. Aq\^N = —I. Then the assertion can proved by repeating the above
argument. •

Let us now turn to the study of the equidistribution properties of periodic orbits
living on prime lattices. Under slightly more restrictive assumptions on the se-
quence of primes and using the number theoretic techniques collected in Appen-
dix A, we are able to prove the equidistribution of all periodic orbit sequences
(living on prime lattices), with explicit estimates of the speed of convergence. This
result looks somewhat stronger than the equidistribution property on the average
(with respect to the measure of maximal entropy) valid for all Anosov systems (see
e.g. [PP]). More precisely,

Theorem 2.2. Let N e Γ, Γ being any increasing sequence of primes such that
N

< C for some C independent of N. Set:
p(N)

pN = {y c JLN\{0,0} Iy periodic orbit of A}; MN:= #PN .
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Then, given any fe A(Έ2), any sequence {yj(N)}Ner such that yj(N) e PN, j(N) e
{!,. . .,MN} we have

lim ί f-

Moreover, if f e C°°(T2) there are C > 0 and N > 0 such that, for N > N:

ί f-lfdμ
γ,(N) T2

c
JV

(2.13a)

(2.13b)

Remark. The condition N e Γ is equivalent to require m bounded with respect to
N

N. Since mp = N ± 1, m ~ — which is in turn a constant multiple of the quantum
P

degeneracy, this condition (see the remark after Proposition 3.8 below) means
restriction to those values of N for which the quantum degeneracy does not grow at
the classical limit N —• oo

Proof. We shall give the argument for the case of N splitting. This is equivalent to
the splitting of the characteristic polynomial over ΈN. In particular (see Appendix),

'(TrΛ)2

if we let D = - 1 6 ZN, then υ = (1, D), w = (1, - D) e TL\ are the eigen-

vectors of A acting on Έ\, corresponding to the eigenvalues λN = Tr A/2 + D
and λΰ * = TYA/2 — D, respectively. Now the key point is that the integral
of an arbitrary character e

i2π<n'x} over a periodic orbit y a ]LN can be written as
a Kloosterman sum restricted to a cyclic subgroup of TL% of order (N — l)/m.
Indeed, for any y a ]LN and x ey set Nx = otv + βw, where oί(x), β(x) e ΈN. Then,

Γ
i

£i2n(n, A*x) _
i p-i

_ y
P s = 0

1 P - 1

_ y
P 5 = othat is

Γ ei2πζn,x} _

i m— 1

= — Σ Σ
mP 7 = 0 ζeZ%

(2.14)

iV - 1
where a = a(n, v}, b = JS<M, W> G Zjy and the relation p = has been used. The

m
functions χj'.j = 0,. . . ,m — 1 are the m distinct multiplicative characters of order
m over ΈN (see Appendix A, Proposition A.2). Now by the estimate (A.3) we have,
for any n φ (0,0) (mod JV):

ί A2π(n,x) c
N

(2.15)
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where C > 0 is independent of n and of the particular orbit y a]LN and is uniformly
bounded in N because of the boundedness of m. On the other hand, a trivial
computation shows that, if n = (0,0) (mod N) then

. 16)

Therefore if/ε Λ{Έ2\ f= Σ w e Z 2 / π ^ 2 π < w ' x > , we can write

7,-(iV) T 2 « Φ ( 0 , 0 ) (modiV) y;(iV) Λ * (0, 0)

Now, if/e ,4(ΊΓ2) the second term of the r.h.s. vanishes as N -> oo and the first term
also vanishes by the uniform estimate (2.15) on the Kloosterman sums. Moreover if
fe C°°(ΊΓ2), the second term vanishes at least as N~* as N -> oo, and therefore we
can conclude that there exists C > 0 such that if N > N:

ί f-ίfdμ
Ί[N) Έ2

(2.18)

Finally, the case N inert can be treated in a similar way by using the techniques of
[PV] and the generalized Kloosterman sums over arbitrary finite fields [Kal] . •

3. Quantization, Discrete Wigner Function and Eigenvector Construction

3.1 Quantization of the Observables and of the Automorphism. The canonical quant-
ization procedure when the phase space is the torus ΊΓ2 has been developed in [DE]
in complete analogy to the standard quantization in R 2 " via representations of the
Heisenberg group HΠ(R) (see e.g. [Fo]). According to this procedure the natural
objects to look at are:

Definition 3.1.

(1) \/h e R\0, #eγ : = H ^ Z ) is the group topologically equivalent to Έ2 x R with
group law

(n9t)(m,s) = In + m,t + s +-ω{n,m) I . (3.1a)
2

(2) s/h is the unitary *-algebra over C generated by the group

^h = {T(ή)}neZ2 ,

where

(f(nr = f ( n )
\ T(n)T(m) = eiπhω(n>m) f(n + m).

H 1 ( Z ) is the discrete Heisenberg group and sίh the associated discrete Heisen-
berg algebra. The canonical quantization is obtained upon classification of all
finite-dimensional irreducible representations of J / Λ , defined abstractly by the
properties (3.1), into the unitary operators acting in the Hubert spaces L2(S*; A), for
some measure λ on S1 to be determined. It is proved in [DE] that finite-dimen-
sional representations exist if and only if h = p/N (for the sake of simplicity we will
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henceforth assume p = 1). To recall the basic facts about these representations, first
consider the generators of the algebra, defined as:

t . - f (1,0); ί 2 : = f ( 0 , l ) . (3.2)

In fact, if n = (n1, n2) we have:

If h = l/N then f ̂  and t2 are the generators of the center and each one is mapped
into a unitary scalar multiple of the identity by any irreducible representation. The
two corresponding phases define the representations which are always JV-dimen-
sional. In other words, the unique infinite dimensional unitary representation of the
standard Heisenberg group splits into a direct integral (over the two torus) of finite
dimensional, non-equivalent, unitary representations.

Consider now, once again, the N dimensional Hubert space L2(Sι,μN), where
V/z = N~ \ μN(x) is the atomic measure on the circle defined by (1.5). Let us remark
that the vectors | fc> = Ψk{x) = δί/Nϊovk = 0,1,. . .,JV - 1 are a basis of the Hubert
space L2(5'1, μN), and recall that inner product between φ,φe L2(5'1, μN) is given by:

On the other hand, the action of the Fourier transformation on L2{Sι,μN) is:

(3.4)

Writing

Q N = {0,l/N,2/N9. . . , ( J V - ί)/N}; ZN: = Έ/NΈ = { 0 , 1 , 2 , . . . , N - 1} (3 .5)

we can identify L2(Sι,μN) with L2(ZN,μN), where φ e L2(ZN,μN) is a vector in

Now, for any fixed θ e ΊΓ2, the representations of our algebra on L2(Sι,μΉ) are
defined by specifying their action on the generators (identified with the correspond-
ing matrices):

+ O , tN

2= e™>.ld . (3.6)

It is proved in [DE] that these representations are irreducible, non-equivalent for
different values of θ and moreover that they are the only possible ones.

For any fixed h = l/N and θ e ΊΓ2 we denote by ThJ] the representation of f(n)
just recalled:

fUn) = e[^hn

2H
n^. (3.7)
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We quantize any observablefeA(Έ2),

f=ΣfnT(n), T{n) = e

2πKn>x> (3.8)
neZ2

by the correspondence

/•-»/= Σ fnT{n) , (3.9)
neZ2

i.e., we associate to/the element of the algebra, denoted by/ obtained replacing
T(n) by T(n) into the Fourier expansion.

Let A e SL(2, Έ) = Sp(l, 2£). To implement the quantum dynamics, consider the
new representation defined by pA(n) = fhtθo A^n) = tKΘ{Atn): \/n e Έ2. Let us see
that ρA is again an irreducible representation, and thus unitarily equivalent to one
of the previous. The unitary intertwining operator realizes the "commutativity
between classical evolution and quantization" and thus represents the quantum
propagator. More precisely, we have the following

Theorem 3.1. Let A = \ )e SL{2,Έ). Them
\c d)

(1) pA(n) = ThtQ(^n) is again an irreducible representation of s$h\

(2) \/θ e ΊΓ2, there exists a unitary operator VA(Θ) such that, \/n e Z2:

fnAA'n) = VAθy1 o fKφAiΘ)(n) o VA(θ) , (3.10)

where
1 /nhN\

modi .

Proof. To see assertion (1), it is enough to remark that A is a symplectic matrix, i.e.
ω(Atm,Atn) = ω(m, n\ which implies

PA{m)pA(n) = exp — ω(m, n)pA{m + n) .

To prove (2), note that the central character of the new representation is completely
defined by

(1)

(2)

th9θ(AtΓ)) = e*MNe2«Wa + W = th.

T I AH I I — oπίcdN£,2πi(θίc + θ2d) _ f
T" o\A[N) ~e e -T"^{{N

and therefore the result follows immediately. •

Remarks.
(1) In the case of IR2" we have only one irreducible representation of the Heisen-

berg group for any given value of the central character (Stone-Von Neumann
Theorem) and for any given automorphism A e Sp(π,R) we obtain a unitary
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operator VA (defined up to a phase) such that VAB = ±VAVB. The (double
valued) map A • ± VA is the so-called metaplectic representation for Sp(π, IR)
(which is a well defined representatin in the double cover of Sp(rc,IR) [F]).

(2) The unitary operator VA(Θ) in (3.10) is by definition the quantization of the map
A, i.e. the unit-time propagator describing the quantum discrete evolution.

(3) If φA(θ) = θ for some 0, then T^A* = VA(θ)~ιo fΛ<flO vA(θ). In particular if
(even odd \ (odd even\ Λ Λ m i

A = or .4 = , , we can choose θ = (0,0). These maps
\odd even] \even odd J

are exactly those called "quantizable" by Berry and Hannay [BH]. An example

of a map with a non-trivial θ is given by the usual cat map A = ( 1 for which

we have φA(θ) — θ if θ — (i,i).

(4) If, in particular, A — J = ( ), then it is easily seen that

VA(Θ) = ^N .

While the solution of (3.10) can be obtained V^ e SL(2,2£) to yield the explicit
formula for the propagator VA(Θ) (see [DE]), for the sake of simplicity we limit
ourselves here to the matrices of the form

2g 1

, V - 1 2g

with g e N. These matrices are a subset of the Berry-Hannay ones. In this
particular case the explicit form of the propagator is:

N-ί

qi = ° m (3.12)

VAiqiAi) = -r= ™p-j^(gqi - qiqi + gql),

where CN is an arbitrary phase factor. Now consider A e SL(2,Z) fixed as above.
For any fixed h = 1/7V, let us abbreviate ί^(θ) by VA and fhJ)(n) by Γ(rc). Therefore
if ^ip = Id mod iV, that is if Ap is the identity when restricted to the points on the
torus with rational coordinates of denominator JV, then:

VI = e2*iσId

for some constant phase σ (depending on N).
This restricts the N eigenvalues of VA to lie on the p possible sites:

σ)
- 1

In general p(N) φ N, that is, there is no one-to-one correspondence between
eigenvalues and sites. Typically, for a hyperbolic map, there are both unoccupied
and multiply occupied sites and this distribution follows the highly irregular
behavior of p = p(N) as a function of N [K2,K3].
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Note that if φ e L2(ΈN,μN) with φ = Σfj^flilOj then, supposing N prime and
θ = (0,0) fixed, \/n = (n1, n2) e Έ2 we have the expression

(f(n)φ)(k) = e-^e^φik - n2) , (3.13)

where of course, k — n2 = k — n2 modN and where we interpret, as already
/ s\

mentioned, φ as a function on Q^ ~ ΈN, i.e. φ[ — ) : = φ(s) = as.

3.2 The Discrete Wigner Function and its Properties. Let us now proceed to the
construction of the discrete Wigner distribution. In complete analogy with [Fo],
Sect. 1.8, let us first define the discrete Fourier-Wigner transform V(φ, φ) (n) of any
pair of vectors (φ,φ) e L2(ZN,μN):

^ £ - n2)φ(k) . (3.14)
i V keΈN

Since N e N is prime we can also write

( f ( f (3.15)

X X

where - is the unique integer in the field ΈN such that 2 - = x mod N.

Remark also that the periodicity of f(n\ namely f(ή) = t(n + ΛΓ fc), implies
Vfe, n eΈ2 the same property on V(φ,φ)(n):

The main relevant properties of the Fourier-Wigner transform are:

Proposition 3.1. Let nJ,meZN. Then

(1) V{f{n)φ, f(m)φ){l) = e->(nJ)-e>il-n>m) V{φ,φ){l + m - n).
In particular.

(2) V(f(n)φ,φ)(l) = e->^ V(φ,φ)(l - n\
(3) V{φ, f(m)φ)(l) = e>{Um)-V(φ,φ){l + m),
(4) V(f(n)φ,f(n)φ)(l) = e-%°*n l).

Proof.

V(f(n)φ, ΐ(m)φ)(l) = (f(n)φ, f(l)f(m)φ}

= <φ9t(-n)f(l)T(m)ψ>

= e->{nJ)(φ, T(l - n)f(m)φ}

Given y l e S L ( 2 , Z ) , with φA(θ) = θ, denote once more by e0,. . .,eN-χ an
orthonormal set of eigenfunctions of VA, i.e.
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and Vfc, / e ΈN, let us introduce the following family of N2 functions:

Vltk(n):= V(ehek)(n).

Set moreover Ff.= Vu. Then we have:

Lemma 3.1.

1 = 0

Proof. Note that Tr(ix) = Tr(ί2) = 0. Moreover, since

φl1 = e~^n^t^tn

2

2,

the assertion follows by the commutativity of the trace. •

We are now in position to define the discrete Wigner transform which also in
this case is a map from pairs of functions in the Hubert space into the phase-space
functions, namely:

Definition 3.2. Let φ,φ e L2(ΈN,μN\ (q,p) e ΊΓ2. Then their discrete Wigner trans-
form is the function defined as

W(φ9φ)(q9p) = Σ <Φ,T(n)ψ>e-2i«n« + n>p) . (3.16)
»l.«2eZJV

Since the Wigner functions have to be integrated against the measures μN on S1

or μN x μN on T 2 , we are interested only in the values they assume on the lattice ΊLN,
and therefore we use the notation:

W(φ9φ)(s9r): = W(φ9φ)l—9—\9 (3.17)

\/s,reΈN. Now, using the inverse of the discrete Fourier transform we get
(x = (g? p) = (r/N,.

W{φ9ψ)(s9r) =

= N$e-2iπN2pq'φ(q - q')φ{q + q')dμN(q') . (3.18)

In particular for φ = 0 we obtain the formula for the Wigner distribution

Wφ(ml9m2):= W(φ9φ)(ml9m2)= Σ e'^φfa - k)φ{m1 + k) . (3.19)

As a direct consequence of the Cauchy-Schwartz inequality applied to the previous
equation, we have

Lemma 3.2. For any pair of normalized vectors φ9φ e L2(ZN,μN),

sup\W{φ9φ)(x)\^N . (3.20)

We can summarize the basic properties of W(φ9 φ) in the following proposition,
whose verification is omitted because it is an easy exercise based on [F, Sect. 1.8].
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Proposition 3.2.

(1)

(~(\sh " r iσ(n I m) (± (i U2 ~ m2 nι+ni:

where

Jσ(n,l,m) _ J^ψ

(2) W(FNφ,FNψ){lul2) = W(φ,φ)(l2, - h),
(3) W(ψ,φ) = W(φ,φ),
(4) ί Wψ(<Z,p)dμjv(«) *

(5) I W^(«,p)^N(p) = JίΣrJ Wφ(q,r/N) =
(6) Wλφ=Wφ VAeS1,

(7)

(3.21)

(MoyaΓs identity).

In particular from the first equation we have

W(f(n)φ, f(n)φ)(l) = WW^MZ! - n29l2 + nλ) .

Now it is easy to relate the "quantum" evolution given by the unitary operator VA

to the symplectic action of A on the Wigner functions.

Theorem 3.2. Under the previous notation, we have

(1) V(VΛφ,VΛψ)=V(φ9ψ)oAt,
(2) W(VAφ,VAψ)=W(φ,φ)oA-ί.

Proof. Assume to simplify the exposition φA((0,0)) = (0,0). Then:

V(VAφ, VAφ) = <VAφ, f(n)VAψ} = <0, VXl f (n)VAψ)

On the other hand

pn2)

and this proves the assertion. •

The Wigner function allows us to define a family of quasi-invariant functions
on the lattice, that is a set of eigenvectors for the Koopman operator acting on
L2(T2,/iyv x μjv)> namely:
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Proposition 3.3. Let {Wk^ be the family of' N2 functions on the torus given by

{with Wt: = Wu). Then

(1) VxeL N :

WkJ(Λx) = e2iπiλ'-^WkJ(x) . (3.22)

(2) If' φ is an eigenvector for VA then Wψ is an eigenvector with eigenvalue 1 of (the

adjoint of) the Koopman operator defined by A, i.e.

WVAt=Wt = ^Wt. (3.23)

Proof Formula (3.22) is an immediate consequence of Definition (3.16) and of
Theorem 3.2. Moreover, if λx — λk, i.e. if / = k or if ex and ek belong to the same
eigenspace, we obtain the eigenspace of the Koopman operator of eigenvalue one.
Using this and Assertion (6) of Proposition 3.2 we immediately get (3.23) as
well. •

Remarks.

(1) According to the discussion given at the end of Sect. 2, we recover the relation
between the degeneracy of the eigenvalues of the quantum propagator VA and
the dimension of the invariant eigenspace of the Koopman operator acting on

2 2

p(N) p(N)

£ dt = N, Σdf = MN, (3.24)
i = 1 ί = 1

where:

- di is the degeneracy order of the ith eigenvalue of VA;
- MN is the number of distinct periodic orbits in IL^-JO,!)}, which coincides
with dim£ 0 ;
— Eo is the invariant eigenspace of °UA of Proposition 2.1;

- p(N) is the common period of the classical closed orbits in IV\{0,0}, which
coincides with the quantum period, because N is prime [BH, El, K2].

(2) WA, as an operator on L2(Έ2,μN x μN), has a point spectrum and each eigen-
function can be written as a sum of functions which are constant on the periodic
orbits of rational points with denominator JV (cfr. Proposition 2.1). In the
classical limit the non-ergodic, zero-entropy, invariant measures μN x μN will
eventually weakly converge to the Lebesgue measure (with entropy equal to
log Λ, where λ is the greatest eigenvalue of A). This limit measure is ergodic and
the Koopman operator has continuous spectrum but for the eigenvalue 1, that
is the Wigner functions weakly converge to constant distributions on the torus.

3.3 Eigenvectors and Eigenvalues of the Quantum Propagator. Let us now turn to
the construction of a family of eigenstates for VA using the standard facts of analytic
number theory recalled in the first part of the Appendix. (To simplify the exposi-
tion, we restrict to the case in which we can choose θ = (0,0): see Remark (3) after
Theorem 3.1.).
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Consider the family of subsets of ΊLN introduced in Sect. 2.2 (formula (2.11)): to
each set Λkj we associate a "generating function" given by

Sk,ι(q) = kq2 + lq keZN qJeQN. (3.25a)

The wave function corresponding to each set ΛkJ is naturally obtained by the
exponential (in units h) of its generating function, i.e.:

ψ(q) = C'Qxpih~1Skj(q) = c*Qxp2πiNSkJ(q), (3.25b)

where c is a normalization constant.
V(/c, l)eZNx ZN and \/q e ZN, consider now on L 2 (S\ μN) ^ L2(ZN, μN) the set

of vectors φkj(q) defined as follows:

, keΈN

(3.26)
k = oo .

Using the results concerning Gauss sums listed in Appendix (Formulas (A.6a,b))
we easily obtain the following result (recall once more that, given x e ΈN, it inverse
x'1 is the unique number in ZN such that xx'1 = 1 mod AT).

Proposition 3.4.

(1) For any k e ΈN

(Ψk h ψk j ) — 1 * &\ (3.27)

k2,l,j), (3.28)
/JV

v

where \β\ = 1,

(3.29a)

fl, ΛΓ = l m o d 4
βjv = S. Λ 7 , i . (3.29b)

[ι, N = 3 mod 4 .

(3)

(3.30)

Moreover, the behaviour of these functions under the action of the (representa-
tions of the discrete) Heisenberg group is described by the following result:
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Proposition 3.5. \/neΈNxZN,

(1)

(f(ή)ψkJ)(q) = e^ ψkJ + ni.2kn2, (3.31a)

where y = kn\ — ln2 — 2~1n1n2.
(2)

( f (nWc.iMί) = e>^-e^'"^^l + n2 . (3.31b)

Proof. From the construction of the representation we have that for any φ:

(f(n)φ)(q) = e-^ e^φ(q - n2) ,

and the results follow immediately from the definition of the φkJ. •

Remarks.

(1) Note that φk,ι + ni-2kn2 is the function associated to the set ΛkJ + ni^2kn2 which is

obtained from ΛkJ

(2) We also have that:

obtained from AkΛ by a ( - , — (-translation in phase space.

<Φk,ι,f(n)φkJ} = e-^ιl-δ"2\n2 , (3.32a)

that is,

t > = N.δf. (3.32b)

This is also the value at the origin of the corresponding Wigner function.
This family of functions turns out to be invariant under the action of the

quantum propagator. This fact, along with the lattice periodicity, implies that a set
of eigenvectors can be constructed by performing linear combinations of such
functions. We first have the result:

Lemma 3.3. Let

ζ:ZNxZN-^ZNxΈN (3.33a)

be the function uniquely defined by the relation:

A(ΛikJ)) = Λζ{kJ) . (3.33b)

Then

ί'^u^*11^,,)- (3-34)

where σ(/c,/) is a real number for any k,l.

Proof. See [DE]. D

We now recall some basic results concerning the phase space evolution of the
subsets ΛkJ described in Sect. 2.2. Given (fc, /), let q be the period of its orbit under ζ.
That is, ζs\k, I) + (fc, I) for 1 ̂  s ̂  q - 1 and ζq(k, I) = (fc, /). If we denote by p the
classical period on the lattice (i.e. the smallest positive integer such that Λp = Id

mod N), we have seen in Sect. 2.2 that q = p is odd and q = - if p is even (i.e.
Λp/2 = -IdmoάN). 2
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Now, given any fixed (k, /), set (Vm = 0,. . ., q — 1)

Φm = -qΣ ei"Λ ^-"* . i ) . ( 3 3 5 a )
Q s = o

where (y o ? 7i ? - >7g-i) is recursively defined as:

7o = l, y j + i = 7 , + σ(C j ( fc ,0)-λ m , j = 0 , l , . . . , < z - 2 , (3.35b)

and

2mπ 1
A m : = + - Σ *(ίJ"(M)). (3.35c)

4 4.7 = 0

It is an immediate consequence of the construction that φm is an eigenvector with
eigenvalue λm.

We are now in position to investigate the detailed behaviour of the Wigner
functions associated with the above eigenvectors. In particular, we shall give some
insight on the actual mechanism which makes the Wigner function a true phase
space distribution (namely, positive definite) in the classical limit. To simplify the
exposition we will restrict our argument to the case q — p and / = 0 (even eigenvec-
tors).

Let Wk be the Wigner function of the vectors ψk:keZN.By Proposition 3.4 and
Proposition 3.5 one has, on account of the Gaussian sum (A.6b), supp Wk = Ak\
moreover, Wk\Λk = N. If k0 is such that ΛkQ is an ideal orbit (in the sense recalled in
Sect. 2) then obviously ψkύ is an eigenvector by Lemma 3.2 because Λ(Λko) — Λko.
Hence the corresponding Wigner function is positive and constant (it is equal to N)
on its support Λko. Note that in this case the weak convergence of the measure
WkodμN x dμN to the Lebesgue measure is a consequence of the classical equidis-
tribution of the ideal orbits [BV, PV]. In the general case, Λko is not invariant under
A and different eigenstates are associated to the invariant subsets (J frJ/^ accord-
ing to formula (3.33a). This represents any eigenfunction φ as a superposition of the
non-orthogonal (by Proposition 3.4) vectors ψk:keΈN. This non-orthogonality
adds interference terms to the constant value N on the Wigner functions. We have
indeed (recall that to make the exposition less cumbersome we assume p = q):

Proposition 3.6. For m = 0,. . ., q — 1, let φm be the eigenvector given by (3.35a), and
let Wψm be its Wigner function. Then:

WφJx) = ̂  Γ Σ Wk,{x) + Σ eί(r'~r') Wk,.k,(x)\ , (3.36)
4 Ls=O s+ί J

where

Wks,kt(x) = Σ <Ψk,, f(n)ψkt)e-2πi<"^ . (3.37)

Proof. By definition:

WΦmW= Σ <Φm,f(n)φm}e-2πi<n>x>.
nsZ2

N

Then the results follows by linearity on account of the expression (3.35a). •
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Remark. The equidistribution of the Wigner function at the classical limit is thus
equivalent to the vanishing of the interference terms, namely the second sum in the
r.h.s. of (3.36). These terms are the only ones which may force the Wigner functions
to switch sign.

When N is splitting the above construction actually yields a complete orthonor-
mal basis of eigenfunctions as a superposition of orthogonal vectors in such way
that, as we shall see in the next section, the interference terms in the Wigner
functions vanish as N -> oo. If N is splitting, we know that the characteristic
polynomial splits on ZN; this implies that the function ζ(k) — k has two zeroes on
ZN, i.e. there exists k0 e ZN such that (( + fc0) = ±k0. These values correspond to
the linear subspace on the lattice generated by the eigendirections, i.e., the straight
lines Λ±k of Lemma 2.1(c). For any one of these particular values of fc, the set
{φkljfs0

1 gives an orthonormal basis, on which VA acts as a permutation. More
precisely:

Proposition 3.7. Let A be of the form (3.11) and let N be splitting with respect to A,
i.e. let Ag2 — 1 be a quadratic residue of N, so that ± -J 4g2 — 1 e ΈN. Then, if

k = ±- J4g2 — 1 one has
2

^ ) ^ (3.38)

where λ = (2g + 2k) ~~2 e 7LN is the corresponding eigenvalue of A considered as an
endomorphism ofTL^.

Proof By (3.12), if A is as above the matrix elements VA(q1,q2) of the propagator
have the form

exv^(gql qq + gql) -

Therefore, by (3.26) and a straightforward application of • the Gaussian sums
(A.6a, b) we get:

2ΛN M

g + k)\ Γ 2πi I2

where

4gk + 4g2-l
k ' = •

4(9 +
I

2(g + k) ?

whence the result because the above choice of k yields k! = k and the phase factor
(2\

CN εN — can be absorbed in the normalization constant. •
\N
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By using this particular basis, we can construct a complete set of eigenfunctions.
Denote in what follows by <A> the coset of the eigenvalue λ of A in ΈN x ΈN, i.e. the
subgroup of ZN cyclically generated by λ.

N - 1
Proposition 3.8. Let VA = Id, where p = = #<λ>. Then

m

(1) Φk o is an eigenvector of VA corresponding to the eigenvalue one.
(2) Write ZN = ©JLV W > Co = 1); then Vlj9j = 0,. . . ,m - 1, the family of vec-

tors {φjyY}
p=Q defined as:

I P-i
Φj,r = —τ= Σ csΦk,λ*ι,, (3.39a)

where c0 = 1

Γ2iπsrΊ Γ2iπ/2(^ + k)λ2(λ2s -

L J e x p ΐ ) J s = 1-'
(3.39b)

)Ί

is such that

VAΦi,r = e-ψφj,r (3.39c)

V/ = 0,. . ., m — 1 and Vr = 0,. . ., p — 1.

(3)

< Ψ Λ . r 1 . ^ 2 . r i > = W ϊ . (3.39d)

Proof. Assertion (1) is (3.38) for / = 0. To see (2), remark that, once more by (3.38):

VAφj.r = 4 = ^ CS (£V~ ""' +

s = 0

;_! = Cp_i). Hence K^j,,. = e~^vφ^γ iff

'/I

whence(3.39b)becausec0 = 1 andλ 2 ( l + λ2 + ••• + A2s~2) = — ^ r ^ Finally
A — 1

assertion (3) follows by the unitarity of VA as far as the factor δr

r\ is concerned, and
by (3.27) for the second one. •

Remark. This construction yields a complete orthonormal basis of eigenvectors for
sup .

m—1 p— ί

where φj^r:j = 0,. . .,m — 1 are the m distinct eigenvectors corresponding to the
p distinct eigenvalues of VA of constant multiplicity m.
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Now, given k as before, let us denote by Wl2itί the Wigner function associated to
the pair of functions: {Φk,ι2τΦk,ι^ ( s e e Definition 3.2). Then we have:

Proposition 3.9.

*•* (!• ί
Proof. By definition

On the other hand, by (3.31a):

l l J l \ N9 N

—e 2-j
neZN

Remarks.

(x x \
(1) If /i = l2 = I, Wι\—, — I = N and its support is the line x2 + 2kx± + / = 0, i.e.

the ideal line translated by /.
(2) If φ is an eigenfunction of the form constructed in Proposition 3.8,

Σ CsΦk,λH

(for a given I and r = 0,1,. . . ,p — 1) formula (3.36) becomes

W = —\ V ]̂ F .s 9 + Ύ c c W t \s \ = W° + Wmix (3 41)

because \cs\ = 1 for all s. Remark that WφdμN x dμN is a (normalized, positive)

measure taking the constant value — on the support l jf=cI4,M which is the

union of the translated by λ% s = 1,. . . ,p — 1 of the ideal line, and therefore,
by Lemma 2.1(e), of periodic orbits. Note also that (3.41) differs from (3.26) by
the elimination of the N dependence of the overall factor. This allows us to
prove the vanishing of W™x and the (vague) convergence of Wψ to the constant
function 1 as we will see in the next section.

4. The Classical Limit. Proof of the Main Results

Having established the quantization prescription/-•/we now study the weak limit
points of the matrix elements in the same spirit of the results of [S,CdV,Z]
obtained for the Laplacian on compact manifolds where the geodesic flow is
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ergodic or of [HMR] for ergodic flows on compact constant energy surfaces. We
emphasize however that in our situation the classical limit for the eigenfunctions is
not a priori well defined. The reason is twofold: first, the dimension of the Hubert
space depends on h = 1/JV and, second, there is no ordering for the eigenvalues.
Hence, in order to define unambiguously the classical limit we introduce the
following notations: {Nk}k ^ ί is the sequence of prime numbers greater than a given
No (to be specified later) and set

Jf= @ L2(τ\dμNl). (4.1)

Given A e SL(29Έ) set VA = {VA

k)}k^u where VA

k) acts on L2{τ\dμNl), as before.
In the same way, VΦ e J<f, Φ = {φ{k)}k^i, and φ{k) e L 2 (ΊΓ f ,dμ N k ), let
W = { ^ w } ^ i be the corresponding Wigner function.

Definition 4.1.

(i) Φ e Jf, Φ = {φ{k)}k ^ι>is an eigenvector of VA if there exists a sequence {λik)}k ^ j ,
λ{k) e S1 such that

V{

A

k)φ{k) = λ{k)φ(k\ Vfc ̂  1 . (4.2)

(ii) Let Φ, Ψ be two eigenvectors in Jf. We say that Φ and Ψ are distinct, and we
write Φ Φ Ψ, if φ{k) and ψ(k) are distinct eigenfunctions of VA

k) for any k ^ 1.
Moreover, we say that Φ and Ψ are conjugated if for any k ^ 1, φ{k) and φ{k)

belong to the same eίgenspace.

Then, to any pair of conjugated eigenvectors Φ and Ψ we associate a sequence
of distributions

(Φ, Ψ) -> {dΩ(k) (Φ, Ψ)}k ;>! e ®'{T2) (4.3)

defined for any smooth functions /:TΓ2 -> C by

f fdΩ{k)(Φ, Ψ):= <φik\fψ{k)y, k ^ 1 . (4.4)
τr 2

The problem is then to find the weak* limit points of the {dΩ{k)}. As already
mentioned, the result is formulated in the Banach space A(Ύ \ formula (1.7). We
have indeed the following

Theorem 4.1. Let fe A(Έ2), and the sequence {Nk} of splitting primes as in The-
orem 2.2. Then for any eigenvector Φ e Jtif:

lim J fdΩik){Φ, Φ) = f fdμ = / 0 , (4.5)

and for any pair of conjugated and distinct eigenvectors Φ, Ψ e Jtf:

lim J fdΩik)(Φ, Ψ) = 0 . (4.6)
fc-> 00 -J2

We give two alternative proofs of this theorem. The first one follows from a direct
estimate on the matrix elements of the basic observables T(n). More precisely:
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Proposition 4.1. Let g e N and N be a splitting prime for the map

Λ.( * ' V
\4α2 - 1 2gJ

Denote by {φj,r} τ = 0,. . .,p — 1 the set of eigenvectors of Proposition 3.8.

497

(4.7)

ί"o(1) if (φi,Φ2) e {</>j r}ί"=
VneZ2

N,n* (0,0),
is α constant Γj > 0 (independent on N) such that,

(4.8)

(2) Let {Nk} be an increasing sequence of splitting primes such that, for some constant
C > 0 ,

Nk~l
mk = •

Pk
<C Vic > 1 .

there exists Γ2 > 0 such that, no matter how two sequences of eigenfunctions
{Φψ}kz i ' J = 1>2 are selected, and \/n Φ (0,0), n e TL\\

(4.9)

Proof. First remark that, by the condition of uniform bounded degeneracy, the
second assertion is an immediate consequence of the first one because the elements
of all eigenvectors sequences turn out to be finite linear combinations of the vectors
{Φj,r}?=o- Moreover to simplify the exposition we can assume without loss of
generality V$ = Id. Consider first the case in which the eigenvectors φι,φ2 corres-
pond to the eigenvalue one. To build arbitrary eigenvectors φj9j = 1,2 correspond-
ing to the eigenvalue 1 we proceed as in Proposition 3.9. Set (j = 1,2)

P - i

Γ Σ
p s = o

where co(lj) = 1 and

(4.10a)

(4.10b)

for s — 1,. . . ,p — 1. Then

VAφj = φj, j = 1 , 2 .

By (3.31), (3.32), (3.39d) we can write, using the abbreviations:

)λ2{λ2-\y\ j = l , 2

{xj,β,θ,γeZN;
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-PΣ
P s,t = O

i p-i
V

- 2^
P s,t = O

^ { k n 2

2 -

) /J, J, \
\ψk,λtl2ψktλn1+nι-2kn2/

by Lemma A.2 we can write (with α3 = /1w2,α4 = θ + αj — α2):

"+β

Σ Σ Ώ
, = o ,.

Jjf(xΛ) m-1

in- Σ Σ

where χ;: / = 0,. . ., m — 1 denotes a set of multiplicative characters of order m. The
result now follows by a straightforward manipulation and a direct application of
Theorem A.I.

Let now φt = φ2 = φ be an eigenvector of eigenvalue exp r : 1 ̂  r 5Ξ

L P Jp - 1; then, by (4.10a, b) with

cs(0 Ξ cs =

we have to estimate the sum:

-ίΓ?β V e-fr( ϊ

P s,i = 0

i mv2tn

N

where 7(x) is the unique integer in {0,...,p — 1} defined by the condition
χj(χ) _ χm ]sj o t e ^ a t the function χ(x) = (ψ)e~~frjix) is indeed a multiplicative
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character on ΈN of order depending on m and (r, p). Now an easy calculation and
Lemma A.2 give an expression of the form

i m— 1

<</>, f(n)φ} = — eτ» £ χ,(/j) £ χ W χ i ( l _ x-")-1
m P 1 = 0 xeZN*x"> * 1

X e-^βd-xm) - 1[(/«2)^"-α/?(x'"+ 1)]

xr r t\

— )χ(x) is now a multiplicative character of order depending on m and (r,p). The

result is then an immediate consequence of the extension of Theorem A.I to the

rational function of the form — (see [De2, page 190]). The general case
x JX

φ1 ήz φ2 corresponding to an eigenvalue different from 1 can be easily worked out
by combining these two estimates. We omit the details. •
Remark. By linearity, the first proof of Theorem 4.1 is an obvious consequence of
the estimate (4.9) because fe A(Έ2).

We turn now to the second proof through determination of the weak* limit of
the sequence of distributions (4.3). Let us first state an auxiliary result.

Lemma 4.1.

dΩ{k)(Φ, Ψ) = W(φ{k\ψ(k))dμNk x dμNι . (4.11)

Proof. Let

f(q,p) = Σfne2πHniq + n2P)- (4-12)
n

Then, from Definition (4.4) we have

j /dβ<*>(Φ, Ψ) = Σfn<Φ{k\ f(n)ψM> , (4.13)
T 2 n

and, furthermore,

=\ X e%<n-n>W(φik\ψ{k))(m)
meZ

Nk

(4.14)

One then obtains the desired result by inserting (4.14) into the r.h.s. of (4.13) and
using (4.12). •

Now we want to describe the asymptotic behaviour of these distributions. The
main fact is that the Wigner functions (associated to a single eigenfunction) not
only are constant on each periodic orbit but they actually become constant at the
classical limit N -• oo also along the "transversal" directions represented by
translated ideal lines. Recalling the representation (3.41), we can indeed formalize
the assertion of Remark (2) after Proposition 3.9:
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and N be a splitting prime for the map (4.7). If φ eProposition 4.2. Let g

{Φj,r}r = o then

(1) Vn e Έ%, n φ (0,0) there is 0 < C^n) < + oo, independent of N, such that

j e 2 π i < « , x > H / φ ° d μ ] V x rfμjv = 0 if n ί ~ 2 k n 2 * 0 m o d i V

otherwise .

(2) For any neΊL^ there is C2 — C2(n) > 0 such that

τ2

C2

iV

Proof. Concerning the first part we have:

-iΪ Σ
1 P - 1

= _ _ V e-^wn
™P

where the second equality follows by (3.40), and this proves the first statement.
The rest of the proof follows by a direct calculation in the same way as in
Proposition 4.1, namely, with α = I2(g + k)λ2(λ2 — I ) " 1 e ZN as above,

i V

Σ Σ

i p-i

= — Σ
N P Sφt = ί

N

= Σ jy

Theorem A.I and Lemma A.2 provide the result. •
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Remarks.

(1) The extension of this proposition to the Wigner function by an arbitrary pair of
eigenvectors of the form (4.10b) can be obtained exactly by the same argument
of Proposition 4.1.

(2) The second proof of Theorem 4.1 immediately follows from the above proposi-
tion, Formula (3.41) and Formula (4.11).

Let us now interpret these results in the light of the classical equidistribution
property proved in Theorem 2.2. According to (4.13), by the unitarity of T(n): n e
7L2 we have

(4.15)
τ 2

By this relation and Lemma 4.1 W(φ{k\φ{k)):k ^ 1 may be regarded as a linear
functional on ,4(ΊΓ2) with norm bounded by 1.

Moreover, by Proposition 3.3(2), if φik) and φ{k) belong to the same eigenspace,
then W(φ{k\φ{k)) is an eigenfunction with eigenvalue 1 of <%%, the adjoint of the
Koopman operator acting on L2(Έ2,dμNk x dμNk). In particular, this is true for the
Wigner function of any eigenstate φ{k\ Assume obviously W(φ{k\ φ{k)) not constant.
In this case, according to Lemma 4.1 and Proposition 2.1, we have the following
representation:

dΩik)(Φ, Ψ) = Σ (Xj(φik\ φik))dμ7; , (4.16)

where, we recall, MN/< denotes the number of closed orbits in ΊLNf\{0,0} (which have
one and the same period since Nk is prime), and

I P(7,)-l

μ 7 o : = <5<o,o) μ7l• = - — : Σ δA*(χ)> j = h . . -,MNk . (4.17)

The coefficients ocj'.j = 0,. . .,MNk may be positive as well as negative; the only
condition they have to satisfy is:

^ ,Λ(k) ,(k)Λ ί 1 ' ί f Φik) = ψik)l
) a j ( φ { \ψ{ } ) = < 1 . (4.18a)

f?Q (0 , otherwise ,
which follows from the normalisation condition:

ιm m Λ i ' 1 ' lϊφ{k) = Ψ{k)

j W(φ{\ ψ{))dμNl. x ddμNl_ =

Therefore (4.4), (4.11) and (4.16) yield the representation

<φik\fφik)) = f otj(φ{k\φ{k)) if. (4.19a)
7 = 0 y,

Moreover, since W(φ{k\φ{k)) is constant on any single periodic orbit, we have the
expression

aj(φik\φik)) = ~ W(φik\ψik% . (4.19b)
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Now (3.41) and (4.19b) yield

On the other hand, W$ is a positive constant on its support U?=oΛs,;*ι which is
a union of periodic orbits. Since W™1X\7 tends "weakly" to zero, all weights
oij'.j = 1,. . ., MN in (4.19a) tend in the same sense to be positive and independent of

j . Hence, by the normalization condition (4.18a), Theorem 4.1 can also be inter-
preted as a consequence of Theorem 2.2.

Remark. This interpretation clearly shows the intimate connection between the
distribution of closed orbits in phase space and the localization properties of the
quantum matrix elements. In the analogous case of hyperbolic surfaces, the relation
of individual Wigner functions of eigenfunctions to periodic orbits is at best very
unclear (see e.g. [Sa]).

We give now some easy consequences of Theorem 4.1.

Corollary 4.1. Let Φ be an eigenvector in J f and W = {Wφ{io}k ^ ί the corresponding
Wigner function. Then

Wφ(k) • 1 for k -+ oo (4.20)

in the weak *-topology of A(Έ2).

Proof. Obvious. •

Proof of the Main Theorem. Formulas (1.12) and (1.14) are proved by combining
Definition (4.4) and Lemma 4.1. Formula (1.13) follows by the same argument of
the proof of Lemma 4.1 on account of the commutation relation.

which is an immediate consequence of the commutator of the Heisenberg algebra
(3.2):

\T{n),T(m)\ = 2isin(πhω(n,m))t(n + m) .

The uniformity over n is trivial. This proves Assertion (1). Assertion (2) is equivalent
to Proposition 4.2, and Assertion (3) is an immediate consequence of Proposition
4.1. •

Proof of the Main Corollary. An elementary computation yields

lim - Y <<A, VjtfvA-
kψy = Y \an\

2 (enjen) + £ άras(erjes}

and
1 m - 1 /JV- 1

lim lim - Σ <Φ,VΓ'fV/ιgVΛkφ} = \im( £ \an\
2 <*„, Vι

AfV^ιgen)
m l

We obtain the result by combining these relations with the Main Theorem. •
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Appendix: Some Basic Results out of Number Theory

In this section p will denote a prime number and Ψq a finite field of characteristic
p with q = pr elements (we will be interested mainly in the case q = p, Ψq = Έp).

Moreover, let p e N and a e Έ be such that a Φ 0 mod p. Then a is a quadratic
residue of p if there is meZ such that a = m2 mod p.

(1) Let p = iV be prime, as we shall assume from now on, so that any xeΈN has
a unique inverse, and consider the second degree equation in the field
ZN:ax2 + bx + c = 0 mod AT, (a,b,c) e Z N . Then, if b 2 — 4αc is a quadratic
residue, b 2 — 4αc = m2 mod N9 the quadratic equation is solvable in ΈN and its

roots are x + = — ( — b ± m).

(2) Likewise, given 4̂ 6 GL(2, 2£), if zl = 4(Tr^42 — det^4) is a quadratic residue,

A = 4D2 mod AT, >1 is diagonable in ZN, with eigenvalues 2 ± = -(Trv4 ± D)

and eigenvectors v+ = (1, ± 2D).

Now, if Cp denotes a pth root of unity, let

φ:(Fq, + ) — . ( C

be a non-trivial additive (ι^(x + j) = Ψ(x)Ψ(y)) character of F^, and

any (possibly trivial) multiplicative (χ(x y) — χ(x)χ(y)) character. A multiplicative
character is of order m if χm is equal to the trivial character χ0 = 1.

Let us give some examples.
Given N prime, let once more Ψq = ΈN. Then, the only non-trivial multiplica-

fx\
tive character of order two is the Legendre symbol Xi{x) = [ — I defined as follows

(see e.g. [Ap]):

x\ f + 1 if x is a quadratic residue

N) ~ \ - 1 otherwise .

Moreover I — 1 = 0 for any x = 0 mod N.

The Legendre symbol obviously satisfies the product law

x\(y

NJ \NJ\NJ' ( A ' 2 )

On the other side, in the present case the group of additive characters is the set

(A.3)

We shall consider generalized sums over finite fields of the type:

Σ X(f(x))Ψ(θ(x)) > (A.4)
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where χ is a non-trivial multiplicative character of order d\(q — 1) of F^, φ a non-
trivial additive character of F^, whereas f(x),g(x)e ¥q[_x] are given algebraic
functions, for instance polynomials, over F^. We have the

Theorem A.I (Weil). Let χ,φ be a multiplicative character Φ χ0 of order d with
d\(q — 1), and a non-trivial additive character, respectively, ofΈq. Let f(x) e F^[x]
admit m distinct roots, and let g(x) e F^[x] have degree n. Suppose that either

(1) (d,deg/) = (n,q) = 1, or, more generally, that
(2) the polynomials yd —f(x) and zq — z — g(x) are absolutely irreducible (i.e irredu-

cible over any finite algebraic extension ofWq).

Then

Σ
xsΈq

Proof See, e.g., [Sc], page 45.

Remark that the above result has been obtained by A. Weil as a consequence of
the validity of the Riemann conjecture for curves over finite fields [Sc], and an
extension to the case where/ g are given rational functions has been achieved by P.
Deligne [Del,De2].

Let us briefly discuss some consequences of this result which are used in the
paper.

Example A.I. f(x) = g(x) = x, χ = χ2 and φ = φa. Then we have the generalized
Gauss sum G(φ,χ). If, moreover, ΊFq = ZN we obtain the standard quadratic one

xeZΛ

and, by direct application of Theorem A.I, \g(φa,X2)\ S
More precise information is contained the following

Proposition A.I.

(A.6)

where

, JV = 1 mod4

and

i TT ' e x P ~ττ-b (4a) ( A 6 a )
fc = 0

if a Φ 0 mod N,

N-l

»]•— (ak2 + bk)\ = N-δ°b (A.6b)
k = 0

ifa = 0 mod N.
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Example A.2. Consider once more the particular case Ψq = ZN. Setting
f(x) = x2 — 4ab, g(x) = x, χ = χ2 and φ = φ1 we then find the Kloosterman sum

KKN,a,t)= Σ ^ = ^ W ^ 4 = Σ expfeα.*Oχ-)j.(A.7,
xeΈN

N

Again, from Theorem A.I, one has the estimate

The next two results are useful in reducing to the previous case some sums over
cyclic subgroups.

Lemma A.I. Suppose d\(q — 1); then

Σ
/ of order d

d if x e ( Ψ *y
0 if

1 if x = 0 .

Proof See [Sc], page 85.

As an immediate consequence, we have:

Lemma A.2. \/λ e Έ%, denote A} = {λ} the cyclic subgroup generated by λ. Let
N - 1

#A; = = p. Iff: ΈN x ΈN > C is any complex valued function, then
m

"Σ /(AUO = ̂ -2\ Σ Xi(y)xάχ)f(y,χ),
s.t-0 j,l-0 χ,yeZ*N

where {χ0,- . .,χm~ι} is a set of multiplicative characters of order m.

Proof Clearly xm e Aλ, V x e Z j , because Λ} is exactly the set of roots of the
polynomial xp — 1 = 0. Moreover, the map x • xm e Aλ has multiplicity m. That
is

p - 1 J

and the result follows immediately from Lemma Al because

Σ Σ Xj
x,yeΈ%

D

Using the same technique it is also possible to estimate Kloosterman sums over
any cyclic subgroup of ZN, namely

Proposition A.2. \/λ e TL%, denote A, — </ί> the cyclic subgroup generated by A. Let
N - 1

# A; = = p. Then, Vα, b e Έ%,
m

2iπ _
-—lax + bx

p-i

s = 0

2iπ

ϊv"1

for some constant C(m) bounded in m.
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Proof.

= - Σ exp ̂  [αχ» + to""]
m xeZN

 iy/

i m — 1 Λ j _

= - Σ Σ XiMexp ^ΓΓ [αx + &x"*] ,
m 7 = 0 x e Z ^ i V

where χ, 7 = 0,. . ., m — 1 are the multiplicative characters of order m. The asser-
tion now follows from the direct extension of Theorem A.I to the rational functions
of type ax + bx~ι (see [Del], [De2], p. 190 and [Sc] p. 85).

Acknowledgements. We are indebted to Jean Bellissard, Italo Guarneri, Anatole Katok and Peter
Sarnak for valuable discussions and suggestions.
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