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Abstract: A class of differential operator Lie algebras on the unit circle is introduc-
ed and discussed. They are the natural generalizations of the Witt algebra and the
Virasoro algebra. Among them are the higher-spin algebras W1 + oo and W^ which
occur in the physics literature.

0. Introduction

The Witt algebra W is the complex Lie algebra of polynomial vector fields on the
unit circle S1. An element of W is a linear combination of the elements of the form
einθj§, where θ is a real parameter, and the Lie bracket of W is given by

e

imθ— e

ίnθ— \- i(n - m)ei{m+n)θ—
I dθ'6 dθ]~l(n m)e dθ'

If we define t = eίθ, then the elements tm = eιmθ, TΠGZ, span the Laurent polynomial
ring <C[ί, f 1 ] , and eimQjβ = itm+1ft may be viewed as a first order differential
operator on C[ί, ί " 1 ] . Let dm = tm+1it. Then W = Σ m e Z <Cd w , and
ldm, dn~\ =(n — m)dm+n. The Virasoro algebra is Vir = £ m G Z C L m + Cψ with

[Lm, L J = (n - m)Lm+n

Recently, C.N. Pope and X. Shen [PS], C.N. Pope, LJ. Roman and X. Shen
[PRS1], [PRS2] studied the higher spin algebras W^ and W1 + O0, the generali-
zations of W. The Lie algebra W1 + oo has basis Vι

m, where meΈ, ieΈ ^0> and Lie
bracket

IVL Vί] = g^m, n; μ)Vι

m

+

+{ + q^m, n; μ)^;2 + -

+ q2rgii(m,n;μ)vi+j;2r+ ••• + q2i

Ci(m; μ)δijδm+n,0,
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where Vι

m corresponds to the mth Fourier mode of a conformal spin i + 2 field, q is
a parameter, c^m; μ) are the central terms. The structure constants are given by

m ] 2 r + 1 _ f c

Ήkίj + 1 -ri]2r+1-k,

(a-n)\

If we parameterize μ in terms of a variable 5 by μ = s(s + 1) = — i , then 02r(μ)
be expressed as

. 1 3 1 1 1
ΦM = ,F3\ ---2S.- + 2S. -r--, -r, - i--, - ; - - , , 2' ! Γ

where 4F3 is a generalized hypergeometric function (see [PRS3] for details). We
note that W^ is a Lie subalgebra of Wΐ + co.

Later, [PRS4] proved that Wί + (Xiis nothing but the algebra of all polynomial
differential operators on the unit circle, including differential operators of arbitrary
order, namely

This brought a connection between the higher spin algebras and the algebra of all
smooth differential operators on the unit circle. For earlier discussion, see also
[Sa].

Note that the Lie bracket of Wγ + <*, ̂  C [ί, ί 1,£] given above is very complex.
We rechoose a basis for C[ί, ί~Λ$] as follows: For all m e Z , reZ^o, define

Then {d'm | m e Z , r e Z δ 0 } is a basis of C[ί, ί " ' , $ ] . The Lie bracket is

From this we see that <C[£, ί" 1,^] has Z-grading

where the graded subspace g m := Σ r ^ o ^ m Further, the (C-linear map σ such that

is bijective from <C[ί, ί ~x, ̂ ] to itself and shifts a graded subspace to another. We
call σ a shift operator of <C[t, t~ \ $ ] (see Sect. 1 for more details). A Lie subalgebra
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f) of C[ί, t"1, £] is called a homogeneous Lie subalgebra if

ί) = Σ fc.>
meZ

where r)m = ϊ>ngm, and σ(t)) = ί).
In this paper we investigate the homogeneous Lie subalgebras of (C[ί, t~1, ^]

and their representations. In Sect. 1, we give the classification of the homogeneous
Lie subalgebras and find that, except for a few examples, these Lie subalgebras are
determined by polynomials in some way. The information from the automorphism
group of C [ί, t ~ \ jil is important for the study of the structure of C [ί, t"1, £] and
its Lie subalgebra. Since homogeneous Lie subalgebras are Z-graded, in Sect. 2, we
determine the automorphisms of <C[ί, t'1, £] which preserve the Z-grading. Our
result is that these automorphisms constitute a group isomorphic to
(Z2tx((C, + )) x (C*, ). In Sect. 3, we discuss the algebraic properties of the homo-
geneous Lie subalgebras. We see that there is a one to one correspondence between
the ideal lattice of the ring of one variable polynomials and the homogeneous Lie
subalgebras of C [t, t ~ί, $] and almost all of the homogeneous Lie subalgebras are
indecomposible. Since the (universal) central extension of W, the Virasoro algebra
Vir, is so important in Mathematics and Physics and C[ί, ί""1,^] is a natural
generalization of W, it is natural to consider the central extensions of the homo-
geneous Lie subalgebras. V. Kac and A. Raina [KR] defined the infinite di-
mensional Lie algebra α^ and its 1-dimensional central extension α^. Then
imbedded W as a Lie subalgebra of α~̂  and obtained Vir as a Lie subalgebra of α^.
Following Kac and Raina's ideal, in Sect. 4, we imbed <C[ί, t " 1 ,^ ] as a Lie
subalgebra of α^ and obtain the 1-dimensional central extensions of the homo-
geneous Lie subalgebras. Moreover, we discuss the universal central extension of
g{0,1} := Σmez<Cdm + ΣmeΈ^dm- On the representation side, for the Virasoro
algebra, Kac has the following conjecture: Every irreducible representation of the
Virasoro algebra with finite dimensional weight spaces is either highest or lowest
weight or has all its weight spaces of dimension less than or equal to one.
Kaplansky and Santharoubane [Kap, KS] verified the conjecture in the case when
all eigenspaces of d0 have dimension ^ 1, and Chari and Pressley [CP] proved the
conjecture in the case the representation is unitary. Finally, the conjecture has been
proved by Martin and Piard [MP], and Mathieu [Ma]. As a generalization, we
define the admissible modules (the modules with finite dimensional weight spaces)
of the homogeneous Lie subalgebras and classify the admissible <C[ί, t~ί, ^-mod-
ules with 1-dimensional weight spaces in Sect. 5, and discuss the highest weight
modules in Sect. 6.

We denote the complex number field by <C, the real number field by 1R, and the
integer ring by Έ. All Lie algebras considered are complex Lie Algebras.

1. Differential Operator Lie Algebras onC[M x]

In this section, we consider the algebra of differential operators on the Laurent
polynomial ring C[ί, t~ *], namely C[ί, t~ \ $], and give it a Lie algebra structure.
We have seen in the Introduction that by suitable choice of basis, we obtain
a Z-grading on <C[£, t"ι, ^ ] , and hence we have the shift map σ on it. We call a Lie
subalgebra of <C[t, t~ι,jι\ which is Z-graded and invariant under the shift map
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a homogeneous Lie subalgebra. The main result in this section is the classification
of the homogeneous Lie subalgebras of (C[ί, ί " 1 , ^ ] .

As a vector space over <C, C[ί, ί ~ \ $ ] has a basis {d^\mGZ,reZ^0}, where
d^:= ίm(ί $) r, and the action of dr

m on C[ί, ί " 1 ] is given by

for all fceZ. Let p(x) = ^ . α ^ ' e C M be a polynomial and define

Then

= p(k)tm+k

Moreover,

* * ) ) * " " - p(k)dn(q(x))tm+k

= (p(n + k)q(k) - p(k)q(k + m))ί m + M + k

= dm+n(p(x + n)ί(x) - p{x)q(x + m))ίfc

for allfceZ.
So, if we define

- p(x)q(x + m)),

then C[ί, ί" 1 ,^] is a Lie algebra. Note that if p(x) = xr, q(x) = xs, then the Lie
bracket we obtained here is exactly that we have seen in the introduction. We note
for future reference that dm = d}n = djx) and ds

m = dm(xs). We denote <C[t, t~ \ jβ
by g in the rest of this paper.

Definition. A Lie subalgebra of g is called a differential operator Lie algebra on

frr1].
Setting

where m e Z , then g = £ m e Z g w , and [gTO, gn] c gm + π. So g is a Z-graded Lie
algebra. In particular, [g0, go] = 0, and [do, d^] = nds

n. We see that g0 is an abelian
Lie subalgebra of g and gm is the eigenspace of ad(dl\ the adjoint map, of
eigenvalue m.

The linear map σ from g to itself such that σ{dr

m) = dr

m+ x for all m e Z, r e TL ^ 0 is
called the (canonical) shift of g. Clearly σ is one to one and onto.
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Definition. Let ί) ^Qbe a Lie subalgebra. ί) is called a homogeneous Lie subalgebra

ofβ if

(i) ί) = £ t)m, where ί)m:= ϊ )ng m ,
meZ

(ii) σft) = i) .

The following are examples of homogeneous Lie subalgebras of g:

(1) g{0} := ΣmG%<Edm is an abelian Lie subalgebra of g:

(2) For any αe<C, define g{x + a] := £ m e Z O m ( x + α). Then

[djx -h α), dn(x + α)] = (n - m)dm+n{x + α) .

So g{x -f α} is isomorphic to the infinite dimensional Witt algebra.

Before we give the classification of the homogeneous Lie subalgebras, we prove
the following:

Proposition 1. ί) c g ΐs a homogeneous Lie subalgebra iff there exists a subspace
V £Ξ C [x] satisfying

p(x + n)g(x) - p(x)^f(x + m) e F Vp(x), g(x) e F, \/m,nεΈ ,

Proo/ Clearly if V c (C [x] is a subspace satisfying the above condition, then
Σp(χ)eKmeZ^m(pW) is a homogeneous Lie subalgebra of g. Conversely, assume
that ί) ύ g is a homogeneous Lie subalgebra. Then

meZ

Note that if dm(p(x))eϊ)m, then dΛ(p(x))eί>B for all neZ since σλ(dm(p(x))) =

4 + Λ ( P M ) . Let

V = {p(x)ε<Clx]\dm(p(x))ef) VmeZ} .

Then for polynomials p(x), q(x) eV, m,neZ,

[dm(p(x)\ dn(q(x))"\ = dm+n(p(x + n)q(x) - p(x)q(x + m))e\) .

Hence

p(x + n)g(x) — p(x)g(x + wi)eF, Vm, n e 2 .

F satisfies the required condition. •

Remark. By Proposition 1, classifying the homogeneous Lie subalgebras of g is
equivalent to classifying the subspaces of C [x] which satisfy the condition given in
the proposition.
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Proposition 2 (Classification of homogeneous Lie subalgebras). The following are
all of the homogeneous Lie subalgebras of g:

(1) g{0}, g{0,1}, g{x + α} where α e C .
(2) g<P(χ)> := Σq(χ)e<P(x)y,meZ(Cdm(q(x)l where <p(x)> is the ideal of C[x] gen-

erated by p(x).

Proof. We have seen that g{0}, g{0,1}, g{x + α} are all homogeneous Lie sub-
algebras. Now for any p(x) e <C[x], if q(x), r(x) e <p(x)>, then clearly

q(x + n)r(x) - q(x)r(x + m) e <p(x)> ,

for all m,neZ. So g<P(x)> is a homogeneous Lie subalgebra of g by Proposition 1.
Conversely, let V £ <C [x] be a subspace such that

p(x + n)q(x) — p(x)q(x + ra) e F Vp(x), q(x) e F, Vm, n e Z .

Define qv:=Σmez,P(χ) e v^m(p(x)).

(a) Suppose for all p(x) e F, deg{p(x)) = 0. Then 7 = C and gF = g{0}.
(b) Suppose for all p(x) e F, deg(p(x)) ^ 1, but there exists p(x) e F with degree

1. Assume that p(x) = x + α e F. If there exists jS e (C such that β Φ α and x + β e
F, then F = Cx + C and gF = g{0,1}. Otherwise, F = <C(x + α) and
gF = g{x + α}.

(c) Suppose there exists q{x)εV such that deg(q(x)) ^ 2.

Let

aoeV

be the choice with minimal degree and let

where s §: 2.

Case 1: r = 0. By the Taylor formula,

α(2)(x)
q(x + m) = f̂(x) + ^(x)m + •L-7rrlm2 +

2!

Since g(x + m) - f̂(x) = q'{x)m + ^ m 2 + + ^
determinant of

s!

F, for all m e Z, and the

/l 1

2 22

l \

2s

s s

is nonzero, q'(x), ^ , . . . f f l ε F . It follows that 1, x, x2, . . . , r ' e F . But
q(x)e V, so also x s e V. Assume that 1, x, ... ,xk eV, k^. s^.2. Then

(x + nfxk - x2xk = xk(2nx + n2) = 2nx" + 1 + n2x* € V

for all n ε l Thus xk+' e F. By induction, F = C[x] and gF = g<i> = g.
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Case 2: r = 1, p(x) = x -f a. Since

/ α ( 2 ) (x) <7(5)M
p(x)<?(x) - p(x)4(x + m) = - p(x) ζjf'(x)m + —rr-m2 + ••• + — — Ϊ

\ 2! 5 !

for all m G Z, we have

Thus

x + a, (x + ά)x, ... ,(x 4- α)x s - 1 G V ,

where 5^2. Assume that (x 4- α), (x + α)x, ..., (x + a)xk e V for some k ^ 1. Then

(x + α + n)(x + n)(x + a)xk - (x + α)x(x + α)x*

= (x + a)xk(2nx + n(α + n)) G F

for all n. Hence (x + a)xk+1 G F. By induction, <x + α> c F. Note that <x + α>
has codimension 1 in C[x], so <x + α> = F and §v =

Case 3: r ^ 2. For any n e Z , since

/?(x + ή)p{x) - p(x)p(x)

&. + *++ψ
we have

p(x), xp(x), ... ,xr~1p(x)eV ,

where r ^ 2. Assume that

p(x), xp(x), ... ,xkp(x) G F /or some fe ̂  r — 1 ̂  1 .
Since

1 ^ / c - r + 2^fc,
we have

r(x):=x*~r+2p(x)eV ,
and

ώff(r(x)) = k + 2 .
But

r(x -f n)p(x) - r(x)p(x)

r(2)(x) r{k+2)(x)

for all n e Z, so

p(x), xp(x), ... ,xk+1p(x)G F ,

By induction, <p(x)> ^ F. If there exists h(x) e F\<p(x)>, then by the choice of

deg{h(x)) ̂  deg(p(x)) ^ r .
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Assume that deg(h(x)) = I and define hx (x):= h(x) - xι~rp(x). Then fti(x)e
P\<P(x)> a n d degih^x)) < deg(h(x)). Inductively, there exists a fr*(x) e F\<p(x)>
such that deg{h*(x)) < deg(p(x)). This is a contradiction. So we have F = <p(x)>
and complete the proof. •

2. Graded Automorphism Group of <C[f, ί \ $ ]

We had seen in Sect. 1 that g = C [ ί , ί " 1 , i ] is Z-graded as g = £ m e Z g m ,
9m = Σ r e z ^ o ^ m Let φ e Aut(§\ the automorphism group of g. If φ(gm) = gm for
all m e Z, we say (/> is a graded automorphism of g. Let

^wίG(g) = {0 e Aut(gi) \ φ is graded} .

Then AutG(o) is a subgroup of ^4wί(g). In this section, we determine AutG(c£). First we
prove the following.

Proposition 1.^45 a Lie algebra, g is generated by d°-udι, d%\ that is

g = <d°_ !,<*?,<#>.

Proof. Let g':= (d°-u d°u d%}. Since [dg, d?] = 2d} + d? e g, we have

d\ e g' .

Similarly, we have
dί^g'.

Thus

Now [d§, d}] = 2di + d\ e g' implies that d\ e g'. Then [d\, d?] = df e g' and
[dg, d?] = 2rfi + <Z2° e g' imply that

d\ ε g ' .

Similarly,
d L 2 e g ' .

Since g{x} is generated by {dl2, dί u di d\, d\) ,

Then

<ί?+i = [#,<*?] eg '

for all n e Z . Finally from [dl, dπ

x] = 2nd^ + n2d\ e g' for all n e Z, we obtain

4? eg'

for all neΈ.In summary, we proved that

</w(x*)eg' VmeZ,fc = 0, 1,2.

Now assume that rfm(xk) e g' Vm e Z , 0 ^ / c ^ ί . Then

[<fi, ^(x 1 )] = dm+n((x + n)2x f - x2(x + my) e g'

implies that ί/m(x/+ x) e gr for all m e 7L. By induction, we get g' = g. •
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Definition. Let β e <C and define φβ: g -> g to be the unique linear map such that
ψβ(dm(p(x))) = dm(p(x + β))far allmeΈ and p(x)G C[x].

Let α e C * and define φ α : g -» g to be the unique linear map such that
φa(dm(p(x))) = αmdm(p(x)) for all m e Z and p(x) e C[x] .

Let τ : g -+ g be the linear map such that

for all m e Z and p(x) e <C[x].

Proposition 2. Lei ιF = { ^ | j S e C } and Jet Φ = {φfl| a e C*}. Γften
«τ>x < F) x Φ ^ (Z2x((C, + )) x (C*, ), where τ 2 = 1.

Proo/ Since

m

^^ G AutG(§) for all )8 6 C It is easy to see from the definition that φa e ^4wίG(g) for
all a e C*, ψΛφβ = ψ^+β, ΦaΦb = Φab> and 0 β ^ = ^ 0 β . It is also easy to verify that
τ G AutG(o), τ2 = 1, and τφa = φaτ, τφβτ'1 = φ-β. Hence «τ>tχ lf r) x Φ ^
( Z 2 x ( C , + )) x (C*, ) is a subgroup of ^wίG(g)

Now suppose φ G AutG(§). We show that φ e((τ}xΨ)x Φ. Assume that
Φ(dm) = ΣlΓ=oam,idL where meZ, and α m Λ φ 0. Fix m e l For any n e Z ,

If Jm > 0, then for n > 0, dm + π((x 4- n)/mx/n - xίw(x + m)ιή φ 0. So we must have
L = 0, i.e. φ{dZ) = amdl for some αw e C*.

Assume that φ{di) = dw(pm(x)). Comparing

with

|>(di), ιA(4°)] = [d«(Pm(x)λ fl.d»°]

= andm + n(Pm(x + n) - pM(x))

2!

we obtain
= 0 ,
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and

Pm(x) = bm* + cm

for some bm, cm e C Thus

Wi) = Kdi + cmdl.

Moreover, from ψ[dn, d°] = lφ(d^\ ψ(d%)~\, we have

nam+n = nanbm Mm.nzTL . (1)

Assume that ψ(d$) = do(q(x)). Then

= 2nbΛdi 4- (2ncM + n2an)d°n

and

= ajn(q(x + n) -

for all W G I These imply that deg(q'(x)) = 1, and g(x) = β2x
2 + jϊix + β0 for some

J82, ί i J o e <C, where j82 Φ 0. From φ [rf0

2, rfn0] = Mdfa ψ(d°)l we get

= 2nβ2an

2ncn + n2απ = α.ί/ί^ + jSn2) l }

for all n e l
With m = 0 and n = 1 in (1), and by (2), we get

b° = * (3)

and

2

Hence
In) — an{βldn + ^ + (^2 ~ 1 ) n d%) if Π #= 0 ,

Then from
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and

= -2nβ2

2ana-nd
ί

0-nana-nβίβ2d%,

we get ana-nβ2 — 1, and c0 = ^rβιβ2 f°r all n Φ 0. Hence

for all meΈ.
In summary, we have proved that

for all neΈ. Assume that

1 2

for all nφO. From ^ K , do] = lΦ(dn), Φ{do)\ we get

2

for all n φ 0. So by induction on r, we obtain

βi + (βir

n) = β n

2 - 1 a ' dn [ [ β 2 x
2

forallnφO,
Since

From (1) and (3), and using a1a-1βl = 1, we have

α w + 1 =a1amβ2 VmeZ.

By induction on m, we get

am = βΓιam VmeZ, (5)

where α = ax. Then from (3) and (4),
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), Ψ(d°-n)l

and

for arbitrary nΦO, using (7) and comparing the coefficients of n3 and n, we get

and

= P2

If 0 2 = 1, then (7) and j?0 = (τ) 2 give us

?) = oά% = Φaψβ+id?)

φ{dl) = do(^x + y ) 2 ) =

Iίβ2= - 1, then (7) and β0 = (^)2 give us

Since by Proposition 1, do, d° and d°-ι generate g, so in both cases above

Hence

Ώ
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3. Structure of Homogeneous Lie Subalgebras of <C[ί, t~ *, ̂ ]

It is obvious that g{0} is abelian, g{x + α} is simple, and g{0,1} = g{x}xg{0}. In
this section, we discuss the structure of g<p(x)> further.

Proposition 1. Let p(x), q(x) e <C[x]. Then

(i) 9<<?(x)> is a Lie subalgebra o/g < p ( x ) > iff p(x) \ q(x).
is an ideal o/g<p(x)> iff

Proof, (i) is clear.

(ii) Suppose that g<g(x)> is an ideal of g<p(x)>. Then

ldm(p(x)\ dn(q(x))'] = dm+n(p(x + ή)q(x) - p(x)q(x + m)) e

Hence

q(x) I p(x)q{x + m) Vm G TL .

Assume that q(x) = p(x)r(x). Then

r(x) \q(x + m) VmeZ.

So r(x) must be a constant and <p(x)> = <g(x)>. D

Proposition 2. Lei

p(x), q(x) e C[x], wtere g.c.d.(p(x), q(x)) = 1 ,

feί

r(x) = p(x)^[(x).

In particular, if

r(x) = Π (x + a,)*',

where a 1 ? ... ,a r are distinct, then

9<r(x)> = Π 9<(x+a ι )
fc >

i = 1

Let X e g < p ( x ) > n g < q ( x ) > . Then

where ftm(x), fcm(x)eC[x]. So p{x)hm(x) = q(x)km(x) for all m. But
g.c.d.(p(x), q(x)) = 1, so p(x) \ km(x) for all. Assume that km(x) = p(x)/c*(x), for some
fc*(x) e €[x]. Then X = Σ » d « ( 9 M P W « M ) e 9<r(x)>. D

It is clear that <£d0 is the centre of g. Moreover, we have the following:

Proposition 3. Cdo is the only proper ideal of g and hence g/(Cdo is simple.
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Proof. Let 0 Φ /<g be an ideal. From [do, Π £ h we see that / = ΣmeIιIm, where
Jm = / n g m . Suppose that J\Cdo is not empty and 0 Φ dm(p(x)) e J \ O Q such that
deg(p(x)) is minimal. If deg(p(x)) > 0, then

ldm(p(x), d°] = dm+n(p(x + n) -

and

degf(p(x + n) - p(x)) < deg(p{x)).

This is a contradiction. So p(x) e <C, and d° e /\<Cdo This implies that

l VneΈ.

Hence g{0} c j . Note that [dm{xr\ d°] = dm+n((x + rίf -xr)el for all m, n e Z,
r e 2 ^ o By induction on r, we see that rfm(xr) G /, Vm e Z , r e Z ^ 0 - S o / = g. Π

Proposition 4. For any a € C, g<x + a> is simple.

Proof. By Sect. 2, Proposition 2, we need only to show that g<x> is simple. Let
0 Φ /<ig<χ> be an ideal. Then / = £ m 6 πIm, where lm = / n gm. Let dn(xp(x)) e / and

( ( ) be minimal. Since

))] = dm+n((x + n)xp(x) - x(x + m)p(x + m))el

for all m e Z, we have

A?0((x + n)p(x) - (x + m)p(x + m)) ^ deg(p(x))

for all TΠGΈ. On the other hand,

n)p(x) - (x + m)p(x + m)) ^ deg(p(x)).

So they must be equal. Thus for any TΠGΈ, there exists pm(x) with
deg(pm(x)) = deg(p(x)) and dm(xpm(x)) e /. We may assume that the coefficient of
the highest term of pm(x) is 1. Then

[dm(x), dn(xpn(x)y\ = dm+n((x -f n)xpn(x) - x(x + m)pπ(x + m)) e /

for all m, neZ. Fix m φ 0 and choose n = m(l + deg(p(x))). Then

(x + n)pΛ(x) - (x + m)pΛ(x + m)

= (x + n)pΛ(x) - (x + m)(pn(x) + pi(x)m + )

= (n — m)pn(x) — xpw(x)rm -h Zovver terms .

So
deg((x + n)pn(x) -{x + m)pn(x + m))

unless deg{p(x)) = 0. So dm(x) e / for all meZ.
Now from [rfm(x),dΛ(x r+1)] e / VreZ^o? a n d by induction on r, we get

Proposition 5. For any p(x) e C[x], 9<p(x)> is indecomposable.

Proof If deg(p(x)) ^ 1, this follows from Proposition 3 and 4. Now assume that
deg(p(x)) ^ 2. Suppose 9<p(x)> = ί/χ 0 l/2, where Uu U2 are ideals of g<P(*)> and
t/j n U2 = 0 and both Uι and l/2 are non-zero. Let

0 Φ y = djMx)) + dh(q2{x)) + ••• + djk(qk(x)) e ^ ,
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wherej! <j2<
 m~ <h a n ( 3 q\(x), qi(χX > Qk{χ)are non-zero. Then for all meZ,

ym' =ίdm(p(χ)),yl

= ldm(p(x)),djί(qί(xm+ ...

= dm+h(p(x +jι)qi(x)-p(x)qi(x + m)) + ••• e Ux .

Note that

β0»):= p(χ +jΐ)q1(x) - p(x)qt(x + m) + 0

if m > 0, and

for all meZ.
Let

= dlx(rι(x)) + - + dif(rf(x))6 172 ,

where Ϊ! < ••• < Ϊ 2 J and rj(x), ... ,rs(x) are non-zero. Then [ym?^] = 0 for all
meZ. This implies

= 0

for all meΈ. But

deg(q™(x)) ^ deg(p(x)) + deg(qι(x))

for all meΈ, so

qf\x + h)ri(x) - ?f(x) r i(x + m) + 0

if m > 0. Hence

d w + Λ + il(«(Γ)(x + iOriίx) - ^ M r ^ x + m))Φθ

if m > 0. This is a contradiction. •

4. Central Extensions

In this section we consider the 1-dimensional central extensions of the homogene-
ous differential operator Lie algebras and determine the universal central extension
ofg{0,l}.

Recall that gloo(C) = Σ U e Z C £ 0 with Lie bracket

LEij, Ek{\ = δjkEa — δuEkj

is a Lie-algebra, where E^ is the matrix with 1 in i-row and j-column, with
0 elsewhere. Define
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to be bilinear and

<*(EΦ Erf = - 0L(EJh Eu) = 1 i S 0, j ^ 1

oc(Eij, Ekι) = 0 otherwise .

Then α is a 2-cocycle of the Lie algebra gloo(£).
Kac and Raina [KR] defined the following infinite matrix Lie algebra:

^:={A = (aij)ijeΈ\aije<£,aij = 0 V | i — j | > 0} ,

where \i —j\> 0 means that \i—j\ is sufficiently large. The Lie bracket of ά ^ is

given by \A9 B~]= ΛB — BA, for all A, Beά^, where AB is the usual matrix

multiplication. A matrix in α^ is a linear combination of matrices of the form

Σ ^ i ^ i + m,i
ieZ

for meΈ.

The 2-cocycle α defined above can be extended to a 2-cocycle of the Lie algebra

α^ as follows:

Kac and Raina [KR] also defined the 1-dimensional central extension α^ of

αoo := 5 ^ + Cψ

and

Let

π:aO0-*'aZ

be the canonical homomorphism given by π(x) = x, for all x e ά^, and π(φ) = 0.
For any Lie subalgebra ί) of ά^, h:= π~ 1(ί)) is a Lie subalgebra of α^. In general, it
is a 1-dimensional central extension of t).

In the following, we imbed g as a Lie subalgebra of α^ and hence obtain the
1-dimensional central extensions of g and its Lie subalgebras.

Proposition 1. For any β e C, define

to be the linear map such that

jeZ

Then iβ is an injective Lie algebra homomorphism.
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Proof.

= ΣΣO" + βVd + Pfiδh i + n n, i

j

= Σ ( θ " + n + β Y u + β f - ( J + P f u + β +

The injectivity of iβ is clear. Π

Now if we identify cί̂  with ΣjJrEj+m,j> then for polynomials p(x), q(x),

= ( Σ P 0 " ) < 7 0 ' - " ) - Σ
l l

So in § = π 1($\ the Lie brackets are

ldm(p(x)l dn(q{x)y\ = dm+n(p(x + ή)q(x) - p{x)q(x + m))

+ ( Σ pUteϋ -n)- Σ

U] = o.
Example 1:

meZ

[Am, dni = — 2mδm+n,0$ ,

Example 2:

meZ

3
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We see that §{*} is the Virasoro algebra, which is the universal central extension of

Wanglai Li [Li] proved the following result: The 1-dimensional central exten-
sion of g is unique up to a scalar multiple. In the rest of this section we determine
the universal central extension of g{0,1}. Since g{0,1} is perfect, its universal
central extension exists.

Generally, if a Lie algebra I) is perfect, its universal central extension can be
obtained as follows:

Consider Λ2t), the second exterior power of ί). Let / c Λ2ί) be the subspace
spanned by all of the elements

x A [y, z] + y A [z, x] + z A [x,y] ,

where x, y, z e ί). Let

be the canonical map

(x, y) h-> x7\ y:= x A y + I.

Then TV is the "universal" 2-cocycle for ί), and ί) θ ( Λ2t)/J) acquires a Lie algebra
structure through

[x + u,y + v] = [x,y~\ + x7\ y where x , y e ί ) , U,VG —— .

N o w

Γ Λ2ί) Λ2

):=Uθ—Uθ-y
together with the restriction to % of the natural projection of I) © ( Λ21)//) onto ξ is
the required universal central extension (see [G] or [MoPi]).

In our case,

g{0,l}= Σ crfm-f Σ c ί
meZ meZ

Λ2g{0,l}

is spanned by

Ά (dn, d\\ Ί\ (dίn, dn\ 7\ (d^, d^) Vm, n e Z .

The 2-cocycle condition gives us

7v (di, [4°, 4°]) + 7v (d°n, [dS, i i ] ) +

= 0 (1)
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for all m n, keΈ. Let k = — m — n in (1). Then

n7\ (d°+Λ9 d°-m-n) = {m + n)Ί\ {d°n, d°-n).

Thus

7ϊ(d.0,d°.)
φ 3 : = n

is independent of n, n Φ 0. Let fc = 0 in (1). Then

7t(d,°,d,°) = 0 V n e Z .

From this, setting m + n = 0 in (1), we have

Combining these results, we get

~K{d°,d2) = mδm+a.o*3. (2)

Again by 2-cocycle condition,

7^ (dl [di, 4°]) + A (d.1, [4°, d i]) + A (4°, [41, d.1])

= λ TV (dl, d°+k) -kTΪ (di, dξ+m) + (n-m)7\ (4°, di+n)

= 0 . (3)

If m = 0 in (3), then

With fe = — m — n in (3), we get

{m-ή)Ί\ (di+», Λ m _ . ) = (m + n)( A (di, <io-m) - ^ ( 4 , Λ , ) ) . (4)

Replacing m by 2m in (4), we obtain

= (2m + n)( 7\ (di», d°_2m) - Ί\ {dl d\)). (5)

Replacing n by m 4- n in (4), we obtain

= (2m + n)( 7\ (di, d0-™) - 7\ ( ^ + B , d°_m_n)).

Multiplying this by m — n and replacing the 7\ (*/„+„, ί/-m-n) term using (4), we
obtain

= - 2n(2m + n)7\(di, d1m) + (2m + n)(m + n)7\ (dl dl „). (6)
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From (5) and (6), we get

- n(m - ή)(2m + n) Ί\ {d\m, do.2m) + 2n(2m + ή)(2m - ή) 7\ (<#, d°.m)

θ , m - n + θ , m φ θ , n φ θ , then

d\m, d°-2m) - 2 7̂  ( 4 , d° m) 2 * (dι

m, d°-m)

m2 m(m — n) n(n — m)

Thus

is independent of m, m Φ 0.
Finally, since

7\ (dL [_dl 41]) + 7\ (dί, [ 4 , ^ ] ) + 7\ {dl [ 4 , 4 ] ) = 0 ,

a similar calculation as above shows that

(*) (k + n) 7\ {dl di) = (k - n) A (d£, 4 + f c )

for all n,keZ, and

2

1

m ? d i 2 m ) - 2 A ( 4 , d i m ) ) 1 2 Λ(4 ? di m ) 12Ί\ {dld\n
1 j m 3 m ( m 2 - n 2 ) n(n2 - m2)

for all m, n Φ 0, m2 φ ft2- Thus

is independent of m, m φ 0.
Now we define

^A(dέ,di) where mΦO,

~ 1
dZ := dm H — 7\ (d0, dm) where m Φ 0 ,

m

3Q:= do — - "Λ ( d ? , d - i ) ,

and
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Proposition 2. g{0, 1} is the universal central extension of g{0, 1} and the Lie
brackets of§{0, 1} are

where

Proof

Φl? Φ2, Φ3

Clearly,

ΰ

are i

r i d1

ro> n.

n the

] — ™δm + t

centre.

m(m -
1 2

m3 — m

12

and we have

(n - m)ί/i,+π + n

= {n — m)l\ dn+n, (provided that m + n φ 0),

(dh + l\{d\,di

l -mT\ (d\, dί,) + m(m2 - 1 ) ^ , + m7\ (dj.di,)

(using ( **) wz'£/z n = 1)

m3 — m

We can verify the other two commutators similarly. So g{0, 1} is a Lie subalgebra
of g{0, 1} Θ ( Λ2g{0, 1}//). Moreover,

= [§{0,1}, 9{0, 1}]

= 9{0,1} ,

so g{0, 1} is the universal central extension of g{0, 1}. •
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5. Admissible Modules

Let ϊ) ^ g be a homogeneous Lie subalgebra and \) = Σ f c e 2 ί)/c- Then ί)0 is an
abelian Lie subalgebra of I). A f)-module V is called admissible if

(i) V = Σ^ 6 ί)* ^AJ where I)* is the dual space of ί)0, and

(ii) dim(Vλ) < oo for all λ e f)*

For g{x}, I. Kaplansky [Kap] and I. Kaplansky and L.J. Santharoubane [KS]
proved the following result:

If V = ΣkeZ <Evk is a g{x}-module such that

then there exists α, jβ G C such that

In this section we prove similar results for g and g{0,1}.

Proposition 1. Let V = £ f c e Z ^ ϋ * ^ β α δί^' l}-module such that

di t?k e Ct;m+fe, d^ i7fc e (Ct;m + λ,

and

d\.υk*0, d l i ^ + 0

/or αZZ fe G Z. T/ien ί/iere exists α, β, γ G C SMC/I t/iαf

(i) d^ ϋfc = (k + am + β)vm+k.

(ii) I / a Φ O , 1, ίften d^ ι>k = yvm+kfor all m,ke7L.

Ifoc = O,then

or

//a = 1, ί/ien

or

Proof, (i) follows from the result of Kaplansky and Santharoubane's quoted above,
(ii) First we note by assumption,

d\vk = (k + α + J ? H + 1 + 0, d i i ϋ t = (k - α + jSK-i Φ 0 ,
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for all keΈ.Soβ± ocφΈ. Assume that d%-vk =f(m, k)vm+1c. Then from

and

we obtain

f{n, k)f{m, n + k) =f(m, k)f(n, m + k)

nf(m + n, k) =/(n, k)(n + k + am + β) -f{n, m + k)(k + am + β) U

for all m,n,ke TL.
Let k = 0 in (1). Then

ί/(n,0)/(m,n)=/(m,0)/(n,m)

\ nf(m + n, 0) =/(«, 0)(n + am + β) ~f(n, m)(am + β), U

or

ί/(n,0)/(m,n)=/(m,0)/(n,m)

{ f(n, m)(αm + β) =/(n, 0)(n + am + β) - nf(m + n, 0) . U

Multiplying both sides of the second identity of (1) by (αfc + β)(a(m + k) + β) and
using the second identity of (3), we obtain

n(α(m + k) + β)(f(m + n, 0)(m + n + ak + β)-(m + n)f(m + n + k, 0))

= (α(m + k) + β)(n + k + am + β)(f(n, 0)(n + ka + β) - nf(n + k, 0))

- (ak + β)(k + am + β)(f(n, Q)(n + α(m + k) + β) - nf(m + n + k,0)). (4)

Let m = — 1, n = 1 in (4). Then

(a(k - 1) + £)(fc + 1 - α + y?)/(fc + 1,0)

= (ak + β)(k-a + β)f(k,0)

+ ((α(/c - 1) + β)(ak + β) + (1 - α)(£ - «))/(l, 0)

-(φ-l) + β)(ak + β)f(0,0). (5)

With /c = - 1 in (5), we get

(β-a- l)/(-1,0) - 2(β - 2α)/(0,0) + (β - 3α + 1)/(1,0) = 0 . (6)

Let m = k = 1, n = - 1 in (4). Then

(β + 3α - l)/(-1,0) - 2(/? + 2α)/(0, 0) + (/? + α + 1)/(1,0) = 0 . (7)

Combining (6) and (7) we get

We consider the following three different cases:

(a), α + 0, 1.
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In this case,/(0,0) = / ( l , 0) and (5) becomes

(α(fe - 1) + β)(k + l - α + β)f(k + 1,0)

= (αfc + β)(k - α + j8)/(fe, 0) + (1 - α)(j8 - α)/(0, 0) . (8)

If 0 φ aZ + β, then by induction on k and the fact β ± α φ Z, we get
f(k, 0) =/(0, 0) for all k l Then by (3), we get

/(m,n) =/(0,0) Vm,neZ.

Now suppose α/ + /? = 0, for some / e ΊL. Since jβ ± aφTL, / = 0, or / ̂  2, or

If / = 0, then j8 = 0 and (8) becomes

(fe _ i)(fe + 1 _ α)/(fc + 1, 0) = fc(fc - α)/(/c, 0) - (1 - α)/(0,0). (9)

With k = - 1 in (9), we get

2α/(0, 0) = (1+ α ) / ( - 1 , 0) - (1 - α)/(0, 0).

Hence

By induction on k we have

/(/c,0)=/(0,0)

for all /c ̂  1. With k = 2 in (9) we get

(3 - α)/(3,0) = 2(2 - α)/(2,0) - (1 - α)/(0,0).

By induction on k we have

(k - u)f(k, 0) = (k - 1)(2 - α)/(2,0) - (/c - 2)(1 - α)/(0,0) (10)

for all k Ξί 2. With n = —l,m = 2in the second identity of (3), we obtain

2α/(-1, 2) = (2α - l ) / ( - l , 0) +/(1,0)

= 2α/(0,0)

or

With m = — 1, n = 2 in the second identity of (3), we obtain

-α/(2, -1) = (-« + 2)/(2,0) - 2/(1,0) .

With these and by the first identity of (3), we get

-α/(2,0)/(0,0) = (2 - α)/(2,0)/(0,0) - 2/(0,0)/(0,0),

or

If/(0,0) + 0, then/(2,0) =/(0,0). Then by (10),/(fc, 0) =/(0,0) for all k e Έ.
If/(0, 0) = 0, then (10) becomes

(k - α)/(fc, 0) = (k - 1)(2 - α)/(2,0) (11)
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for all k ^ 2. Using this and letting n = 1, m = 2 in the second identity of (3), we get

2α/(l,2) = -/(3,0).

With this and the fact/(l, 0) = 0, and with m = 1, n = 2 in the first identity of (3),
we get/(2, 0)/(3, 0) = 0. Hence by (ll),/(2, 0) =/(3, 0) = 0. These imply f(k, 0) =
0 =/(0, 0) for all A: e Z. Now by the second identity of (3),

/(n,m)=/(0,0)

for all m,neZ.
If / ̂  2, then

αfe + j5 φ 0

for all k<l, and by (8),

/(/,0) = = / ( l , 0 ) = / ( 0 , 0 ) = .

From this and with m = I and n = 1 in the second identity of (3), we obtain
/(Z+l,0)=/(I,0).Thenby(8),

So f(k, 0) =/(0, 0) Vfc e Z. Now by the second identity of (3) we obtain f(n, m) =
/(0, 0) for all m φ /.

If/(0, 0) φ 0, multiplying both sides of the first identity of (3) by/(0, 0)" 1 =
f(n, oy1 =f(m, 0)-\we get/(m, ή) =/(n, m) Vm, neΊL. Hence

/(m,n)=/(0,0) Vm,neZ.

If/(0, 0) = 0, then/(n, m) = 0 for all m Φ /. From this and with m φ 0, k = I in
the second identity of (1), we get

nf(m + n, /) =/(n, l){n + / + am + β) . (12)

With n = 0 and / + am + j8 φ 0 in (12), we obtain /(0, /) = 0. With m + n = 0 in
(12), we obtain/(n, /) = 0 for all n > 0. Now (12) gives us nf(m + n, /) = 0 for all
n > 0 and all m e Z. So/(n, /) = 0 =/(0, 0) for all neZ.We have proved that

) VmeZ.

The case of / ̂  — 2 can be proved similarly. So for α φ 0,1, we have

(b). α = 0.
In this case jS ̂  2£, and (3) becomes

, n) =/(m, 0)/(n, m)

[ i?/(n, w) = (n + i?)/(n, 0) - nf(m + n, 0), l J

and (5) becomes

(k + 1 + j8)/(fc + 1, 0) = (fc + j8)/(fc, 0) + (1 + /»)/(!, 0) - βf(O, 0) . (14)
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By induction on k, we obtain from (14) that

> - / ( 1 0 |

Thus

With n = 1, m = - 1 in (13), we get

and

With n — — 1, m = 1 in the second identity of (13), we get

l ^ ^ o , o).

Combining above results, we get

(1 + β)f2(l, 0) - (1 + 2β)f(l, 0)/(0, 0) + βf2(O, 0) = 0 ,

or
(/(I, 0) -/(0, 0))((l + J8)/(1, 0) - /?/(0, 0)) = 0 .

Hence

or

If /(1,0) =/(0,0), by (15),/(fe, 0) =/(0,0) Vfe e Z. Then by (13),

/(n,m)=/(0,0) Vm,neZ.

If/(1,0) = T S Ϊ /(0,0), by (15),/(fc, 0) = ^ /(0,0) Vfe e Z. Then by (13), we obtain

(c). α = 1.
In this case βφΈ and (3) becomes

/(n,0)/(m,n)=/(m,0)/(n,m)

/(n,m)(m + j3)=/(n,O)(n + m + j3)-n/(m + n,O), l J

and (5) becomes

f(k + 1,0) =/(fe, 0) +/(1,0) -/(0,0). (17)
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With k = - 1 in (17), we get

/ ( - I , 0) = 2/(0,0)-/(I, 0). (18)

With n = — 1, m = 1 in (16), we get

and

Again, with n = 1, m = — l i n the second identity of (16), we get

M* ~ v = yzi M>0) - JZ

Combining above results, we have

(β - 1)/2(1,0) - 2βf(ί, 0)/(-1,0) + (1 + β)f\ - 1 , 0) = 0 ,

or
((/? - 1)/(1,0) - (β + l ) / ( - 1 , 0))(/(l, 0) - / ( - 1 , 0)) = 0 .

Hence

or

Then from (18),

or

If/(1,0) =/(0, 0), by (17),/(fc, 0) =/(0, 0) V/c e Z. Then by the second identity
of (16),

If/(1, 0) = ψ- /(0,0), by (17),/(/c, 0) = k-ψ /(0,0). Then by the second identity

f(n, m) =/(0,0) Vm,neZ.

(1, 0) = ψ- /(0,0)
of (16),

f(n,m) = m ^ +

β

β f (0,0)

D
Remark. It is easy to check that the action of g{0,1} on V given by (i), (ii) in
Proposition 1 indeed make V into a g{0, l}-module. Moreover, if y φ 0, then V is
an irreducible g{0, l}-module.
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Now we suppose that V = Σke% &vk is a g-module and satisfies the following
conditions:

dr

m-vke <Cvm+k for all m, k e Z, r e Z ^0, and d\ i;fc φ 0, dl x vk Φ 0 for all fc G Z.
Since F is a g{0, l}-module by restriction, by Proposition 1, there exists

α, β, y G C such that one of the following occurs:

(a) dl-vk = (k + ccm + β)υm+k, d°-υk = yvm+k ,

where β ± ocφΈ.

m + k -h β

where a = 0, βφZ.

o M _(k + m + β)y

k + β

where α = l,βφZ.

Claim 1. yΦO.

Proof. If 7 = 0, then d^vk = 0 Vm, fceZ. Comparing

[ 4 , 4*] Vk = 2ndn+n i;k = 2n(k + α(m + n) + β)vm+n+k

with

(44° - <tf <£) •!?* = - 4 ° 4 ^ = o,
we get

2n(k + α ( m -f n) + β ) m v m + n + k = 0 Vm, n , k e Έ .

This is a contradiction. •

Assume that dr

mυk =fr(m, k)vm+ki Vm, keZ,\freΈ ^o Since

(c) dι

m vk = (k + m + β)vm+k, d°m vkJ
k\m

+

+

β

β)yvm+k,

Id'm, d2

0-\υk = (-2m/ r + 1 (m, k) - m2/r(m, Λ))i;m+ik.

On the other hand

(dr

md2

0 - d2

0d
rm)vk = (/2(0, fe)/r(m, k) -/ r (m, k)/2(0, m + k))vm+k .

So we have

- 2 m / r + !(m, k) =/ r(m, fc)(m2 +/ 2(0, fc) - / 2 ( 0 , m + fc)). (19)

Since

= ((ί)n/r-i(m + «, fc) + C2)n2fr-2(m + n, k) + • • • + Cr)nrf0(m + n, k))vm+n+k .

On the other hand,

{dr

md°n - d°nd'm)vk = (/0(n, k)fr(m, n + k) -fr(m, k)fo(n,m + k))vm+n+k.
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So we have

{\)nfr^{m + n,k) + (r

2)n2f^2(m + n,k) + ---+ Qnrf0(m + n, k)

=/o(», k)fr(m, n + k) -fr(m, k)fo(n, m + k) . (20)

In particular, if r = 2 and m = 0, we get

fo(n, /c)(/2(0, n + k) -f2(0, k)) = 2n/1(n, k) + n2f0(n, k).

By Claim ί,fo(n, k) φ 0. So

^ n2 Vn,kεZ. (21)

Then from (19),

fr+ι(m,k)=fr(m,k)^f) ίfmφO. (22)

(a) fo(n, k) = y,

Claim 2. γ = ± 1 .

If y = 1, then/r(m, /c) = (fc + jS)r for all m, fe e Z, r e Έ ̂ 0

If γ = -1, then/r(m, fe) = ( - 1)Γ"x(fc + m + i?)r for all m, fc e Z, r e Z ^

/ In this case, (21) becomes

MO,n + k)-f2(O,k) = 2nik + «n + β)

 + n2. (23)

With k = 0 in (23), we get

With n 4- fc = 0 in (23) and replacing n by — n, we get

These imply that y = 1 — 2α.
Now (22) becomes

/ r + 1 ( m , f e ) = / r ( m , f e ) ^ j ^ ^ ι / m φ θ

By induction on r, we get

With m + n = 0 in (20), we have

( > / , - ! ( 0 , *) + (5)n2/ r_2(0, *) + ••• + ( > 7 o ( 0 , /c)

= (1 - 2α)(/ f(-n, n + k) - / , ( - « , Λ))

= (1 - 2a)2"r((/c + j5 + (1 - a)n)r -(k + β- an)'). (24)
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In particular, if r = 3 and k = 0, then

3n/2(0,0) + ln2fx{0,0) + «3/0(0,0)

= τAr(

Since n is arbitrary,

3 α 2 ) n 3 ) .

1 - 2α =/o(0,0) = γ^fX - 3α + 3α2).

So α = 0 or 1, and y = 1 — 2α = 1 or — 1.
If y = 1, then a = 0. With n = 1 in (24), we have

(ϊ)/,-i(0, fe) + (r

2)fr-Λ0, k) + + Ofo(0, k)

= ( Ϊ ) (*+^r" 1 + (ink+βr2 + + c).

By induction on r, we get

Hence

/r(m, fe) = (k + βf Vm,keZ, re

If y = — 1, then a = 1. With n = 1 in (24), we have

(5)/r-l(0, Λ) + (5)/,-l(0, fe) + + Q/o(0, fe)

By induction on r, we get

Hence,

(-l) '- 1(fe + m + y5)p Vm,feeZ, r e Z Ϊ O

We complete the proof of Claim 2. •

(b) fo(m, fe) = ^ ^ , /x(m, k) = k + β.

Claim 3. fr(m, fc) = ( - l ) ' " 1 ^ + m + β)r~\k + β).

Proof. In this case, (21) becomes

/2(0, n + k) - / 2 ( 0 , fe) = 2 n n + fe+^ + n2 . (25)

With fe = 0 in (25), we get
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With n + k = 0 in (25) and replacing n by —n, we get

These imply that γ = — 1. Hence (22) becomes

/ r + x(m, /c) = —(m + fc + β)fr(m, k) where m φ 0 .

By induction on r, we get

fr(m, k) = ( - l r H f c + m + j ? Γ ' ( £ + J?)

for all k, m e Z, m φ 0, and all r e Z ^ 0 Using this and with m = — 1, n = 1 in (20),
we get

(ϊ)/,-!^, k) + (5)/r_2(o, fc) + + (ϊ)/0(θ, k)

/o(l, fc - 1)

By induction on r, we obtain

/r(θ,fc) = (-i) '- 1 (/c + i δ r .

Hence we complete the proof of the Claim 3. •

An argument similar to the one in (b) shows us that y = 1 and gives us the
following claim.

Claim 4. fr(m, k) = (k + m + β)(k + β)r~ι.

Using the fact that g is generated by do, d?, d°-1? it is easy to see that if/r(m, k) is
defined as in Claim 2, Claim 3, and Claim 4, dr

m'Vk =fr(m,k)vm+k indeed gives
V a g-module structure. In summary, we proved the following proposition.

Proposition 2. Let V = Σ f c e Z <C*V Define d^vk:=fr(m,k)vm+k, for all m,keZ,
Z^o, where fr(m, k) are given by the following:

(i) /r(m, k) = (k + β)',

(iii) /r(m, k) = {-\y-\k + m + Z?)-"1^ + β\

(iv) /r(m, fc) == (k + i?)''"1^ + m + A where

Then V is a ^-module and dX-xvk φ 0, d\vk Φ 0. Conversely, if V = £ f c Ci;^ ΪS
α Q-module such that d^vke(Cvm+k and d-χVk + 0, d{vk + 0, then the ^-module
structure of V is given by one of(i\ (ii), (iii) and (iv).
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Remark. Let p(x) = J \ α^x1 G <C[X]. Then any g-module becomes, by restriction to
g<p(x)>, a g<P(χ)>-module. In particular, the g-module V of Proposition 2 gives rise,
by restriction, to a g<p(X)>-module. Precisely, we have g<p(X)>-modules

keZ

with dm(q(x))vk = g(fc + j8)ϋm + k,

with dm(g(x)K = -q(-k-m- β)vm+k ,

fceZ

with dm(q(x))vk := - q(-k - m - β)
m + K + p vm+k

and

where ^(x) e

with

m, /c G Z, and

keΈ

= q(k +
m + k + β

' k + β l

Proposition 3. Let βe<C\Z. Assume that kt + β,. . . , kr + β are all the distinct
roots ofp(x) which lie in TL + β. Then

U:=<Cvkί + + <Evkr

is the unique maximal proper Q^x)y-submodule in Vijβ, i = 1, 2, 3, 4. And Vitβ/U,
i = 1, 2, 3, 4 are all irreducible.

Proof. We prove only the case oiVlβ. The proof of the cases of Viβ i = 2, 3, 4 are
similar. First note that Q(p(x)yU = 0, so U is a trivial g<p(x)>-submodule of Vίtβ.
Now let K Φ 0 be a proper g<p(x)>-submodule in Vΐiβ and let 0 φ I =
Σ QiVi e X, where af φ 0, i = i l 5 . . . , is. If there exists fe such that p(ik + jS) φ 0,
then

0 Φ do(xjp(x))X = Σ a,(i + β)jp(i + β)υt.
i

for ally G Z ^ O Since

/ 1

ϊ'l + β Ϊ2 +

det

all t)it 6 K. Then

Φ 0 ,

dm(p(x))vik = p(ii + i?)t)m + ik € X V m e Z ,
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and K=Vlfβ. This is a contradiction. So we must have p(ί + β) = 0 for
i = i 1 ? . . . , is. Hence X eU. •

6. Highest Weight Modules

In this section, we discuss the highest weight modules of g and g{0,1}. We also
define a contravariant forms on Verma modules and give some necessary condi-
tions for these forms to be non-negative.

Recall that we have an imbedding of g into α^ by identifying dr

m with
ΣjJΈj+mj. If we define Um = Σ U Q ί f Γ ' ^ t h e n Um is identified as

Σj U + lYEj+mJ in an. Clearly, § = ΣmeΈ,reΈ^ C L - + C * B ^ s t r a i S h t c a l c u "
lation, we see that the commutators of g are

[14, *] = o .

Define the anti-linear map

such that

It is easy to check that ω is an anti-involution of α^. Particularly, ω|§ is an anti-
involution of g and

ω(I4) =

Let

and

Then

9+ = Σ $k> 9- = Σ
A;>0 k<0

g = g_ 0 g0 Θ g+ .

Definition. Let ί/(g) be the universal enveloping algebra o/g and A e g0*, the dual
space o/g0. Let J(A) be the left ideal o/[7(g) generated by g+

where we identify 1 wϊί/i the identity of ί/(g). M(^l):= U(a)/J(A) is called
a Verma module. Any quotient of M(A) is called a highest weight module of g of
highest weight A.
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By

where

the Poincare-Birkhoff- -Witt

.L_";

theorem,

i . . . Lι—\

:k ,., 1

M(A) has basis

. . .L-ΐv+ ,

<j<n neZ

and i;+ is the image of 1 in M(A).
Note that [LQ, L*] = rcL*, for all n e Z and s e Z ^ . W e decompose M(yl) as

a sum of eigenspaces of LQ in the following.
For any μeC, define

i.e. Mμ is the eigenspace of LQ of eigenvalue μ.
Since

L,1 L Lk"'Sn L , k l Λ L,klySιv

= (λ — (W5Π -f (n — l)5 ( n _ x) + * -f Si))!,-"',,1 . . . L-n* . . . L-'i . . . L- 1 ' ! 1 !^ ,

for any basis element of M{A\ where Λ, = A(LQ), it is easy to see that M(A) =
Σ * > o M λ k a n d M* = (Cv+ -If N - M(A)is a proper §-module, then NnMλ = 0.
Hence M(A) is indecomposable and contains a unique maximal proper submodule
N(A). Let F(Λ) := M(A)/N(A). Then F(yl) is the unique irreducible highest weight
module of highest weight A. Hence we proved the following proposition.

Proposition 1. (i) M(A) — Σkez Mλ~k, Mλ — <£v+, andM(A) is indecomposable.
(ii) M(A) has a unique pfoper maximal submodule N(A) and V(A) =

M(A)/N(A) is the unique irreducible highest weight module of highest weight A.

Define a total order < on {Lr

m\mGΈ, reZ^o}u{Φ} as follows:

14 < Ll
iff

m <n
or

m — n, r < s .

And

Lko<ϊ<LΪ VfceZ.

Then an element of L/(§) is a linear combination of elements of the form

JR = LkLhL
klJ2. . . h\(L°oγ°. . . {Lk

0)HlU\. . . h\ , (1)

where ί Λ Λ ^ ^ L^Λ < Lg, φ < LJJ ^ ^ L£. For w e M(^l), define <u) to
be the coefficient of the highest weight vector υ+ in the expansion of u with respect
to M(Λ) = Σ/ceZ^ Mλ~Λ If we extend the anti-involution ω of § to ί/(§) by
α)(iy) = ω(Y)ω(X)9 then we have (ω(R)v+ > = <Kt;+> provided that A{Lk

0) e 1R
for/c = 0,l,2...andyl(φ)GlR.

Proposition 2.

(i) v45swmβ ί/iαί A(L%)e 1R/or all keZ^0 « ^ ^l(Φ)eIR. Then M(A) carries
a unique contravariant hermitianform < , > such that (v+,v+y = 1;

(ii) <Mλ"Λ M λ " f > = 0 ifk + /;
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(iii) fcer{ , > = N(Λ). Hence V(Λ) carries a unique contravariant hermitian
form such that (υ, v} = 1 and this form is non-degenerate, where υ = v+ + N(A).

k k

Proof (i), (ii). For any monomials P(v+) = Lljι. . . Lljsv + and Q(v+) =
LιLh . . .LlLitv+, define <P(u+),β(u+)>:= <ω(P)β(t?+)>. This is a well defined
contravariant hermitian form on M(Λ) (see [S, KR or MoPi]). Moreover,
<P(Ό+), Q(v+)} = 0, if Ί +j2 + - + ; s Φ ix + i2 + • + it.

(iii). By definition,

kerζ ,-} = {ueM(Λ)\(u,w} = 0 VweM(Λ)} .

Clearly fcβr< , > is a proper submodule of M(λ). Moreover, if V ^ M(A) is
a submodule and P(v + )eV, Q(v+)eM(A), then ω(β)P(i7 + )e V. So if F is
a proper submodule of M(Λ), then (ω(Q)P(v+)} = 0, i.e. <P(t?+),β(t?+)> =0.
Hence P(v+) e ker( , > and V ^ fcer< , >. So we proved that

D

An important question is when < , > is non-negative on M(A\ hence positive
definite on V(A). For Virasoro algebra g{x}, D. Friedan, Z. Qiu, and S. Shenker
[FQS], and R. Langlands [L] gave a necessary condition for the corresponding
form < , > on Verma module to be non-negative. P. Goddard, A. Kent and D.
Olive [GKO] proved that the condition is also sufficient. For §, even though we
still do not know examples for which <•,•> are non-negative on M{A\ we can
prove the following necessary condition. First, for c e IR, h = (h0, hx, h2,. . .) G R°°,
we define an infinite real matrix A(h, c) as follows:

where

Clearly,

Aij(h, c) = Aji(h, c).

Proposition 3. Let A e g0* be such that ht = A{V0) eWLVi eZ^o and c = Λ($) e IR.
Then a necessary condition for < , > to be non-negative on M(A) is that A(h, c) is
positive semidefinite.

Proof For (α0, fli, . . . , ar) e lR r + x, if < , > is non-negative, then

, 1 = 1

i.e.

, Σ Σ
i=ίj=l
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Since

This is

or

L. Chen

i + j
J Ί _ y ι +

- i J — 2-r I /
i = o \ *

o J

••• α r 0 . ..)-4(Λ, c)

/α°\

0
\ :'

So A(h, c) is positive semidefinite.

Finally, we consider the highest weight modules of g{0,1}. Take

D

as a basis. Then

and

§{o, 1} = Σ
meZ

Σ
meZ

[ L i , L,}] = (π - m)Li + M - — (m3 + 2m)5m+M>oψ ,

Let

Then

A m = — L m — — ό m > o Φ j

Φi = — Φ -

[Lm,Ln~\ =(n-m)Lm+n
m —m

12 (

= -nAn+n,
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Let

and

Then
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ω(Lm) = L_m,

9{0, 1} +

β{0,l}-

§{0, l}o

ω(Am) = A-

m>0

= Σ <CLm +
m<0

m,

Σ
m>0

m<0

I
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g{0,1} = g{0,1}+ Θfl{0, l }oθg{0,1}- .

For A e g{0, l} 0*, as in the case of g, we have Verma module M(A\ the unique
maximal proper submodule N(Λ) and V(Λ):= M(A)/N(A). Moreover, if

h:=Λ(L0), a:=Λ(A0), c:=

there exists a contravariant hermitian form <-,-> on M(A) such that

Proposition 4. Lei

§{0, 1} =

ft = Λ(L0), α = A{A0), C =

T/ien α necessary condition for < , > ίo foe non-negative on M(A) is

(i) (M^(0,l),

or

(ii) (ft, c) = (/ij;5, cm) m ^ O ,

wftere

, s = ((m + 3)r - (m + 2)s)2 - 1

4(m + 2)(m + 3)

6

(m + 2)(m + 3) = = =

And for any given (h, c) satisfying (i) or (ii),

Proof The conditions (i) and (ii) on (h, c) are given by [FQS] and [L]. For any
given pair (/z, c) satisfying (i) and (ii), since Vα e IR,

L_1 + aiA-Jυ+y ^ 0 ,
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we have

2h + 2αα + <x2c ̂  0 ,

or

2αα ^ - 2h - oc2c .

Thus

a ^ — ^ Vα G IR > 0

α 2
a<> ^ VαeR < 0 .

α 2
Define/(α):= - 5 - f and let

We get α = ± ̂ /ψ and

D
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