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Abstract: On the basis of generalized 6j-symbols we give a formulation of topologi-
cal quantum field theories for 3-manifolds including observables in the form of
coloured graphs. It is shown that the 6j-symbols associated with deformations of
the classical groups at primitive even roots of unity provide examples of this
construction. Calculational methods are developed which, in particular, yield the
dimensions of the state spaces as well as a rather simple proof of the relation,
previously found by Turaev and Walker for the case of Uq(sl(2, C)), between these
models and corresponding ones based on the ribbon graph construction of
Reshetikhin and Turaev.

1. Introduction

In ref. [TV] a novel combinatorial approach to 3-dimensional topological quan-
tum field theory was proposed. Its basis is the observation that the 6j-symbols of
Uq(sl(2, C)) obey the symmetries of a tetrahedron and satisfy identities which may
also be interpreted geometrically in terms of glued tetrahedra and which lead to the
possibility of associating state sums (partition functions) with 3-dimensional tri-
angulated manifolds which are independent of the triangulation, i.e. they are
topological invariants.

This approach was generalized in [DJN, D] to a large class of algebras
(replacing Uq(sl(2, C))) with associated generalized 6j-symbols, thus leading to
a class of (unitary) 3-dimensional topological quantum field theories satisfying all
the standard properties (see [Wi, At]). Similar generalizations also appeared in
[FG and T].

In the case of Uq(sl(2, C)) a second generalization was introduced in [KS] by
including observables in the form of coloured graphs on the boundary or the
interior of the manifolds. This leads to effective calculational methods which were
used to calculate e.g. the dimensions of the state spaces in this model. Invariants of
links and graphs in 3-manifolds had previously also been considered in [T2].

* Supported by DAAD and DFG, SFB 288 "Diίferentialgeometrie und Quantenphysik"
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In this paper we combine the approaches of [DJN, D] and [KS] by providing
a simple geometric interpretation of the state sums introduced in [KS]. This leads
to a simplification of the discussion in [KS] in a more general setting, including the
case of 6j-symbols associated to quantum deformations of an arbitrary classical
group.

As an application we calculate the dimensions of the state spaces in the general
case in terms of the fusion matrices and we give a proof that the partition function
Z(M) associated to a closed 3-manifold M is related to the invariant τ(M)
introduced by Reshetikhin and Turaev [RT2] in terms of ribbon graphs by

Z(M) = |τ(M)| 2 (1.1)

for quantum deformations of the classical groups at primitive even roots of unity.
For the quantum group Uq(sl(2, C)) alternative proofs of Eq. (1.1) were given in [Tl
and Wa].

The paper is organized as follows. In Sect. 2 we formulate a general system of
axioms for 6j-symbols appropriate for our construction. In Sect. 3 we construct the
state sums Z(M, G^) where M is a 3-manifold and G is a graph on the boundary
dM whose lines are coloured by labels indicated by x, and we discuss the geometric
meaning of Z(M, G?). Section 4 is devoted to an analysis of the properties of
Z(M, Gx\ such as its behavior under cutting of handles or removal of tubes in M.
This analysis yields the desired calculational tools which are applied in Sect. 5 to
evaluate the dimensions of the state spaces and to prove Eq. (1.1). In Sect. 6 we
establish the properties of 6j-symbols stated in Sect. 2 in the case of a quantum
group by ribbon graph techniques. In addition, we prove that the state sum for
a planar graph coincides with the corresponding ribbon graph invariant of [RT1].

2. Abstract 6j-Symbols

In this section we list the defining properties of the abstract 6j-symbols to be used in
the subsequent construction.

Let / be a finite set with involution * : / -• I(i h-> i*) and a distinguished
element 0 = 0*. The elements in / will be called colours. To each triple of colours
(i,j,k)Gl3 there is associated a finite dimensional complex vector space Vy of
dimension JV*-, and we assume there exist canonical isomorphisms

Vk

u*V%.9 V%^{Vl)\ (2.1)

where (Vk

u)* denotes the dual vector space of V\h and

Vk

u*Vk

Jt. (2.2)

In the following these isomorphisms will be used without further notice to identify
these spaces. Moreover, we assume that

N?j. = δu . (2.3)

In [DJN] a rather general framework for the construction of Hubert spaces
V)j fulfilling these properties was given, where I labels a set of irreducible repres-
entations of an algebra satisfying certain properties. The isomorphism (2.2) (see
[DJN, Sect. 5]) is, however, not needed for the construction of a topological
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quantum field theory for manifolds without graphs, but is crucial when graphs with
vertices of order 4 are present, as will be seen below.

The first isomorphism in (2.1) allows us to associate a vector space with each
coloured oriented 2-simplex (triangle) as follows. Let σ2 be an oriented 2-simplex
with boundary links σ\,σ\,σl decorated by arrows as indicated in Fig. 1, where
the orientation of σ2 is supposed to be clockwise. A colouring of the links in σ2 is
a mapping;\σ\ \-+ j(σf) e /, i = 1,2,3. Given a colouring; of σ2 we associate with
(σ2, j) the vector space

V{σ\j) = V^)j(σϊ) . (2.4)

If an arrow on a link σ] is reversed we replace in this definition j(σj) byj*(σ}).
The first isomorphism in (2.1) shows that this definition is invariant under rotations
of the triangle in R2 and the second shows that the vector space associated with the
same triangle with reversed orientation is the dual of the original one.

Next, we assume the existence of a mapping i h-* ωt from / to C\{0} such that
ωo = 1, ωl = ωl* and

(2.5)

In [DJN] ωf was denoted by Ft

 x and in the case of a quantum group, to
be discussed later, it equals the ^-dimension of the representation i up to a sign.
The assumption ωl = ωl* then expresses the reality of the ^-dimension while the
first relation in (2.5) reflects the multiplicativity of the ^-dimension w.r.t. tensor
products.

Finally, to each ordered 6-tuple (i,j, k, I, m, n)el6, is associated an abstract
6j-symbol,

i j k

I m n
(2.6)

By the association of vector spaces with coloured 2-simplexes discussed above
we see that the tensor product in (2.6) may be associated to the boundary of the
coloured tetrahedron depicted in Fig. 2.

In order that the 6j-symbol in (2.6) define a unique vector associated to the
tetrahedron it must be invariant under the tetrahedral symmetry group, i.e.

(2.7)i j k

I m n

fc* i j *

n I m

I m* fe*
i j * n*

Fig. 1. An oriented 2-simplex
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Fig. 2. An oriented, coloured tetrahedron

In addition, we shall assume that

i j k

I m n m* /* n*
(2.8)

which implies that reversal of orientation of the tetrahedron is equivalent to
applying the involution * to all labels.

Besides the symmetry relations (2.7-8) the 6j-symbols are assumed to satisfy the
following four relations, where products of 6j-symbols mean (unordered) tensor
products together with contraction w.r.t. mutually dual pairs of vector spaces
associated with certain pairs of factors:

1) Orthogonality:

i j k

C B A

i j k

C B A' JC '
(2.9)

where

/ m n

2) Biedenharn-Elliott relations:

i* j * k*

j * m* n*

i j k

I m n
i n m

D AC

J l n

D C B

i j k

B A C

k I m

DAB
(2.10)

3) Racah identities: There exists a mapping fc ι-> qk from / to C\{0}, such that

Qo = hqk = Qk* and

i j k

ABC

i A D

j B C

j ί k

A B D
(2.11)

Moreover, we assume that the replacement of all qt in (2.11) by q , x leads to another
identity.

4) Considering \V*A as a vector in VfA ® (F&)* and identifying V\o, i e I, with
C according to (2.3) we have

ϊ A' B

A* i 0

The 6j-symbols defined in [DJN] with the notation

= ω:
i j q

I k p

(2.12)

(2.13)
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for the quantum groups obtained as deformations of the universal enveloping
algebra ΪJqg of the classical semisimple Lie algebra g, were shown to satisfy the
assumptions (2.7), (2.9) and (2.10) if q is an even primitive root of unity and / is
a certain set of irreducible representations of Uqg. These were shown to be sufficient
for the construction of a topological quantum field theory for manifolds without
graphs. The additional relations (2.8), (2.12) and Racah identities will turn out to be
of importance for the inclusion of graphs with vertices of order 4. These relations
were not discussed in [DJN], but they are relatively easy to establish in the case of
quantum groups by the methods developed there, with

qf = i(c)

for each representation i e /, where c is a certain central element in the quantum
group (acting as multiplication by a scalar qf, since i is irreducible). In fact, it is
straightforward to check (2.12) and its is possible to see that (2.8) follows from the
Racah identities.

In order to establish the Racah identities one defines the braiding operator

Br

by setting its matrix element to be

09 y a

(2.14)

for α e Vk

p, β e V% δ e Vk

jψ y e Vq

ih where the RHS is an intertwiner between k and
k and hence a number, and, if Vκ denotes the representation space of i,
Rji2' Vj <g> Vi -> Vi ® Vj is given by ([Dr, DJN, D])

where σ(x <
matrix.

= y

(2.15)

for x e Vj9 y e Vt and R e Uqg (x) Uqg is the standard R-

Defining the isomorphism V\ } ~ Vk

n by

we have β = β and one finds that

i I q

j k p

(2.16)

(2.17)

which is the vector that will be associated to a 4-vertex (or rectangle) (see
Fig. 6 below).

Using the definition (2.14) it is quite easy to verify Eq. (2.11) by using complete
reducibility of tensor products of representations in / and the properties of R
(Eq. (5.4) in [DJN]). Replacing in (2.16) qt -> qΓ1 and R -> R'1 we obtain in
a similar way the second Racah identity.

In Sect. 6 we describe an alternative method of establishing the properties of the
6j-symbols.
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3. State Sum for Manifolds with Coloured Graphs

Let M be an oriented compact 3-manifold with triangulation X whose 1-simplices
(links) are assumed to be decorated by arrows in some arbitrary way, and let
y.Xsσ1 h-> j(σ1) e / be a colouring of the 1-simplices in X. Furthermore, let G be
an oriented graph on the boundary 3M, i.e. a finite 1-dimensional simplicial
complex without boundary which is compatible with X, i.e. each edge (or line) of
G consists of a sequence of 1-simplices of dX. We assume that G has only 2-, 3- and
4-vertices. The 4-vertices can be of two types:

which we shall call inverse to each other. Orientations of links on opposite sides of
2- and 4-vertices are assumed to coincide. A colouring of G is a mapping x from its
lines (maximal connected sets of links joined by vertices of order 2) such that the
colours on opposite sides of 4-vertices are identical. The graph G coloured by x will
be denoted by G*.

We associate now with (M, X, G) a new triangulated pseudo-manifold
(MG, XG) as follows: Let %> = {cu . . ., cn) denote the set of connected components
of dM\G, which we shall identify with new additional vertices. For each triangle
σ2 G Cι we glue on to dM a new tetrahedron, which has base σ2 and an opposite
vertex cf. Furthermore, we glue these tetrahedra together along triangles, which
they share, i.e. for two triangles σ?ec ( and σ\eci with σ\cλσ\ = \_AB~\ the
corresponding tetrahedra are glued along the triangle (ABci) (see Fig. 3).

Next, for each link σ1 e dX, contained in a line of G, and which is contained in
the boundaries of the components, ch q in # (Fig. 4), we glue on a tetrahedron
along the two triangles containing σ1 and ch respectively Cj, and continually glue
along common triangles of the added tetrahedra. Moreover, we use the orienta-
tions of M and G to fix, by a suitable convention, an arrow on the link (ch cj) (see
Fig. 4 where, say, the tetrahedra are assumed to be oriented such that positive
normals point outwards). If, in addition, the line in G is x-coloured, the link (ch cj)
is likewise coloured by x.

To the simplicial complex obtained in this way we glue for each 3-vertex u of
G a new tetrahedron which contains the vertices {u, ch cj9 ck), where ch Cj, ck are the
components in ^ sharing u (Fig. 5).

Fig. 3. Gluing tetrahedra onto the boundary triangles of M in c(
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Fig. 4. Gluing a tetrahedron along the boundary of two connected components c{ and c,

Fig. 5. Gluing a tetrahedron at a 3-vertex u of G

This finishes the construction of the triangulated pseudo-manifold (MG, XG). Its
principal feature is that it contains (M, X) in its interior except for the original
4-vertices in G, which are now 4-vertices in dXG. It is convenient to view the four
triangles in dXG sharing such a 4-vertex v as making up a rectangle with υ as center.
Then dXG consists of a set of triangles and rectangles, namely one triangle for each
3-vertex in G and one rectangle for each 4-vertex in G, and two of these share a link
if and only if the corresponding vertices in G are connected by a line. In this sense
the links and vertices of ΘXG constitute a graph that equals the dual of G c= dM.

As noted above a colouring x of G induces a colouring of the links in dXG and
the orientation of G (and M) induces a decoration of those links by arrows. We
denote (MG, XG) with this extra structure by (M G χ , XGJ. Thus by colouring the
interior links of X G ? one obtains a full colouring of XG. We then associate with
(M, Gx) the state suίn

Z(M, Gx) = Z ( M G J , (3.1)

where Z ( M G J is defined in analogy with [TV, DJN] as follows: Given a decoration
by arrows as well as a colouring; of the interior links of XGχ9 a factor ω~2 is
attached to each interior vertex σ° e intXG χ, a factor ωf to each ί-coloured interior
link σ1 e int X G χ and a 6j-symbol to each tetrahedron σ3 e XGχ as described above.
Finally, to each "coloured rectangle in dXGχ, as depicted in Fig.6, whose orientation
is assumed to be clockwise, we attach the braiding operator

y A D

x B C
Vc

By* ( VA

Cx* (3.2)
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Fig. 6. Coloured rectangle on the boundary of XG

For the inverse 4-vertex the braiding operator can be obtained from (3.2) by
replacement of all qι by q^1. We then form the product of all factors so associated
to XGχ, contract w.r.t. all interior triangles as well as the triangles inside the
rectangles in dXGχ and sum over all colourings; of the interior links of XGχ, thus
obtaining the desired vector

Z ( M G J e F ( 5 M , G ? ) , (3.3)

where V(dM, G*) is the tensor product of vector spaces associated to the coloured
triangles in dMGχ, which are dual to 3-vertices in G ?. Note that Z(MGχ) is
independent of the initial distribution of arrows on the interior links in XGχ, since
i h-» i* is a bijective mapping on I.

This definition of Z(MGχ) is identical to the one in [DJN] except for the issues
concerning 4-vertices in G and that no factors ω " 1 are associated to vertices in
dXGχ. By the same arguments as in [DJN] it then follows that Z(MGχ) is indepen-
dent'of the interior of the triangulation XGχ as a consequence of the identities
(2.9-10). In particular, it is independent of the triangulation X of M and is
invariant under isotopy changes of G*, since the latter clearly only affect the
interior of XGχ.

In general M G is not a manifold. For example, for empty G one point ct will be
added to X for each connected component of dM and the points corresponding to
components not homeomorphic to S2 will be singular points of MG. On the other
hand, if G is sufficiently "large" then MG will be homeomorphic to M. A particular
graph of this type on a connected surface Σ of genus g ^ 1 may be obtained by first
choosing a homology basis au . . ., ag, bu. . ,9bg whose representatives have one
point P in common, and then deforming it such that P is separated into Ag — 2
vertices of order 3. We shall adopt the notation of [KS] and call this graph GΣ. The
dual graph of GΣon Σ is easily seen to yield a proper triangulation1 of Σ and MG*
is obtained from M, dM = Σ, by gluing on a cylinder Σ x [0,1], as may be easily
verified.

In general, for a graph G without vertices of order 4 such that MG is homeomor-
phic to M, the partition function Z'{M) of [DJN] is given by

Z\M) = ω~NG®X_Z{M, G ? ) , (3.4)

1 We use here a more general notion of triangulation than the standard one, in that we allow
identifications of subsimplices of co-dimension > 1 in a simplex of maximal dimension.



Topological Quantum Field Theory and Invariants of Graphs 403

where NG is the number of connected components of dM\G and the triangulation
of dM is given by the dual graph of G. In particular,

Z'(M)eV(dM,G), (3.5)

where

V(dM,G) = ®x_V(dM,G*), (3.6)

is the vector space associated to the surface dM triangulated by the dual graph of G.
Given a closed, compact, oriented surface Σ, a graph G in Σ and a compact

oriented 3-manifold M with dM = Σ, we call G a canonical graph in Σ if MG is
obtained from M by gluing on a cylinder Σ x [0,1] along Σ. Clearly, this property
only depends on Σ and G but not on M. In particular, a graph G on Σ with no
vertices of order 4 is canonical if and only if its dual graph in Σ yields a triangula-
tion of Σ.

The correspondence (3.4) allows us to rephrase results in [DJN] in terms of
manifolds with graphs. Of particular interest is the gluing property (axiom (3) of
[At]) whose triangulated version holds by construction for Z'(M) (see [DJN]) and
may be reformulated as follows.

Theorem 3.1. Let M be a (connected or disconnected) oriented compact ̂ -manifold
with dM = Σx uΣ2 u Z u I * (disjoint union), where Σu Σ2, Σ, 2"* are closed oriented
surfaces such that there exists an orientation reversing diffeomorphism F:Σ -» Σ*.
Moreover, let G ^ £ Σx and G ^ £Ξ Σ2 be arbitrary coloured graphs and let G ^ Σ
be a canonical graph without vertices of order 4 and GF its image in Z* by F. Then, if
MΣ denotes the 3-manifold obtained by gluing M along Σ and Σ* by F, we have

x I c

Π ω ^ Z ^ G ^ u G ^ u G . u G ^ , (3.7)

where the product on the RHS is over lines I in G, and ( ) G χ indicates a contraction
w.r.t. all pairs of vector spaces associated to coloured 3-vertices in Gx and Gζ.

This theorem generalizes Theorem 7.1 of [KS] and is identical to Eq. (4.6) in
[DJN] in the case that G1 and G2 are canonical graphs, but its validity for
arbitrary G1 and G2 follows, as in [DJN], immediately from the construction of
Z(MGχ), and its independence of the interior of the triangulation XG of MG.

It should be noted that we have not exhibited the dependence of
Z'(M) = Z'(M, G) on G in Eq. (3.4) for the following reason [TV]. Let G be
a canonical graph in dM = Σ without 4-vertices as in Eq. (3.4), and consider the
cylindrical 3-manifold Σ x [0,1] oriented such that we may identify Γ* with Σ x {0}
andΣ with Σx{l}. Then

P ( Σ t G ) ΞΞ Z'(Σ x [0,1], G x {0}, G x {1}) e V(Σ, G)* ® V(Σ, G)

~ Hom(F(Γ, G), V(Σ, G)).

Since MuΣ(Σ x [0,1]) is homeomorphic to M it follows from Eq. (3.7) that

Z'(M, G) = P{Σ,G)Z'(M, G) G P{Σ,G) V(Σ, G) = V'(Σ, G) .

Here, we note that factors ω 2 in Eq. (3.7) associated to the coloured lines in G? are
included in the definition of the bilinear pairing of V{Σ*9 G) and V(Σ, G) (see Eq.
(3.30) in [DJN]).
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It follows, moreover, from Eq. (3.7) (see Sect. 4 of [DJN] for details) that
P{ΣtG) is a projection and that V'(Σ, G J and V'(Σ9 G2) for two arbitrary canonical
graphs in Σ may be consistently identified by the mappings

P(Σ,GI)ΛΣ,G2) = Z'(Σ x [0,1], Gx x {0}, G2 x {1}) e V{Σ, Gt)* ® V(Σ, G2)

c Hom(F(Γ, Gx), V(Σ, G2))

by which the vectors Z'(M, G J and Z'(M, G2) are also identified.
In force of these identifications we thus obtain the vector space

VΣ ~ V'(Σ, G) c V(Σ9 G)

containing the vector

Z'{M) = Z'(M, G)

for all 3-manifolds M with dM = Σ.
By Eq. (3.7) and the fact that P{Σ,G) is a projection we have

dimF Σ = trP^G) = Z'(Σ x S1) = Z(Σ x S1) . (3.8)

For later use we note the following simple lemma, valid for any compact
oriented 3-manifolds M, M l 5 M 2 .

Lemma 3.2. (i) / / D 3 ^ intM is diffeomorphic to the 3-ball, then for any coloured
graph G* c 5M, we have

(i) Z(M, G») = ω " 2 Z ( M \ D 3 , G»). (3.9)

(ϋ)
3 = ω~2, Z ( D 3 ) = 1 . (3.10)

(iii) If M* denotes M with the opposite orientation, then

Z(M) = Z(M*). (3.11)

(iv) IfM is the connected sum ofMx and M2, i.e. M = (M 1\D?)uS2(M 2\Di), where
D\ C intMi and D\ ^ intM 2 are diffeomorphic to the 3-ball and their boundaries
S2 are identified, then

Z(M, G ^ u G*J = ω 2 Z(M 1 ? G^) ® Z(M 2 , G^) (3.12)

/or arbitrary coloured graphs G ^ c 3MX and G2^ ^ δM 2 .

Proof.
i) follows since MG = (M\D3)G, but no factor ω~2 is associated to the vertex

c corresponding to the component 3D3 c δ(M\D3) in the definition of
Z(M\D3, Gx).
ii) By triangulating S3 by two tetrahedra the first relation follows from (2.9) and

the definition of ω2. The second relation then follows from i) applied to M = S3.
iii) follows from (2.8) since all colours are summed over and i ι-> i* is a bijective
mapping from / to I.
iv) We first note that M is diffeomorphic to

U (S2x[<U]) U (M2V>3

2). (3.13)
S2x{0} S2x{l)
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Next we note that the graph G in S2 consisting of two 3-vertices connected by three
lines is canonical since its dual yields a triangulation of S2 by two triangles. We can
obtain a triangulation of S2 x [0,1] such that S2 x {0} and S2x{l} are both
triangulated by two triangles by taking two prisms, each triangulated in a standard
fashion by three tetrahedra, and gluing them together along their sides. Using this
triangulation a straightforward calculation using (2.9) and (2.5) yields

Z(S2 x [0,1], Gy x {0}, G, x {1}) = ω 2 ^ ® 1 ^ , (3.14)

where y = (yu y2,y*) and z = (zuz2,z3) are the colours of the lines (suitably
oriented) in G x {0} and G x {1}, respectively. Applying Eq. (3.7) to (3.13) the result
follows from (3.14). fj

We close this section with some remarks on a few concepts that will be of
importance in the following (see also [KS]).

An interior graph & in a 3-manifold M consists of 1) a core c(^) which is a finite
unoriented graph embedded in intM, 2) a tubular neighborhood 5> of c(^) in intM
and 3) an oriented graph G in d&Ίg as introduced at the beginning of this section. If
G is coloured by x we say that ^ is coloured by x and denote the coloured interior
graph by ^ ? . A priori there need not be any connection between c(^) and G,
although this will be the case in the applications below. As a particular example we
mention the case in which each component kt of c(^) is homeomorphic to the circle
S1 and the corresponding component y{ of 9~<§ contains exactly one component U
of G and k is homotopic to kt in &Ί. In this case ^ is a framed link in M, and it will
be denoted by 5£.

For a compact oriented 3-manifold M with an interior coloured graph ^ as
above we define

Z{M^X) = Z{M\SΓ^GX). (3.15)

Of course, this definition can be generalized to the case where in addition a graph is
present in dM.

Of particular relevance for the following is the concept of a meridian and of left-
and righthanded lines. Assume that the 3-manifold M contains an empty tube
T = S1 x [0, 1] c dM, i.e. M can be obtained from a 3-manifold M by removing
a cylinder C diffeomorphic to D2 x [0,1], where D2 is the two-dimensional unit
disk. A meridian on T is an oriented circle m = S1 x {p}, p e ]0,1[.

A 3-manifold M containing a set of empty tubes Tm, T'm; . . . with meridians
m, m',. . . will be denoted by M(Tm, T'm.9. . .). Given a graph G on dM the lines in
G may over- or undercross the meridians m, m',. . ., such that these together with
G constitute a graph G u w u w ' u , . . . For each colouring x of G we may thus
define ([KS,T2])

Z(M(ΓM, Tm.9. . .), G,) = Σ ^ ^ T ' • Z ( M ' G»umβum;,u . . . ) , (3.16)

where the sum is over colourings of the meridians m, m',. . ..
A line / in G which intersects a meridian m exactly once is called left-,

respectively righthanded w.r.t. m if / over-, respectively undercrosses m. For the
particular case of a framed link JSf as defined above the corresponding left-,
respectively righthanded link J5fL, resp. <SfR, is obtained by introducing a meridian
mf on each of the tubes ^ such that each component lt is left-, respectively
righthanded w.r.t. mf. The state sum associated to this left, respectively righthanded
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framed link with colouring x is then by definition given by (3.16) with the ^
replacing Tm, T'm.,... and will be denoted by Z(M, (JS??)L), resp. Z(M, (&X)R).

The main reason for introducing the definition (3.16) is illustrated by the
following lemma, which asserts that filling an empty tube is equivalent (up to the
factor ω 2) to introducing a meridian on the tube.

Lemma 3.3. Let M be a compact oriented 3-manifold that contains a cylinder
C = D 2 x [0,1], with D2 x {0,1} c dM, and let M denote the manifold obtained by
removing C from M. Then

Z(M, Gx) = ω2Z(M(Tm), Gx) (3.17)

for any coloured graph G* c dM such that Gn(D2 x {0,1}) = 0 and where Tn

denotes the tube dD2 x [0, ϊ ] £ dM with meridian m.

Pictorially (3.17) may be written as

-Σ 2

ω
a

Proof This follows simply by realizing that the cylinder C is reinserted automati-
cally when MGκjm is constructed. More explicitly, for a given triangulation X of M,
MGχ u ma equals MGχ with a triangulation in which the (interior) link connecting the
vertices ct and c 2 associated with the components in 3M\(Gum) on either side of
m has a fixed colour a, as indicated on the following figure.

Thus inserting the factor ω 2 and summing over a one obtains Z(MGχ) according to
its definition. •

On the other hand the following result shows that a handle in M can be cut
without changing the state sum.

Lemma 3.4. // the 3-manifold M contains a cylinder C = D2 x [0,1] with
3D2 x [0,1] c dM, and M denotes the manifold obtained by removing C from M,
then

Z(M, Gx) = Z(M, Gx)

for any coloured graph Gx £ dM such that Gr\(dD2 x [0,1]) = 0.

(3.18)



Topological Quantum Field Theory and Invariants of Graphs 407

Proof. By choosing a triangulation X of M such that the handle C can be cut along
a single triangle t (with dt c dD2 x ]0,1[), the result follows from Eq. (3.14) by an
argument essentially identical to the one used in the proof of Lemma 3.2. •

Whereas Lemma 3.4 deals with the cutting of handles disjoint from G the following
lemma can be applied to handles traversed by a single line in G.

Lemma 3.5. Let M be a compact oriented 3-manifold and G* a coloured graph in dM.
If an x-coloured line L in G* does not separate two different components in dM\G and
there exists in dM a contractίble loop in M intersecting L {transυersally) only once,
then

Z(M, G J = 0 when x + 0 . (3.19)

Proof Let X be a triangulation of M and denote by A the vertex in XG correspond-
ing to the component of dM\G containing L in its boundary. Then there is an
x-coloured link / in XG (dual to L) whose end-points both equal A. The tetrahedron
in XGχ containing I and an α-coloured link in L as opposite links then looks as
follows:

By the assumption the two triangles (ABC) may be connected by a thickened disk.
By retriangulation of this thickened disk one may obtain a (singular) triangulation
in which the two triangles (ABC) are identical. The link (BC) is then only contained
in one tetrahedron. Summing over its colour a one obtains a contribution

a b c

x c b

contracted w.r.t. the dual pair of spaces Vc

ab, V
b

a*c. But this expression equals 0 for
xΦO, since it may be rewritten by Eqs. (2.12) and (2.9) as:

a b c

x c b

a b c

0 c b
D

Remark 3.6. In Lemma 4.2 we shall see that a line with colour 0 can be deleted
from G without changing Z(M, G*). Together with Lemmas 3.4-5 this implies that
if a single x-coloured line traverses a handle, then the state sum is either zero (if
x φ 0) or (if x = 0) the line can be removed and the handle cut.

4. Calculational Methods

In this section we establish a number of invariance properties or transformation
rules for the state sums Z(M, Gx) under local changes of the graph G. These are
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generalizations of the results derived in [KS], but we give different and hopefully
more transparent proofs.

In the following let M be a compact oriented 3-manifold and G* a coloured
graph in dM.

Lemma 4.1. IfG* = G ^ u G ^ , where G 1 is contained in a disk D2 c dM such that
G2nD2 = 0, i.e. G contains an isolated planar subgraph G1, then

•), (4.1)

(4.2)

where

Z(GX) = Z(D\ Gx)

and D3 denotes a 3-ball.

Proof. By choosing a suitable triangulation X of M we can represent (M, G*) as
two manifolds (M'? G^) and (D3, G^), which are glued together along the triangle
t c dM' n 3D3 with dt ^ 3M, and such that M' is homeomorphic to M. Then MG

equals the connected sum of DG* and M'G2, obtained by first removing from D ^ ,
resp. from M'G2, the tetrahedron with base t and opposite vertex c, resp. cf,
corresponding to the connected component of dD^G1, resp. dM'\G2, containing ί,
and subsequently gluing the two resulting manifolds together along the two copies
of S2 (the boundaries of the removed tetrahedra), such that c and d are identified.
Equation (4.1) then follows from Eq. (3.14) as in the proof of Lemma 3.2 it;), taking
into account that factors ω " 2 are associated neither to ceDGi and d e M'G2, nor to
the vertex resulting from their identification in MG. •

Examples. 1) For a coloured circle Si we have

z{si) = (4.3)

Observe that, for a given triangulation X of D 3, (!>£», XS ') equals (S3, X si), where
Xs1 contains two distinguished vertices c and d connected by a link with colour x.
Triangulating S3 by two tetrahedra Eq. (4.3) follows from Eq. (2.9).

2)

(4.4)

Note that DG, for the graph in (4.4), equals a 3-ball with boundary triangulated by
two triangles and thus can be obtained by gluing two tetrahedra along three
common triangles. Hence, Eq. (4.4) is again a consequence of Eq. (2.9).

3)

(4.5)
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For the graph in (4.5) Dl equals the 3-ball whose boundary is triangulated by the
dual graph to G and hence can be obtained as a single tetrahedron. Equation (4.5)
then follows from the definition of Z(M, G*).

4)

/ I _ - QlQm

m k
(4.6)

We leave the verification of this identity to the reader.

Lemma 4.2. The state sum Z(M, G*) is invariant under the following local changes of
Gx:

V
of

k
'"•'

(4.7)

ϋ)

( 4 . 8 )

where the curly line indicates the contraction with respect to the dual pair of spaces
associated to the 3-vertices it connects.

iii)

x*x y*y

ωx ωy

(4.9)

where the vector spaces V°x* and V°y* have been identified with C.
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Proof.
i) The substitution (4.7) corresponds to the following local transformation of

the triangulation on the boundary of MG:

where cί9c and c2 are the vertices associated to the left, middle and the right
components of dM\G, respectively, on the lefthand side of (4.7), and similarly for
the righthand side.

By choosing a triangulation of MGχ which in the neighborhood of cu c, c 2 looks
like ~

the result follows from the orthogonality relations, which can be interpreted in
terms of the collapsing of two tetrahedra glued along two common triangles
[DJN]:

Σω* kk

ii) The substitution (4.8) corresponds to the following local transformation of the
triangulation on the boundary dMG:

c3=c4

Choosing a triangulation of MG which in the neighborhood of cu c2, c3, c4 looks
like
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we see that the contraction on the lefthand side of (4.8) corresponds to gluing the
two triangles {c\C2c^) and (c1c2c3) together. Now we may again apply Eq. (2.9) as
above and obtain:

which yields the desired result.
iii) The substitution (4.9) corresponds to the following local transformation of the
triangulation of the boundary of MG:

x=x

C3= C4

By choosing a suitable triangulation of MG one finds that (4.9) is a simple
consequence of Eq. (2.12). •

Next we note that the Racah identity (2.11) implies invariance of Z(M, G?)
under the following local substitution in Gx:

(4.10)
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which is easily seen in terms of a suitable local choice of triangulation of M G .
Similarly, the second Racah identity yields invariance under the substitution.

(4.11)

By combining these two identities with (4.8) one obtains invariance of Z(M,
under the following local change of Gx:

(4.12)

The Biedenharn-Elliott relations give rise to invariance under the substitution

(4.13)

which follows in a similar way as above by a convenient choice of a triangulation of
M G .

Combining (4.13) with (4.8) and (4.10) we get in addition invariance under the
substitution

(4.14)

Of course, invariance of Z(M, G*) also holds under the substitution analogous to
(4.12) (resp. (4.13)), where the j-line (resp. α-line) overcrosses the i-line (resp. z-and
y'-lines) on the lefthand side.
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In order to formulate the following lemma, which will be of importance in the
next section, we define the matrix S by (see [Wi2] and [KS])

2 2

a V b

and set

2

coa

(4.15)

(4.16)

The last equality in Eq. (4.15) follows by first applying (4.8) to the double line in the
middle of the graph in (4.15), then applying (4.10) and finally (4.4). We note that

&ab — &ba — δa*b* 9 Γ*-1 '/

since qa* = qa, ωc

2* = ω 2 and Nc

ab = Nc

ba = Nc**b*, and that

(4.18)= ωSOb = ωb ,

since q0 = ω0 = 1 and Nc

Ob = δcb.

Lemma 4.3. i) The state sum Z(M, G*) is invariant under the following local
substitution in G *

(4.19)

ii) We have

Σ
b

i.e. ω2(α), a el, is an eigenvalue of the matrix Nc defined by

(Nc)
b

d = Nb

cd, b,del9

for each eel, with eigenvector (coj(a))dei (provided the latter is non-zero).
iii) Ifqj + 1 for all a e 7\{0} and

Λ=Σ<?c 2 ω c

4 *0,
c

then the following formulae hold:

SabSbc* = δac,

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)
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Proof. The statements follow by rather obvious modifications of the arguments in
[KS], Appendix A. For completeness we give some details:

i) Using (4.8), Lemma 3.5, (4.9) and Lemma 4.1 we obtain invariance under the
following substitutions:

-2

as desired.
ii) follows from i) and invariance under the following substitutions:

Ncd

t u
c

a I

t
iii) It is easy to see (Lemma A.2 in [KS]) that the assumption #« φ 1 and A Φ 0
imply the existence of be I, such that ω2 φ ω2 (a). Then (4.23) follows for a Φ 0
from

( ω 2 - ωi(a))£ω2ω2*(α) = £(Nd

b cω
2

dω2*(a) - Nd

bc*ω2

d(a)ω2) = 0 ,
c cd

where we have used ii) and the fact that JV&C* = Nc

bd* by (2.1-2) as well as ω2* = ω 2 .
For a = 0 Eq. (4.23) follows from the definition of ω 2 . Equation (4.24) coincides
with Eq. (4.23) for a = 0 or c = 0 in view of Eqs. (4.16-18). Multiplying by ω 2 and
summing over b e / in (4.19) we get from Eq. (4.23) invariance under the substitu-
tion

Σ 2
ωb (4.26)

Using this Eq. (4.24) follows easily for general α, b e / as in [KS], Lemma A.3.
Finally, Eq. (4.25) follows immediately from Eqs. (4.20) and (4.16) using (4.24).

D

We note that, in view of Eq. (4.24), Eq. (4.25) states that the matrix S diagonal-
izes all the matrices Na; aε I.

We end this section by discussing some useful properties of the state sums for
manifolds with interior graphs, which can be derived easily from the rules de-
veloped in this and the previous sections.
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1) Suppose that two meridians m and m! are introduced on an empty tube T in
M disjoint from G. According to Lemma 3.3 this is equivalent, up to a factor ω 4 , to
filling the tube by two cylinders in the neighborhood of m and m'. Between the
cylinders there will then be an empty 3-ball. Filling this 3-ball is equivalent
to multiplying the state sum by ω~2 by Lemma 3.2 i). Thus, it follows that
the presence of two (or more) meridians on T is equivalent to the presence of just
one, i.e.

(Z(M(Tm, Tm\ Gx) = Z(M{Tm\ Gx). (4.27)

In fact, the purpose of the factors ω 2 in (3.16) is to ensure this projection property
of the meridians.

2) Consider in M a branching of an empty tube Tx into two empty tubes T2

and T 3 , which are all disjoint from G (see the picture below).

An argument similar to the previous one implies equivalence of any two configura-
tions of meridians on the tubes T1,T2,T3, as long as at least two of the tubes
contain a meridian.

3) Similarly one sees that lines in G along a tube containing a meridian may be
deformed non-trivially as follows:

•(1

m m

4) The statements in 1-3) may be generalized to the case where lines in G (in
addition to the α-line in 3) ) are traversing the tubes, as long as all these lines
overcross (or all undercross) the meridians (and the α-line in 3) ). This follows by
repeated use of (4.8) and (4.12-4.14).

5) Combining the generalized versions of 2) and 3) with Lemma 3.3, it is easy to
show that if Tm and Tm> are two empty tubes in M such that T, resp T", is traversed
by a lefthanded, resp. righthanded, line then Tm and T'm, have trivial braiding, i.e.
they may be moved through each other.

6) Using (4.26) and 3) as well as Lemma 3.4 it follows that if a tube in M is
traversed by an α-coloured line in G* which overcrosses one meridian and under-
crosses another then Z(M, Gx) vanishes unless a — 0, in which case the line and the
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meridians can be deleted and the tube filled:

a

m (4.28)

We leave the details of these arguments to the reader. Alternatively, [KS] can be
consulted.

Finally, we note the following lemma, which we shall need in the next
section.

Lemma 4.4. Let ££a and S£ζ be arbitrary disjoint framed coloured links in S3. Then
the following holds:

i)
Z(S 3 , = ω2

= ω2Z(S\ (J?a)L)Z(S3, (4.29)

(4.30)

where GL(^) is the planar graph (with no 3-vertices) naturally obtained from the
framed link S£ by projecting onto a plane (and specified more precisely below);

(4.31)

where GR(<£) is obtained from GL(S£) by replacing all ^vertices by their inverses.

Proof
i) follows immediately from 5) above and Lemma 3.2 iv).

ii) Consider S£ as embedded into R3 ^ S3 and choose a plane π such that
if lies on one side of π. We may then deform if such that the circles on the tori
constituting the boundary of the tubular neighborhood 3Γ& can be obtained by
translation from the corresponding cores in the direction orthogonal to and away
from π. (In terms of ribbons given by the framing of ££ this is equivalent to
deforming the ribbons such that no twists are present (see [RT1]).) The
coloured graph GL(S£)a is then obtained by projecting the circles on dSΓcg onto π,
taking into account over- and undercrossings as well as orientation and colouring
α of if.

In order to prove (4.30), we consider the crossings of tubes in if (see the LHS of
the figure below) corresponding to 4-vertices in GL(S£\ By Lemma 3.3 and 2) above
we may connect the two tubes at each crossing by a tube at the cost of a factor ω2.
Using lefthandedness and the general version of 3) above (or (4.8)), it follows that
the two tubes may be joined as indicated in the following figure.
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Thus one obtains an interior graph in S3 whose core is a copy of GL{<£) and
whose corresponding coloured graph on the boundary of its tubular neighborhood
is a copy of GL(i?)«, and all of whose lines are lefthanded.

Now it is not difficult to see that all meridians can be eliminated, partly by use
of 2) above and partly by using Lemmas 3.5 and 4.2 at the cost of factors ω~2.
Finally, handles (corresponding to the faces of the graph GL{S£)) may be cut by
Lemma 3.4, thus obtaining D3. Keeping track of the ω-factors one arrives at (4.30).
iii) Follows from ii) by observing that in the case of righthanded lines the 4-vertex
on the RHS of the figure above must be replaced by its inverse. •

5. Dimension of the State Spaces and Factorization of State Sums

This section is devoted to deriving a formula related to Verlinde's formula [V] for
the dimension of the state space VΣ associated to a closed, compact, and oriented
surface Σ, and to showing that the state sum Z(M) for a closed, compact, oriented
3-manifold M factorizes into a lefthanded and a righthanded contribution, which
in the quantum group case equal τ(M) and τ(M*), respectively, where τ(M) is the
invariant introduced in [RT2].

Let us first note that by (3.8), (3.14) and (2.5) we have, for Σ connected of
genus 0,

dim VS2 = Z(S2 x S1) = ω " 4 £ N2

abω
2

aω
2

bω
2 = 1 . (5.1)

a,b,c

Let the matrix |ΪV|2 be defined by

\N\2=ΣNaNa = ΣNa*Na, (5.2)
a a

where the upper index ί denotes transposition and the last equality follows from
(2.1-2).

Theorem 5.1. Assume that q2 + 1 for α φ O and that A φ 0. Let Σ be a connected,

closed, compact, oriented surface of genus g §; 1. Then

dimFΣ = (tr(|ΪV|2^-1 )))2. (5.3)

Proof Given the computational rules developed in Sects. 3 and 4 the proof of (5.3)
is identical to the proof of Thm. 7.4 (without punctures) in [KS] with only minor
modifications. It suffices therefore here to indicate the main line of argument:
According to Eq. (3.8) we have to calculate Z(Σ xS1). Using Theorem 3.1 we may
cut ΣxS1 along Σ x {a}, for some aeS1, thus obtaining a manifold homeomorphic
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to Σ x [0,1] with a graph (G x {0})u(G x {1}) on its boundary, where G is a ca-
nonical graph on Σ without 4-vertices, e.g. G = GΣ (see Sect. 3). By (4.28) we can
then introduce an empty tube connecting Γx{0} and Σx{l} thus obtaining
a handlebody with 2g handles. Using (4.8) the graph on its boundary can be
reduced to one without 3-vertices and using in addition Lemmas 3.4-5 and (4.9) the
handles can be cut yielding a 3-ball with a graph on its boundary. The correspond-
ing state sum can then be evaluated and shown to equal the RHS of (5.3) by Lemma
4.3 iii). •

We note here that, as a consequence of Eqs. (4.24-25), |ΪV|2 on the RHS of (5.3)
can be replaced by

2 , (5.4)

where the symmetric matrix Na is defined by

( N a ) b c = N a

b c , b,cel, (5.5)

for each a el. Thus

dimF 2 ; = ( t r ( iV 2 ( ^ 1 ) )) 2 . (5.6)

Let now Gg be the graph depicted below

with g circles and coloured by e = (eu . . ., e3g-3) for g > 1 and e = (βi) for g = 1.
Notice that the dimension of the vector space V(Σ, Gg) associated to the graph Gg

embedded (without self-intersections and such that the cyclic order of lines at each
vertex are as indicated on the figure above) in a closed oriented surface Σ is given by

dim V(Σ9 Gg) = (tr(ΪV2(*- ")) . (5.7)

as is easily seen by use of Lemma 4.3.
Let MΣ« c R3 be a handlebody with g handles and dMj* = Σ9, containing in

its interior two disjoint (non-oriented) copies cg and cR of Gg as deformation
retracts of Σ9. Thus, in particular, the circles in cg and cR are non-contractible in
MΣ". We let @g and &R be two disjoint interior graphs in MΣ

9 whose cores are
cg and cf, respectively, and whose associated graphs Gg and Gf are also copies of
Gg on the boundaries of tubular neighborhoods ^ L and &~R, respectively, which
are equipped with 3# — 3 meridians for g > 1, and one for g = 1, each such that all
lines in Gg, resp. Gf, are lefthanded, resp.righthanded. Denote the vector spaces
associated to GL

g £ d3ΓL and G* c d3ΓR by VL

g and Vf, respectively.
By introducing a canonical graph G without 4-vertices on Σg we may consider

the partition function associated to MΣg with interior graphs @g and &R and
boundary graph G as a linear mapping from (Vg ® Vf)* into VΣ. In fact it is not
hard to show that this mapping is an isomorphism. We shall not need this general
result in the following, but restrict our attention to the case 0 = 1.
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In this case Gg is a circle and Σg is a torus T embedded in R3 c S3, and Mτ is
a solid torus whose complement Mτ in S3 is also a solid torus with <3MT = Γ*. We
thus consider copies cL, cΛ (resp. JFL, cΛ) of the circle S1 in M τ (resp. Mτ) and
interior graphs ^ L and ^Λ_(resp. §^_ and #*) whose associated tubular neighbor-
hoods ^~L and ^ ^ r e s p . ZΓL and &~R) are solid tori, and whose associated graphs
GL, G* (resp. GL, GR) are oriented circles, which we assume have zero linking
number with cL, cR (cL, cR, respectively). Moreover, GL and GL are lefthanded and
GR, GR are righthanded and we note that cL and cL, resp. cR and cR

9 are linked as
indicated in the following picture:

As the graphs GL, GL, GR, GR have no 3-vertices and only one line, the vector
spaces associated to them may be identified with C | J | , where |/ | is the cardinality of
/, (cf. Eq. (5.7)).

The partition function Z'τ (as defined in Eq. (3.4)) associated to Mτ with
interior graphs ^ L and &R and a canonical graph G without 4-vertices on T thus
yields a linear mapping

K : C m ® C | J | -+ Vτ,

and similarly the partition function Z'τ associated to Mτ with the interior graphs
§L and yR and boundary graph G on T * yields a linear mapping

L:VT -* C | J | ® C 1 7 1 .

Gluing Mτ and Mτ with interior graphs along T yields, of course, S3 with
interior graphs ^ L , %R, §L, # Λ . Thus the mapping L K : C | J | ® C | J | -> C | J | ® C | J |

is given by the matrix

(LK)ie,eΊiffΓ) = Z(S3, ̂ u ^ u l ^ u ^ ) = ω2Z(S3, 9

(5.8)

where we have used 5) at the end of Sect. 4 and Lemma 4.4 i). According to Lemma
4.4 ii)-iii) we have

- 1 S β f e , , (5.9)

" 1 S 7 > , (5.10)

where Setβ> is defined by Eq. (4.15). Thus, Eq. (5.8) reads

-ιS-ί), (5.11)

and we conclude now from the fact that dim Vτ = dim(C | J | ® C1 J | ) , that L and
K are isomorphisms and that

lVτ, (5.12)

provided the assumptions of Theorem 5.1 are fulfilled.
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It was first observed by M. Karowski and R. Schrader [KS1] that the remark-
able property of the vector spaces VΣ being factorized into lefthanded and right-
handed ones should lead to a rather simple proof of the relation between Z(M) and
the invariant τ(M) defined in [RT2]. This is the content of the following theorem
where the context is assumed to be that of quantum deformations of a semisimple
Lie algebra at an even root or unity, in which case the assumptions of Theorem 5.1
are known to be fulfilled, and in addition \qa\ = 1 for all a el.
Theorem 5.2. Let M be a closed, compact, oriented 3-manifold. Then

Z(M) = τ(M)τ(M*), (5.13)

where τ(M) is an invariant defined by Eq. (5.17) below, which in fact equals the
invariant introduced in [RT2], up to normalization.

Proof. As is well known M can be obtained (up to diffeomorphism) by surgery
along a framed link in S3: Let J£u. . ., if „ be the components of if, i.e. JS?, is
a framed circle, and let $Ί be a tubular neighborhood of if/ such that n ^ = 0.
Then we obtain M as

i.e. by first removing all 3Ί from S3 and then gluing them back with identification
mapsivδ^. -* bSΊ c δ(S3\u ι ̂  ), which are determined by the framing of if,-. In
other words if the framing of i?, is given by the circle Lf on d^Ί with linking
number N w.r.t. the core of 9~h then Ft is composed of an inversion (which
interchanges the a- and b-cycles in a canonical homology basis for d^Ί) and an
iV-fold Dehn-twist. Equivalently, L, c dSΊ is identified with a meridian on

3

After inserting the identity operator in the form of (5.12) for each d$~h a simple
calculation yields

Z(M) = X Z(S\ J?§)Lu(J?f)R) Π S-l.δe.0SfiAδf 0 , (5.14)
e,/,e',/' ί=l

where the factors δe>oδf>.o arise because the inversions make the e\- and//-lines
traverse handles and hence their colours vanish by Lemma 4.2.

Using (4.18) and Lemma 4.4 i) in (5.14) we get

Z(M) = (ω2yn+1Σω2

eZ{S\ (ife)L) Σ ωj_Z(S\ (if>)Λ), (5.15)

where ω\ = Y\n

i=1 ωlr Equation (5.15) may be rewritten as

Z(M) = τL(M)τR(M), (5.16)

if we define

τL(M) =

(5.17)

and correspondingly τR by replacing L by R in (5.17), where we have used Lemma
4.4 ii) and iii). Here σ(i?) is the signature of a certain 4-manifold whose boundary is
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M, ΔL — Δ is defined by Eq. (4.22) and ΔR is defined by replacing q2 by q~2 in Eq.
(4.22). Since it is known (see [T, ch. 2]) that

ΔLΔR = ω2 ,

it follows that (5.15) and (5.16) are equivalent.
In Sect. 6 we show that

)), (5.18)

where F denotes the functor from the category of coloured ribbon graphs into the
category of representations of the quantum group under consideration, which was
introduced in [RT1]. Using the identity (5.18) in (5.17) one obtains the expression
for the invariant τ(M) introduced in [RT2] (up to normalization) as given in
[T, ch. 2]. Thus τL(M) = τ(M). Since, moreover, it is known that τ(M*) = τ(M)*
and it is easy to verify that τR(M) = τL(M)* as a consequence of the properties of
6j-symbols, we have proven (5.13). •

As a final topic in this section we shall briefly discuss how vector spaces can
be associated to surfaces with punctures and the corresponding extension of
Theorem 5.1.

Let Σ be a closed, compact, oriented surface with a set p = (pu . . ., pn) of
n different, distinguished points, and consider a canonical graph G on Σ without
4-vertices, disjoint from {pu. . ., pn). Adjoining to G lines ίl5 . . . , / „ such that lt

connects p t to a point in G, different from the vertices in G and otherwise not
intersecting G, we obtain a graph G(p) on Σ whose vertices are all of order 2 or
3 except for pu. . .,pn, which are of order 1. The dual graph of G(p) on Σ,
constructed in the standard way, then yields a proper triangulation of Σ except for
the n disks Du . . ., Dn containing pl9. . ., p , respectively, whose boundaries
consist of a single link each, namely the dual links of lu . . . , / „ . Interpreting these
disks as holes in Σ, we obtain a proper triangulation of Σ\κjiDi such that the
boundary of each hole consists of a single link (see Fig. 7)

We call graphs of the form G(p) canonical graphs for the punctured surface
Σ(p) and we shall assume that the disks Du . . ., Dn around pl9. . ., pn, respectively,
are fixed, and only consider graphs G disjoint from UfD,-. Moreover, we assume
that li intersects dDt at a (unique) fixed point qt.

Fig. 7. A piece of the triangulated surface with punctures and a canonical graph on it
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Fixing the colours of the boundary links in the triangulation, i.e. of the lines
11,..., /„ to be a = (ai,. . ., an) we define, in analogy with V(Σ, G), the vector space
Vq(Σ(p), G(p)) to be the direct sum over colourings of the remaining lines in G(p)
of the tensor product of spaces associated to the coloured 3-vertices in G(p).

Next we have to define a set of linear mappings between these spaces for
different canonical graphs possessing properties corresponding to those of
P{Σ,GI),(Σ,G2) discussed in Sect. 3. For this purpose let Gr and G2 be two canonical
graphs on Σ and consider the graphs Gγ(p) x {0} and G2(p) x {1} on d(Σ x [0, 1]).
We construct the graph Gί(p) + G2(p) on 3((Z\UfDf) x [0,1]) by connecting the
points (qh 0)inG!(p)x {0} to(qh l)inG2(p)x {1} by the α-coloured line qt x [0,1],
suitably oriented. Finally, we introduce meridians m{ on the tubes
T( = dDi x [0,1]. It is then easy to see that (Gχ(p) + G2(p))u{mι } is a canonical
graph on d((Σ\UiDi) x [0,1]) and that the corresponding vector space with a fixed
is

Vq(Σ(p\Gί(p))*®Vq(Σ(plG2(p)).

The partition function

Z'q(M({Tih})9G1(p) + G2(p))

is defined in terms of (3.16) in analogy with (3.4) by summing over all colourings of
Gι(p) + G2(p) but keeping the colouring a of lines traversing the tubes fixed.
Hence, it may be considered as a mapping

PGuGM'Va(Σ(p), Gx(p)) - Vq(Σ(p), G2(p)) .

Since this mapping depends on the chiralities of the α-lines w.r.t. the meridians
we change notation and denote by a = (aί9. . ., ar), resp. b = (bί9...9 bs\ the
colours of the left-, resp. righthanded lines and correspondingly replace a every-
where by α, b.

It is a simple consequence of Theorem 3.1 and the projection property of
meridians that for any three canonical graphs G1,G2iG3 without 4-vertices on
Σ we have

PG2,GM b)PGuG2(a, b) = PGUGM> h)

and, in particular, PG,G(a, b) is a projection. Hence we let V'q,b(Σ(p), G(p)) be the
support of this projection and conclude, as in Sect. 3, that these spaces for different
G may be consistently identified with a space Vqfb(Σ{p)) by the mappings
PGuG2(Q,b) and that

dimVq>b(Σ(p)) = Z(ΣxS\ <£L

qvg\), (5.19)

where if, respectively S, consists of r, respectively 5, framed circles of the form
PiXS1 with trivial framing, and 3?q, resp. S\, denote the corresponding coloured
left-, resp. righthanded links.

On the basis of (5.19) a slight extension of the proof of Theorem 5.1 yields the
following generalization (see Theorem 7.4 in [KS]).

Theorem 5.3. Let Σ(p) be a connected, closed, compact, oriented surface of genus
g ^ 1 with n punctures (pu. . ., pn) = p, r of which are lefthanded with colours
a = (aί9. . ., ar) and s righthanded with colours b = (bu . . ., bs). Then

dimVq,b(Σ(p)) = tr(Nβ l. . . i V J Ϊ V I ^ - ^ t r ^ . . . Nbs\N\2^^) . (5.20)
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We remark that in (5.20) we have assumed a certain common orientation of the
a and b coloured lines in the definition of Va^(Σ(p)).

6. Ribbon Graphs and 6j-SymboIs

The purpose of this section is partly to describe how the properties of the
6j-symbols of a quantum group can be demonstrated by the use of the notion of
ribbon graphs and partly to verify Eq. (5.18).

As was proven in [A], ^-deformations of the universal enveloping algebras of
complex simple finite-dimensional Lie algebras Uqg (quantum groups) with in-
admissible modules {F j constructed in [TW] for q = exp(jπ//) and / bigger then
the Coxeter number of g give us natural examples of modular Hopf algebras. (For
the Lie algebras of type g2 / must also be odd and not divisible by 3.) For the
reader's convenience we recall some of the basic notions that enter the definition of
a modular Hopf algebra.

Definition [TW]. Let be (A, R, v) a ribbon Hopf algebra (see Def. 3.3 in [RT1])
over C, where A is a quasitriangular Hopf algebra, R a universal .R-matrix and
v e A a central element with special properties (see Eq. (6.3) below). Assume the
following data are given:

i) a finite set / with involution i *-> i*:/ -> / and a preferred element 0 = 0*,
ii) a set of ^4-modules {Vt} labeled by i e /, where Vo = C with the action of

A determined by the counit A -+ C,
iii) a set of Jί-linear isomorphisms

The triple (A, R, υ) together with these data is called a modular Hopf algebra if the
following axioms (1-5) are satisfied:

1) The modules {Vh i e 1} are mutually non-isomorphic, irreducible (i.e. do not
contain proper non-trivial ^4-submodules), have a finite C-dimension and all have
non-zero quantum dimension (see def. below).

2) For each i e I the homomorphism

is the multiplication by g = uv~1, where ueA is such that that adu equals the
square of the antipode S of A (see also Eq. (6.3) below).

3) For any k ^ 2 and for any sequence Θ = (λu . . ., λk) e Ik there exists an
^4-linear decomposition:

Vλι ® Vλ2® . . . Vλk = ZΘ® 0 ( F λ ® Ωλ

Θ),
λel

where {Ω©} are vector spaces over C and Z$ is a certain ^-module satisfying the
next axiom (4).

4) For any k ^ 2, Θ G Ik and any ^4-linear homomorphism/: ZΘ -> ZΘ the
g-trace of/is equal to 0, where g-trace of the operator/: V —• V is defined as the
trace of the operator

x H a f ( x ) : 7 - V,

and the quantum dimension dim^F equals tr^(id^).
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5) Let Sij be the g-trace of the ^-linear operator

Then the matrix Stj must be invertible.
We shall henceforth use the standard notations for ribbon graphs and let

F denote the functor introduced in [RT1] mentioned previously.
In order to prove Eq. (5.18) it is enough to verify that Z and F agree on the

graphs depicted in (4.3-6), i.e. that the equations analogous to (4.3-6) with
Z replaced by F hold. In fact, one uses repeatedly Lemma 3.2 and Lemma 4.2 ii)-iii)
(most effectively in the form of the Wigner-Eckart type relations derived in [KS])
to decompose any planar graph G into pieces of the types in (4.3-6) and corres-
pondingly obtains Z(G) as a contraction of a linear combination of tensor products
of partition functions of the pieces. Since the analogue of Lemma 4.2 also holds for
the functor F (see below) the assertion follows.

The validity of the analogues of Eqs. (4.3-6) for F is, on the other hand,
essentially obvious by inspection. In fact, Eq. (4.3) holds for F since ω2

x equals the
quantum dimension of Vx, x ε /, up to a sign, and Eq. (4.4) for F can be obtained by
a suitable choice of dual bases {a} and {α*} in the mutually dual intertwiner spaces
Vkij (from Vi <g> Vj to Vk) and V% (from Vk to V{ <g> Vs\ so that

> A - δ, '

~Γ δ(χβ
(6.1)

which is the ribbon graph version of (4.7). We note that the dual basis {α*} in Vιi to
{α} in V\j can be constructed w.r.t. a natural bilinear pairing or, alternatively by
exploiting the natural inner product on F t ® Vj (see [D]).

Equation (4.5) can be written in terms of ribbon graphs as

m
i j k

I m n
(6.2)

and the analogue of Eq. (4.6) for F is given below in (6.6).
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We next proceed to show that the 6j-symbols defined by (6.2) have the required
properties (see Sect. 2). First we note that due to Lemma 5.1 of [RT2] ribbon
graphs can be considered as two-sided objects, where the lower side of the ribbons
and annuli have the dual colour and the opposite orientation compared to the
upper side. We shall use an additional operation on the ribbons and annuli -
so-called half-twists, as proposed by [N]. The right half-twist is illustrated in
Fig. 8.

a) b)

Fig. 8. Right half-twist on a ribbon

The transformation in Fig. 8 a) is given by the action of the operator
πVi(τ):Vi -> (F t *)* = Vh and the one in Fig. 8 b) by the action of πF*(τ):
V* -+ Vi* = Vf. We use here the standard notation:

πv*(a) = ίπVi(S(a))Y, aeA,

where S(a) denotes the antipode of α, t the transposition w.r.t. the canonical pairing
V* ®Vi -+ C and τ an invertible element of the extended Hopf algebra, which
satisfies the following identities:

= υ~\ u = adτS{u\ ε(τ) = l9A(τ) = (τ ® τ)R9S{τ) = (6.3)

τ corresponds to the element w~1 in the [RT1] notation. The definition of the left
half-twists is obtained from the above by replacing τ by τ " 1 .

It turns out that the so defined half-twists have a nice geometrical property,
namely they can be pulled off from left to right through all four annihilation and
creation generators of the ribbon graph category:

This follows directly from the properties of τ for non self-dual colours. In the case of
/ = i*, there exists an intertwiner T: Vt -• Vf, and the above mentioned property
can be reduced to the claim: T = T*. This means that the two isomorphisms
Vf ® Vi = Vi (x) Vi and Ft (x) Vf = V{ ® Vι give us the same invariant vector

(6.4)

This was proven for quantum groups in [DJN]. In the terminology of [T](6.4)
distinguishes unimodular and modular Hopf algebras.
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We may now construct isomorphisms Vkj c* V{*ι ~ V%* as follows (cf. also
[DJN]). To each α e Vkj we associate an α e Vj

k*i and an α e V^*, such that

a = α =

It is easy to see from the well known identities for ribbon graphs [RTl], that

α = α, α = α, α = α .

Due to the fact, that all admissible modules {Vi} of a modular Hopf algebra have
real ^-dimension there exist isomorphisms α -> αG between Fί) and V\ given by:

(6.5)

where ^̂  = ^/t;,- *, ι?f = πF.(t;), t?t = vt*. The modular property of ribbon Hopf
algebras R2iRi2^~1 ® v~1)Av = 1 implies αG G = α.

On the other hand the identity A (τ) = (τ ® τ) R allows us to construct an
isomorphism between V\j and Vι

kJ :

(6.6)

We denote by i^\j the C-module which is obtained by identifying
V\j9 V{*h Vι

jk*, Vkμ and V\J by the isomorphisms constructed above. It is not
difficult to see that the C-module y)*f is dual to Y^. If we choose in (6.2) α e 'Ty,
δ e TT R, y* e TTJI1, /?* e f 4 n the symmetry properties (2.7) follow directly from the
isotopies of the corresponding ribbon graphs [RTl]. In addition, we can show
using the isomorphisms (6.5) and (6.6), that



m

k*
I* m* n*
i* j *

a*βΊδ*

- F (6.7)

Due to the properties 3) and 4) of the modular Hopf algebras, for closed graphs
we always have the equivalence

(6.8)

which is the ribbon graph version of (4.8).
Taking (6.7), (6.1) and (6.8) into consideration one can quite easily prove the

orthogonality, the Biedenharn-Elliott relations and the Racah identities for 6j-
symbols defined by (6.2). Applying the isomorphisms (6.5) to each 3-vertex in (6.2)
and using isotopies of ribbon graphs one obtains (2.8). The last condition (2.12) is
a consequence of the normalization (6.1). In fact, to preserve (6.1) for k = 0 we must
introduce the factor ω[1 after removing the 0-ribbon from oteVu*.

Finally, one can analogously prove that

B
y A D
x B C

(6.9)

which is the ribbon graph version of Eq. (2.17).
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7. Conclusion

We have in this paper developed calculational techniques applicable to a large class
of 3-dimensional state sum models of topological quantum field theories, and
extending those of [KS]. As a byproduct we have calculated the dimensions of the
state spaces associated to surfaces and obtained a relatively simple proof of the
relation between these models and those introduced in [RT1,2], and hence to
continuum Chern-Simons theory with an arbitrary compact semisimple gauge
group [Wi2]. Our arguments have been mainly based on simple geometrical
considerations which we believe can be generalized rather straightforwardly to
higher dimensions. Indeed, higher dimensional models of Turaev-Viro type have
been suggested recently in the literature and it would be an obvious task to
introduce observables into those models in the form of "higher dimensional
graphs" by extending our construction in Sect. 3. In order to develop such
a construction into an effective calculational tool it would be crucial to have at
disposal analogues of the Racah identities. We leave these issues for future inves-
tigation.
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