The Fractal Volume of the Two-Dimensional Invasion Percolation Cluster

Yu Zhang ${ }^{\star}$
Department of Mathematics, University of Colorado, Colorado Springs, CO 80933, USA

Received: 5 March 1993/in revised form: 10 December 1993

Abstract

We consider both invasion percolation and standard Bernoulli bond percolation on the Z^{2} lattice. Denote by \mathscr{V} and \mathscr{C} the invasion cluster and the occupied cluster of the origin, respectively. Let $\mathscr{V}_{n}=\mathscr{V} \cap[-n, n]^{2}$, and

$$
\pi_{n}=P_{p_{c}}\left(\mathscr{C} \cap \text { the boundary of }[-n, n]^{2} \neq \emptyset\right)
$$

Let $\varepsilon>0$ be given. Here we show that, with a probability tending to 1 ,

$$
n^{2-\varepsilon} \pi_{n} \leqq\left|\mathscr{V}_{n}\right| \leqq n^{2+\varepsilon} \pi_{n} .
$$

Assuming the existence of an exponent $1 / \rho$ for π_{n}, it can be seen that with probability tending to one

$$
n^{2-1 / p-\varepsilon} \leqq\left|\mathscr{V}_{n}\right| \leqq n^{2-1 / p+\varepsilon}
$$

Moreover, by den Nijs' and Nienhuis et al's computations,

$$
n^{1.8958389583 \ldots-\varepsilon}=n^{1+\frac{43}{48}-\varepsilon} \leqq\left|\mathscr{V}_{n}\right| \leqq n^{1+\frac{43}{48}+\varepsilon}=n^{1.8958389583 \ldots+\varepsilon}
$$

with a probability tending to one. The result matches Wilkinson and Willemsen's numerical computation $\mathscr{V}_{n} \sim n^{1.89}$. The method allows us also to show the same argument for any planar graph. Therefore, any two planar invasion clusters have the same fractal dimension $2-\frac{1}{\rho}$ if one believes "universality."

Furthermore, the escape time of the invasion cluster is considered in this paper. More precisely, denote by h_{n} the first time that the invasion cluster escapes from $[-n, n]^{2}$. We here can show that with a probability tending to one

$$
n^{2-\varepsilon} \pi_{n} \leqq h_{n} \leqq n^{2+\varepsilon} \pi_{n}
$$

Finally, invasion percolation with trapping is considered in this paper. Denote by
$\mathscr{R}_{n}=\{$ the number of bonds trapped by the invasion cluster before time $n\}$.

[^0]Here we show that with a probability tending to one

$$
n^{2 /\left(2-\alpha_{n}\right)-\varepsilon} \leqq\left|\mathscr{R}_{n}\right| \leqq n^{2 /\left(2-\alpha_{n}\right)+\varepsilon}
$$

where $\alpha_{n}=-\frac{\log \pi_{n}}{\log n}$. By assuming the existence of ρ and $\rho=\frac{48}{5}$ again, we can show that

$$
n^{1.054945054945 \ldots+\varepsilon}=n^{2 \rho /(2 \rho-1)+\varepsilon} \leqq\left|\mathscr{R}_{n}\right| \leqq n^{2 \rho /(2 \rho-1)+\varepsilon}=n^{1.054945054945 \ldots+\varepsilon}
$$

with a probability tending to one.

1. Introduction

Invasion percolation was introduced in de Gennes and Guyon [1], modified by Lenormand and Bories [2] and Chandler, Koplik, Lerman and Willemsen [3], Chayes and Chayes [4], Kesten [5] and Grimmett [6], and studied further by Wilkinson and Willemsen [7], Willemsen [8], Chayes, Chayes and Newman [9] and Chayes, Chayes and Newman [10]. The simple setup is as follows. Consider the bonds in the Z^{d} lattice. Let $\left\{X(e): e\right.$ is a bond in $\left.Z^{d}\right\}$ be independent random variables, each having the uniform distribution on [0,1]. Let \mathscr{P} be the corresponding product probability measure. More precisely, $\mathscr{P}=\prod_{e \in Z^{d}} \mu_{e}$, where μ_{e} is uniform measure on $[0,1]$. Expectation with respect to \mathscr{P} is denoted by \mathscr{E}. We then construct a set sequence $\left\{S_{i}: i \geqq 0\right\}$ of random connected subgraphs of the lattice by means of the $\left\{X(e): e \in Z^{d}\right\}$. The graph S_{0} contains the origin and no bonds. Having defined S_{i}, we consider the bond boundary of S_{i} being the set of bonds not in S_{i} but incident to at least one vertex of S_{i}. We write ΔS_{i} for the bond boundary of S_{i}. We simply select the bond in ΔS_{i} with the smallest value, and add the bond to S_{i}. We then obtain a larger connected set S_{i+1} which is called the invasion cluster at time $i+1$. The invasion cluster is denoted by $\mathscr{V}=\bigcup_{i=0}^{\infty} S_{i}$. The original motivation was to describe the displacement of one fluid by another. Indeed, consider the methods (see [7]) which attempt to recover oil by pumping water into ground. In this model one assigns to each bond e a value $X(e) \geqq 0$. We think of e as a capillary, and $X(e)$ as the minimal pressure which the water must have to force the oil out of this capillary. If water is pumped in only at $\mathbf{0}$, then nothing happens until the pressure reaches

$$
\min \{X(e): e \text { is incident to } \mathbf{0}\}
$$

Assume that there exists a unique bond e_{1} incident to 0 for which the minimum above is taken on, and set $S_{1}=e_{1}$. If the pressure is increased, oil is first forced out of S_{1}, and nothing else happens until the pressure reaches

$$
\min \left\{X(e): e \text { is incident to } S_{1}\right\} .
$$

After that the oil is forced out of a bond e_{2} for which the minimum above is achieved. Inductively, we will obtain the invasion cluster which contains 0 . The resulting model is called invasion percolation. Perhaps the most important question is to understand the geometry of the invasion cluster. A first step toward understanding the geometry of \mathscr{V} is to estimate the density of \mathscr{V}. If we write

$$
\mathscr{V}_{n}=\mathscr{V} \cap[-n, n]^{d},
$$

some numerical work by Wilkinson and Willemsen indicates that

$$
\begin{align*}
& \left|\mathscr{V}_{n}\right| \sim n^{1.89} \text { for } d=2, \tag{1}\\
& \left|\mathscr{V}_{n}\right| \sim n^{2.52} \text { for } d=3, \tag{2}
\end{align*}
$$

where $|A|$ denotes the number of bonds of A and $a \sim b$ means that $\frac{\log a}{\log b}$ tends to 1 in the appropriate limit (as $n \rightarrow \infty$ in (1) and (2)) for some numbers a and b. After that, Chayes, Chayes and Newman (1985) proved rigorously that the invasion region has zero volume fraction with probability one, i.e.,

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{d}}\left|\mathscr{V}_{n}\right|=0 \text { a.s }
$$

for $d \geqq 2$, provided $\theta\left(p_{c}\right)=0$ (see the definition below). However, based on the numerical work of [7], it is believed that (see [7, 9, and 5]) that the density of \mathscr{V} in $B(n)$ behaves like n^{c} for some constant c as $n \rightarrow \infty$. The number c is sometimes referred to as the fractal dimension or the Hausdorff dimension of \mathscr{V}. In this paper we shall mainly discuss the fractal dimension of \mathscr{V}. In fact, we find that the fractal dimension of \mathscr{V} is related to the critical exponents in percolation. Before stating our precise results, we need to introduce some basic knowledge of percolation and the power law hypothesis since our proofs entirely depend on them.

Consider standard (Bernoulli) bond percolation on Z^{d}, in which all bonds are independently occupied with probability p and vacant with probability $1-p$, the corresponding probability measure and expectation on the configuration of occupied and vacant bonds are denoted by P_{P} and E_{P} respectively. The cluster of the vertex $x, \mathscr{C}(x)$, consists of all vertices which are connected to x by an occupied path on Z^{d}. An occupied path here is a nearest neighbor path on Z^{d}, whose bonds are occupied. The percolation probability is

$$
\theta(p)=P_{P}(|\mathscr{C}(0)|=\infty)
$$

and the critical probability is

$$
p_{c}=p_{c}\left(Z^{d}\right)=\sup \{p: \theta(p)=0\}
$$

It is well known that $0<p_{c}<1$. For any two sets of vertices A and B we write $A \leftrightarrow B$ for the event that there exists an occupied path from some vertex in A to some vertex in B. We set

$$
B(n)=[-n, n]^{d},
$$

and its boundary or surface is

$$
\partial B(n)=\left\{x \in Z^{d}:\|x\|=n\right\}
$$

where

$$
\|x\|:=\max _{1 \leqq i \leqq d}\left|x_{i}\right| \text { for } x=\left(x_{1}, \ldots x_{d}\right)
$$

Throughout this paper, C or C_{i} stands for a strictly positive finite constant which may depend on k, t and m but not n, whose value is of no significance to us. In
fact the value of C or C_{i} may change from appearance to appearance. Besides the percolation probability, other important quantities are defined by:

$$
\begin{align*}
\xi(p) & =\text { correlation length } \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \log P_{P}(0 \leftrightarrow \partial B(n),|\mathscr{C}(0)|<\infty) \text { for } p \neq p_{c} ; \tag{3}\\
\pi(p, n) & =P_{P}(0 \leftrightarrow \partial B(n)) . \tag{4}
\end{align*}
$$

Note that the existence of the limit in (3) follows simply from a subadditive argument. In particular, we denote by $\pi_{n}=\pi\left(p_{c}, n\right)$. With these definitions and notations, it is widely believed (see [11,5 and 6]) that various quantities in percolation behave like powers of $\left|p-p_{c}\right|$ as p approaches the critical probability p_{c}. More precisely, the principal conjectures concerning above quantities are as follows:

$$
\begin{align*}
\theta(p) & \approx\left(p-p_{c}\right)^{\beta} \tag{5}\\
\xi(p) & \approx\left(p-p_{c}\right)^{-v} \tag{6}\\
\pi_{n} & \approx n^{\frac{-1}{p}} \tag{7}
\end{align*}
$$

for some constants β, v and ρ which are called critical exponents, where $f(x) \approx$ $g(x)$ means that $C_{1} g(x) \leqq f(x) \leqq C_{2} g(x)$ for all x. These conjectures are usually called the power law hypothesis in percolation. It has been proved rigorously (see [11]) for the Z^{2} lattice that

$$
\begin{align*}
\left(p-p_{c}\right)^{\delta_{1}} & \leqq \theta(p) \leqq\left(p-p_{c}\right)^{\delta_{2}} \tag{8}\\
\left(p-p_{c}\right)^{-\delta_{3}} & \leqq \xi(p) \leqq\left(p-p_{c}\right)^{-\delta_{4}} \tag{9}\\
n^{\frac{-1}{3}} & \leqq \pi_{n} \leqq n^{-\delta_{5}} \tag{10}
\end{align*}
$$

for some strictly positive constants $\delta_{1}, \delta_{2}, \delta_{3}, \delta_{4}$ and δ_{5}. In particular, $\delta_{1}<1$, and $\delta_{3}>1$ have been proved (see [12]). It also follows from (10) that

$$
\begin{equation*}
\rho \geqq 3 \tag{11}
\end{equation*}
$$

provided (7) holds. However, as far as we know none of (5)-(7) has been proved for percolation. The computations in [13] and [14] indicate that

$$
\begin{equation*}
\beta=\frac{5}{36}, \quad v=\frac{4}{3} \quad \text { and } \quad \rho=\frac{48}{5} . \tag{12}
\end{equation*}
$$

Now we return to discuss the invasion percolation. With the knowledge of percolation, we find the fractal dimension of \mathscr{V} is related to π_{n}. Furthermore, with the power law hypothesis, we can show that \mathscr{V} has a fractal dimension $2-1 / \rho$. More precisely, our results are as follows.

Theorem 1. For $d=2$, any $\varepsilon>0$ and integer $m>0$, there exist constants C and $a>0$ such that

$$
\begin{equation*}
\mathscr{P}\left(\left|\mathscr{V}_{n}\right| \leqq n^{2+\varepsilon} \pi_{n}\right) \geqq 1-C n^{-m} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathscr{P}\left(\left|\mathscr{V}_{n}\right| \geqq n^{2-\varepsilon} \pi_{n}\right) \geqq 1-C n^{-a} . \tag{14}
\end{equation*}
$$

In particular, for any integer $t \geqq 1$, there exists a constant C such that

$$
\begin{equation*}
\mathscr{E}\left|\mathscr{V}_{n}\right|^{t} \geqq C\left(n^{2} \pi_{n}\right)^{t} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathscr{E}\left|\mathscr{V}_{n}\right|^{t} \leqq C\left(n^{2+\varepsilon} \pi_{n}\right)^{t} \tag{16}
\end{equation*}
$$

Unlike the general percolation model which is static, invasion percolation is a dynamical model. Therefore, time plays an important role in the model. It is interesting to consider "escape" time or "hitting" time problems. More precisely, we write

$$
h_{n}=\min \left\{m: S_{m} \cap \partial B(n) \neq \emptyset\right\}
$$

for the escape time from the box $B(n)$. In other words, the invasion cluster \mathscr{V} has to use at least time h_{n} to occupy some bond outside of the box $B(n)$. With this definition, we have the following result.
Theorem 2. For $d=2$ and any $\varepsilon>0$ there exist $a>0$ and C such that

$$
\begin{equation*}
\mathscr{P}\left(n^{2-\varepsilon} \pi_{n} \leqq h_{n} \leqq n^{(2+\varepsilon)} \pi_{n}\right) \geqq 1-C n^{-a} \tag{17}
\end{equation*}
$$

It is also important to take the phenomenon of trapping into account. A region \mathscr{R}_{n} becomes trapped by S_{n} if \mathscr{R}_{n} is separated from ∞ by S_{n}. More precisely,
$R_{n}=\left\{e \in Z^{2} \backslash S_{n}\right.$: any path from e to ∞ has to use at least one vertex of $\left.S_{n}\right\}$.
Let $\mathscr{R}=\cup_{n} \mathscr{R}_{n}$. We can still consider \mathscr{R} as the oil region trapped by water. Once \mathscr{R} is trapped by water no oil from \mathscr{R}_{n} can be displaced. In fact, \mathscr{R} is one region of the phenomenon of "residual oil," a great economic problem in the oil industry. Thus it is natural to ask (see [5, 7 and 4]) what the volume fraction of the trapped region is. More precisely, what is

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{d(2 n)^{d}}\left|\mathscr{R} \cap[-n, n]^{d}\right| \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { what is the behavior of } \mathscr{R}_{n} \text { as } n \rightarrow \infty \text { ? } \tag{19}
\end{equation*}
$$

By a simple percolation argument (see proof of Theorem 3), every bond has to be either in S_{n} or trapped by S_{n} for large n if $d=2$. On the other hand, $\left|\mathscr{V}_{n}\right| \ll n^{2}$ by the result in [9] or our Theorem 1. Hence we have the following theorem.
Theorem 3. If $d=2$, then we have

$$
\begin{equation*}
\lim _{n \rightarrow} \frac{1}{2(2 n)^{2}}\left|\mathscr{R} \cap[-n, n]^{2}\right|=1 \text { a.s. } \tag{20}
\end{equation*}
$$

However, nothing is known for $d>2$. In fact, it may not be very difficult to show that the corresponding limit in (20) is strictly less than one but the challenge is to find the exact limit for $d>2$. Concerning the behavior of \mathscr{R}_{n}, we shall show its exact growth rate as follows.
Theorem 4. For $d=2$ and each $\varepsilon>0$ there exist $a>0$ and C such that

$$
\begin{equation*}
\mathscr{P}\left(n^{(2-\varepsilon) /\left(2-\alpha_{n}\right)} \leqq\left|\mathscr{R}_{n}\right| \leqq n^{(2+\varepsilon) /\left(2-\alpha_{n}\right)}\right) \geqq 1-C n^{-a} \tag{21}
\end{equation*}
$$

where $\alpha_{n}=-\frac{\log \pi_{n}}{\log n}$.

Remarks. (i) Our proofs are restricted to the Z^{2} lattice. However, extending the results to any planar graph poses no serious difficulties. For each graph, the critical exponents (if they exist) depend of course on d, but it is believed that they do not depend on the particular lattice structure. This conjecture is called "universality." Thus it follows from our Theorem 1 and the universality that the fractal dimension of the invasion cluster in each planar graph does not depend on the particular lattice structure too. In other words, the invasion cluster in any planar graph has the same fractal dimension $2-1 / \rho$. We believe that this also holds for $d>2$. In fact Theorem 1 provides an important relation between the critical exponent ρ and the fractal dimension of the invasion cluster. We believe that the fractal dimension of the invasion cluster is much easier to handle at least from the point of simulations. For example, computing h_{n} in any regular graph is easier than computing π_{n} since h_{n} is not related to p_{c} which is unknown for almost all graphs.
(ii) Assuming the existence of ρ in (7), it follows from Theorem 1 and Themorem 3 with probability tending to one that

$$
\left|\mathscr{V}_{n}\right| \sim n^{2-1 / \rho} \text { and }\left|\mathscr{R}_{n}\right| \sim n^{2 \rho /(2 \rho-1)} .
$$

Therefore, the fractal dimensions of \mathscr{V} and \mathscr{R} are $2-1 / \rho$ and $\frac{2 \rho}{2 \rho-1}$ respectively. Note that (see (12)) $\rho=\frac{48}{5}$ so that fractal dimensions of \mathscr{V} and \mathscr{R} are $1.8958389583 \ldots$ and $1.054945054945 \ldots$, respectively. Comparing with (1), it matches Wilkinson and Willemsen's numerical result perfectly. However, without assuming (7) it follows from Theorem 1, Theorem 4, (10) and (11) that for any $\varepsilon>0$ with probability tending to one

$$
\left|\mathscr{V}_{n}\right| \geqq n^{5 / 3-\varepsilon} \text { and }\left|\mathscr{V}_{n}\right| \leqq n^{2-\delta_{5}-\varepsilon}
$$

and

$$
\left|\mathscr{R}_{n}\right| \geqq n^{2 /\left(2-\delta_{5}\right)-\varepsilon} \text { and }\left|\mathscr{R}_{n}\right| \leqq n^{6 / 5-\varepsilon} .
$$

(iii) From (13) and the Borel-Cantelli Lemma, $\left|\mathscr{V}_{n}\right| \leqq n^{2+\varepsilon} \pi_{n}$ almost surely. In fact, we may even improve the upper bound above to $C n^{2} \pi_{n} \log ^{2} n$ almost surely. However, it seems that the lower bound in the probability estimate in (14) is hard to improve to $\frac{1}{n^{m}}$ for a large m though we believe such an estimate to be true.
(iv) J. Chayes and L. Chayes proposed \mathscr{V} as the incipient infinite cluster (see [4]). Later, H. Kesten (see [15]) proposed another definition of the incipient infinite cluster. He defined the probability measure v_{p} by

$$
\begin{equation*}
v_{p}(A)=P_{P}(A| | \mathscr{C}(0) \mid=\infty) \tag{22}
\end{equation*}
$$

for a cylinder event A. After that he proved that the limit of $v_{p}(A)$ exists as $p \downarrow p_{c}$: Denote the limit by $v(A)$. Under the measure v, there exists an infinite occupied cluster W containing the origin with probability one. H. Kesten also showed that the expected number of $\left|W \cap[-n, n]^{2}\right|$ satisfies that

$$
\begin{equation*}
E_{0}\left|W \cap[-n, n]^{2}\right| \approx n^{2} \pi_{n} \tag{23}
\end{equation*}
$$

Although it is not clear what the relation is between the different definitions of the incipient infinite cluster, we at least, can show that both definitions of the incipient infinite cluster have the following relation:

$$
E_{v}\left|W \cap[-n, n]^{2}\right| \sim \mathscr{E} \mathscr{V}_{n}
$$

Our argument for Theorem 1 is divided into two parts: the lower bound and the upper bound estimates. Both of them rely on some percolation results. We collect these preliminary percolation results in Sect. 2. Then we complete Theorem 1 in Sect. 3. Sect. 4 will discuss the proofs of Theorem 2-4.

2. Preliminaries

We begin with the introduction of duality. Define Z^{*} as the dual graph of Z^{2} with vertices $\left\{v+\left(\frac{1}{2}, \frac{1}{2}\right)\right\}$ and bonds joining all pairs of vertices which are a unit distance apart. For any bond set $A \subset Z^{2}$, we write $A^{*} \subset Z^{*}$ for the corresponding bonds of the dual graph A. For each bond $e^{*} \in Z^{*}$, we declare it is occupied or vacant if e is occupied or vacant. In other words, if e^{*} crosses an occupied (vacant) bond in Z^{2} then e^{*} is occupied (vacant). With this definition, we can obtain (see [16] for detail) that if there exists a vacant dual circuit surrounding some set A^{*} on Z^{*}, then no occupied path can connect a vertex of A to ∞.

We define a left-right (respectively top-bottom) occupied crossing of a rectangle B to be an occupied path in B which joins some vertex on the left (respectively upper) side of B to some vertex on the right (respectively lower) side of B, but which uses no bonds joining two vertices in the boundary of B. Similarly, we can define a left-right vacant dual crossing of a rectangle. Let

$$
\sigma(n, p)=P_{P}\left(\exists \text { a left-right occupied crossing on }[-n, n]^{2}\right) .
$$

Then we define that

$$
L(p)=L(p, \delta)=\left\{\begin{array}{l}
\min \{n: \sigma(n, p)\} \geqq 1-\delta \text { if } p>p_{c} \tag{24}\\
\min \{n: \sigma(p, n)\} \leqq \delta \text { if } p<p_{c}
\end{array}\right.
$$

for some strictly positive constant δ whose precise value is not important. $L(p)$ is also called the correlation length. Indeed, it follows from [11] that

$$
\begin{equation*}
\xi(p) \approx L(p) \text { and } L\left(p_{c}+\eta, \delta\right) \approx L\left(p_{c}-\eta, \delta\right) \tag{25}
\end{equation*}
$$

With this definition, [11] proved the following lemma:
Lemma 1. There exist C_{1} and C_{2} such that

$$
\begin{equation*}
C_{1} \leqq \frac{\pi(p, n)}{\pi\left(p_{c}, n\right)} \leqq C_{2} \text { for all } n \leqq L(p, \delta) \tag{26}
\end{equation*}
$$

For $p<p_{c}$, let

$$
v(p, n)=-\frac{1}{n} \log P_{p}(0 \rightarrow \partial B(n))
$$

It follows from Theorem 5.10 in [6] that

$$
\begin{equation*}
\xi^{-1}(p)-\frac{C_{1} \log n}{n} \leqq v(p, n) \leqq \xi^{-1}(p)+\frac{C_{2} \log n}{n} \tag{27}
\end{equation*}
$$

for some constants C_{1} and C_{2}. Clearly, $v(p, n)$ is continuous in p for a fixed n since it is a polynomial in p. On the other hand, for fixed $n, v(p, n) \rightarrow \infty$ as
$p \downarrow 0$. Thus it follows from the intermediate value theorem, (9) and (27) that for any $0<\tau<1$ there exists $p_{n}<p_{c}$ such that

$$
\begin{equation*}
v\left(p_{n}, n\right)=\left(\frac{1}{n}\right)^{1-\tau} \tag{28}
\end{equation*}
$$

Clearly, it follows from (26) and (28) that

$$
\begin{equation*}
L\left(p_{n}\right) \geqq C n^{1-\tau} \tag{29}
\end{equation*}
$$

for some constant C.
Throughout this paper, we always denote by $p_{n}<p_{c}$ and $q_{n}=1-p_{n}$ the numbers such that

$$
v\left(p_{n}, n\right)=\left(\frac{1}{n}\right)^{1-\tau}
$$

for a given $0<\tau<1$. Let

$$
E(m, n)=\{\exists \text { a left-right occupied crossing of }[0, m] \times[0, n]\}
$$

Lemma 2. For each $0<\tau<1$ and integer $k>0$, then there exist some constants C_{1} and C_{2} such that

$$
\begin{equation*}
P_{q_{n}}(E(k n, n)) \geqq 1-C_{1} k \exp \left\{-n^{C_{2}}\right\} \tag{30}
\end{equation*}
$$

Proof. Suppose that $E(k n, n)$ does not occur. Then there exists a vacant dual path on Z^{*} from the top to the bottom in $[0, k n] \times[0, n]^{*}$. However, it follows from (28) and the definition of duality that

$$
P_{q_{n}}\left(\exists \text { a vacant path from the top to the bottom of }[0, k n] \times[0, n]^{*}\right)
$$

$$
=P_{p_{n}}(\exists \text { an occupied path from the top to the bottom of }[0, k n] \times[0, n])
$$

$$
\begin{equation*}
\leqq k n \exp \left\{-\left(\frac{n}{n^{1-\tau}}\right)\right\} \tag{31}
\end{equation*}
$$

Since $\tau<1$, Lemma 2 is proved by (31).
With Lemma 2, it is easy to obtain by the FKG inequality that
Corollary 3. There exist some constants C_{1} and C_{2} such that

$$
\begin{equation*}
P_{q_{n}}(\exists \text { an occupied circuit in } B(2 n) \backslash B(n)) \geqq 1-C_{1} \exp \left\{-n^{C_{2}}\right\} . \tag{32}
\end{equation*}
$$

If we are only interested in $p=p_{c}$, the following principal lemma was proved by Russo (see [17]), and Seymour and Welsh (see [18]). We state it as the RSW lemma.

RSW Lemma. For any integer $k>0$, there exists a constant C_{k} such that

$$
\begin{equation*}
P_{p_{c}}(E(k n, n)) \geqq C_{k} \tag{33}
\end{equation*}
$$

for all n.
In particular, it follows from the FKG inequality and the duality that for any $k>1$ and $\varepsilon>0$ there exist C_{k} (depends on k) and $a>0$ (depends on ε) such that

$$
\begin{equation*}
P_{p_{c}}(\exists \text { an occupied (a vacant) circuit in } B(k n) \backslash B(n)) \geqq C_{k} \tag{34}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{p_{c}}\left(\exists \text { an occupied (a vacant) circuit in } B\left(n^{1+\varepsilon}\right) \backslash B(n)\right) \geqq 1-\frac{1}{n^{a}} . \tag{35}
\end{equation*}
$$

Lemma 4. Let $H=\{(x, y): y \geqq 0\}$ be the upper space. Then there exists a constant C such that

$$
\begin{equation*}
P_{q_{n}}(\exists \text { an occupied path from }[-n, n] \times\{0\} \text { to } \infty \text { in } H) \geqq 1-\exp \left\{-n^{C}\right\} \tag{36}
\end{equation*}
$$

Proof. Suppose that there does not exist such an infinite occupied path. Then there exists a vacant path on Z^{*} from some point on $((-\infty,-n) \times\{0\})^{*}$ to some point on $(\{(n, \infty) \times\{0\}\})^{*}$. Suppose that these two points are $\left(m_{1}+\frac{1}{2}, \frac{1}{2}\right)$ and $\left(m_{2}+\frac{1}{2}, \frac{1}{2}\right)$. By the definition of correlation length and (28),

$$
\begin{align*}
& P_{q_{n}}(\nexists \text { an occupied path from }[-n, n] \times\{0\} \text { to } \infty \text { in } H) \\
& = \\
& \quad P_{q_{n}}\left(\exists \text { a vacant path on } H^{*} \text { from }\left(m_{1}+\frac{1}{2}, \frac{1}{2}\right)\right. \\
& \\
& \text { to } \left.\left(m_{2}+\frac{1}{2}, \frac{1}{2}\right) \text { with } m_{1}<-n \text { and } m_{2}>n\right) \\
& \leqq \tag{37}\\
& \sum_{m_{1}<-n} \sum_{m_{2}>n} P_{p_{n}}\left(\exists \text { an occupied path on } H \text { from }\left(m_{1}, 0\right) \text { to }\left(m_{2}, 0\right)\right) \\
& \leqq \\
& \sum_{m_{1}<-n} \sum_{m_{2}>n} \exp \left\{\frac{m_{2}-m_{1}}{n^{1-\tau}}\right\} \\
& \leqq \exp \left\{-n^{C}\right\} .
\end{align*}
$$

Therefore, Lemma 4 is proved.
Lemma 5. There exists a constant C such that for any $p \geqq p_{c}$ and integers m and n with $0<m<n, P_{P}(\partial B(n)$ and $\partial B(m)$ are connected by an occupied path inside $B(n) \backslash B(m)) \geqq C\left(\frac{m}{n}\right)$.

Proof. For any $m<n$, define

$$
S(m, n)=\{[-m, m] \times[-n, n]\}
$$

By convention we assume that $\frac{n}{m}$ is an integer, otherwise we always can use $\left\lfloor\frac{n}{m}\right\rfloor$ instead of $\frac{n}{m}$. Clearly, $S(m, n)$ is formed by some squares $D_{1} \cup D_{2}, \ldots, \cup D_{\frac{n}{m}}$, where $D_{1}=[-m, m] \times[-n,-n+m], \ldots, D_{i}=[-m, m] \times[-n+i m,-n+(i+1) m]$. We also denote by v_{i} the center vertex of D_{i}. If there exists an occupied left-right crossing in $[-n, n]^{2}$, then the lowest left-right occupied crossing has to cross $S(m, n)$. Therefore, the lowest left-right occupied crossing intersects as least one of $D_{1}, \ldots, D_{\frac{n}{m}}$. By (33) with $k=1$,
$C \leqq P_{p}\left(\exists\right.$ a left-right occupied crossing in $\left.[-n, n]^{2}\right)$
$\leqq \sum_{i=1}^{\frac{n}{m}} P_{p}\left(\right.$ the lowest left-right occupied crossing intersects $\left.\partial D_{l}\right)$
$\leqq \sum_{i=1}^{\frac{n}{m}} P_{p}\left(\exists\right.$ an occupied path from ∂D_{i} to $\left.v_{i}+\partial B(n)\right)$
$\leqq \frac{n}{m} P_{p}(\partial B(n)$ and $\partial B(m)$ are connected by an occupied path inside $B(n) \backslash B(m)$) (by the translation invariance).
Therefore, Lemma 5 is proved.
By Lemma 5 we can also obtain the following lemma.
Lemma 6. There exists a constant C such that for any $p \geqq p_{c}$ and integers m and n with $m<n$,

$$
\begin{align*}
\pi(p, m) & \leqq C\left(\frac{n}{m}\right) \pi(p, n) \tag{38}\\
\pi(p, m) & \leqq C\left(\frac{n}{m}\right)^{2} \pi(p, n) \tag{39}
\end{align*}
$$

Proof. Denote by

$$
\begin{aligned}
A= & \{0 \leftrightarrow \partial B(m)\}, \\
B= & \left\{\exists \text { an occupied circuit in } B(m) \backslash B\left(\frac{m}{2}\right)\right\}, \\
C= & \left\{\text { two boundaries of } B(n) \text { and } B\left(\frac{m}{2}\right)\right. \text { are } \\
& \text { connected by an occupied path }\} .
\end{aligned}
$$

Clearly, $\{0 \leftrightarrow \partial B(n))\}$ occurs if $A \cap B \cap C$ occurs. Thus (38) is implied by the FKG inequality, the RSW lemma and Lemma 5. Equation (39) is obvious since $\frac{n}{m} \geqq 1$.

For each $x \in B(n)$, Let $I_{x}(n)$ be the indicator of the event that there exists an occupied path from x to $\partial B(n)$. Now we begin to estimate the first and the moments of $\sum_{x \in B(n)} I_{x}(n)$ for any $p \geqq p_{c}$.
Lemma 7. For any $p \geqq p_{c}$ there exist constants C_{1} and C_{2} such that

$$
\begin{equation*}
C_{1} n^{2} \pi(p, n) \leqq E_{p} \sum_{x \in B\left(\frac{n}{2}\right)} I_{x}(n) \leqq E_{p} \sum_{x \in B(n)} I_{x}(n) \leqq C_{2} n^{2} \pi(p, n) . \tag{40}
\end{equation*}
$$

For any integer $t \geqq 1$ there exists a constant C_{t} such that

$$
\begin{equation*}
E_{p}\left(\sum_{x \in B(n)} I_{x}(n)\right)^{t} \leqq C_{t}\left(E_{p} \sum_{x \in B(n)} I_{x}(n)\right)^{t} \tag{41}
\end{equation*}
$$

Proof. We shall not prove Lemma 7 here. Indeed, it is easy to adapt the proof of Theorem 8 in [15] to show (40). In addition, (41) has been proved by B. Nguyen (see the lemma in [20]). H. Kesten also gave a similar estimate of (41) (see Theorem 8 in [15]).

We then can obtain the following corollary by Lemma 7 and the CauchySchwarz inequality.

Corollary 8. There exist C_{1} and $\mu>0$ such that

$$
\begin{equation*}
P_{P}\left(\sum_{x \in B(n)} I_{x}(n) \geqq C_{1} n^{2} \pi_{n}\right) \geqq \mu>0 \tag{42}
\end{equation*}
$$

Finally, we end this section with another lemma.
Lemma 9. Given $\varepsilon>0$, there exist constants C_{1}, C_{2} and C_{3} such that

$$
\begin{align*}
& P_{p_{c}}\left(\exists \text { occu pied circuit } \mathscr{C}_{n} \text { in } B(n) \backslash B\left(n^{1-\varepsilon}\right),\right. \text { but the number of vertices } \\
& \left.\quad x \in B(n) \text { such that } x \leftrightarrow \mathscr{C}_{n} \text { in } B(n) \text { is less than } n^{2-3 \varepsilon} \pi(n)\right) \\
& \quad \leqq C_{1} \exp \left(-C_{2} n^{C_{3} \varepsilon}\right) \tag{43}
\end{align*}
$$

Proof. We shall not prove Lemma 9 here too since the proof is the same as the proof of Lemma 3.24 in [21].

3. Proof of Theorem 1

Before the proof of Theorem 1 we present a heuristic explanation of Theorem 1. The explanation is divided into two parts as follows.

1. The heuristic of the lower bounds in Theorem 1. A bond e is called p-open if $X(e) \leqq p$, and p-closed if $X(e)>p$. When $p=p_{c}$, by the RSW lemma, there should be many p_{c}-open circuits surrounding the origin in $B(n)$ for a large n. On the other hand, there exists a p_{c}-closed dual circuit surrounding these p_{c}-open circuits since $\theta\left(p_{c}\right)=0$. We denote by Γ_{n} the bonds of these p_{c}-open circuits and the bonds connected to these p_{c}-open circuits by a p_{c}-open path. Note that \mathscr{V} has to first cross these p_{c}-open circuits and then it has to use at least a bond of the p_{c}-closed dual circuit eventually. Note also that $X\left(e_{1}\right)>X\left(e_{2}\right)$ if e_{1}, is a p_{c}-closed and e_{2} is a p_{c}-open so that \mathscr{V} has to occupy all the bonds of Γ_{n} before occupying any bond of the p_{c}-closed dual circuit. Therefore, we can use $\left|\Gamma_{n}\right|$ as a lower bound of $\left|\mathscr{V}_{n}\right|$. With this observation, the rest work is to estimate $\left|\Gamma_{n}\right|$ by lemmas in Sect. 2.
2. The heuristic of the upper bounds in Theorem 1. The upper bounds in Theorem 1 is more complicated. Note that for each $p>p_{c}$ there exists a unique infinite cluster $\mathscr{C}(p)$ of p-open bonds. Once the invasion cluster reaches $\mathscr{C}(p)$, all future invasion bonds will stay in $\mathscr{C}(p)$. If we only consider $d=2$, by a standard percolation argument there exists a finite circuit in $\mathscr{C}(p)$ surrounding the origin. In other words, \mathscr{V} has to reach $\mathscr{C}(p)$ in finite time. Then $|\mathscr{C}(p) \cap B(n)|+$ constant is an upper bound of $\left|\mathscr{V}_{n}\right|$. However, we may lose too much if we only use $|\mathscr{C}(p) \cap B(n)|+$ constant as an upper bound since $|\mathscr{C}(p) \cap B(n)| \approx n^{2}$ for any $p>p_{c}$. [22] considered an inhomogeneous site percolation model as follows. They use $p_{c}+f(x)$ instead of p for each vertex $x \in Z^{2}$ and show that there exists an infinite cluster $\mathscr{C}\left(p_{c}+f(x)\right)$ if $f(x)$ decays to zero slower than $\|x\|^{-1 / v}$ as $\|x\| \rightarrow \infty$. Therefore, we can certainly control \mathscr{V} by $\mathscr{C}\left(p_{c}+f(x)\right)$. However, the result of [22] depends on the assumption of the power law hypothesis. The rest diffculty is to estimate
$\left|\mathscr{C}\left(p_{c}+f(x)\right) \cap B(n)\right|$ by lemmas in Sect. 2 without using the power law hypothesis.

Now we begin to give a rigorous proof of Theorem 1. We first estimate the lower bound of Theorem 1 . As we pointed before, a bond e is called p-open if $X(e) \leqq p$ and p-closed if $X(e)>p$. Since $\theta\left(p_{c}\right)=0$, there must exist a dual circuit M_{n} on Z^{*} outside $B(n)$ with p_{c}-closed bonds. We write \mathscr{M}_{n} for such an event. On the other hand, it follows from Lemma 3 that there exists a p_{c}-open circuit in $B(n) \backslash B\left(\frac{n}{2}\right)$ with a positive probability. We write \mathscr{D}_{n} for the event. On the event \mathscr{D}_{n} we can select such a p_{c}-open circuit and denote by D_{n}. For convenience, we always select the innermost open circuit as D_{n}. Let us consider each vertex $x \in B\left(\frac{n}{2}\right)$. If both D_{n} and M_{n} exist, then x is in \mathscr{V} if there exists a p_{c}-open path connecting x to D_{n}. Therefore,

$$
\begin{aligned}
\mathscr{E}\left|\mathscr{V}_{n}\right|= & \sum_{x \in B(n)} \mathscr{P}(x \in \mathscr{V}) \\
\geqq & \sum_{x \in B\left(\frac{n}{2}\right)} \mathscr{P}\left(x \in \mathscr{V}, \mathscr{D}_{n}, \mathscr{M}_{n}\right) \\
\geqq & \sum_{x \in B\left(\frac{n}{2}\right)} P_{p_{c}}\left(x \leftrightarrow D_{n}, \mathscr{D}_{n}, \mathscr{M}_{n}\right) \\
= & \sum_{x \in B\left(\frac{n}{2}\right)} P_{p_{c}}\left(x \leftrightarrow D_{n}, \mathscr{D}_{n}\right) P\left(\mathscr{M}_{n}\right) \\
& \left(\text { note that } \mathscr{M}_{n} \text { and }\left\{x \leftrightarrow D_{n}, \mathscr{D}_{n}\right\}\right. \text { only depend on } \\
& \{X(e)\} \text { for } e \in Z^{2} \backslash B(n) \text { and } e \in B(n) \text { respectively) } \\
\geqq & C_{2} \sum_{x \in B\left(\frac{n}{2}\right)} P_{p_{c}}(x \rightarrow \partial B(n))
\end{aligned}
$$

(by the FKG inequality and note that

$$
\begin{align*}
& \left.\{x \leftrightarrow \partial B(n)\} \subset\left\{x \leftrightarrow D_{n}\right\} \text { for } x \in B\left(\frac{n}{2}\right)\right) \\
\geqq & C_{3} n^{2} P_{p_{c}}(0 \leftrightarrow \partial B(n))(\text { by }(40)) \\
= & C_{3} n^{2} \pi_{n} \tag{44}
\end{align*}
$$

Equation (15) follows from Jensen's inequality and (44), that is

$$
\mathscr{E}\left|\mathscr{V}_{n}\right|^{t} \geqq\left(\mathscr{E}\left|\mathscr{V}_{n}\right|\right)^{t} \geqq C\left(n^{2} \pi_{n}\right)^{t}
$$

for some constant C. Now we turn to show (14) in Theorem 1 about the probability estimate. Given $\varepsilon>0$, we will estimate $\mathscr{P}\left(\left|\mathscr{V}_{n}\right| \leqq n^{2-\varepsilon} \pi_{n}\right)$. Let \mathscr{D} be the event that there exists a p_{c}-open circuit in $B(n) \backslash B\left(n^{1-\varepsilon / 4}\right)$. On the event \mathscr{D} select D as the innermost open circuit. By (35) there exists $a>0$ such that

$$
\mathscr{P}(\mathscr{D}) \geqq 1-\frac{1}{n^{a}} .
$$

Furthermore, on the event \mathscr{D}, denote by J_{x} the indicator of the event that there exists a p_{c}-open path from x to D in $B(n)$ for each $x \in B(n)$. With the definition of J_{x} it can be seen that x has to be connected to D by a p_{c}-open path if D exists and $J_{x}=1$. Note that there always exists a p_{c}-closed dual circuit on Z^{*} surrounding $B(n)$ and \mathscr{V} has to cross D somewhere, so that $D \subset \mathscr{V}_{n}$ if D exists. Similarly, it
can also be seen that $x \in \mathscr{V}_{n}$ if D exists and $J_{x}=1$. Then $\sum_{x \in B(n)} J_{x} \leqq n^{2-\varepsilon} \pi_{n}$ if there exists D and $\left\{\left|\mathscr{V}_{n}\right| \leqq n^{2-\varepsilon} \pi_{n}\right\}$. By Lemma 9

$$
\begin{align*}
& \mathscr{P}\left(\left|\mathscr{V}_{n}\right| \leqq n^{2-\varepsilon} \pi_{n}\right) \\
& \quad \leqq \mathscr{P}\left(\left|\mathscr{V}_{n}\right| \leqq n^{2-\varepsilon} \pi_{n}, \mathscr{D}\right)+\frac{1}{n^{a}} \\
& \quad \leqq \mathscr{P}\left(\sum_{x \in B(n)} J_{x} \leqq n^{2-\varepsilon} \pi_{n}, \mathscr{D}\right)+\frac{1}{n^{a}} \\
& \leqq P_{p_{c}}\left(\exists \text { the innermost occupied circuit } \mathscr{C} \text { in } B(n) \backslash B\left(n^{1-\varepsilon / 4}\right),\right. \\
& \quad \text { but the number of vertices } x \in B(n) \text { such that } x \leftrightarrow \mathscr{C} \text { in } B(n) \\
& \left.\quad \text { is less than } n^{2-\varepsilon} \pi(n)\right) \\
& \leqq C_{1} \exp \left(-C_{2} n^{C_{3} \varepsilon}\right)+\frac{1}{n^{a}} . \tag{45}
\end{align*}
$$

Therefore, the lower bound of Theorem 1 is proved.
Next we will show the upper bound of Theorem 1. We begin with the estimate of the expected \mathscr{V}_{n}. For any n and $1>\tau>0$, set

$$
k_{0}=n, k_{1}=k_{0}^{1-\tau}, k_{2}=k_{1}^{1-\tau}, \ldots, k_{r}=k_{r-1}^{1-\tau}, k_{r+1}=k_{r}^{1-\tau}
$$

where r is the smallest integer such that $(1-\tau)^{r} \leqq \frac{3}{4}$. For each r and j with $0<j \leqq r$, denote by $p_{k_{j}}=1-q_{k_{j}}<p_{c}$ the number which satisfies

$$
v\left(p_{k_{j}}, k_{j}\right)=\left(\frac{1}{k_{j}}\right)^{1-\tau}
$$

By (29), such a $p_{k_{j}}$ exists. Clearly, there exists a constant C such that

$$
\begin{equation*}
\left|\mathscr{V}_{k_{r}}\right| \leqq C n^{2(1-\tau)^{r}} \leqq C n^{3 / 2} \tag{46}
\end{equation*}
$$

On the other hand, by (15) and (10),

$$
\begin{equation*}
\mathscr{E}\left|\mathscr{V}_{n}\right|^{t} \geqq C n^{(5 t / 3)} \geqq 2 n^{3 t / 2} \tag{47}
\end{equation*}
$$

for large n. Set $\Gamma=B(n) \backslash B\left(k_{r}\right)$. By Minkowski's inequality and (46)

$$
\begin{align*}
\left(\mathscr{E}\left|\mathscr{V}_{n}\right|^{t}\right)^{1 / t} & =\left(\mathscr{E}\left(\left|\mathscr{V}_{n} \cap \Gamma\right|+\left|\mathscr{V}_{k_{r}}\right|\right)^{t}\right)^{1 / t} \\
& \leqq\left(\mathscr{E}\left(\left|\mathscr{V}_{n} \cap \Gamma\right|\right)^{t}\right)^{1 / t}+C n^{3 / 2} \tag{48}
\end{align*}
$$

Then it follows from (47) and (48) that

$$
\begin{equation*}
\mathscr{E}\left|\mathscr{V}_{n}\right|^{t} \leqq C \mathscr{E}\left(\left|\mathscr{V}_{n} \cap \Gamma\right|\right)^{t} \tag{49}
\end{equation*}
$$

for some C. We let \mathscr{D}_{j+1} be the event that there exists a $q_{k_{j+1}}$-open circuit inside $B\left(k_{j}\right) \backslash B\left(k_{j+1}\right)$ for $0 \leqq j \leqq r$. We also let \mathscr{L}_{j} be the event that there exists a $q_{k_{j+1}}-$ open path from the left edge to the right edge of $\left[k_{j+1}, k_{j-1}\right] \times\left[-k_{j+1}, k_{j+1}\right]$ for $1 \leqq$ $j \leqq r$, and \mathscr{L}_{0} be the event that there exists a $q_{k_{1}}$-open path from $\left\{k_{1}\right\} \times\left[-k_{1}, k_{1}\right]$

Fig. 1. The event F_{n}
to ∞ (see Fig 1). On the event \mathscr{D}_{j} or \mathscr{L}_{j} we can select such a circuit or path and denote by such a circuit or path \mathscr{D}_{J} or \mathscr{L}_{j} respectively. Denote by

$$
F_{n}=\bigcap_{j=1}^{r+1}\left\{\mathscr{D}_{j}\right\} \bigcap_{j=0}^{r}\left\{\mathscr{L}_{j}\right\} .
$$

Note that $k_{r} \geqq n^{c}$ for some $c>0$. Then by Lemma 2, Cor. 3, Lemma 4 and the FKG inequality,

$$
\begin{equation*}
\mathscr{P}\left(F_{n}\right) \geqq 1-\exp \left\{-n^{C}\right\} \tag{50}
\end{equation*}
$$

For each $x \in B\left(k_{j-1}\right) \backslash B\left(k_{j}\right)$ set $T_{x}(j)$ to be the indicator of the event that there exists a $q_{\max }(j)$-open path from x to $\partial B\left(k_{j-1}\right)$, where

$$
q_{\max }(j)=\max \left\{q_{k_{j+1}}, q_{k_{j}}, \ldots, q_{k_{0}}\right\}
$$

Note that

$$
\begin{equation*}
L\left(q_{\max }(j)\right) \geqq C k_{j+1}^{1-\tau} \tag{51}
\end{equation*}
$$

Let

$$
G_{j}= \begin{cases}\sum_{x \in B\left(k_{j-1}\right) \backslash B\left(k_{j}\right)} T_{x}(j) & \text { if } F_{n} \text { occurs } \\ 0 & \text { otherwise }\end{cases}
$$

Note that \mathscr{V} must cross D_{j+1} and D_{j+1} is connected to ∞ by a $q_{\max }(j)$-open path if F_{n} occurs. Once the invasion cluster reaches D_{j+1}, all future invaded edges e_{k} will have $X\left(e_{k}\right) \leqq q_{\max (j)}$. Thus if $x \in \mathscr{V} \cap\left\{B\left(k_{j-1}\right) \backslash B\left(k_{j}\right)\right\}$, there must exist a $q_{\max }(j)$-open path from D_{j+1} to x. In other words if $x \in \mathscr{V} \cap\left\{B\left(k_{j-1}\right) \backslash B\left(k_{j}\right)\right\}$, then $T_{x}(j)=1$. On the event F_{n}, we have

$$
G_{0}+G_{1}+\ldots+G_{r} \geqq\left|\mathscr{V}_{n} \cap \Gamma\right| .
$$

For integers l, t and j with $1 \leqq l \leqq t$ and $j \leqq r$,

$$
\begin{aligned}
\mathscr{E}\left(G_{j}\right)^{l} & \leqq \mathscr{E}\left(\sum_{x \in B\left(k_{j-1}\right) \backslash B\left(k_{j}\right)} T_{x}(j)\right)^{l} \\
& \leqq C E_{q_{\max }(j)}\left(\sum_{x \in B\left(k_{j-1}\right)} I_{x}\left(k_{j-1}\right)\right)^{l}
\end{aligned}
$$

$$
\begin{align*}
& \leqq C_{1}\left(E_{q_{\max }(j)} \sum_{x \in B\left(k_{l-1}\right)} I_{x}\left(k_{j-1}\right)\right)^{l} \quad(\text { Cor. } 8(\mathrm{a})) \\
& \leqq C_{1}\left(k_{j-1}^{2} \pi\left(q_{\max }(j), k_{j-1}\right)\right)^{l}(\text { by Lemma } 7) \\
& \leqq C_{1}\left(k_{j-1}^{2} \pi\left(q_{\max }(j), k_{j+1}^{1-\tau}\right)\right)^{l}\left(\text { note that } k_{j-1} \geqq\left(k_{j+1}\right)^{1-r}\right) \\
& \leqq C_{2}\left(k_{j-1}^{2} \pi_{k_{j+1}^{1-\tau}}\right)^{l}(\text { by }(53) \text { and Lemma 1) } \\
& \leqq C_{3}\left(k_{j-1}^{2+3 \tau} \pi_{k_{j-1}}\right)^{l}(\text { by Lemma } 6) \\
& \leqq C_{3} n^{(2+3 \tau) l} \pi_{n}^{l}(\text { by }(39)) . \tag{52}
\end{align*}
$$

Note that G_{i} and G_{j} are independent if $i \neq j$, so that for any $0 \leqq j_{1}, j_{2}, \ldots, j_{k} \leqq r$ and $i_{1}+\ldots+i_{k}=t$,

$$
\begin{equation*}
\mathscr{E} G_{j_{1}}^{i_{1}} \cdot \ldots \cdot G_{j_{k}}^{i_{k}} \leqq C n^{(2+3 \tau) t} \pi_{n}^{t} \tag{53}
\end{equation*}
$$

for some constant C. Therefore, by (49), (50) and (53),

$$
\begin{align*}
\mathscr{E}\left|\mathscr{V}_{n}\right|^{t} & \leqq C_{1} \mathscr{E}\left|\mathscr{V}_{n} \cap \Gamma\right|^{t} \\
& \leqq C_{1} \mathscr{E}\left(G_{1}+G_{2}+\ldots+G_{r}\right)^{t}+(8 n)^{2 t} \exp \left(-n^{C}\right) \\
& \leqq C_{2} r^{t+1} n^{(2+3 \tau) t} \pi_{n}^{t}+(8 n)^{2 t} \exp \left(-n^{C}\right) \\
& \leqq C_{3} r^{t+1} n^{(2+3 \tau) t} \pi_{n}^{t} \tag{54}
\end{align*}
$$

Therefore, (16) is implied by (54).
To show (13) use Markov's inequality,

$$
\begin{equation*}
\mathscr{P}\left(\left|\mathscr{V}_{n}\right| \geqq n^{2+\varepsilon} \pi_{n}\right) \leqq \frac{\mathscr{E}\left|\mathscr{V}_{n}\right|^{t}}{n^{(2+\varepsilon) t} \pi_{n}^{t}} \tag{55}
\end{equation*}
$$

Therefore, (13) is proved by choosing t large and τ small. Theorem 1 is proved.

4. Proof of Theorem 2-4

Proof of Theorem 2. We first estimate the lower bound of h_{n} in Theorem 2. We denote by \mathscr{D} the event that there exists a p_{c}-open circuit in $B\left(n^{1-\varepsilon / 8}\right) \backslash B\left(n^{1-\varepsilon / 4}\right)$. On the event \mathscr{D}, let D be the innermost p_{c}-open circuit in $B\left(n^{1-\varepsilon / 8}\right) \backslash B\left(n^{1-\varepsilon / 4}\right)$. We also denote by \mathscr{M} the event that there exists a p_{c}-closed dual circuit in $B(n) \backslash B\left(n^{1-\varepsilon / 8}\right)$. On the event \mathscr{M} we can select a p_{c}-closed dual circuit M in $\left(B(n) \backslash B\left(n^{1-\varepsilon / 8}\right)\right)^{*}$. Clearly, M surrounds D in $B(n)$ if both of them exist. By (35), the probability of the existence of D and M in $B(n) \backslash B\left(n^{1-\frac{\varepsilon}{4}}\right)$ is larger than $1-\frac{1}{n^{a}}$ for some constant $a>0$. On the event $\mathscr{D} \cap \mathscr{M}$, the invasion cluster \mathscr{V} has to occupy all bonds of D before it occupies any bond of M. Of course, \mathscr{V} must also occupy all possible vertices which are connected to D by a p_{c}-open path. Clearly, $\sum_{x \in B\left(n^{1-\varepsilon / 8)}\right.} J_{x} \leqq$ $n^{2-\varepsilon} \pi_{n}$ if $h_{n} \leqq n^{2-\varepsilon} \pi_{n}$ and both D and M exist (see the definition of J_{x} in Sect. 3). Therefore,

$$
\begin{align*}
\mathscr{P}\left(h_{n} \leqq n^{2-\varepsilon} \pi_{n}\right) & \leqq \mathscr{P}\left(h_{n} \leqq n^{2-\varepsilon} \pi_{n}, \mathscr{D}, \mathscr{M}\right)+\frac{1}{n^{a}} \\
& \leqq \mathscr{P}\left(\sum_{x \in B\left(n^{1-\varepsilon / 8}\right)} J_{x} \leqq n^{2-\varepsilon} \pi_{n}, \mathscr{D}\right)+\frac{1}{n^{a}} \\
& \left.\leqq C_{1} \exp \left(-C_{2} n^{C_{3}}\right)+\frac{1}{n^{a}}(\text { by } 45)\right) . \tag{56}
\end{align*}
$$

Therefore the lower bound of Theorem 2 is proved. Since $h_{n} \leqq\left|\mathscr{V}_{n}\right|$, the upper bound of Theorem 2 holds by Theorem 1.

Proof of Theorem 3. By the duality and $\theta\left(p_{c}\right)=0$, there exists with probability one a p_{c}-open circuit D_{n} and a p_{c}-closed dual circuit F_{n} outside of $B(n)$ such that D_{n} is surrounded by F_{n}. Once such two circuits exist, \mathscr{V} has to first occupy every bond of D_{n} before it occupies any bond of F_{n}. Therefore, each bond in $B(n)$ is either trapped by \mathscr{V} or in \mathscr{V}. However, by (13) the total number of bonds in \mathscr{V}_{n} exceeds $n^{2+\varepsilon} \pi_{n}$ with a probability less than $\frac{1}{n^{m}}$ for some m. Therefore, the total number of trapped bonds by \mathscr{V} in $[-n, n]^{2}$ is less than $|B(n)|-n^{2+\varepsilon} \pi_{n}=2(2 n)^{2}-n^{2+\varepsilon} \pi_{n}$ with a probability less than $\frac{1}{n^{m}}$. By taking ε small and $m>1$, the Borel-Cantelli lemma and (10) will imply that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{2(2 n)^{2}}\left|\mathscr{R} \cap[-n, n]^{2}\right|=1 \text { a.s } \tag{57}
\end{equation*}
$$

Theorem 3 is proved.
Proof of Theorem 4. Denote by

$$
T_{n}=\max \left\{m: S_{n} \cap \partial B(m) \neq \emptyset\right\} .
$$

Clearly,

$$
\left\{T_{n} \geqq l\right\} \text { implies } h_{l} \leqq n \text { and }\left\{T_{n}<l\right\} \text { implies } h_{l} \geqq n
$$

Note that, by definition of $\alpha_{n}, \pi_{n}=n^{\log \pi_{n} / \log n}=n^{-\alpha_{n}}$. Then

$$
n^{2} \pi_{n}=n^{2-\alpha_{n}} .
$$

Given $\varepsilon>0$, let

$$
A_{n}=\left\{n^{1 /\left(2-\alpha_{n}+\varepsilon / 2\right)} \leqq T_{n}\right\}
$$

Then by Theorem 2,

$$
\begin{equation*}
\mathscr{P}\left(A_{n} \text { does not occur }\right) \leqq \mathscr{P}\left(h_{n^{1 /\left(2-\alpha_{n}+\varepsilon / 2\right)}} \geqq n\right) \leqq \frac{1}{n^{a}} \tag{58}
\end{equation*}
$$

for some constant $a>0$. Similarly, let \mathscr{D}_{n} and \mathscr{M}_{n} be the events that there exist a p_{c}-open circuit D_{n} and a p_{c}-closed circuit M_{n} such that both of them are in $B\left(n^{1 /\left(2-\alpha_{n}+\varepsilon / 2\right)}\right) \backslash B\left(n^{1 /\left(2-\alpha_{n}+\varepsilon\right)}\right)$ and D_{n} is also surrounded by M_{n}. Clearly, by (35),

$$
\begin{equation*}
\mathscr{P}\left(\mathscr{D}_{n} \cap \mathscr{M}_{n}\right) \geqq 1-n^{-b} \tag{59}
\end{equation*}
$$

for some constant $b>0$. If D_{n} and M_{n} as above exist, then each bond in $B\left(n^{1 /\left(2-\alpha_{n}+\varepsilon\right)}\right)$ is either trapped by \mathscr{V} or in \mathscr{V} since \mathscr{V} has to occupy all bonds of D_{n} before occupying any bond of M_{n}. However, if A_{n} occurs, D_{n} has to intersect S_{n} somewhere since $S_{n} \cap \partial B\left(n^{1 /\left(2-\alpha_{n}+\varepsilon / 2\right)}\right) \neq \emptyset$. On the other hand, note that M_{n} is in $B\left(n^{1 /\left(2-\alpha_{n}+\varepsilon / 2\right)}\right)$ and \mathscr{V} only use at most n bonds to come to the boundary of $B\left(n^{1 /\left(2-\alpha_{n}+\varepsilon / 2\right)}\right)$ on the event A_{n}, so that $D_{n} \subset S_{n}$. With this observation, if A_{n} occurs and D_{n} and M_{n} exist, then every bond in $B\left(n^{1 /\left(2-\alpha_{n}+\varepsilon\right)}\right)$ is either in S_{n} or trapped by S_{n}. Note that $\left|S_{n}\right|=n$. Therefore, at least $n^{2 /\left(2-\alpha_{n}+\varepsilon\right)}-n$ bonds are trapped by S_{n}. If we take ε small and n large such that $n^{2 /\left(2-\alpha_{n}+\varepsilon\right)}-n \geqq \frac{1}{2} n^{2 /\left(2-\alpha_{n}+\varepsilon\right)}$, then the total number of bonds trapped by S_{n} cannot be less than $\frac{1}{2} n^{2 /\left(2-\alpha_{n}+\varepsilon\right)}$ if A_{n} occurs and D_{n} and M_{n} exist. Therefore,

$$
\begin{align*}
& \mathscr{P}\left(\frac{1}{2} n^{2 /\left(2-\alpha_{n}+\varepsilon\right)} \geqq\left|\mathscr{R}_{n}\right|\right) \\
& \quad \leqq \mathscr{P}\left(\frac{1}{2} n^{2 /\left(2-\alpha_{n}+\varepsilon\right)} \geqq\left|\mathscr{R}_{n}\right|, A_{n}, \mathscr{D}_{n}, \mathscr{M}_{n}\right)+\frac{1}{n^{a}}+\frac{1}{n^{b}} \\
& \quad=\frac{1}{n^{a}}+\frac{1}{n^{b}} . \tag{60}
\end{align*}
$$

Similarly, by Theorem 2,

$$
\begin{equation*}
\mathscr{P}\left(T_{n} \geqq n^{1 /\left(2-\alpha_{n}-\varepsilon\right)}\right) \leqq \mathscr{P}\left(h_{n^{1 /\left(2-\alpha_{n}-\varepsilon\right)}} \leqq n\right) \leqq n^{-d} \tag{61}
\end{equation*}
$$

for some constant $d>0$. On the event $\left\{T_{n} \leqq n^{1 /\left(2-\alpha_{n}-\varepsilon\right)}\right\}$, the bonds trapped by S_{n} are at most $n^{2 /\left(2-\alpha_{n}-\varepsilon\right)}-n$ in number. Then

$$
\begin{align*}
& \mathscr{P}\left(n^{2 /\left(2-\alpha_{n}-\varepsilon\right)} \leqq\left|\mathscr{R}_{n}\right|\right) \\
& \quad \leqq \mathscr{P}\left(n^{2 /\left(2-\alpha_{n}+\varepsilon\right)} \leqq\left|\mathscr{R}_{n}\right|, T_{n} \leqq n^{1 /\left(2-\alpha_{n}-\varepsilon\right)}\right)+\frac{1}{n^{d}} \\
& \quad=\frac{1}{n^{d}} \tag{62}
\end{align*}
$$

Equation (21) is implied by (60) and (62). Theorem 4 is proved.

Acknowledgements. The author would like to thank the referee for carefully reading this manuscript and numerous helpful comments and typographical corrections.

References

1. De Gennes, P.G., Guyon, E.: Lois generales pour l'injection d'un fluide dans un milieu poreux aleatoire. J. Mecanique 17, 403-432 (1978)
2. Lenormand, R., Bories, S.: Description d'un mecanisme de connexion de liaision destine a l'etude du drainage avec piegeage en milieu poreux. C. R. Acad. Sci. Paris Ser B 291, 279-282 (1980)
3. Chandler, R., Koplik, J., Lerman, K., Willemsen, J.F.: Capillary displacement and percolation in porous media. J. Fluid Mech. 119, 249-267 (1982)
4. Chayes, J., Chayes, L.: Percolation and random media. In Critical Phenomena, Random System and Gauge Theories, Les Houches Session XLIII 1984, Osterwalder, K. and Stora, R. eds. Amsterdam: North-Holland, pp. 1000-1142 (1986)
5. Kesten, H.: Percolation theory and first passage percolation. Ann. Probab. 15, No 4, 1231-1271 (1987)
6. Grimmett, G.: Percolation. Berlin, Heidelberg, New York: Springer (1989)
7. Wilkinson, D., Willemsen, J.F.: Invasion percolation: A new form of percolation theory. J. Phys. A. Math. 16, 3365-3376 (1983)
8. Willemsen, J.F.: Investigations on scaling and hyperscaling for invasion percolation. Phys. Rev. Letter 52, 2197-2200 (1984)
9. Chayes, J., Chayes, L., Newman, C.M.: Stochastic geometry of invasion percolation. Commun. Math. Phys. 101, 383-407 (1985)
10. Chayes, J., Chayes, L., Newman, C.M.: Bernoulli percolation above threshold: An invasion percolation analysis. Ann. Probab. 15, 1272-1287 (1987)
11. Kesten, H.: Scaling relations for 2D-percolation, Commun. Math. Phys. 109, 109-156 (1987)
12. Kesten, H., Zhang, Y.: Strict inequalities for some critical exponents in two-dimensional percolation. J. Statist. Phys. 46, 1031-1055 (1987)
13. den Nijes, M.P.M.: A relation between the temperature exponents of the eight-vertex and q -Potts model. J. Phys. A. Math. 12, 1875-1868 (1979)
14. Nienhuis, B., Reidel, E.K., Schick, M.: Magnetic exponents of the two-dimensional q-state Potts model. J. Phys. A. Math. 13, L189-L192 (1980)
15. Kesten, H.: The incipient infinite cluster in two-dimensional percolation. Probab. Th. Rel. Fields 73, 369-394 (1986)
16. Kesten, H.: Percolation Theory for Mathematicians. Boston: Birkhäuser, (1982)
17. Russo, L.: A note on percolation. Z. Wahrsch. verw. Gebiete 43, 39-48 (1978)
18. Seymour, P.D., Welsh, D.J.A.: Percolation probabilities on the square lattice. Ann. Discrete Math. 3, 227-245 (1978)
19. Van den Berg, J., Kesten, H.: Inequalities with applications to percolation and reliability. J. Appl. Probab. 22, 556-569 (1985)
20. Nguyen, B.: Typical cluster size for 2-dim percolation process. J. Stat. Phys. 50, 715-725 (1988)
21. Kesten, H.: Subdiffusive behavior of random walk on a random cluster. Ann. de l'Institut Henri Poincaré 22, 425-478 (1986)
22. Chayes, J. Chayes, L., Durrett, R.: Inhomogeneous percolation problems and incipient infinite clusters. J. Phys. A 20, 1521-1530 (1987)

Communicated by M. Aizenman

[^0]: * Supported in part by NSF Grant DMS 9400467

