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Abstract. We consider both invasion percolation and standard Bernoulli bond per-
colation on the Z 2 lattice. Denote by Ψ' and ^ the invasion cluster and the occupied
cluster of the origin, respectively. Let Yn — YV\ [—n,n]2, and

%n = PPc{f€ ΓΊ the boundary of [-n,nf + 0 ) .

Let ε > 0 be given. Here we show that, with a probability tending to 1,

n *ιn •=. \? n\ =. n }ln

Assuming the existence of an exponent 1/p for πn, it can be seen that with proba-
bility tending to one

n 2-l/p-ε < \yr\ < ^2-1/p+e ̂

Moreover, by den Nijs' and Nienhuis et aΓs computations,

Λ1.8958389583...-ε — ^ 1 + ϋ - ε < \iT I < ft1 + H + ε = Λ l 8958389583...+ε

with a probability tending to one. The result matches Wilkinson and Willemsen's
numerical computation i^n ~ n1 8 9. The method allows us also to show the same
argument for any planar graph. Therefore, any two planar invasion clusters have
the same fractal dimension 2 — - if one believes "universality."

Furthermore, the escape time of the invasion cluster is considered in this paper.
More precisely, denote by hn the first time that the invasion cluster escapes from
[—n,ή]2. We here can show that with a probability tending to one

n2~επn ^ hn ^ n2+Eπn .

Finally, invasion percolation with trapping is considered in this paper. Denote
by

$n = {the number of bonds trapped by the invasion cluster before time n} .
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Here we show that with a probability tending to one

where an = —?% Un. By assuming the existence of p and p = ~ again, we can

show that

Ί.054945054945...+ε _ 2p/(2p-l)+ε <r I/a I <- M2p/(2p-l)+ε _ M1.054945054945...+ε

with a probability tending to one.

1. Introduction

Invasion percolation was introduced in de Gennes and Guyon [1], modified by
Lenormand and Bories [2] and Chandler, Koplik, Lerman and Willemsen [3], Chayes
and Chayes [4], Kesten [5] and Grimmett [6], and studied further by Wilkinson
and Willemsen [7], Willemsen [8], Chayes, Chayes and Newman [9] and Chayes,
Chayes and Newman [10]. The simple setup is as follows. Consider the bonds in
the Zd lattice. Let {X(e) : e is a bond in Zd} be independent random variables,
each having the uniform distribution on [0,1]. Let £P be the corresponding product
probability measure. More precisely, & — Y[ eezcj μe, where μe is uniform measure
on [0,1]. Expectation with respect to £P is denoted by S. We then construct a set
sequence {S; : i ^ 0} of random connected subgraphs of the lattice by means of the
{X(e) : e e Zd}. The graph SO contains the origin and no bonds. Having defined Sh

we consider the bond boundary of S; being the set of bonds not in S, but incident
to at least one vertex of Si. We write ΔSi for the bond boundary of Si. We simply
select the bond in ASt with the smallest value, and add the bond to S, . We then
obtain a larger connected set S +i which is called the invasion cluster at time i + 1.
The invasion cluster is denoted by 'V = U^ 0 S/. The original motivation was to
describe the displacement of one fluid by another. Indeed, consider the methods
(see [7]) which attempt to recover oil by pumping water into ground. In this model
one assigns to each bond e a value X(e) ^ 0. We think of e as a capillary, and
X(e) as the minimal pressure which the water must have to force the oil out of this
capillary. If water is pumped in only at 0, then nothing happens until the pressure
reaches

min {X(e): e is incident to 0} .

Assume that there exists a unique bond e\ incident to 0 for which the minimum
above is taken on, and set S\ — e\. If the pressure is increased, oil is first forced
out of Si, and nothing else happens until the pressure reaches

min {X(e) : e is incident to Si} .

After that the oil is forced out of a bond e2 for which the minimum above is
achieved. Inductively, we will obtain the invasion cluster which contains 0. The
resulting model is called invasion percolation. Perhaps the most important question is
to understand the geometry of the invasion cluster. A first step toward understanding
the geometry of y is to estimate the density of Ψ*. If we write
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some numerical work by Wilkinson and Willemsen indicates that

| τ T π | - / i 1 8 9 forrf = 2, (1)

\rn\~n2-52 ϊoτ d = 39 (2)

where \A\ denotes the number of bonds of A and a ~ b means that , 0 ^ a tends to

1 in the appropriate limit (as n —> oo in (1) and (2)) for some numbers a and b.
After that, Chayes, Chayes and Newman (1985) proved rigorously that the invasion
region has zero volume fraction with probability one, i.e.,

lim - T I T ^ J = 0 a.s.
n—»oo na

for d ^ 2, provided θ(pc) = 0 (see the definition below). However, based on the
numerical work of [7], it is believed that (see [7, 9, and 5]) that the density of Y
in B{n) behaves like nc for some constant c as n —> oo. The number c is sometimes
referred to as the fractal dimension or the Hausdorff dimension of Y. In this paper
we shall mainly discuss the fractal dimension of Y. In fact, we find that the fractal
dimension of Y is related to the critical exponents in percolation. Before stating
our precise results, we need to introduce some basic knowledge of percolation and
the power law hypothesis since our proofs entirely depend on them.

Consider standard (Bernoulli) bond percolation on Z r f, in which all bonds are
independently occupied with probability p and vacant with probability 1 — p, the
corresponding probability measure and expectation on the configuration of occupied
and vacant bonds are denoted by Pp and EP respectively. The cluster of the vertex
x, ^(x), consists of all vertices which are connected to x by an occupied path on
Zd. An occupied path here is a nearest neighbor path on Zd, whose bonds are
occupied. The percolation probability is

θ(p) = PP(\nθ)\ = oo) ,

and the critical probability is

pc = pc(Zd) = sup {p : θ(p) = 0} .

It is well known that 0 < pc < 1. For any two sets of vertices A and B we
write A <-+ B for the event that there exists an occupied path from some vertex in
A to some vertex in B. We set

and its boundary or surface is

aB( i) = {xeZd : ||x|| - n} ,

where

||*|| := max |xi| for x = (xu...xd).

Throughout this paper, C or C, stands for a strictly positive finite constant which
may depend on k, t and m but not n, whose value is of no significance to us. In
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fact the value of C or C, may change from appearance to appearance. Besides the
percolation probability, other important quantities are defined by:

ξ(p) = correlation length

= lim - log PP(0 <-* dB{n\ \<€{Q)\ < oo) for p±pc (3)
n—>oo γi

Note that the existence of the limit in (3) follows simply from a subadditive
argument. In particular, we denote by πn = π(pc,n). With these definitions and no-
tations, it is widely believed (see [11, 5 and 6]) that various quantities in percolation
behave like powers of \p — pc\ as p approaches the critical probability pc. More
precisely, the principal conjectures concerning above quantities are as follows:

'(p-PcΫ, (5)

; (P ~ Pc)~v , (6)

πn « ήT (7)

for some constants β, v and p which are called critical exponents, where f(x) «
g(x) means that Cχg(x) ^ f(x) ^ C2g(x) for all x. These conjectures are usually
called the power law hypothesis in percolation. It has been proved rigorously (see
[11]) for the Z 2 lattice that

(P-Pc)δι ύ θ(p) ^ (p - pc)
δ> , (8)

ί(p-PcΓδ4> (9)

πn S n~δs , (10)^ πn S

for some strictly positive constants (5i,52,<53,δ4 and 65. In particular, <5i < 1, and
<53 > 1 have been proved (see [12]). It also follows from (10) that

P ^ 3 , (11)

provided (7) holds. However, as far as we know none of (5)-(7) has been proved
for percolation. The computations in [13] and [14] indicate that

β = h v=ί and p " ? (12)

Now we return to discuss the invasion percolation. With the knowledge of perco-
lation, we find the fractal dimension of Y is related to πn. Furthermore, with the
power law hypothesis, we can show that *V has a fractal dimension 2 — 1/p. More
precisely, our results are as follows.

Theorem 1. For d-2f any ε > 0 and integer m > 0, there exist constants C and
a > 0 such that

^ n2+Bπn) ^ 1 - Cn~m (13)

and
^n2-επn)^ \-Cn~a . (14)
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In particular, for any integer t ^ 1, there exists a constant C such that

&\irnγ ^ C(n2πny (15)

and

S\rn^ ^ C(n2+επny . (16)

Unlike the general percolation model which is static, invasion percolation is a dy-
namical model. Therefore, time plays an important role in the model. It is interesting
to consider "escape" time or "hitting" time problems. More precisely, we write

hn = min {m:SmΠ dB

for the escape time from the box B(n). In other words, the invasion cluster °V has
to use at least time hn to occupy some bond outside of the box B(n). With this
definition, we have the following result.

Theorem 2. For d = 2 and any ε > 0 there exist a > 0 and C such that

0>(n2-£πn SK^ n{2+ε)πn) £ 1 - Cn~a . (17)

It is also important to take the phenomenon of trapping into account. A region Θtn

becomes trapped by Sn if @tn is separated from oo by Sn. More precisely,

Rn = {e G Z2\Sn : any path from e to oo has to use at least one vertex of Sn} .

Let 0ί = Όn0tn. We can still consider @t as the oil region trapped by water. Once
01 is trapped by water no oil from 0tn can be displaced. In fact, 0t is one region
of the phenomenon of "residual oil," a great economic problem in the oil industry.
Thus it is natural to ask (see [5, 7 and 4]) what the volume fraction of the trapped
region is. More precisely, what is

and
what is the behavior of 0ίn as n —> oo? (19)

By a simple percolation argument (see proof of Theorem 3), every bond has to
be either in Sn or trapped by Sn for large n if d = 2. On the other hand, \Vγ\ ^C n2

by the result in [9] or our Theorem 1. Hence we have the following theorem.

Theorem 3. If d = 2, then we have

H — — \ Π[-n,n]2\ = 1 as. . (20)

However, nothing is known for d > 2. In fact, it may not be very difficult to
show that the corresponding limit in (20) is strictly less than one but the challenge
is to find the exact limit for d > 2. Concerning the behavior of 0tm we shall show
its exact growth rate as follows.

Theorem 4. For d — 2 and each ε > 0 there exist a > 0 and C such that

where an = -J°S-«L.
log n
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Remarks, (i) Our proofs are restricted to the Z 2 lattice. However, extending the
results to any planar graph poses no serious difficulties. For each graph, the critical
exponents (if they exist) depend of course on d, but it is believed that they do not
depend on the particular lattice structure. This conjecture is called "universality."
Thus it follows from our Theorem 1 and the universality that the fractal dimension
of the invasion cluster in each planar graph does not depend on the particular
lattice structure too. In other words, the invasion cluster in any planar graph has
the same fractal dimension 2 — 1/p. We believe that this also holds for d > 2. In
fact Theorem 1 provides an important relation between the critical exponent p and
the fractal dimension of the invasion cluster. We believe that the fractal dimension
of the invasion cluster is much easier to handle at least from the point of simulations.
For example, computing hn in any regular graph is easier than computing πn since
hn is not related to pc which is unknown for almost all graphs.

(ii) Assuming the existence of p in (7), it follows from Theorem 1 and The-
morem 3 with probability tending to one that

\rn\ ~ rΐ-χlp and \Λn\ ~ n

2f)/{2p-l) .

Therefore, the fractal dimensions of Y and ^ are 2 — 1/p and j 2 ^ - respec-
tively. Note that (see (12)) p — y so that fractal dimensions of 'V and 0t
are 1.8958389583... and 1.054945054945..., respectively. Comparing with (1), it
matches Wilkinson and Willemsen's numerical result perfectly. However, without
assuming (7) it follows from Theorem 1, Theorem 4, (10) and (11) that for any
ε > 0 with probability tending to one

\Vn\ ^ ns/3~ε and \Yn\ ^ n2-05'8

and
| # π | ^ n

2/V-*s)-e and \0tn\ S n6l5~ε .

(iii) From (13) and the Borel-Cantelli Lemma, \Yn\ <; n2+gπn almost surely. In
fact, we may even improve the upper bound above to Cn2πn log n almost surely.
However, it seems that the lower bound in the probability estimate in (14) is hard
to improve to ~ for a large m though we believe such an estimate to be true.

(iv) J. Chayes and L. Chayes proposed if as the incipient infinite cluster (see
[4]). Later, H. Kesten (see [15]) proposed another definition of the incipient infinite
cluster. He defined the probability measure υp by

^)=P^||*(0)|=oo) (22)

for a cylinder event A. After that he proved that the limit of vp(A) exists as p [ pc:
Denote the limit by Ό(A). Under the measure Ό, there exists an infinite occupied
cluster W containing the origin with probability one. H. Kesten also showed that
the expected number of \W Π [—«,«]2| satisfies that

EΌ\Wn[-n,n]2\πn2πn. (23)

Although it is not clear what the relation is between the different definitions of the
incipient infinite cluster, we at least, can show that both definitions of the incipient
infinite cluster have the following relation:

EΌ\W n [ - n , n ] 2 |
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Our argument for Theorem 1 is divided into two parts: the lower bound and the
upper bound estimates. Both of them rely on some percolation results. We collect
these preliminary percolation results in Sect. 2. Then we complete Theorem 1 in
Sect. 3. Sect. 4 will discuss the proofs of Theorem 2-4.

2. Preliminaries

We begin with the introduction of duality. Define Z* as the dual graph of Z 2 with
vertices {υ -f- ( | , | ) } and bonds joining all pairs of vertices which are a unit distance
apart. For any bond set A C Z 2 , we write ^ * C Z * for the corresponding bonds of
the dual graph A. For each bond e* e Z*, we declare it is occupied or vacant if
e is occupied or vacant. In other words, if e* crosses an occupied (vacant) bond
in Z 2 then e* is occupied (vacant). With this definition, we can obtain (see [16]
for detail) that if there exists a vacant dual circuit surrounding some set A* on Z*,
then no occupied path can connect a vertex of A to oo.

We define a left-right (respectively top-bottom) occupied crossing of a rectangle
B to be an occupied path in B which joins some vertex on the left (respectively
upper) side of B to some vertex on the right (respectively lower) side of B, but
which uses no bonds joining two vertices in the boundary of B. Similarly, we can
define a left-right vacant dual crossing of a rectangle. Let

σ(n, p) = Pp(B a left-right occupied crossing on [—n,n]2).

Then we define that

L(P) = K Λ δ) = I m. n {n ; σ{pn)} s δ i f p < p c (24)

for some strictly positive constant δ whose precise value is not important. L(p) is
also called the correlation length. Indeed, it follows from [11] that

ξ(p) « Up) and L(pc + η,δ)n L(pc -η,δ). (25)

With this definition, [11] proved the following lemma:

Lemma 1. There exist Q and C2 such that

Cι S π{;P' Ά\ S C2 for all n ^ L(p, δ). (26)
π(pc, n)

For p < po let

9n) = ~ log Pp(Q-+dB(n)).

It follows from Theorem 5.10 in [6] that

ξΛp) _ £L£L5 S ΰ(p, n) z ξΛp) +

 c-iψL (27)

for some constants C\ and C2. Clearly, v(p, n) is continuous in p for a fixed n
since it is a polynomial in p. On the other hand, for fixed n, v(p, n) —> oo as
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p I 0. Thus it follows from the intermediate value theorem, (9) and (27) that for
any 0 < τ < 1 there exists pn < pc such that

υ(Pm n) = (jλ (28)

Clearly, it follows from (26) and (28) that

L(pn) ^ Cnχ-τ (29)

for some constant C
Throughout this paper, we always denote by pn < pc and qn — 1 — pn the

numbers such that
/i

<Pn, n) = I -

for a given 0 < τ < 1. Let

E(m, n) — {3 a left-right occupied crossing of [0, m] x [0, ή]} .

Lemma 2. For each 0 < τ < 1 and integer k > 0, then there exist some constants
C\ and C2 such that

Pqn(E(kn, Λ)) έ 1 - Ci*exp{-/ιc2} . (30)

Proo/ Suppose that E(kn9 n) does not occur. Then there exists a vacant dual path
on Z* from the top to the bottom in [0, hi] x [0, «]*. However, it follows from
(28) and the definition of duality that

Pqn(B a vacant path from the top to the bottom of [0, kn] x [0, n]*)

= PPn(3 an occupied path from the top to the bottom of [0, kn] x [0, ή])

=

Since τ < 1, Lemma 2 is proved by (31). D

With Lemma 2, it is easy to obtain by the FKG inequality that

Corollary 3. There exist some constants C\ and C2 such that

Pqn(3 an occupied circuit in B(2n)\B(n)) ^ 1 - Cx exp{-«C 2} . (32)

If we are only interested in p = pc, the following principal lemma was proved
by Russo (see [17]), and Seymour and Welsh (see [18]). We state it as the RSW
lemma.

RSW Lemma. For any integer k > 0, there exists a constant Q such that

PPc(E(kn, n)) ^ Ck (33)

for all n.

In particular, it follows from the FKG inequality and the duality that for any
k > 1 and ε > 0 there exist Q (depends on k) and a > 0 (depends on ε ) such
that

PPc(3 an occupied (a vacant) circuit in B(kn)\B(n)) ^ Q (34)
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and

PPc(3 an occupied (a vacant) circuit in B(n{+g)\B(n)) ^ 1 . (35)

Lemma 4. Let H = {(x,y) : y ^ 0} be the upper space. Then there exists a con-
stant C such that

Pqn(B an occupied path from [—n9n] x {0} to oo in H) ^ 1 - exp {-nc} .
(36)

Proof. Suppose that there does not exist such an infinite occupied path. Then there
exists a vacant path on Z* from some point on ((—oo, — n) x {0})* to some point on
({(/i,oo) x {0}})*. Suppose that these two points are (nt\ -f \,\) and (m2 + \,\)>
By the definition of correlation length and (28),

Pq}1(β an occupied path from [—n,n] x {0} to oo in H)

= PC/n(3 a vacant path on H* from (m\ + \>\)

to (m2 + |> 5) with n%\ < -n and m2 > n)

= Σ Σ ^/>»(3 a n occupied path on H from (mi,0) to (m2,0))

S Σ Σ exp . t >
W] <—/? ni2>n K. n )

S exp {-/2C} . (37)

Therefore, Lemma 4 is proved. D

Lemma 5. There exists a constant C such that for any p §; pc and integers m
and n with 0 < m < n, Pp(dB(n) and dB(m) are connected by an occupied path
inside B(n)\B(m)) ^ C(ξ) .

Proof For any m < n, define

S(m,n) — {[—m, m] x [—n, n]} .

By convention we assume that ^ is an integer, otherwise we always can use [^J
instead of ^. Clearly, S(m, n) is formed by some squares D\ U D 2 , . . . , UD«, where
D\ — [-m, m] x [—n, -n -f m\.. .,£>, = [—m, m] x [—n -f im, —n + (z -f l)m]. We
also denote by Of the center vertex of Dh If there exists an occupied left-right
crossing in [—n, ri]2, then the lowest left-right occupied crossing has to cross
S(m, n). Therefore, the lowest left-right occupied crossing intersects as least one
of D l v . . , Z ) i . By (33) with k = 1,

C !g ^ ( 3 a left-right occupied crossing in [—n, n]2)

m

^ Y^PP{ the lowest left-right occupied crossing intersects dDt)



246 Y. Zhang

m

= Σ,Pp(β a n occupied path from 3D, to ^ + dB(n))

^ —Pp(dB(n) and dB(m) are connected by an occupied path inside

B(n)\B(m)) (by the translation invariance).

Therefore, Lemma 5 is proved. D

By Lemma 5 we can also obtain the following lemma.

Lemma 6. There exists a constant C such that for any p ^ pc and integers m
and n with m < n,

(p9n)9 (38)

π(p, m) g C ( - ) π(p, n). (39)

Proof Denote by

^ = { 0 ^ dB{m)} ,

B — < 3 an occupied circuit in B(m)\B ( — j > ,

C = < two boundaries of #(«) and B ( — ) are

connected by an occupied path > .

Clearly, {0 <-> dB(n))} occurs if AΠBΠC occurs. Thus (38) is implied by the
FKG inequality, the RSW lemma and Lemma 5. Equation (39) is obvious since

m = L D

For each x £ B(n), Let Ix(rΐ) be the indicator of the event that there exists an
occupied path from x to δB(n). Now we begin to estimate the first and the moments
of Y^czm^Iχ(n) for any p ^ pc.

Lemma 7. For any p ^ pc there exist constants Q and Cι such that

C{n
2π(p, n)^Ep Σ h{n) ύ Ep Σ Iχ(n) £ C2n

2π(p, n). (40)
φ xeB(n)

For any integer t ^ 1 there exists a constant Ct such that

EP( Σ Iχ(n)\ ύ Q [Ep Σ Iχ(n)) . (41)
\xeB(n) ) \ xeB(n) )

Proof. We shall not prove Lemma 7 here. Indeed, it is easy to adapt the proof
of Theorem 8 in [15] to show (40). In addition, (41) has been proved by B.
Nguyen (see the lemma in [20]). H. Kesten also gave a similar estimate of (41)
(see Theorem 8 in [15]). D

We then can obtain the following corollary by Lemma 7 and the Cauchy-
Schwarz inequality.



Fractal Volume of Two-Dimensional Invasion Percolation Cluster 247

Corollary 8. There exist C\ and μ > 0 such that

PP ( Σ Iχ(n) ^ CrfnA ^μ>0. (42)
\xeB(n) )

Finally, we end this section with another lemma.

Lemma 9. Given ε > 0, there exist constants C\,C2 and C3 such that

PPciβ occupied circuit %>n in B(n)\B(nι~ε), but the number of vertices

x e B(n) such that x <-> Ήn in B(n) is less than n2~3επ(n))

S Cx exp (-C2n
ciε). (43)

Proof. We shall not prove Lemma 9 here too since the proof is the same as the
proof of Lemma 3.24 in [21].

3. Proof of Theorem 1

Before the proof of Theorem 1 we present a heuristic explanation of Theorem 1.
The explanation is divided into two parts as follows.

1. The heuristic of the lower bounds in Theorem 1. A bond e is called /?-open if
X(e) ^ p, and p-closed if X(e) > p. When p — pc, by the RSW lemma, there
should be many /?c-open circuits surrounding the origin in B(n) for a large n. On the
other hand, there exists a pc -closed dual circuit surrounding these pc-open circuits
since θ(pc) = 0. We denote by Γn the bonds of these /?c-open circuits and the bonds
connected to these /?c-open circuits by a />c-open path. Note that y has to first
cross these />c-open circuits and then it has to use at least a bond of the pc-closed
dual circuit eventually. Note also that X(e\) > X{e2) if e\, is a pc-closed and e2

is a pc-open so that Y* has to occupy all the bonds of Γn before occupying any
bond of the />c-closed dual circuit. Therefore, we can use \Γn\ as a lower bound
of | ^ n | . With this observation, the rest work is to estimate \Γn\ by lemmas in
Sect. 2.

2. The heuristic of the upper bounds in Theorem 1. The upper bounds in Theorem
1 is more complicated. Note that for each p > pc there exists a unique infinite
cluster ^(p) of />-open bonds. Once the invasion cluster reaches #(/?), all future
invasion bonds will stay in #(/?). If we only consider d = 2, by a standard perco-
lation argument there exists a finite circuit in^(p) surrounding the origin. In other
words, *V has to reach ^(p) in finite time. Then \Ή(ρ) Π B(n)\+ constant is an up-
per bound of \yn\. However, we may lose too much if we only use \<%(p)n B(n)\+
constant as an upper bound since \^(p)ΠB(n)\ « n2 for any p > pc. [22] con-
sidered an inhomogeneous site percolation model as follows. They use pc + f(x)
instead of p for each vertex x e Z2 and show that there exists an infinite cluster
^{pc + /CO) if /CO decays to zero slower than ||x||~1//v as ||x|| —> oo. Therefore,
we can certainly control Y by ^(pc + /CO) However, the result of [22] depends
on the assumption of the power law hypothesis. The rest difficulty is to estimate
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Y&(Pc + / ( x ) ) Π 5 ( n ) | by lemmas in Sect. 2 without using the power law hypoth-
esis.

Now we begin to give a rigorous proof of Theorem 1. We first estimate the
lower bound of Theorem 1. As we pointed before, a bond e is called /?-open if
X{e) ^ p and ^-closed if X(e) > p. Since θ(pc) = 0, there must exist a dual
circuit Mn on Z* outside B(n) with pc-closed bonds. We write Jίn for such an
event. On the other hand, it follows from Lemma 3 that there exists a pc-oρen
circuit in B(n)\B(~) with a positive probability. We write <3n for the event. On the
event S)n we can select such a /?c-oρen circuit and denote by Dn. For convenience,
we always select the innermost open circuit as Dn. Let us consider each vertex
x € 2?(f). If both Dn and Mn exist, then x is in Y if there exists a /?c-oρen path
connecting x to Dn. Therefore,

xeB(n)

^ Σ PPc(x~Dn9@n9J(n)

= Σ PPc(x"Dn9®n)P(Jtn)

( note that </#„ and {x <-> DΛ,®Λ} only depend on

} for e G Z2\B(n) and e e B(n) respectively )

(by the FKG inequality and note that

{x +-> dB(n)} C {x ^ Dn} for x e # φ )

^ C 3 Λ 2 P ^ ( 0 ^ 55(/i)) (by (40))

= C3n
2πn. (44)

Equation (15) follows from Jensen's inequality and (44), that is

n\y ^ c(n2πny

for some constant C. Now we turn to show (14) in Theorem 1 about the probability
estimate. Given ε > 0, we will estimate ^ ( | ^ Λ | ^ n2~επn). Let Q) be the event
that there exists a />c-open circuit in B(n)\B(n{~^4). On the event 2 select D as
the innermost open circuit. By (35) there exists a > 0 such that

1 - ^ .

Furthermore, on the event 2, denote by Jx the indicator of the event that there
exists a /?c-open path from x to Z) in 2?(ft) for each x e 2?(Λ). With the definition of
Jx it can be seen that x has to be connected to D by a /?c-open path if D exists and
J x = i. Note that there always exists a ;?c-closed dual circuit on Z* surrounding
B(n) and if has to cross £> somewhere, so that D cVn if D exists. Similarly, it
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can also be seen that x e i^n if D exists and Jx = I. Then ΣxeBrn)Jx S n2~επn if

there exists D and {|^«| ^ n2~επn}. By Lemma 9

^ PPc(3 the innermost occupied circuit # in B(n)\B(nι~ε/4\

but the number of vertices x e B(n) such that x <-> # in £(#)

is less than n2~επ(n))

+ l . (45)

Therefore, the lower bound of Theorem 1 is proved.
Next we will show the upper bound of Theorem 1. We begin with the estimate

of the expected i^n. For any n and 1 > τ > 0, set

where r is the smallest integer such that (1 — τ)r ^ | . For each r and j with
0 < j ^ r, denote by />#/ — 1 — ̂ A, < PC th e number which satisfies

By (29), such a pkj exists. Clearly, there exists a constant C such that

| ^ , | ^ Cn 2 ( 1 - τ ) r ^ C« 3 / 2 . (46)

On the other hand, by (15) and (10),

for large w. Set Γ = B(n)\B(kr). By Minkowski's inequality and (46)

Λ n r | ) 0 1 A + ̂ 3 / 2 . (48)

Then it follows from (47) and (48) that

ι r\y (49)

for some C. We let @ij+\ be the event that there exists a ^ . + 1 -open circuit inside
B(kj)\B(kj+ι) for 0 ^ 7 ^ r. We also let J^ 7 be the event that there exists a qkj+λ-
open path from the left edge to the right edge of [kj+\9 A/-i] x [~kj+u ^/+i] for 1 ^
7 ^ r, and e£?o be the event that there exists a g^-open P a th from {A:i} x [—k\, k\\
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Fig. 1. The event Fn

to oo (see Fig 1). On the event <3)j or j£?y we can select such a circuit or path and
denote by such a circuit or path 2j or £Pj respectively. Denote by

r+1

j=\ j=0

Note that kr ^ rf for some c > 0. Then by Lemma 2, Cor. 3, Lemma 4 and the
FKG inequality,

&(Fn) ^ 1 - exp {-nc} . (50)

For each x £ B(kj-ι)\B(kj) set Tx(j) to be the indicator of the event that there
exists a #max(/)~°Pen P a t h from * to dB(kj-ι), where

Note that

Let

(51)

0
if ^« occurs ,

otherwise .

Note that Ψ" must cross i^y+i and Dj+\ is connected to oo by a #max(/)~°Pe n

path if F π occurs. Once the invasion cluster reaches Dj+ι, all future invaded edges
βk will have X{βk) ^ ^maχ(/) Thus if x G ^ Π { ^ ( ^ / - . i ) ^ ^ ) } , there must exist
a ^maxC/)-°Pen P a t h fr°m ΰ/+i to x. In other words if x G TΓ Π { \ }
then ΓJCC/) = 1. On the event Fn, we have

G0 + Gl + ... + Gr ^ \rnnr\.

For integers /, t and j with 1 ^ / ^ ί and y ^ r,

7)' ^

= Σ
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^ Cx (iWωΣ^jt,.,)^-!))' (Cor. 8 (a))

S Ciilή^πίqπnVlkj-i))1 (by Lemma 7)

^ C,(*?_,π(? 1 M X(/),*/+iτ)y (note that *,_, £ (* / +,) 1

^ C2(A? jπ.i-τ)' (by (53) and Lemma 1)

) 1 - Γ )

^ C3«<2 + 3 ϊ ) /πί (by (39)). (52)

Note that G, and Gy are independent if z'φy, so that for any 0 g j\,J2, ,jk ίk r
and z'i + ... + it = t,

SGi

J\-...-Gl^Cn(-Wτ)tπt

n (53)

for some constant C. Therefore, by (49), (50) and (53),

n\' g
+ G2 + ... + Gry + {in)2' exp ( - n c )

^ C 2 r ί + 1 « ( 2 + 3 l ) ί < +(8n) 2 t exp ( - « c )

^ C 3 r / + 1 « ( 2 + 3 ί ) ί < . (54)

Therefore, (16) is implied by (54).
To show (13) use Markov's inequality,

. (55)

Therefore, (13) is proved by choosing t large and τ small. Theorem 1 is proved.

4. Proof of Theorem 2-4

of Theorem 2. We first estimate the lower bound of hn in Theorem 2. We
denote by 2 the event that there exists a /?c-open circuit in B{nι~ε^)\B{nι~εl4). On
the event ^ , let D be the innermost />c-open circuit in B(nι~ε/s)\B(nι~^4). We also
denote by Jί the event that there exists a />c-closed dual circuit in B(n)\B(nι~^s).
On the event M we can select a pc-closed dual circuit M in (B(n)\B(nι~ε/s))*.
Clearly, M surrounds D in B(n) if both of them exist. By (35), the probability of
the existence of D and M in B{n)\B(nx~i) is larger than 1 - ^ for some constant
a > 0. On the event 2 Π M> the invasion cluster Ψ* has to occupy all bonds of
D before it occupies any bond of M. Of course, Ψ* must also occupy all possible
vertices which are connected to D by a /?c-open path. Clearly, Σ x € 5(n i- ε /8)Λ ύ
n2~επn if hn ^ n2~επn and both Z) and M exist (see the definition of Jx in Sect.
3). Therefore,

^ d exp (-C2n
ci) + ~ (by 45)). (56)
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Therefore the lower bound of Theorem 2 is proved. Since hn ^ l^nl, the upper
bound of Theorem 2 holds by Theorem 1.

Proof of Theorem 3. By the duality and θ(pc) =. 0, there exists with probability one
a /?c-open circuit Dn and a pc-closed dual circuit Fn outside of B(n) such that Dn is
surrounded by Fn. Once such two circuits exist, Ψ" has to first occupy every bond
of Dn before it occupies any bond of Fn. Therefore, each bond in B{n) is either
trapped by *V or in Y. However, by (13) the total number of bonds in "Vn exceeds
n2+επn with a probability less than -^ for some m. Therefore, the total number of
trapped bonds by Ψ* in [-n,n]2 is less than \B(n)\ - n2+επn = 2{2n)2 - n2+επn with
a probability less than ^ . By taking ε small and m > 1, the Borel-Cantelli lemma
and (10) will imply that

1
l i m Λ/Λ v\®n [-">*] I = 1 a.s. (57)

Theorem 3 is proved.

Proof of Theorem 4. Denote by

Tn = max{m : Sn Π

Clearly,

{Tn ^ /} implies hi ^ n and {Tn < 1} implies hi ^ n .

Note that, by definition of ocn,πn = nlogπ'^ogn = n~an. Then

n2πn = w2~α" .

Given ε > 0, let

An = {πl/(2-
Then by Theorem 2,

^ ( ^ w does not occur ) <; (̂A/Ii/(2-«Λ+6/2) ^ w) ^ — (58)

for some constant α > 0. Similarly, let Q)n and ^ n be the events that there exist
a /?c-open circuit £>„ and a pc-closed circuit Mn such that both of them are in

5(Λi/(2-αn+ε/2)^ni/(2-α f I+ε)) a n d D w i s a l s o s u r r o unded by Mn. Clearly, by (35),

P(®nΠJln) ^\-n-b (59)

for some constant b > 0. If Z)w and Mn as above exist, then each bond in
β(nι/(2-an+ε)^ j s e j t h e r trapped by Ύ* or in Y since ΊΓ has to occupy all bonds of
Dn before occupying any bond of Mn. However, if An occurs, Dn has to intersect
Sn somewhere since Sn Π a5(« 1/ ( 2-α"+ ε/ 2 ))φ0. On the other hand, note that Mn is
in Jg(̂ z1/(2-αΛ+ε/2)̂  a n ( j y Qn^ u g e a t mQ^ n ^on(^s t o c o m e to the boundary of
β(n\/(2-ccn+ε/2)^ o n faQ QYQnt A^ s o t h a t ^ c ^ W j t ^ t h i s observation, if An occurs
and Dn and Mw exist, then every bond in B(nι^2~an+ε)) is either in Sn or trapped
by Sn. Note that | ^ | = n. Therefore, at least n

2/(2-ccf1+8) _ n bonds are trapped by
Sn. If we take ε small and n large such that n

2l{2~anJtε) - n ^ I^2/(2-α«+ε)? then the
total number of bonds trapped by Sn cannot be less than I/7

2/(2-α«+ε) if An occurs
and Dn and Mn exist. Therefore,
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= — + 4: • (60)

Similarly, by Theorem 2,

&{Tn ^ «'/(2-a»-c») £ ^(A,,,/(2-a,(_c) £ n) g «-(/ (61)

for some constant c? > 0. On the event {Γ,, 5Ξ n1//(2~α"~ε)}, the bonds trapped by
S,, are at most «2Λ2-α«~ε) - n in number. Then

_L

Equation (21) is implied by (60) and (62). Theorem 4 is proved.
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