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Abstract: This paper is devoted to a proof of a generalized Ray—Singer conjecture
for a manifold with boundary (the Dirichlet and the Neumann boundary conditions
are independently given on each connected component of the boundary and the
transmission boundary condition is given on the interior boundary). The Ray—Singer
conjecture [RS] claims that for a closed manifold the combinatorial and the analytic
torsion norms on the determinant of the cohomology are equal. For a manifold
with boundary the ratio between the analytic torsion and the combinatorial torsion
is computed. Some new general properties of the Ray—Singer analytic torsion are
found. The proof does not use any computation of eigenvalues and their asymptotic
expansions or explicit expressions for the analytic torsions of any special classes of
manifolds.
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Torsion invariants for manifolds which are not simply connected were introduced
by K. Reidemeister in [Rel, Re2], where he obtained with the help of such in-
variants a full PL-classification of three-dimensional lens spaces. These invariants
were generalized by W. Franz to multi-dimensional PL-manifolds in [Fr]. As the
result of this generalization he obtained a PL-classificaiton of lens spaces of any
dimension. (These torsions were the first invariants of manifolds which are not
homotopy invariants.) J.H.C. Whitehead in [Wh] and G. de Rham in [dR3] intro-
duced torsion invariants for smooth manifolds. G. de Rham in [dR3] proved that a
spherical Clifford—Klein manifold (i.e., the quotient of a sphere under a fixed-point
free action of a finite group of rotations) is determined up to an isometry by its
fundamental group and by its Reidemeister torsions. The Whitehead torsion for a
homotopy equivalence between finite cell complexes was introduced in [Wh] as
a generalization of the Reidemeister torsion invariants defined in [Rel], [Fr], and
[dR3]. (Its values are in the Whitehead group Wh(m;) of the funadmental group
m1.) The Whitehead torsion is connected with Whitehead’s theory of simple ho-
motopy types ([Wh, dRMK], [Mi], Sect. 7). Some modifications of Reidemeister
torsions were considered by J. Milnor in [Mi], Sects. 8, 12, and by V. Turaev in
[T], Sect. 3. The scalar Reidemeister torsion is a global invariant of a cell decom-
position of a manifold and of an acyclic representation of its fundamental group.
It is an invariant of a PL-structure of a manifold. The Reidemeister torsion for an
arbitrary finite-dimensional unimodular representation of the fundamental group can
be defined as a canonical norm on the determinant line of the cohomology of a
manifold (with the coefficients in the local system defined by this representaion). It
is some kind of multiplicative analog of the Euler characteristic in the case of odd-
dimensional manifolds. (The Euler characteristic of a closed manifold is trivial in
the odd-dimensional case.) Formulas for the Reidemeister torsions of a direct prod-
uct of manifolds ([KwS]) are analogous to the multiplicative property of the Euler
characteristic.

The Ray-Singer analytic torsion was introduced in [RS] for a closed Rieman-
nian manifold (M, gar) with an acyclic orthogonal representation of the fundamen-
tal group 7;(M). It is equal to a product of the corresponding powers of the
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determinants of the Laplacians on differential forms DR®(M). These determinants
are regularized with the help of the zeta-functions of the Laplacians. (The scalar
Reidemeister torsion also can be written by the analogous formula, where Rieman-
nian Laplacians are replaced by the combinatorial ones.) The Ray—Singer analytic
torsion is defined with the help of a Riemannian metric gy, but it is independent of
gu in the acyclic case. (This assertion was proved in [RS], Theorem 2.1) So it is an
invariant of a smooth structure on M. It has properties analogous to the properties
of the Reidemeister torsion ([RS], Sects. 2, 7). The Ray—Singer conjecture ([RS])
claims that for an acyclic representation p of the fundamental group of a closed
manifold M the Reidemeister torsion of (M, p) (which is defined for any smooth
triangulation of M) is equal to the Ray—Singer analytic torsion of (M, p). This con-
jecture was independently proved by W. Miiller in [Miil] and by J. Cheeger in [Ch]
for closed manifolds. The Ray—Singer analytic torsion can also be defined for any
finite-dimensional unitary representation p of m;(M). In this case the Ray-Singer
torsion is the norm on the determinant line detH *(M, p). For instance, it is defined
for a trivial one-dimensional representaion. So the analytic torsion norm provides
us with a canonical norm on the determinant line of the de Rham complex of a
manifold. (The Ray—Singer formula for an arbitrary finite-dimensional unitary rep-
resentation p of m;(M) in the case, when M is a smooth closed manifold, claims
that the Ray-Singer norm on detH*(M, p) is equal to the Reidemeister norm on
detH*(M,p).)

Let (M, gy ) be a manifold with a smooth boundary dM and with the Dirich-
let and the Neumann boundary conditions independently given on the connected
components of M. Let Z C M be a union of the components of 0M where the
Dirichlet boundary conditions are given. Let F, be a local system with a fiber C”
defined by a unitary representation p : m;(M) — U(m). Then the Ray—Singer tor-
sion norm Ty(M,Z; F,) is defined on det H*(M,Z;F,). It is independent of gy, (if
g 1s a direct product metric near 0M) and it depends on a flat Hermitian metric
on the fibres F, (for a general (M, Z)). A flat Hermitian structure on F, defines a
norm on the line det (Fy, M, Z) := @), (det Fy, )*Me-2NM) wwhere the product is over
the full set of representatives F, of fibers of F, over the connected components
My of M (with one such a fiber F,, for each My,x; € M,detF, := AN"™F). The
tensor product of this norm and of 7,(M, Z;F,) is a modified Ray—Singer norm on
detH*(M,Z;F,) ® det(Fy,M,Z) and it does not depend on gss and on a flat Hermi-
tian metric on F, ([V1]). The Ray-Singer torsion norm for the Rham complex of
(M, Z) with the coefficients in the direct sum of any finite-dimensional local system
F, and of the dual one F /}/ is defined in [V2]. In this case, the Reidemeister tor-
sion 10 (M, Z; F, ® Fl}’) (i.e., the one for (M, Z) with the coefficients in F, @& FI)’) is
well-defined, because the fibres of the line bundle det (F , OF /Y ) have the canonical
norm in accordance with the local system structure. In this case, the Ray—Singer
torsion differs from the Reidemeister torsion by an explicit factor (which is com-
puted in [V2]) but this torsion does not depend on g, (if gy is a direct product
metric near dM ). This definition of the Ray—Singer torsion norm does not use a
Hermitian structure in the fibers of F,. In [Mii2] another Ray—Singer torsion was
introduced for the de Rham complex of a closed (M, gy ) with the coefficients in
a local system F,, defined by a unimodular finite-dimensional representation p of
ny(M). This torsion is defined with the help of an arbitrary Hermitian metric 4,
in the fibres of F, and it depends on this metric in general. (For a non-unitary
representation p there are no Hermitian metrics on F,, which are flat with respect
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to the canonical flat structure.) It was proved in [Mii2] that in the case of an
odd-dimensional M the Ray-—Singer torsion, defined with the help of a Hermitian
metrich,, is independent of (4,,gy ) and is equal to the Reidemeister torsion. (The
Reidemeister torsion is canonically defined for any unimodular finite-dimensional
representaion of 7;. In the case of an odd-dimensional closed M it is independent
of a flat Hermitian metric on detF,, since the Euler characteristic in this case is
equal to zero for each connected component of M.) The Ray—Singer torsion, defined
with the help of #,, depends on (%,,gx) for a general even-dimensional M. The
definition of the Ray—Singer torsion for any finite-dimensional representation p of
n1(M) for a closed (M, gy ) equipped with a Hermitian metric %, (on the fibres of
the corresponding vector bundle) is given in [BZ1, BZ2]. In [BZ2] the Ray—Singer
metric on the determinant line, corresponding to a finite flat exact sequence (F*,dr)
of finite-dimensional flat vector bundles over M, is computed (in terms of gy, and
of Hermitian metrics on F/).

The Gaussian integral of exp(—(Sx,x)), where S is a positive self-adjoint
operator in a finite-dimensional Hilbert space H, dim H =n, is equal to
(2n)"?(det §)~'/2. The Ray—Singer torsion appears naturally in the computations of
asymptotic expansions for analogous infinite-dimensional integrals of exp(—ik/(A4)),
where I(A4) possesses an infinite-dimensional symmetry group G ([Sc, Wil, Wi2]).
For instance, the Chern—Simons action

I(A):=(4n)"' [ Tr(ANdA+2/34NANA)
M

on a trivialized principal G-bundle P; over a closed orientable three-dimensional
manifold (where G = SUy and Tr is the trace in the N-dimensional geometrical
representation of G, and where A4 is a connection form) is invariant under the gauge
transformations 4 — gAg~! —dg - g~! =: 4, for a smooth g: M — G (where A4,
is the same connection but with respect to another trivialization of Pg, i.e., with
respect to another smooth section G — Pg). Stationary points of /(4) are the flat
connections a, (i.e., such that the curvature F(4,) is equal to zero). The asymptotic
of an integral of exp(—ikl(a)) as k — +o0,k € Z,, is computed by the stationary
phase method. The principal term of the contribution of a point 4, into this integral
(in the case when the flat connection A, is an isolated one) has as its absolute
value the square root of the Ray-Singer torsion of M with coefficients in the local
system, defined by a flat connection 4,, with the Lie algebra g of G as its fibres
(see [Wil]; [Wi2], 2.2; [BW], 2).

The Reidemeister torsion was essentially used in [Wi2], 4, for the computation
of the volume of a moduli space .# of the fundamental group representations for
a closed two-dimensional surface. In this case the Reidemeister torsion is a section
of |det|T*.4, i.e., it is a density on ..

This paper is devoted to a proof of a generalized Ray-Singer conjecture for
manifolds with a smooth boundary (and also for transmission boundary conditions
given on the interior boundaries). We suppose that the local system is trivial. The
proof of the Ray—Singer conjecture for non-unitary local systems and for manifolds
with corners will be the subject of a subsequent paper.

Let (M, gy ) be a Riemannian manifold with a smooth boundary oM and let
the Dirichlet and the Neumann boundary conditons be independently given on the
connected components of dM. Let gy, be a direct product metric near M. Then
the Ray-Singer torsion of (M, gy ) is defined as a norm on the determinant line
det H*(M,Z). (Here Z is the union of the connected components dM where the
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Dirichlet boundary conditions are given.) This norm is independent of g, (for direct
product metrics gy near 0M). The Reidemeister torsion of (M, Z) is an invariant of
the PL-structure of (M, Z) and it is a norm on the same determinant line. The torsion
norms are defined in Sect. 1. The Ray-Singer norm differs from the Reidemeister
norm on det H*(M,Z) for a general 0M +{. Their ratio is computed in Theorem
1.4 below.

Let (M, gar) be obtained by gluing two Riemannian manifolds (M), ga,) along
the common component N of their boundaries, M := M; Uy M, (where N is a
closed smooth manifold of codimension one in M). Let gy be a direct prod-
uct metric near N. Then, as it is proved in Theorem 1.1, the Ray-Singer torsion
norm To(M,Z) on det H*(M,Z) is equal to the tensor product of the Ray-Singer
norms To(M1,Zi UN) ® To(M2,Z, UN) ® To(N) (Zy := Z N OMy, where the line
det H*(M,Z) is identified with the tensor product of the lines det H*(M;,Z; U
NY® det H*(M,,Z, UN) ® det H*(N) by the short exact sequence of the de Rham
complexes

0 — DR*(M;,Zy UN) @® DR*(M>,Z, UN) — DR*(M,Z) — DR*(N) — 0, (0.1)

where DR*(M,Z) is the relative de Rham complex of smooth forms with the zero
geometrical restrictions to Z, the left arrow is the natural inclusion, and the right
arrow is v/2 times a geometrical restriction. For the Reidemeister norm this assertion
is also true and the identification of the determinant lines is given by the analogous
exact sequence of cochain complexes. However in this case the right arrow is
the geometrical restriction of cochains (without additional factor v/2). Let (M,Z)
be obtained by gluing two manifolds (M),Z;) and (M,,Z,) along the common
component N of their boundaries, M := M; Uy M,. Then the ratio of the square
of the Ray-Singer norm and the square of the Reidemeister norm for (M,Z) is
equal to the product of the same ratios for (M;,Z; UN),(M,,Z, UN), and for N
with an additional factor 27*™), So the assertion of Theorem 1.1 claims that it
is possible to calculate the Ray—Singer norm by cutting of a manifold into pieces
which are manifolds with smooth boundaries. The main theorems of this paper are
consequences of Theorem 1.1. This theorem provides us with the gluing formula
for the Ray—Singer torsion norms. Such a gluing formula is a new one.

In the case of a manifold with a smooth boundary, the Ray-Singer torsion
To(M,Z) is a function not only of (M, Z) but also of the phase 0 of a cut of the spec-
tral plane € (because the zeta-functions {;(s) for the Laplacians 4; on DR/(M,Z)
are defined for Res > (dim M)/2 as the sums > A~ over the nonzero eigenval-
ues, and A7 is defined as 4, = exp(—slogg, 4), where 6 —2n < Im log, 4 <
0,0 ¢ 2nZ). In fact, To(M,Z;0) (as well as {,(s)) depends only on [6/2n]. The
zeta-function regularization of the det’(4;) (i.e., of the product of all the nonzero
eigenvalues of 4,, including their multiplicities) is defined as exp(—0s(;(s)|s=0). The
analytic continuation of (;(s) is regular at zero. The zeta-function {;(s;m) depends
on m := [0/2x],0 ¢ 2nZ, as follows:

{i(s;m + 1) = exp(—2mis){(s;m) ,

det’ (A,;m + 1) = exp(2mil;(0))det’ (4,;m) .

The number [;(0) is independent of m, and the number (,(0)+ dimKer4, can
be interpreted as the regularized dimension of the space DR/(M). This regularized
dimension depends not only on the space DR/(M) but it also depends on a positive
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definite self-adjoint elliptic differential operator of a positive order, which acts in
DR/(M). This dimension is a real number but it is not an integer in the case of
the Laplacians on DR*(M) for a general closed even-dimensional (M, g)). Hence,
det (4;;m) depends on m for such (M, gy ). The number {;(0) is an integer for a
generalized Laplacian on a closed odd-dimensional (M, gy ), according to [BGV],
Theorem 2.30, or to [Gr], Theorem 1.6.1. It is equal to zero when M is closed,
dim M is odd, dim Ker4; = 0.

Even in such a simple case as for an interval (/, 0/) with the Dirichlet boundary
conditions the dependence of 7y(M, Z; m) on m is nontrivial. The ratio of the torsion
To(M,Z;[0/2n]) and the Reidemeister torsion norm is computed in Theorem 2.2.

The paper is organized as follows. In Sect. 1 we deduce a generalization of
the Ray—Singer conjecture from the gluing formula for Ray—Singer torsion norms.
This formula is proved in Theorem 1.1. The proof uses v-transmission interior
boundary conditions on N, where v = («, ) € R?\(0,0). These interior bound-
ary problems give us a smooth in v family of spectral problems on M. Such
a problem for v =(1,1) coincides (in a spectral sense) with the spectral prob-
lem for a glued M. For v=(0,1) or for v =(1,0) it is a direct sum of spectral
problems on M; and on M,, ie., the two pieces of M are completely discon-
nected. So this family provides us with a smooth process of cutting (in a spectral
sense) of M in two pieces M; and M,. Let M = M; Uy M, be obtained by glu-
ing M; and M, along the common component N of their boundaries. Then the
Ray—Singer norm T(M,,Z) on the determinant line det H*(M,,Z) for the de Rham
complex DR*(M,,Z) with v-transmission conditions on N is defined. The short
exact sequence for DR*(M,,Z), similar to (0.1), has the same the first and third
terms as (0.1). The homomorphisms r, : DR*(M,,Z) — DR*(N) are of the form
ry = (o} + Biy)/|v], where ifw; are the geometrical restrictions to N for the com-
ponents w; of w = (w;,w;) € DR*(M,,Z). Note that r(; 1) = V/2i*. (This is the
reason of the appearance of v/2i* in the exact sequence (0.1) connected with the
gluing formula.) In Lemma 1.2 we prove that the gluing property for analytic tor-
sion norms (Theorem 1.1) is equivalent to the independence of v of the norms on
detH*(M,Z, UN)®@ detH*(M,,Z, UN) @ detH*(N) induced by To(M,,Z). (Here
the identification of the determinant lines is defined by the short exact sequence for
DR*(M,,Z).) The latter assertion is proved in Sect. 2. First we prove that the norm
induced by the Ray-Singer torsion To(M,,Z) is locally independent of v in the case
when aff+0 (where v = («, f)). We do this in Sects. 2.3, 2.5, and 2.6 with the
help of explicit variation formulas for the scalar Ray—Singer torsion T'(M,,Z) (if v
depends smoothly on a parameter). We define a family (in v) of homomorphisms
to identify finite-dimensional subcomplexes W (v) of DR*(M,,Z). (The complexes
Wy (v) are spanned by the eigenforms of the Laplacians with eigenvalues less than
a fixed number a > 0. We suppose that a is not an eigenvalue of 4;(M,,Z) for
0 = j = n.) Then we compute the actions of these homomorphisms on the determi-
nant lines. These identifications are not canonical; we choose some particular (quite
natural) identifications for v sufficiently close to vy such that apfy 0.

Then it is enough to prove the continuity in v € IR?\(0,0) of the norm on
det H*(M;,Z UN) @ det H*(M,,Z, UN) ® det H*(N), which is induced by the
Ray-Singer norm 7y(M,,Z). We prove in Sect. 2.7 that the truncated scalar an-
alytic torsion T'(M,,Z;a), corresponding to the eigenvalues A of 4,(M,,Z) which
are greater than a, is locally continuous in v. Then we prove that the norm, induced
by the analytic torsion norm To(W2(v)) of a finite-dimensional complex W2 (v), is
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locally continuous in v. The latter assertion is proved in Sects. 2.2, 2.4, and 2.7
with the use of the cone of the homomorphism R{(a): W/ (v) — C*(X,,ZNX)
(where R$(a) is the integration of differential forms from W, over the sim-
plexes of a given smooth triangulation X of M, and C°(X,,ZNX) is the cor-
responding cochain complex). This homomorphism is a quasi-isomorphism for any
v € R?\(0,0) (Proposition 2.3). We can conclude that the analytic torsion norm
on the det H®* (ConeR,(a)) = € (for a fixed v) corresponds to an acyclic finite-
dimensional complex and is defined by the derivatives at zero of the zeta-functions
for self-adjoint finite-dimensional invertible operators. So these norms are locally
continuous in v. (This is proved in Sect. 2.7.) Then the local continuity of the norm
induced by To(W7(v)) on detH*(Mi,ZiNN)®det H*(M,,Z, UN)®@ det H*(N)
follows from the continuity of the norm (on the same determinant line) induced
by To(C*(X,,Z N X)) and from the identity:

To(W;) = To(C* (X, Z 0. X)) /1117, Cone® &y a)) -

This identity is proved in Lemma 2.4.

The use of the cone of R}(a) allows us to avoid difficulties connected with
the fact that some positive eigenvalues of the Laplacians 4*(M,,Z) tend to O as
v=(a,f) tends to vy = (1,0) (or to vy =(0,1)). The dimensions of H*(M,,Z)
essentially change when v,af+0, is replaced by vo. (Only the Euler characteristic
¥(H*(M,,Z)) does not change when v is replaced by vp.) It is impossible to find
for a general N the precise asymptotic expressions for the eigenvalues A, which
tend to zero as v — vy, and especially to find the asymptotics of the corresponding
eigenforms w; of A4°(M,,Z). So the continuity of the norm induced by To(M,,Z)
(viewed as a function of v) at the point vy cannot be proved for a general M
(obtained by gluing two pieces M; and M, along N) with the help of separate
computations of the asymptotic expressions for the scalar torsion 7T(M,,Z) and for
the measure on det H*(M,,Z) defined by harmonic forms. The proof of the classical
Ray-Singer conjecture in [Ch] and the proof in [Mii2] (in the case of unimodular
representations of 7;(M)) are based on asymptotic computations of such quantities
for a manifold with boundary M, := M\S,, where S, is a tubular neighborhood of
an embedded sphere S* < M" as the radius u of the tubular neighborhood (in the
normal to S* direction) tends to zero. (It is also supposed in [Ch] that S, is a direct
product on S¥ x D"~* and that gy|s, is a direct product metric on S¥ x D"¥.)

To give a rigorous proof of the assertions above used in the proof of the gluing
formula, it is necessary to prove a lot of analytic propositions. We do it in Sects.
2.2, 2.6, 2.7, and in Sect. 3. The theory of (- and O-functions in the case of
v-transmission interior boundary conditions is elaborated in Sect. 3. The precise
estimates of the corresponding (-functions in vertical strips are obtained in Sect.
3.4. These estimates allow us using the inverse Mellin transform to derive the
information about the densities on M,N, and dM for the asymptotic expansions
as t — +0 of O-functions from the properties of the densities for appropriate (-
functions.

1. Analytic Torsion and Ray—Singer Conjecture

1.1. Analytic and Combinatorial Torsion Norms. The analytic torsion norm appears
in the following finite-dimensional algebraic situation. Let (4°,d) be a finite
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complex of finite-dimensional Hilbert spaces. The determinant of (A°,d) is the
tensor product

@A™ 47D = det(4®)
J

where A™*4/ =: det A’ is the top exterior power of the linear space 4/ and where
L1 is the dual space LV for a one-dimensional vector space L over C. The natural
Hilbert norm || - |3, is defined by the Hilbert norms on A4/.

The determinant of the cohomology det H*(A4) of (4°,d) is also defined and
there is a natural norm on it (since H/(A4) is the subquotient of 4’). The differential
d provides us with the identification

£(d) : det(4®) ~ det H*(A) .

However in the general case this identification is not an isometry of the norms
|+ Waes and ||« |3 7o (ay)- For f(d) to be an isometry it is necessary to multiply

I+ 3t oy bY the scalar analytic torsion of a complex (4°,d), which is defined
as

T(4*.d) = exp (2(~1)j2:L,(5)]s0) - (1)

Here (;(s) = Z'/l‘s is the sum' over all the nonzero eigenvalues A=+0 (including
their multiplicities) of the nonnegative (i.e., if A£0 then 4 > 0) self-adjoint opera-
tor (d*d + dd*)|4’. The derivative d,{;(s)|s=0 is equal to — logdet'((d*d + dd*)|,)
(i.e., it is equal to the sum of (—log 1) € IR over all the nonzero eigenvalues ).

It is enough to prove the assertion (1.1) in the case of a two-terms complex
d :Fy =F, where dimF; = 1, e, € F}, dey = pe;, u+0, and where ||e]|> =1 =
|le1]|?. In this case the element e; @ e; ' € det(F*) is of the unit norm and the square
of the norm of the corresponding element u~!' € € from € = det 0 = det H*(F) is
equal to |u~!|?. If the norm |u~!|? is multiplied by the scalar analytic torsion for
F*, namely by exp(log det(d*d)) = exp(log det(dd*)) = |u|* then the isomorphism
between det(F*) and € = det0 (defined by d) becomes an isometry.

This finite-dimensional definition makes sense also for the infinite-dimensional
de Rham complex of a closed smooth manifold. In this case the analytic torsion is
the norm on the determinant of the cohomology of this manifold. Let (DR*(M),d)
be the de Rham complex of smooth differential forms (with the values in €) on a
closed manifold M. The scalar analytic torsion for a closed Riemannian manifold
(M, gy) is defined by the same formula (1.1), where d* = 0 (relative to g,,) and
(d*d + dd*)|DR/(M) is the Laplace—Beltrami operator 4. In this case the series,
which defines [;(s), converges for Res > (dim M )/2. The analytic function {;(s)
can be analytically (meromorphically) continued to the whole complex plane. It is
known that {,(s) has simple poles and that it is regular at zero ([Se2]).

The cohomology H*(DR(M)) are canonically identified (by the integration of
the forms over the simplexes) with the cohomology H*(M) of M. This follows from
the de Rham theorem. The Hodge theorem claims that each element of H/(DR(M))
has one and only one representative in the space of harmonic forms Ker4;. The
natural norm on Ker 4; (defined by the Riemannian metric gy ) provides us with the
norm || « |[3 yre(ar) o0 det H*(M). For an odd-dimensional M this norm depends
on gy .

! The function A~* is defined as exp(—slog4) where log/ € R for 1 € R,.
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Definition. The analytic torsion norm To(M) on det H*(M) is the norm

ToM) = || + llaearory - €xp (2(=1)jOsLi(s)]s=0) - (12)

The main property of this norm is its independence of a Riemannian metric gy.
So it is an invariant of a smooth structure on M. Let us suppose that gy = gu(y)
depends smoothly on a parameter y € R!. Then the variation formulas in [RS],
Theorems 2.1, 7.3 (or in [Ch], Theorem 3.10, (3.22)), claim that

;2 (= 1) 0L 5(9)s=0 = Yo(=1)! (= Tr(exp(—t4;,)a)’ + Tr(#,0)) . (1.3)
] ]

Here #,, is the kernel of the orthogonal projection operator from DR/(M) onto
Ker 4;,(M, gu(7)), o := %' 0,(%,)(*, corresponds to gy (7)) and Tr(exp (—t4;,) o))"

V. . . .
is the constant coefficient in the asymptotic expansion as t — +0 (n :=dimM) :

!
Tr(exp(—t4;,)e) = Som, ™" 4o (¢) . (1.4)
k=0

The existence of the asymptotic expansion (1.4) follows from [Gr], Theorem 1.6.1,
or from [BGV], Theorem 2.30. For a family of norms || - ||*(y) on det H*(M)
defined by the harmonic forms Ker(4,(M,gu(y))) the following equality holds for
any fixed u € det H*(M), u=%0 ([RS], Sect. 7):

0y log [|ullGec o ay (1) = == 1)/ T (A 0) .
Hence, (1.3) implies the equality

0y log To(M, gur) = 22(= 1) " mj s - (1.5)
Since k in (1.4) are integers, we see that the right side of (1.5) is zero for odd n. For
even n, n = 2/, the right side of (1.5) is also equal to zero, since m;; = —my;_;.

This fact follows from the equalities

0, (%7 1%) =0, a=—xax",

Tr(exp(—t4,)a) = Tr ((xexp(—t4,)* ") (=a)) = —Tr(exp(—td,—;)2)

(since they imply the equalities m;; = —m,_, where n is even and k € Z, U 0).

The analytic torsion norm can be interpreted (in an intuitional sense) as the
norm, corresponding to an element v € det DR*(M) (v is defined up to a multi-
plicative constant ¢ € €, |c¢| = 1, and its “torsion norm” is equal to one). The space
det DR*(M) and L,-norm on it are not defined but the space det H*(M) and the
analytic torsion norm To(M) on it are rigorously defined. For a finite-dimensional
complex the analytic torsion norm on the deteminant of its cohomology corresponds
to the norm on the determinant of the complex defined by the Hilbert structures on
the terms of this complex. The analytic torsion norm is (in some sense) a multi-
plicative Euler characteristic useful for odd-dimensional manifolds.

The same definition of Tp(M ) makes sense also in the case when M is a compact
Riemannian manifold with a smooth boundary M = UN; and with the Dirichlet or
the Neumann boundary conditions given independently on each connected compo-
nent N, of M. Let the metric gy be a direct product metric near M. Then To(M)
is independent of g, as in the case of a closed manifold (this is proved below).
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Let X be a smooth triangulation of M and let (C*(X),d,.) be a cochain complex
of X (with complex coefficients). Then each C/(X) has the Hilbert structure defined
by the orthonormal basis of basic cochains {J.}, where d.(e;) is 1 for e; = e and
0 for e; e. Hence the scalar torsion 7(C*(X),d.) is also defined.

The combinatorial torsion to(X) is defined as the following norm on the deter-
minant of the cohomology H*(C(X),d.) =H*(M):

10(X) = || + [Eetmroccwry * T(CTX),de) (1.6)

(where H/(C(X)) is the subquotient of C’/(X) and so it has the natural Hilbert
structure induced from C/(X)). The norm (1.6) is invariant under any regular sub-
divisions of X. So this norm is an invariant of the combinatorial structure of M
(which is completely defined by a smooth structure on M). This norm corresponds
to the Hilbert norm on det C*(X') defined by the basic cochains.

Let M be a manifold with a smooth boundary dM = UN,, where N, are the
connected components of M. Let Z be the union of N; where the Dirichlet bound-
ary conditions are given. Set V := X NZ. Then (1.6) (where H*(C(X)),d.) and
T(C*(X),d.) are replaced by H*(C(X,V)) and by T(C*(X,V),d.)) provides us
with the definition of the norm t¢(X, V). This norm is an invariant of the combi-
natorial structure on (M,Z) ([Mi], Sects. 7, 8, 9).

1.2. Gluing Formulas. The Ray-Singer conjecture claims that for a closed smooth
manifold M the norms 7¢o(M) and To(M) on the same one-dimensional space
det H*(M) are equal?

(M) = To(M) . (1.7)

How to prove such a formula in a natural way? It is necessary to find a general
property of the analytic torsion which implies the equality (1.7). Such a property can
be formulated as follows. Let (M,0M) be a Riemannian manifold with a smooth
boundary and with the Dirichlet or the Newmann boundary conditions given in-
dependently on the connected components of M. Let a closed codimension one
submanifold N of M, NNoM = §, divide M in two pieces M; and M, (glued
along N), M = M, Uy M,, and let a metric g), be a direct product metric near N
and near 0M. Let To(My,N) be the analytic torsion norm for M (with the Dirich-
let boundary conditions on N), and let the boundary conditions on the connected
components of dM belonging to dM; be the same as for To(M). The following
assertion is central in this paper.

Theorem 1.1 (Gluing property). The analytic torsion norm To(M,Z) is the tensor
product of the analytic torsion norms for (M\,Z UN),(M,,Z, UN), and for N,

@anTo(M,Z) = To(M,Zy UN) @ To(M2,Z, UN) @ To(N) , (1.8)
where Zy := Z N M.
The identification @, (in (1.8)) of det H*(M, Z) with the tensor product of the
three one-dimensional spaces:
Qan  det H*(M,Z) - det H*(M,,Z, UN) @ det H*(M>,Z, UN) ® det H*(N)
=: Det(M,N,Z) (1.9)
2 The cohomology H*(DR(M)) and H®*(C(X)) are identified (according to the de Rham the-

orem) by the homomorphism of the integration of forms from DR®*(M) over the simplexes of a
smooth triangulation X of M.
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is defined by the long cohomology exact sequence corresponding to the following
short exact sequence of the de Rham complexes:

0 — DR*(M,,Zy UN) @& DR*(M>,7, UN) — DR*(M, \,Z) = DR*(N) — 0 .
(1.10)
The relative de Rham complex (DR®*(My,Z; UN),d) (where d is the exterior
derivative of differential forms) consists of the smooth forms » on M, having the
zero geometrical restriction to N :ifw =0 (where iy : N C My — M) and also
having the zero restrictions to the components of dM N M, where the Dirichlet
boundary conditions are given (i.e., to Z;). The complex (DR(M ;),d) consists of
the pairs (), ;) of smooth differential forms w; € DR*(M,;.7Z;) (i.e., w; have the
zero geometrical restrictions to the corresponding components of M N M} ), which
have the same geometrical restrictions to N:

oy =ibo,;.

The differential d(wy,w,) in DR*(M, ;) is defined as (dw;,dw;). The left arrow in
(1.10) is the natural inclusion of @, DR®*(M;,Z; UN) into DR*(M, 1,Z). The right
arrow r in (1.10) is not a usual geometrical restriction but is the one multiplied
by V2 :

r(or,wy) = V2ifw; € DR*(N) . (1.11)

To define @,,, it is necessary to introduce a natural identification of
H*(DR(M,Z)) with H*(DR(M; |,7Z)). (The short exact sequence (1.10) provides
us with the identification

Pan : det H*(DR(M, 1, Z)) ~Det(M,N, Z),

but not with the identification of det H*(DR(M,Z)) with Det(M,N,Z).) We show
in Proposition 1.1 (for any given metric ¢),) that not only all the eigenvalues with
their multiplicities but also all the eigenforms of the natural Laplacian 4;; on
DR*(M,,Z) are the same as for the Laplacian on DR®*(M,Z). Thus, the operator
Ay 1(gyp) in a very strict spectral sense is the same as A(gy ).

The homotopy operator between the identity operator on DR*(M; 1,Z) and the
projection operator from DR®*(M; 1,Z) onto Ker®4, ; = Ker®4 is obtained with the
help of the Green function G, ; for the operator 4, (Lemma 1.1). This homo-
topy operator provides us with the canonical identification of H*(DR(M, ,Z))
with Ker 4} . So it defines the identification of H*(DR(M,,,Z)) with Ker4® =
H*(DR(M,Z)) (since Ker4® is canonically identified with Ker 47} ).

To prove Theorem 1.1 we introduce a family of interior boundary conditions on
N and show that the induced norm ¢}, To(M,,Z) on Det(M,N,Z) is independent of
v (where v = (2, ) € R?\(0,0) are the parameters of interior boundary conditions
on N). Namely

0" To(My, Z) = coTo(M1, Zy UN) & To(M, Z, UN) & To(N ) (1.12)

with some positive ¢y which may depend on (M, gy,0M) and on the boundary
conditions on @M but does not depend on the parameters (o, f) = v. Suppose that
the formula (1.12) holds for any gluing two pieces M| and M, along a closed N,
M = M, Uy M,, where the factor ¢q is independent of v. Then it is easy to conclude
that ¢ = 1 (Lemma 1.2). In (1.12) To(M,,Z) is the analytic torsion norm for the
de Rham complex (DR*(M,,Z), d). This complex consists of the pairs of smooth
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forms (w;, ;) such that w; € DR® (My,Z;) has the zero geometrical restrictions

to Z; :=ZN0M; * and that the following transmission condition holds for the
geometrical restrictions i w; of wy to N

O(lT(J)l :,Bl;(uz. (113)

The analytic torsion norm To(M,,Z) is defined for an arbitrary v = (o, f) €
R2\ (0,0). There is a canonical identification of H/(DR*(M,,Z)) with the space of
the corresponding harmonic forms Ker(4, | DR/(M,,Z)) (Lemma 1.1). This iden-
tification (similarly to the case of DR®(M,; ,Z)) is obtained by the homotopy
operator, which is defined using the Green function for the Laplacian A4,. (This
Laplacian is an elliptic self-adjoint operator by Theorem 3.1.) The boundary con-
ditions for 4, on N and M are elliptic (and differential). The Green function
G, for A, exists (and depends smoothly on v+ (0,0)) according to Theorem 3.1
and to Proposition 3.1. This identification provides us with the natural norms on
H/(DR*(M,,Z)) =: H(M,,Z) and on det H*(M,,Z). The scalar analytic torsion
T(M,,Z) is defined by (, ,(s) := S 2, for Re s > (dim M)/2 (where the sum is
over all the nonzero eigenvalues /4; of the Laplacian 4, ; := A4, | DR/(M,,Z) with
their multiplicities). These functions {,, can be continued to meromorphic functions
on the whole complex plane with simple poles and regular at zero. (This statement
is proved in Theorem 3.1 and in Proposition 3.1 below.)
The analytic torsion norm on det H*(M,,Z) is the norm

To(M,,Z) = | - ”glelH‘(Mv, z) €Xp (Z(—l)jjésé\,,,(s) ls=0)

The identifiaction @i" in (1.12) is defined by the short exact sequence of the de
Rham complexes (where Z; := Z N 0My):
0 — DR*(M\,Zi UN) ® DR*(M,,Z, UN) — DR*(M, 3,Z) LN DR*(N) — 0.
(1.14)
The left arrow in (1.14) is the natural inclusion and the right arrow r,g is

Fap(o1, @) = (o2 + B2 (it + wij ) . (1.15)

For (o, ) = (1,1) we have r| = \/fi;:wk. This corresponds to (1.11). Hence, @ay
is equal to ¢} for (o, f) = (1,1).

The complex DR*(M,,Z) for the values (0, 1) and (1, 0) of v is the direct sum
of the de Rham complexes of all the smooth forms (with the zero geometrical
restriction to Z;) on one of the manifolds M) and of all the smooth forms with the
zero geometrical restriction to Z; U N on another piece M; of the manifold /. Thus,
the two pieces of M are completely disconnected with respect to DR®*(M,,Z) for
these special values of v. The family of spectral problems on DR*(M,,Z) for v €
IR?\(0, 0) provides us with a smooth deformation between a spectral problem on M
(without any interior boundary conditions) and the direct sum of spectral problems
on (M,,Z;) and on (M,,Z, UN). So this family of interior boundary problems is
(in a spectral sense) a kind of a smooth cutting of M in two disconnected pieces.

Let (M1,N) be a compact smooth Riemannian manifold (M, gy, ) with a smooth
boundary 0M,; and let N be a union of some connected components of dM;. Let a
metric gy, be a direct product metric near the boundary. Then (as it follows from

3 Z is the union of the components of M where the Dirichlet boundary conditions are given.
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the equality (1.8)) the analytic torsion norm To(M;,N) on det H*(DR(M;,N)) does
not depend on gy,. To prove this, it is enough to take as (M, gy) a closed manifold
M = My Uy M, with a mirror symmetric (with respect to N') Riemannian metric g
which coincides with gy, on each piece M} of M (gu, is a direct product metric
near N and so gy is smooth on M). Since the torsions To(M) and To(N) are
independent of gy, and of gy = gu, |rn, we see that To(M;,N) does not depend
on gu,.

It [follows from the equality (1.12) with ¢y = 1 that To(M,,Z) does not depend
on gy. Indeed, To(M,,Z, UN) and To(N ) are independent of gy, and the identifica-
tion ¢3" is also independent of g),. (Here M is a manifold with a smooth boundary
OM, NN oM = 0, the Dirichlet boundary conditions are given on a union Z of
some components of dM, the Neumann boundary conditions are given on dM\Z,
and gy is a direct product metric near M and near N, Z; := Z N dM}.)

Since DR*(My,1,Z) is the direct sum DR*(M,,Z;) ® DR*(M,,Z, UN) of the de
Rham complexes (Z := Z N 0My), we see that the analytic torsion norm To(Mo,)
is canonically equal to the tensor product of norms:

To(Mo,Z) = To(My,Z1) @ To(Ma, Z, UN) . (1.16)
The determinant line in (1.16) is the tensor product
detH*(My1,Z) = detH*(M,,Z,) @ detH*(M,,Z, UN)

(where H*(M1,Z;) and H*(M3,Z, U N) are the relative cohomology).
The formula (1.8) claims for v = (0, 1) that

PonTo(Mo1,Z) = To(My,Zy UN) ® To(Ma, Z, UN) @ To(N) . (1.17)

It follows from the definition of the exact sequence (1.14) that ¢ is the identity
on the component det H*(M,,Z, UN) of det H*(M;,Z). The following theorem
is an immediate consequence of (1.16) and (1.17). Let N be a union of some
connected components of oM, let M; be a compact Riemannian manifold with a
smooth boundary dM; and let Z; be a union of some connected components of dM;

not belonging to N. Suppose that the metric gy, is a direct product metric near
oM.

Theorem 1.2 (Gluing of Boundary Components). The equality holds

QanTo(M1,Zy) = To(M,Z UN) R To(N) . (1.18)

The identification of the determinant lines in (1.18),

Qan : det H*(M),Z)) < det H*(M,,Z) UN) @ det H*(N), (1.19)
is defined by the short exact sequence of the de Rham complexes:

0 — DR*(M,,Z, UN) — DR*(M,,Z;) — DR*(N) — 0, (1.20)

where the left arrow is the natural inclusion, and the right arrow is the geometrical
restriction.

Example 1.1. Formula (1.18) contains the Lerch formula ((WW], 13.21, 12.32) for
the derivative at zero of the zeta-functions of Riemann {(s) (defined for Res > 1
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as Z@)n_s) :
0sC(S)IS=0 = "’2_l log 2r .

Indeed, let M be an interval (0,b] C R with the Dirichlet boundary conditions
at 0 and the Neumann conditions at b. Let N be the point b. Then the formula
(1.18) claims in this case that

To((0,b]) = To((0,5)) ® To(b) . (1.21)

The cohomology H*((0,b]) = H*([0, b],0) are trivial. The scalar analytic torsion
T((0,b]) is equal to exp(—ds{i(s; M)|s=0), Where {;(s; M) is the zeta-functions for
the Laplacian on DR'((0,b]). This zeta-function for Res > 1/2 is defined by the
series

GlsM) = 3 (((nf26)2n+ 1))
h=
So {i(s; M) = (m/2b)~3(1 — 2725){(2s) for Res > 1/2, where {(s) is the zeta-
function of Riemann. Hence, the latter equality between the analytic continuations
of {i(s; M) and of {(2s) holds for all s € €, and 9,{;(s)|s=0 = 2{(0)log 2.

The determinant line det H*(M) on the left in (1.21) is canonically isomorphic

to €, and the Ty(M )-norm of the element 1 € € is equal to

117,00y = exp(={7(0; M) = exp(—2{(0) log2) = 2.

(Note, that the function 2{(2s) is the zeta-function for the Laplacian 4 = (—d%/0x?)
on functions on the circle of the length 27. As the circle is odd-dimensional, then
the value of 2{(2s) at zero is equal to — dim Ker 4 = —1. Hence, 2{(0) = —1.)

The scalar analytic torsion 7((0,b)) is equal to exp(—d {i(s; M,N)), where
{1(s; M,N) for Res > 1/2 is defined by the series

GlssM,N) = 3 (((m/b)n)?) " = (m/b) >((2s) .

nz1
Hence, this equality holds for all s € €, and the scalar analytic torsion is equal to
T((0,5)) = exp(—2L'(0) + 2{(0) log(n/b)) = exp(— log(n/b) — 2{'(0)) .

The identification of the determinant lines on the right and on the left in (1.21)
is defined by the cohomology exact sequence

0 — H%b) — H'((0,b)) — 0. (1.22)

The element 1 € H°(b) (of the norm 1) is mapped by (1.22) to the element (dx/b)
of the norm ||dx/b||> = b~!. The element » = 17! ® (dx/b), corresponding to the
element 1 € € = det H*((0,5]), has the norm b~!. So the equality (1.21) claims
that

log2 = —logb — log(n/b) — 2{'(0) .
Thus the equality {’(0) = —27'log(2n) is a particular case* of Theorem 1.2.
4 In this paper the proofs of the equality (1.18), of Theorem 1.1, and of the equality (1.12)

with ¢o = 1 do not use the Lerch formula. So we have obtained (by the way) a new proof of the
Lerch formula.
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The natural L,-norm on € ; DR*(M,) is defined by
(v, 01) ==Y [(v1 A1), (1.23)
M

where (v; A x7;) 1s a real density on M corresponding to vy A *7;.

Lemma 1.1 The Green functions G, for the Laplacians A} provide us with the
homotopy operator in the complex DR*(M,,Z)

K, = 0G, (1.24)

between the orthogonal projection operator py : DR*(M,,Z) — Ker(A4}) and the
identity operator on DR*(M,,Z). The following equality holds in DR*(M,,Z) :

de + K\vd - ld - P/f s

Proof. The Green function for A% maps the L,-completion (DR*(M)), of DR*(M )
into the Dom(4?) (Theorem 3.1). The Dom(A4?) is defined as the domain of defini-
tion D(4}) for Ay in DR*(M,,Z) completed with respect to the graph topology norm
]2 = lloll3 + [[43 0|3 for @ € D(4}) (where |05 := (w,®) is the Ly-norm
(1.23)). The Green function G, maps DR*(M,,Z) into D(A4}) (since, by Theorem
3.1, 43 is a nonnegative elliptic differential operator with elliptic boundary condi-
tions). The definition of the Green function claims that

A°Gy =id - py, (1.25)

on (DR*(M)), (where A%w for w € Dom(A4?) is defined as lim, 45w, for w; €
D(AY), |lo— a)l||§ralph — 0). In particular, this equality holds on DR*(M,,Z)
C (DR*(M)),.

The D(47) C (DR®*(M)), is defined as follows. The adjoint to d, operator J, in
<) , DR*(M ) is defined on elements v, = (w;, ), where wy are smooth differential

forms on M} and the linear functional
Ly, (v1) = (dv1,02) = [(dvi A *77)
i

in continuous in DR*(M,, Z) with respect to the Ly-norm (1.23) of v; € DR*(M,,Z).
For such an element v, = (w;, w,) the form v, = (xw, *w, ) has the zero geomet-
rical restriction to OM\Z, and the following transmission condition has to hold on
N for v,:

Bin,1 (k1) = aiy 5 (x2) (1.26)
where iy, : N C 0My — M;. (These boundary conditions for v, are consequences
of Stokes’ formula.)

The domain D(A4}) C DR*(M,,Z) is defined as the set of w € DR*(M,,Z) such
that
w € D(6,), dwe D(,), Oow€ DR (M,Z). (1.27)
Note that dG,w = G,dw for w € DR*(M,, Z) (this equality follows from Stokes’
formula). Hence the identity (1.25) can be represented on DR*(M,,Z) as

Kd +dK =id — py .

Thus the lemma is proved. [J

5 (DR*(M)), coincides with the L,-completion of DR®(M,,Z) and with the L,-completion of
@ DR*(M)).
/
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Corollary 1.1 The homotopy operator (1.24) defines a canonical identification be-
tween the cohomology H*(DR(M,,Z)) and the space of harmonic forms Ker®(4,).

Let for simplicity g, be a direct product metric near N. Let the Dirichlet boun-
dary conditions be given on a union Z of some connected components of dM and
the Neumann conditions be given on dM\Z. Then the following holds.

Proposition 1.1 The eigenforms of A(M,Z; gy ) are the same as the eigenforms of
Al’l.

Proof. Let v be equal to (1,1). The conditions (1.27) for (w;,wy) € DR*(M, 1,Z)
are equivalent on N to the following ones:

N1 = Iy, Iy (x01) = iy, (xw2), (1.28)

i}‘{,’l(*dwl) =iy (xdwy), iy (xd * ;) = i,’{,’z(*d *xwy), (1.29)

where * is the star-operator for Riemannian metric gy.

The equalitites (1.28) claim that the restrictions to N of the forms w; and w;
are the same (i. e., they are the same sections of A*T*M|y). The equalitites (1.28)
and (1.29) are equivalent to the assertion that the following pairs of forms have the
same restrictions to N (as the smooth sections of A*T*M|y):

{doy,dw}, {dwy, 0w}, {wi,wr}. (1.30)

Any eigenform for 4°(M, Z; gu) belongs to D(47 ). So it is an eigenform for 47 ;.
Let w = (w1, m) € D(47 ;) be an eigenform for 47, :

4310 = (A0, 4°wr) = A1, 02) . (1.31)

Then®w; are C>®-forms on M, and (as it follows from (1.30), (1.31)) the restric-
tions of the following pairs of forms are the same as the sections of A*T*M|y (for
k=0,1,2..):

{A*wy, A wn}, {dA*w,dA @)}, {Aw, o450y} . (1.32)

So w = (w;,wy) is a C®-form on M = M; Uy M;. In fact, it follows from (1.28)
and from the identity of the restrictions to N of Aw; and Aw, that (4; ® id)wy
have (for £ = 1,2) the same restrictions from M) to N. (The Laplacian 4 is equal
to id; ® Ay + 4; ® idy with respect to the direct product structure / X N in the
neighborhood of N =0 x N — I x N < M,0 € I\0l.) Hence, according to (1.28)
and (1.29), the 2-jets of w, and of w, are the same on N. The identity between
the (2k + 1)-jets of w; on N follows (by induction) from (1.32). Thus, w is an
eigenform for A : Ay = Aw. The proposition is proved. [

1.3. Properties of Analytic and Combinatorial Torsion Norms. One of the main
properties of the analytic torsion norm is as follows. Let M be a manifold M, x M,
with a direct product metric. One of these Riemannian manifolds, for instance M,
can have a nonempty boundary dM;. In this case let g, be a direct product metric
near 0M;, and let the Dirichlet boundary conditions be given on the components

® All the eigenforms of 4° (for v € R?\(0,0)) are C*®-smooth on M, as it follows from
Theorem 3.1
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Z =71 X My of (0M) X My = 0(M; x M,). Let the Neumann boundary conditions
be given on d(M; X Mx)\(Z) x My) = (0M\Z1) X M,.
The Kiinneth formula for the cohomology claims that

H'(M,Z) = @ H' (M, Z1) ® H* (M) . (1.33)

itk=j
So the determinant of the cohomology of DR®*(M,Z) is the tensor product

det H*(M,Z) = (det H*(M, Z,)Y*M2) © det H*(M, yM-21) (1.34)

Proposition 1.2. The identification (1.34) induces the isomorphism of the analytic
torsion norm To(M,Z) with the tensor product

To(M,Z) = To(My, Z;)®*M) @ To(Mp )#HM121) (1.35)
where y(M,,Z,),x(My) are the Euler characteristics.

Remark. 1.1 Tt is shown above that the analytic torsion norms Ty(M, Z), To(M;, Z1),
and To(M,) are independent of Riemannian metrics gus,ga, which are supposed to
be direct product metrics near 0M, 0M,. So, if the equality (1.35) holds for a direct
product metric on (My,0M;) x M, (where gy, is a direct product metric near oM ),
then this equality holds for any metric gy, (which is supposed to be a direct product
metric near 0M).

Proof. The scalar analytic torsion 7'(M) for a direct product metric on M = M, X
M, is equal to
T(M,Z) = T(My, Z "M T (M, yM120 (1.36)

This statement is proved in [RS], Theorem 2.5, in the case of an acyclic local
system over M;. In the general case, (1.36) follows from the proof of Theorem 2.5
in [RS] and from the following equality (where A=0,m(i, A, M;) is the dimension
of the A-eigenspace for A, ;, m(j,0,M;) := dim KerAM],ZI_/) :

(=D A+ Jymi, 2, My)m(j, 0, My ) = (30(—1Yi m(i, A, M2)) (M1, Z1)

which holds, since the alternating sum over i of m(i,4,M,) is equal to zero (for
any nonzero A).

For such a metric on M the following canonical identifications are the isometries
bewteen the natural Hilbert structure on the space of harmonic forms Ker4;(M,Z)
and the tensor products (and the direct sums) of the Hilbert structures on harmonic
forms for d4(M;,Zy) and A4(M) :

Ker 4,(M,Z) = @ Ker 4:(M, Z;) @ Ker 4,(My) . (1.37)

i+k=y
These Hilbert structures induce the norms on

det H*(M,Z) = detKer 44(M, Z; g ), det H*(M,Zy) = detKer Ao(M1,Z1; gu, )
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and on det H*(M,) = det Ker 4,(M>,gu, ) such that the identification (1.34) of the
determinant lines is an isometry:

x(My) WMy, Zy)
I Berkeray = (1 Berkeran ) (1 Weakeran, ) )
The equality (1.35) follows from (1.36), (1.34), and (1.38). O

The following lemma makes it possible to use the variations in v in the proof
of Theorem 1.1. Let (M, gy ) be a compact Riemannian manifold with a smooth
boundary oM and let N — M\0M be a smooth closed codimension one submanifold
of M with a trivial normal bundle (TM|y)/TN such that M = M; Uy M, is obtained
by gluing two its pieces M; and M, along N. Let g) be a direct product metric
near OM and near N. Let Z be a union of some connected components of oM
where the Dirichlet boundary conditions are given and let the Neumann boundary
conditions be given on dM\N.

Lemma 1.2. Let us suppose that the norm @3 To(M,,Z) is independent of v €
R2\(0,0) for any such (M,gy,N,Z)" (where the identification @™ is defined by

the exact sequence (1.14) of the de Rham complexes and by Lemma 1.1). Then
the factor cq in the gluing formula (1.12) for @3"To(M,,Z) is equal to one.

Remark. 1.2. Theorem 1.1 is a direct consequence of Lemma 1.2 and of the asser-
tion that ¢3"To(M,, Z) is independent of v € IR2\(0,0). Indeed, To(M 1,Z) coincides
with Ty(M,Z) (according to Proposition 1.1) and the identifications 2" and @,, are
the same. Hence the formula (1.12), where ¢ is equal to one and v = (1,1), is the
gluing formula of Theorem 1.1.

Remark. 1.3. The assertion that the norm ¢2"Ty(M,,Z) does not depend on v is
equivalent to the independence of v of the factor ¢y in (1.12).

Proof. The factor ¢y in (1.12) lies in R... If ¢y is independent of v for (M, gy, N, Z)
then

PVoTo(M1,0,2) = @y To(Mo,1, Z) . (1.39)
It follows from (1.39) and from (1.16), (1.19), and (1.14) that there are the equal-

itites with the same positive constant ¢y as in (1.12) for (M, gu,N,Z) (where
Zy :=Z N oMy):

QanTo(My, Z1) = coTo(M1,Z1 UN) @ To(N ) , (1.40)

PanTo(M2,Zy) = coTo(M2,Z; UN) & To(N) . (1.41)
We can conclude from (1.40) and (1.41) that the factor ¢y = co(V, gy) is defined
by N,gn and that it does not depend on My,M,,M, gy (it is independent also
of v).
Let M, in (1.40) be a manifold M; = N x I with a direct product metric. Then
0My = N UN and (1.40) claims in this case that

PanTo(N X 1) = co(N,gn P To(N x I, N x dl) @ To(N)*2 (1.42)

7 The equivalent formulation is as follows. Let M be obtained by gluing along N, ie., M =
M,,UyM,, and let it be equipped with a Riemannian metric g,,, which is a direct product metric
near OM and near N. Then it is supposed that the norm ¢¥"T,(M,,Z) is independent of v €
R?\(0,0).
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where the identification ¢,, is defined by the exact sequence (1.20). It follows from
(1.42) and from the multiplicative property (1.35) that

TN YA &0 To(1yAN) = GToN YD 0 Tyl o™ o Tu(N )P, (1.43)

where ¢ := ¢o(N,yn) depends on N and gy only. Then the following equality
is a consequence of (1.43) and of the identification (1.19) (defined by the exact
sequence (1.20)):

To(1)"™) = co(N, g Y2 To(L, 21 Y™ @ Tyal "N . (1.44)

Note that (/) is the standard norm on det H*(é/) which is canonically iden-
tified with € (up to a possible factor (—1) in the identification). Namely ||1 HZTO =1
for 1 € €. An immediate consequence of the equality (1.41) for My =1, N = ¢l
and of (1.44) is the following:

co(Ngn ' = co(@ Yy (1.45)

Hence, it is enough to prove that ¢y(d/) = 1, and it will be done now.
Let / be an interval [0,a]. The scalar analytic torsions for / and for (/,0/) are
equal, T(I) = T(/,0al), since

Qi) = Co(s: 1,01 (1.46)
Lisi 1,01 = Co(si 1l (1.47)

(where (;(s;M,Z) is the (-function of the Laplacian on (DR/(M.Z),gu)). The
equality (1.47) follows from the identification of the eigenforms, defined by the
exterior derivative d, and the equality (1.46) follows from the identificaiton of
the eigenforms defined by the Riemannian * on /.

The cohomology exact sequence for the pair (1,¢1) is

0— H'(1)— Holy — H'(1,el) — 0 . (1.48)

The complex (1.48) is acyclic and so the determinant D of its cohomology
is canonically isomorphic to €. The components of (1.48) are equipped with the
natural Hilbert structures (because they are the spaces of harmonic forms on the
interval / C IR with the standard metric). Hence, there is the induced norm || - ||, on
D = €. We have to prove that |[1]|7, = 1 for | € € = D. This equality is equivalent
to the assertion that ¢o(d/) is equal to one.

The norm of the element a~'?-1 € DR%(I) is equal to 1. (It is a harmonic form
and it represents an element from A°(/)). Its image in H°(&1) is as follows:

—a™ (0] + a2 - [a) € HOOI) = HO(O U a) .

The norm of the element a~'? « dx € DR'(/,01) is equal to 1 in H'(/,0) and an
element —a'? - [0] is mapped by the differential of the exact sequence (1.48) to
the harmonic form a~"2dx € H'(1,01). (The arrows in (1.48) are of the topological
nature. So the latter statement is obtained using

a'? = [ a'Pdx = (a="2dx,(1,01)) ,
10.a]

where (/,01) is the fundamental class of H,(/,¢1).)
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The corresponding volume element (—a~"2[0] + a="?[a]) A (—a'/?[0]) = [0] A
[a] in det H%(0I) is an element with the norm one. Hence, ¢y(8/) = 1. The equality
co(N,gn) = 1 (for a union N of some connected components of dM;) follows from
the equality co(d/) = 1 and from (1.45). The lemma is proved. O

Let M = M Uy M, be obtained by gluing M; and M, along N (as in Theorem
1.1), and let X be a smooth triangulation of M such that M; and N are invariant
under X. Namely X = X| Uy X;, where X is a smooth triangulation of a manifold
M. with a smooth boundary oM =N U (dM NMy). (Here N C M is a smooth
closed manifold of codimension one in M such that N divides M in two pieces M,
and M, as in Theorem 1.1, NNoM =0, and W := X; N N.)

Let Z be a union of the connected components of M where the Dirichlet
boundary conditions are given. Set V := X NZ, Z; := 0M; N Z, V} := NZ;. The ex-
act sequence of cochain complexes

0— @ CX, WU V) — CX, V) -5 CHW) — 0 (1.49)
k=12

(where the left arrow is the natural inclusion and the right arrow is the geometrical
restriction of cochains) provides us with the identification

Qe 1 det HO(X, V) = det H*(X1, W U V1) @ det H*(Xo, W U V) @ det H* (W) .

By the definition of the combinatorial torsion norm on the determinant line
(determined by the preferred basises of the basic cochains) the following statement
holds.

Proposition 1.3. Under the conditions above, the combinatorial torsion norms are
equal:
@cTo(X V) = to(X1, WU V) @ 1o(Xa, WU V) @ 1o(W) . (1.50)

This combinatorial equality is analogous to the gluing formula of Theorem 1.1. But
it is necessary to note as follows.

Remark. 1.4. The formulas (1.50) and (1.8) correspond to the different identifi-
cations ¢. and @an = @", between one pair of the canonically identified® one-
dimensional spaces

det H*(X,V) = det H*(M,Z),

and the triple tensor products of three other pairs of the canonically identified spaces
det H*(Xy, W U V) = det H*(My,N UZ), det H*(W)=det H*(N).

(Note that ¢, is defined by the exact sequence (1.49), where the right arrow iy,
is the restriction of the cochains. However, in the exact sequence (1.10), which
defines @y, the right arrow is equal to \/Z’,‘\‘, for the common geometrical restriction
iy to N of pairs w = (w;,w;) of smooth differential forms w; on M, such that
i,*\‘,)lwl = l';\}’2602.)

8 The cohomology are identified according to the de Rham theorem by the integration over the
simplexes of X of the corresponding differential forms. The spaces of harmonic forms Ker 44(M, Z)
and Ker 44(M, |,Z) are canonically identified by Proposition 1.1.
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Let X be a smooth triangulation of a compact manifold with boundary (M, oM ).
Let Z and Y be disjoint unions of some connected components of dM such that
ZNnY=0.Let ¥V =XNZ F=XNY. Then the exact sequence

0— C*(X,VUF)— C*X,V) — C*(F) — 0

(where the left arrow is the natural inclusion of cochains and the right arrow is the
restriction of cochains) defines the identification

of 1det H*(X, V)= det H*(X,V UF) ® det H*(F) .
The following assertion is an immediate consequence of the definition of the

combinatorial torsion norm.

Proposition 1.4. The combinatorial torsion norm of (X,V') is equal to the tensor
product of the following combinatorial torsion norms:

Pcto(X, V) = 10(X, V UF) @ 10(F) .

This combinatorial equality is similar to the gluing formula of Theorem 1.2.
Let e(M,Z) be the logarithm of the ratio between the analytic and the combi-
natorial torsion norms:

e(M,Z) :=10g,y(To(M, Z)/t(X, V'))

(where To(M,Z)/1o(X, V) = ||l||2TO(M,Z)/HIHfO(XV) for an arbitrary nonzero element
! of the determinant line det H*(M,Z) = det H*(X,V)).

Remark. 1.5. 1t is proved above that e(M, M) does not depend on a metric gy, if
gm is a direct product metric near oM.

Lemma 1.3. 1. Let (S,gs) be a closed Riemannian manifold. Then the following
identity holds, if gy s is a direct product metric near (M x §) = oM x S:

e(M x 8,Z x S) = y(M,Z)e(S) + e(M, S)1(S) (1.51)

(x(M, Z) is the relative Euler characteristic of M modulo Z C OM).
2. Let Y be a union of some connected components of OM\Z. Then

e(M,Z)=e(M,Y UZ) +e(Y). (1.52)

Proof. The equality (1.52) follows from Theorem 1.2 and from Proposition 1.4.
(In this case, @, = @a,.) The equality (1.51) follows from Proposition 1.2 and
from the multiplicative property of the combinatorial torsion norms. Namely let K
be a smooth triangulation of S and let ¥ = X N Z. Then the identification of the
determinants of the cohomology defined by (1.33) and (1.34) is an isometry of the
combinatorial torsion norms:

To(X X K,V x K) = 19(X, V)z(K> ® To(K YY)

The same identification of the cohomology is the isometry (1.35) of the analytic
torsion norms, if the metric gurxs is a direct product metric near (M x S). Hence,
the identity (1.51) holds for such metrics gpxs. O
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Remark. 1.6. It follows from (1.52) and from Remark 1.5 that e(M,Z) does not
depend on gy, for any union Z of the connected components of dM (in particular
for Z = ().

1.4. Generalized Ray-Singer Conjecture.

1.4.1. Properties of the ratio of the analytic and the combinatorial torsion norms.
Lemma 1.2 claims that Theorem 1.1 follows from (1.12) with ¢y independent of v.
So it is enough to prove that the norm ¢ Ty(M,,Z) is independent of v € IR?\(0,0)
(under the same conditions on M, gs;, N, and Z as in (1.12) and in Lemma 1.2).
The latter assertion is proved in Sect.2. In the remaining part of Sect.l we prove a
generalization of the Ray—Singer conjecture for manifolds with boundary (and with
the transmission condition (1.13) on the interior boundary) using the gluing formula
of Theorem 1.1. This formula has the following consequence.
Let M = M, Uy M, be obtained by gluing M, and M, along N.

Lemma 1.4. Under the conditions of Lemma 1.2, on (gy, N, Z) the following holds:
e(M,Z) = e(M,Zy UN) + e(My,Z, UN) + e(N) — x(N) .

Proof. This identity is an immediate consequence of Theorem 1.1 and of the fol-
lowing commutative diagram:

det H*(M,Z) %;W‘ Det(M,Z,N)
& BE

det H*(X,V) 25 Det(X,V, W) i Det(X,V, W) (1.53)
Izdc Tzdp Tedc

det C*(, V) 2 petcrx, v, w) L DetCr(X,V, W)

Here

Det(M,Z,N) = | Q) detH* (M, N UZ) | Q) detH*(N),
k=12

Det(X,V, W) :

Q) detH*(Xi, W U Vi) | R)det H* (W) ,
k=12

(1.54)

DetC* (X, V, ) := | Q) detC*(Xi, W U Vi) | (R) detC* (W),
k=12

Ay = idy @) V2idy € Aut | Q) C*(Xi, W U Vi) | @ AutC* (W),

k=12
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A% is the induced by Ay operator on the determinant of the cohomology, R is the
identification induced by the integration of differential forms over the simplexes of
X (by the de Rham theorem). ¢, and ¢,, are the identifications induced by (1.49)
and by (1.10) in a view of Proposition 1.1.

The commutativity of (1.53) follows from the commutativity of the diagram

V2i,
0 @ DR(M,NUZ) — DR*(M,,Z) Y2y DR*(N) —0

k=12
| | [
0- @ CK WU — vy Lo’ oy —o
k=12

The induced action of v/2id on Iy € det C*(W) is Iy — 27", (where
(W) = y(N) is the Buler characteristic). So the induced action of 4y and of A%,
on [ € Det(M,Z,N) = (R, det C*(Xp, W U V) ® det C*(W) is

[ — 27Xy (1.55)

(The identification of the determinant lines is defined by R and by d. in the right
column of (1.53).)

For an arbitrary nonzero m € Det(M,Z,N) the following equality is deduced
from (1.55) and from the commutativity of (1.53):

(@anTo(M, Z))(m) = 27" M@ To(M, Z) (m) . (1.56)
Theorem 1.1 and Proposition 1.3 claim that
@anTo(M,Z) = To(M\,N U Z;) ® To(M2, N UZ) ® To(N) ,
QT V) = 10X, WU V) @ 19(Xo, W U V) @ 1o(W) . (1.57)
The isometries (1.56) and (1.57) imply the equality
e(M,Z) =log,(To(M, Z)/7o(X, V)

=—y(N)+ (k;ZIOgZ(TO(Mk’N U Zg)/to( Xy, W U Vk)))

+ logy(To(N)/wo()) .
Thus the lemma is proved. [

Let v = (a,B) € R?\(0,0) and let (C*(X,,V),d.) be the complex of pairs of
cochains (¢1,¢;), ¢ € C*(Xy, Vi), with the v-transmission boundary condition (sim-
ilar to (1.13)) on W C 0X; between their geometrical restrictions

iy 1 = Pijypcr - (1.58)

The integration over the simplexes provides us with a quasi-isomorphism of the
complexes:
R, : (DR*(M,,Z),d) — (C*(X,,V),d.)

(i.e., R, induces an isomorphism between the corresponding cohomology).
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The morphism of complexes 7. : (C*(X,,V),d.) — C*(W,d.) is defined by
analogy with the definition of r,. Its value on each element (cj,c;) € C*(X,, V) is

rreer,e2) = (o + B2 V(i c1 + difyy02) -

The vertical arrows in the following diagram of complexes are quasi-
isomorphisms’

0—- @ DRM,NUZ) — DR*M,Z) -5 DR*(N) —0

k=12
l % l & l R (1.59)

0> @ CX,WUur) - cw,y) 25 o) —o0
k=12

This diagram is commutative. The left horizontal arrows in it are the natural inclu-
sions. Let ¢¢ be the identification

0° : det H*(C(X,, V) % det H*(M,, Z) — Det(M,Z,N ) , (1.60)

defined by the bottom row of this diagram.

Remark. 1.7. The equality

o, = ¢} (1.61)
follows from the commutativity of (1.59). But ¢f | # ¢, (in contrast with the identity
¢’ = @an). According to (1.56) it holds that

(Pil = Qan = 2_X(N)§0c .

The space C/(X,, V) is a subspace of €Bk=1,2 C/(Xy, Vi). The Hilbert structure
on C/(Xy, V) is defined by the orthonormal bases of cochains {J.} (parametrized
by j-dimensional simplexes e of X;\Vy). So the Hilbert structures on C*(X,, V)
and on detC*(X,, V') are defined. The scalar combinatorial torsion is defined as in
(1.1):

T(C* (X, V), de) = exp (30(=1)70,L5,(5)]s=0)
where (§ (s) 1= Tr' ((Af‘) _s> is the sum Z')ﬁs over all the nonzero eigenval-
ues 4 of the finite-dimensional operator A, = (d;d. + d.d;|C/(X,,V)) (with their
multiplicities), d; is adjoint to d. in C/(X,, V) with respect to the Hilbert structure
in C*(X,, V).
The combinatorial torsion is the following norm on det H*(C(X,, V))'’:

0¥ Z2) = |+ Gamecconay * TCTXL V) de) (1.62)

where the norm on det®*(C(X,,V)) is defined by the Hilbert structures on the sub-
quotients H/(C(X,, V")) of the Hilbert spaces C/(X,, V).

Remark. 1.8. For each v = (o, B) € IR?\(0,0) the combinatorial torsion 7o(X;, V)
is an invariant of the combinatorial structure defined by a smooth triangulation of

° R, is a quasi-isomorphism according to Proposition 2.3.
10 1t is isomorphic to det H*(M,,Z) under the quasi-isomorphism R,.
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the triplet [(M,0M);Z;N], where M is a manifold with a smooth boundary oM, Z
is a union of some connected components of M, and N is a smooth codimension
one closed submanifold of M with a trival normal bundle (TM|y)/TN.

Proposition 1.5. The combinatorial torsion norm to(X,,Z) is isometric under the
identification (1.60) to the tensor product of the combinatorial torsion norms:

@ T(X, V) = 1o(X1, W U V1) @ 1o(Xo, WU 1) @ To(W) .

Proof. Under the identification (1.60), the Hilbert space C*(X,,V) is isometric
to the tensor product of the Hilbert spaces detC*(Xy, W U V) (for k =1,2) and
detC*(W). (The Hilbert structures on C*(X,,V),C*(Xy, W U V}), and on C*(W)
are defined above.) Indeed, let p,. : C/(W) — C/(X,,V) be linear maps defined for
w € CI(W) by

pre(w) = (o + )2 (Bw,aw) € C/(X,, V) . (1.63)

Then ry.pve =id on C*(W), p,. is an isometry between C/(W) and Imp,., and
Imp,. is the orthogonal complement in C°(X,, V) to the image of the natural in-
clusion j : ;_; , C*(Xk, W U Vi) — C*(X,, V') (where j is an isometry onto Imj).
So the identification ¢ is the isometry of the combinatorial torsion norms. O

The number e(M,,Z) € R is defined as the logarithm of the ratio between the
analytic and the combinatorial torsion norms:

e(My,Z) := logy(To(My, Z)[to(Xy, V) .
Corollary 1.2. Under the conditions of Lemma 1.2, the equality holds:

e(M,,Z) = e(M,Zy UN )+ e(My,Z UN) 4+ e(N), (1.64)
where Z is a union of some connected components of OM and Z; = Z N 0M.
Corollary 1.3. e(M,,Z) is independent of v € R?\(0,0).

Corollary 1.4. For an arbitrary v € R*\(0,0) the equality holds:

e(M,,Z) — e(M,Z) = y(N). (1.65)

This equality follows from Lemma 1.4 and from (1.64).

Remark. 1.9. Even for v = (1,1) the number e(M,,Z) differs from e(M,Z) in the
case y(N)=0.

1.4.2. Ratio of the analytic torsion norm and the combinatorial torsion
norm for spheres and disks. Spherical Morse surgeries. The values of e(M) and
e(M,0M ), where M is a sphere S” or a disk D" (with a direct product metric near
oD" = S"~1) are deduced now from Lemma 1.4.

Lemma 1.5. 1.For all the spheres, e(S") is zero.
2. For even-dimensional disks, e(D*") and e(D*",0D*") are zero.
3. For all odd-dimensional disks, e(D*"*') and e(D*'*',6D*"*') are equal to one.
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Proof. A closed interval D! is obtained by gluing two intervals D' = D' U, D' in
their common boundary point. Lemma 1.4 claims in this case that

e(D") = 2e(D', pt) +e(pt) — x(pt) . (1.66)
Since e(pt) = 0, we see that (1.52) implies the equalities
e(D') = e(D', pt) = e(D',0D") . (1.67)

Hence (1.66) implies e(D') = y(pt) = 1.
A circle S! is obtained by gluing two intervals, namely S' = D' U, D'. So,
according to Lemma 1.4 and to (1.67), we have

e(S') = 2e(D') + e(dD') — y(dD') =0 . (1.68)

Suppose (by the induction hypothesis) that e(S$”)=0 for m < n—1. The
sphere S” (for n = 2) is the union (D" X §') Ugu-2,51(D? x §"7%) = S". Indeed,
8" = {(x1,...,%041) € R™! : 3°x2 = 1}, the disk D* in D* x $"% in the decom-
position above corresponds to {(x1,x;) : %3 +x3 < ¢} and $"72 = {(x,) € §", x; =

x2 = 0}. Lemma 1.4 claims in this case that (since y(S"~2 x S!) = 0)
e(S") =e(D" ' x §,8" 2 x SNy +e(D? x §", 8T x §"F) +e(§" T x 8.

The equalities below are deduced from the induction hypothesis, from Lemma
1.3 ((1.52), (1.51)), and from (1.68):

e(D" ' x S8 x S =e(D ! x SNy —e(s" 2 x SY,
e(D?* x §"72, 8" x §"72) = e(D* x 8" %) — e(S' x §"72),
e(S'x 8" =0, eD"'xSH=0,
e(D? x §"72) = y(S"2)e(D?) . (1.69)

Hence the combinatorial torsion norm is equal to the analytic torsion norm for
all odd-dimensional spheres S?”+!.

e(S2m+1) =0, TO(S2m+l) — TO(S2m+1) . (170)

It follows from Lemma 1.3 and from (1.68) that e(D?) = e(D?,0D?). It is de-
duced from Lemma 1.4 and from (1.68) that e(S?) = 2e(D?). According to (1.69)
the equality e(S?”) = 0 for all even-dimensional spheres is a consequence of the
equality e(S?) = 0.

Let (M, gy ) be any closed Riemannian manifold of even dimension 2n. Then
the scalar analytic torsion T(M, gy ) is equal to 1. (This equality was proved in
[RS], Theorem 2.1, with the help of the equality

2(=1)jm(4,j)=0,

where A is an arbitrary nonzero eigenvalue of 4; on DR/(M) and m(4,j) is its
multiplicity. The latter assertion follows from the symmetry relation m(4,j) =
m(4,2n — j), which is obtained applying the operator * for a Riemannian metric
gm to the A-eigenforms for 4,.) So (in particular) the torsion norm Tp(S?) is equal

to || - ]|§etH,(S2), where the norm on H*(S?) is the norm defined by gy on the



Generalized Ray—Singer Conjecture 27

harmonic forms Ker 4°. (The induced norm || - , does not depend on the

“?letH'(Sz
metric gg, as it follows from the invariance of To(M, gy ) with respect to gy,
proved above.)

Let v be a volume of S? relative to a Riemannian metric gg2. Then the element
h € detH*(S?) defined below is of the norm 1:

— -1 — -1
h = (v 12, lsz) & (U 1/2(*152)) ) “hnﬁetH.(sZ) =1

(here 1y is the constant 1 € DR(S?) and *lg, is the gg-volume form).
The sphere S? has a cell decomposition'! Xg : X := D> Uy, pt. Hence the
element A, € detC*(X2) defined below is of the norm I:

he = @0p) ' @ (3p2) ™" lhelldecoprgy =1

(For this cell-decomposition d. = 0, and so det C*(X2) is the same as det /H*(S?)
without the d-identification. The cochains 0, 6,2 are the basic elements in H 0(8?),
H?(5%).)

The integration homomorphism R : DR*(S?) — C*(X52) maps lg to &, and
x1g2 to v+ 6p2. So R(h) = h, and we have

e($2) =0, e(S™)=0. (1.71)
The equalities below follow from Lemmas 1.3, 1.4, and from (1.70), (1.71):
0 = e(8") = 2e(D",0D") + e(S"7 1) — y(s"7 1),
e(D",0D") = e(D") — e(S"™ ') = e(D"),
e(D",0D") =271y (s" 1) = e(D") .
Lemma 1.5 is proved. [
dThg equality e(D"t! x §7) = e(D"*! x §",8(D"*! x §")) holds by Lemmas 1.3
and 1.5.

Corollary 1.5. For arbitrary n,m = 0 the equality holds:
e(D™! x 8§") = e(S™ x D" . (1.72)

(According to Lemma 1.5, each side of (1.72) is equal to 2 in the case of a pair
of even numbers (m,n) and it is equal to zero for other pairs (m,n).)

Let M be a compact maniifold with a smooth boundary oM and let Z be
a union of some connected components of M. Let M be obtained by some
spherical Morse surgery (with a trivial normal bundle) of M (i.e., there exists
a manifold (My,dM;) C M\oM, My ~ D" x $",m +n+ 1 = dimM, with oM, =
S™ x 8", M = My Uy M,, such that M = M, Uaﬂ, M, is obtained by gluing M; =

S™ x D' and M, by a diffeomorphism 1 : OM,~ 0M,).
""" This CW-complex (cell stratification) has a subdivision which is a C'-triangulation of S2.

So as the combinatorial torsion is defined also for CW-complexes and as it is invariant under
subdivisions, t(S?) can be computed from this cell stratification ([Mi], Sects. 7,8,12.3).
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Let the metrics gy and g5, be direct product metrics near M and oM. (It is

proved above that the numbers e(M, Z) and e(l\7[ ,Z) do not depend on the metrics
gm, gy; supposed to be direct product metrics near OM and near dM.)

Lemma 1.6. The number e(M,Z) is invariant under spherical Morse surgeries with
a trivial normal bundle, i.e., the equality holds

eM,Z)=e(M,Z). (1.73)

Proof. The metrics gy and g;; can be replaced by Riemannian metrics on M and

M which are direct product metrics on 0M; x I and 6]\711 x I near M, C M and

near M, C M, (and which are direct product metrics near M and oM ). Lemma
1.4 claims in this case that

e(M,Z) = e(Ml,éMl) + e(M2,6M1 UZ) + e(@MI) — X(@Ml) s
e(M,Z) = e(M,,0M,) + e(My, OM, U Z) + e(dM,) — y(0M,) . (1.74)

The smooth closed manifolds 61&7[1 and 0M, are diffeomorphic. Hence
e(OMy) = e(OM,), y(0My) = y(0My), e(My,0M; UZ) = e(M,,0M, UZ) .

Corollary 1.5 and Lemmas 1.3 and 1.5 claim that e(M1,8A711) = e(A7[1,0A7[1 ). So the
equality (1.73) follows from (1.74). O

1.4.3. Proof of the generalized Ray-Singer conjecture.

Theorem 1.3 (Classical Ray-Singer Conjecture). For any closed Riemannian
manifold (M, gy) its analytic torsion norm is equal to the combinatorial torsion
norm

To(M) = 1o(M) .

Proof. There is a smooth Morse function f on a direct product M x I (ie., a
function with the nondegenerate isolated critical points with different critical values)
such that the following holds. Its minimum value is equal to zero, f~'(0) = M x
01, and the zero is not a critical value of f. Its maximum value max,,; f equals |
and the maximum value level is the only one point. Namely f~!(1) is an interior
point of M x (1,01).

As f71(1 —¢) (where ¢ > 0 is very small) is a sphere S" (n=dim M), there
exists a sequence of spherical Morse surgeries (given by transformations of levels
(%), x € (0,1 — ¢) for x divided by critical values) such that their composition is
a transformation of a manifold'? M UM =M x oI = f~1(0) into " = f~1(1 —¢).

As a consequence of Lemma 1.6 in this case we get

2e(M) = e(M UM) = e(S").

Lemma 1.5 claims that 0 = e(S”) = e(M ). Thus, the Ray—Singer conjecture is
proved. [

12 The manifold M is not supposed to be orientable.
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Let (M, gy ) be a compact Riemannian manifold with a smooth boundary oM.
Let Z be a union of some connected components of dM and let gy be a direct
product metric near M. The following two theorems are generalizations of the
Ray-Singer conjecture.

Theorem 1.4. Under the conditions above, the following equality holds for a man-
ifold with a smooth boundary:

To(M,Z) = 24M20 (M, Z) . (1.75)

Proof. Lemma 1.3 claims that e(M,Z) = e(M,0M ) + e(0M\Z). According to The-
orem 1.3, e(6M\Z) is equal to zero. Hence e(M,Z) = e(M,0M). In the case of
OM 0 there is a mirror-symmetric closed Riemannian manifold P = M Uy M
obtained by gluing two copies of (M, gy ) along 0M. According to Lemma 1.4, we
have

e(P) =2e(M,0M) + e(OM) — y(0M) .

Theorem 1.3 claims that e(0M) = 0 = e(P). Thus, we get
e(M,Z) = e(M,0M) =2~ y(oM)

which is equivalent to (1.75). O

Let (M,Z,gx) be as in Theorem 1.4. Let N be a codimension one in M two-
sided in M closed submanifold N C M\0M. Let M be obtained by gluing M; and
M, along N. Let g, be a direct product metric near N and let the v-transmission
boundary conditions (1.13) be given on N (where v = (a, ) C IR?\(0,0)).

Theorem 1.5. The analytic torsion norm is expressed by the combinatorial torsion

norm (in the case of the v-transmission interior boundary condition on N) as
follows:

To(M,, Z) = 2102+ MN)g (M, 7)Y

Proof. The equality (1.65) claims that e(M,,Z) = e(M,Z) + y(N). So the assertion
of the theorem follows from Theorem 1.4 and from the equality (1.65). O

Remark. 1.10. This proof of the generalization of the Ray—Singer conjecture does
not use any explicit expressions for the scalar analytic torsions of any special classes
of manifolds. The proof in [Miil] of the classical Ray—Singer conjecture essentially
used the explicit expressions for the scalar analytic torsions for spheres and lens
spaces. (The latter expressions were obtained by D.B.Ray in [Ra]. He computed
there the scalar analytic torsion for lens spaces and spheres with homogeneous
metrics by explicit calculations of the {-functions for the corresponding Laplacians
using Gegenbauer’s polynomials.) The proof in [Miil] used precise estimates of
[DP] for the eigenvalues of the corresponding combinatorial Laplacians. In our
proof we don’t use the Lerch formula for the derivative at zero of the zeta-function
of Riemann [WW], 13.21, 12.32. (Its new proof is obtained here.) Our proof of
the generalized Ray—Singer formula is based on a gluing property for the analytic
torsion norms. This property is proved here for a general gluing two Riemannian
manifolds by a diffeomorphism of some connected components of their boundaries.
It is proved without any computations of asymptotics of eigenvalues and eigenforms
for the corresponding Laplacians.
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2. Gluing Formula for Analytic Torsion Norms. Proof of Theorem 1.1

2.1. Strategy of the proof. In Sect.l the generalized Ray-Singer conjecture for
a manifold with a smooth boundary is deduced from Theorem 1.1. Namely it is
deduced from the gluing formula

PanTo(M,Z) = To(M;,Z UN) & To(M2,Z, UN) @ To(N) , 2.1

which holds under the conditions of Theorem 1.1 (where Z; := Z N dM;). The
identification @,, in (2.1) is defined in (1.9) with the help of the exact sequence
(1.10) of the de Rham complexes. It is proved in Lemma 1.2 that the equality (2.1)
follows from the assertion that under the conditions of Theorem 1.1, the induced
analytic torsion norm!'> ¢*7y(M,) does not depend on a parameter v of the interior
boundary conditions. The latter statement means that the equality

@ To(M, Z) = coTo(M1,Zy UN) ® To(Ma, Z, UN) @ To(N ), (2.2)

holds with a positive constant ¢y which is independent of v € R?\(0,0). (However,
it is not supposed in Lemma 1.2 that ¢ is independent of M, N, gy, and Z.)

The strategy of the proof of the equality (2.2) is as follows. First we prove that
¢o is constant on each of four connected components

Uy cU:={(op) € R?: af+0} . (2.3)

Then it is enough to prove that cy(v) is continuous as a function of v for
v € R%\(0,0). These two assertions provide us with a proof of the equality (2.2).

Let vp € U and let a > 0 be a number not belonging to the spectrum S(vy) :=
U, Specd:(M,y, gur) C IR, of the Laplacians on DR*(M,,Z). This spectrum is dis-
crete according to Theorem 3.1. In particular, each eigenvalue is of a finite mul-
tiplicity. Let Wi(v) be a subspace of DR'(M,,Z), spanned by all the eigenforms
w; for A,; := A(M,,gn) with their eigenvalues 2 < a. Then dW/(v) C W F(v).
So (W2 (v),d) is a finite-dimensional subcomplex of (DR*(M,,Z),d) equipped with
the natural Hilbert structures on W} (v) — DR®*(M,,Z) (defined by gu).

Let || - ”(zietW{f(v) be the induced norm on det W (v). For v very close to v
it holds also that a ¢ S(v) (Proposition 3.1). By the definition of W7 (v), its co-
homology H’/(W2(v)) are canonically identified with the space of harmonic forms
Ker 4;(M,,gu). The differential d in W2 (v) induces the identification

dw : detW; (v)~detKer Ado(M,,gur) . 2.4)

According to Lemma 1.1 there is a canonical identification between the harmonic
forms and the cohomology of the de Rham complex (the latter one is independent

of gn):

Ker A(My,gn) = H'(DR(M,,Z)) . (2.5)
So there is the induced canonical identification of the determinant lines:
detKer A4(M,,gs ) = det H*(DR(M,,Z),d) . (2.6)

Let || - Hf,etH.(M‘,) be a norm on detH*(M,,Z) := detH*(DR(M,,Z),d) induced
by the identifications (2.5) and (2.6) from the Hilbert structure on the harmonic
forms Ker A44(M,,gp ). (This structure is defined by the Riemannian metric gs.)

13 The identification @3" is defined by the short exact sequence (1.14).
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The identification (2.4) is not an isometry of the norms || - |[3 e, and
[ - HﬁetWa'(v) in general. The norm || - ||3; gess,, has to be multiplied by an ad-
ditional factor for the identification (2.4) to become an isometry. This factor is the
scalar analytic torsion of a complex (W7 (v),d), defined by the general formula
(1.1). We can conclude that the analytic torsion norm Ty(M,,Z) on the determi-
nant of H*(DR(M,,Z)) is isometric (under the identifications (2.4) and (2.6)) to
the norm

To(M,, Z;a) == || - Hﬁeth‘(v)eXp (Z(—l)fjaszJ(s;a)|S:0) . 2.7)

The zeta-function {, ;(s;a) is defined for Re s > (dimM)/2 by the series }_,_ 47",
where the sum is over all the eigenvalues A of 4;((M,,gx)) (including their multi-
plicities) such that 4 > a. This {-function can be continued meromorphically to the
whole complex plane € and it is regular at zero. The latter assertion follows from
Theorem 3.1 and from the equality (which is obvious for Re s > (dimM )/2):
Lijlssa) =L i(s)— 20 270 (2.8)
0</.Za
(The series for {, ;(s), Re s > (dimM)/2, is the sum over all the nonzero eigen-
values of 4;(M,,gp) with their multiplicities, where 17° := exp(—slogi) and
logZ € R for 2 > 0).
The identifications dy (2.4) and ¢}, (the latter one is defined with the help of
(1.14)) provide is (under the conditions of Lemma 1.2) with the identification:

@™ (a) : det W*(v) <~ Det(M,N,Z) 2.9)

(Det(M,N,Z)" is defined in (1.19)). The assertion that co(v) is independent of v on
each connected component U; of U (2.3) is equivalent to the following one. The
analytic torsion norm 7Ty(M,,Z;a) is transformed (under the identification (2.9))
into the norm on Det(M, N, Z):

¢M(a) o To(My, Z;a) = co(v)To(M1,Z1 UN) @ To(M,Z, UN) @ To(N) ,  (2.10)
where ¢ is constant on each connected component U;.
The action of ¢}, (a) is as follows (by its definition):
(p;n(a)TO(M\HZ;a) = T(MVsZ;a)(p;n(a) ° H : ||3et Wev) >
where the scalar analytic torsion 7 (M,,Z; a) is defined as the scalar factor in (2.7):
T(M,,Z;a) = exp (3_(—=1)7jds{0(s; @)ls=0) - (2.11)
Let v(y),y € (g,¢) C R, be a smooth curve on U (2.3) and let v(0) = vy. Let

[1,(vo; @) be an orthogonal projection operator from (DR/(M)), onto W,(vq) (with

respect to the natural Hilbert structure (1.23) in (DR/(M));). Let p; be a linear
operator in (DR*(M)),, mapping (wy,w;) € (DR*(M)), to (w1,0). (Respectively
p2 maps (wy,@;) to (0,m;).)

Let v and vy be arbitrary points from U. Then the following isomorphism of
the de Rham complexes is defined (where &, := o/ for v = (o, ) € U):

vy = Uy, 1 DR*(M,, Z) = DR*(M,, Z), v(w1,@2) := (w1, (k/ky) - @2). (2.12)

4 To recall, Z is the union of the connected components of M, where the Dirichlet boundary
conditions are given. The Neumann boundary conditions are given on oM \Z.
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Thus the induced isormorphism is defined:
Uy t H*(DR(M,,,Z)) — H*(DR(M,,Z)) .

Let a be a positive number from IR ;\S(vy). Then for v very close to vy the num-
ber a is also from IR \S(v) (Proposition 3.1). The complexes W (v) and W2 (vo)
are isomorphic as abstract finite-dimensional complexes (and (2.12) provides us
with a natural but not canonical isomorphism of these complexes). We have to
compute the action of ¢}, on the norms || - ||, ws (v for v very close to vo. How-
ever || - |3, W) are the norms on different complexes. So it is necessary to define
some isomorphism between W7 (vy) and W7 (v) and then to compute its action on
[+ e W (v0) and on the space Det(M, N, Z). The choice (2.13) of such an identi-
fication is done below.

For v very close to vy the subspaces W7 (v) and W} (vo) are very close in the
Ly-completion (DR*(M)), of DR*(M,,Z) =: DR*(v), according to Proposition 3.1.
So the following isomorphism of these finite-dimensional complexes is well-defined:

gy = 1I°(v;a) « Uy + Jiyy, -
W2 (vo) — (DR*(vp),d) b% (DR*(v),d) o Wr(v),d), (2.13)

where j,, is the natural inclusion of W7 (vy) and I1°(v;a) is the orthogonal projec-
tion operator onto W2 (v). Its action on the norm || - []ﬁetW.(vo) is computed by the
following lemma.

Lemma 2.1. Let | be an arbitrary nonzero element of det W2 (vy). Then the equality
holds for any smooth variation v(y) of vy = v(0):

2,108/1g1| ey e (o = —2010g(k)—0 (S(~1)/Tr (p2Il(vgsa))) . (2.14)

In (2.14) the rank (i.e., the dimension of the image ) of the operator p,IT/(vy; a)
is less or equal to dim# (vo). This operator acts in (DR*(M)),.
Then the following lemma provides us with the variation formula for T(M,, Z; a).

Lemma 2.2. For y = 0 the equality holds:
3;'10gT(Mv,Z; a) = 26‘/10g(k\')]}'20 Z(- 1 )Jbl,j(Mv(pZ; a) 5

where k, := a/f for v= (o, p) € U. Here by ,(M,,Z;a) is a constant coefficient
(i.e., t%-coefficient qo) in the asymptotic expansion as t — +0 of the trace of the
operator below (acting in (DR/(M)),):

Tr(pi{exp(—tdy,, Y1 =P (vo;a))}) ~ qont ™" + gpirt """ + o got® + - -
(2.15)

Remark. 2.1. The operators exp(—i4,,,) and IT/(vy;a) acting in the L,-completion
(DR/(M)), of DR/(M,,,Z) (which coincides with the L,-completion of (DR/(M))
have their images in the domain of definition of the Laplacian D(4,,,, C
DR/(M,,,Z). The existence of the asymptotic expansion (2.15) follows from The-
orem 3.2. The coeflicients g,, with m < —1 in (2.15) are independent of a. The
coefficients §,, of the asymptotic expansion for Tr(p;exp(—t4,,,)) are equal to the
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sums of the integrals over M; and over OM; D N of the locally defined densities
on M; and on dM; (by Theorem 3.2). However, in the general case we cannot
represent Tr( piIl/(vg;a)) as an integral of a locally defined density (because there
are no universal local formulas for the eigenforms w; of 4, ;). Hence there is no
universal local formula for a coefficient gy in (2.15) but there are such formulas
for g, = ¢g,, with m < 0.

Corollary 2.1. For an arbitrary nonzero I € det W2 (vy) the equality holds
0510819y 117, 2) = 205(0ghy)y=0(3(= 1)/ (b1 j(My,, Z) — dimWZ)),  (2.16)

where by j(M,,,Z) is a constant coefficient (i.e., the *-coefficient) of the asymp-
totic expansion of Tr(piexp(—td,,;)) relative to t — +0 and piexp(—td,, ;)) is
the operator acting in (DR/(M)),.

Remark. 2.2. Note that in the right side of (2.16) there are the Euler characteristic
A(M,,Z) ;= (—1)/dimW; and the alternating sum of the integrals by (M,,Z)
(over My and over dM;) of the locally defined densities (Remark 2.1). (Here Z
is the union of the connected components of M where the Dirichlet boundary
conditions are given). The number y(M,,Z) is also equal to the sum of the integrals
over M, N, and over OM of the locally defined densities.

Let v(y) be a smooth variation of a point vo € U (2.3). Let /(y) € det W2 (vy) be
a variation of an arbitrary nonzero element / € det W7 (vp) such that (pi‘(‘y)(a) o I(y)
is a fixed (nonzero) element of Det(M,N,Z). Then the equality (2.10) (where the
factor co(v) is constant on each connected component of U (2.3)) is equivalent to
the assertion that for any such a variation /(y) its analytic torsion norm is indepen-

dent of y:
NN Tyt 20y l=0 = 0. (2.17)

Corollary 2.1 provides us with the formula (2.16) for a variation of the ana-
lytic torsion norm IlgV(V)l‘lzTo(M‘,(..),Z;a) (where [ € det W (vy)). The assertion (2.17)

is equivalent to the following identity:
0y10gllgvon ! tyar,. ., ziali—0 = O:logllgus 11710 , (2.18)

where f is an arbitrary nonzero element of Det(M,N,Z) (for instance, [ =
pi(a)ol) and gy = (p‘\’,“(a)ogvo(qo‘;g(a))"1 is defined by the following
commutative diagram, where v € U is very close to vp:

Det(M,N,Z) — Det(M,N,Z)
gy*

ot [0 1 or
det W2 (vo) — det W2 (v)

Jr=9vvy

The norm on the right in the equality (2.18) is an arbitrary Hilbert norm in one-
dimensional space Det(M, N, Z). The value of the expression on the right in (2.18)
is independent of such a norm.

The action of the isomorphism g, = gy, : W7 (vo) — W7 (v) on Det(M,N,Z) is
described by the following lemma.
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Lemma 2.3. For an arbitrary element f € Det(M,N,Z) the equality holds:
d,log||gu f1 l=0 = —20,(logky)|,_o D(=1)7b2,(M.,, Z) , (2.19)

where by ,(M,y.Z) is the constant coefficient (i.e., the t°~coefficient) in the asymp-
totic expansion (relative to t — +0) for the trace of the operator pexp(—td,,;)
acting in DR/(M)),.

Here p, is the operator p; : (w1, ;) — (0,w,) for wy € (DR(My))s.
Remark. 2.3. Note that Tr exp(—t4,,;) = Zj Tr(pjexp(—t4,,;)). So we have

— 2 (=1)byj(Myy, Z) = 33(=1)/ b1, j(My, Z) — 3 (M, Z) .

Hence the equality (2.18) follows from (2.16) and (2.19).
Thus Lemmas 2.1-2.3 provide us with a proof of the assertion that the factor
co(v) is independent of v on each connected component U; of U (2.3).

2.2. Continuity of Analytic Torsion Norms. To prove that co(v) is independent of
v € IR%\ (0,0), it is enough'> to show that the norm ¢ o To(M,) on Det(M,N,Z)
is continuous in v € R? \ (0,0). The following norms on Det(M, N, Z) are the same
for an arbitrary a = 0:

@) (@) o To(My, Zy a) = ¢ o To(M,, Z) . (2.20)

Let us prove the continuity of ¢%"To(M,,Z) as a function of v at a point vy €
IR% \ (0,0). (The series of lemmas above provides us with the proof of this assertion
in the case when vy € U (2.3). But now this will be proved at an arbitrary v, €
R2 \ (0,0), for instance, at vy € R? \ (U U (0,0)).) By (2.20), it is enough to obtain
the continuity in v at v = vy of the norm @3 (a)o To(M,;a) on Det(M,N,Z) for
a fixed @ > 0 such that a & S(vp) := U,Spec(4,,,;). Since a & S(vg), we see that
a & S(v) for v very close to vg. (The latter assertion follows from Proposition 3.1. It
claims that the resolvents G3(v) := (4% — 1)~! for 4 & Spec(4,,.) form a smooth in
(4,v) family of bounded operators in (DR*(M)),, and that Spec(4,.) is discrete.
As G3(vg) is bounded in (DR®(M)),, the operator G3(v) is also bounded for v
close to vp, and so a & Spec(4, ) for such v.) The assertion below claims that the
truncated scalar analytic torsion (2.11) is a locally continuous function.!®

Proposition 2.1. The scalar analytic torsion T(M,,Z;a) is continuous in v at v.

Thus, the continuity of @3"7y(M,,Z) (as a function of v) at vy is equivalent to
the condition that the norm on Det(M, N, Z)

o (@)o] - ngtW,,'(v) (221)

is continuous in v at vy. The continuity of the norm (2.21) is deduced from the
following finite-dimensional algebraic lemma. Let

fiA%dy) — (Vedy) (2.22)

15 The factor co(v) is constant on each connected componenet U; of U (2.3), and U is dense
in R?\ (0,0).

16 This truncated scalar analytic torsion is a continuous function on the set of v € R?\ (0,0)
such that a ¢ U,Spec(4,.;).
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be a quasi-isomorphism of finite complexes of finite-dimensional Hilbert spaces. Let
S« s detH®*(4)—detH*(W) be the induced identification of the determinant lines.

Let Tp(A4®) and To(V*) be the analytic torsion norms (1.2) on the determinant lines
identified by f, : detH*(4) = detH*(V). Let (Cone® f,d), Cone’ f =A=' V/,
be a simple complex, associated with the bicomplex (2.22):

dcone : Cone’ — Cone’ ™!, deone(x, ¥) = (—dux, fx +dyy) (2.23)

(for (x,y) € A/T' @ V/). Then Cone®f is an acyclic finite complex of finite-
dimensional Hilbert spaces (Cone’ f is the direct sum of Hilbert spaces 4/*! and
V7), H*(Cone ) = 0. Hence det H*(Cone f') is canonically identified with € and the
analytic torsion norm for Cone® f is a norm on €. The ratio To(V)/To(4) € R is
defined as the ratio between the two norms on the one-dimensional spaces detH*(V')
and detH*(A4) identified by f..

Lemma 2.4. Under the conditions above, the equality holds:
“ 1 H%O(Cone‘f) = TO(V. )/TO(A.) 5 (2.24)

where the left side is the analytic torsion norm of 1 € € = detH*(Cone f).

Let a > 0 be a number from IRy \ S(v). Then there exists an open neighbor-
hood Uy,(a) of vy € Uy (a) C R?\ (0,0) such that a & S(v) for v € Uy, (a) (Propo-
sition 3.1). The family of complexes (W7 (v),d) of Hilbert spaces is continuous on
U,,(a) in the following sense.

The operator H{;(v) := IT/(v; a) is a finite rank projection operator in (DR/(M)),
with its image Wi(v):

[I,(v) : (DR(M)), — W)(v) C DR/(M,,Z) C (DR'(M)), .
Proposition 2.2. The family of operators I13(v) is continuous in v for v € U, (a)
with respect to the operator norm in (DR*(M)),. The same is true for the families

dITs(v) : (DR*(M)), — DR*™'(M,) C (DR**'(M)), .
SII3(v) : (DR*(M)); — DR*™'(M,) C (DR*™'(M)), .

These are the families of finite rank operators.

Proof. 1t follows from Proposition 3.1 that if a ¢ S(Vp) then there exists an ¢ > 0
such that (a — ¢,a + ¢) N S(v) = @ for v sufficiently close to vo. Hence {A:a—¢ <
4] < a+e}nNSH)=0 for such v (since S(v) C R, U0 by Theorem 3.1). Thus,
according to Proposition 3.1, the operators

M) = - [ G3()d

a

form a smooth in v (for such v) family of finite rank operators in (DR*(M)), (where
the circle I' = {1 : |A| = a} is oriented opposite to the clockwise). The operators
dI1s(v) : (DR*(M)), — (DR**'(M)), form (for such v) a smooth in v family of
finite rank operators (according to Proposition 3.1.) O
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Corollary 2.2. For v sufficiently close to vy the family of operators I15(v) identifies
the graded linear spaces W2 (vy) :=Im II3(vo) and W7 (v). Such an identification
nearly commutes with d in the following sense:

ldIIs(vyw — I3 (v)dwllz = c(v,vo)l|wll2 (2.25)

(for any w e Wp(v)), where c(v,vo) — +0 as v — vy. This identification also
nearly commutes with 0 :

I12 vy — 112" )owllz < (v v0)llwila

Jor we Wr(v) (|| « |2 is the Ly-norm in (DR*(M)),).

The estimate (2.25) follows from the continuity (in v) of the families dII}(v)
and I13+!(v) since the following operator norms tend to zero as v — vg:

IdI15(v) = dIT3(vo)ll2 — +0, |15+ (v) = I3+ (vo)ll2 — +0..
Indeed, for an arbitrary w € W (vy) we have dIIjw = dw. Hence the estimates

I (v)dw — dwlla < |13 () = T (o)ll2 -+ [ldwll

< C - ) = 115 (wo)llz -« w2

are true because the differential d : W2 (vg) — W2+1(vy) of a finite complex of finite-
dimensional spaces is bounded (with respect to the Hilbert norm induced from
(DR*(M)),).

For each v € IR? \ (0,0) the combinatorial cochain complex (C*(X,,V),d) (with
V:=XNZ) is defined by the v-transmission condition (1.58). A homomorphism
of the integration of forms from W (v) over the simplexes of X

Ry(a) : (W7 (v),d) — (C*(X,,V),d) (2.26)

is also defined for all v € R? \ (0,0). For every such v the following variant of the
de Rham theorem holds.

Proposition 2.3. R,(a) is a quasi-isomorphism.

Proof. 1. Let R, : (DR*(M,,Z),d) — (C*(X,,V),d) be the integration homomor-
phism of pairs of forms (w;,w,) € DR*(M,,Z) over the simplexes of X, \ V;. Then
R, is a quasi-isomorphism."

Indeed, in the commutative diagram (1.59) the left and the right vertical arrows
are quasi-isomorphisms according to the de Rham theorem for a closed manifold
N and for manifolds M; and M, with smooth boundaries. (The proof of the latter

17 This assertion claims that the analogy of the classical de Rham theorem is true in the case of
the v-transmission interior boundary conditions. The classical de Rham theorem for smooth closed
manifolds was proved in [dR1] (see also [dR4], Ch. IV, [W], Ch. IV, Sect. 29). The explicit
isomorphism between the Cech cohomology for a good cover of a smooth closed M and the de
Rham cohomology of M is defined with the help of the de Rham-Cech complex ([BT], Ch. Il
Sect. 9).
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one is given in [RS], Proposition 4.2.) The cohomology exact sequences provide us
with the commutative diagram

& H*< D DR'(Mk,NUZk)> —  H*(DR*(M,,Z)) (—)* H*(DR*(N)) —
k=12 v )%
1 R 1 R 1 &

2% H*(@C‘(Xk,WUVk)> — HACK, YY) mr e ) -
et ! (2.27)

with the exact rows, where the vertical arrows R, on the left and on the right are
isomorphisms (according to the de Rham theorem) and where dp = 0. under the
identifications R.. Hence (R, ). is also an isomorphism.

The exactness of the top row in (2.27) can be interpreted and proved as follows.
The sheaf F; := DR} (v = (oc,ﬁ) € R2\ (0,0)) of germs (1, wy) of pairs of C*°-
forms w; on M; such that'® aifw; = Bizw, (here i} are the geometrical restrictions
from M; to N — 0M,) is a c-soft sheaf. (The 1atter notion means that the restriction
I'(M,F}) — I'(K,ig'F}) is surjective for any compact ix : K < M, [KS], Definition
2.5.5.) The sheaf F, is c-soft since appropriate smooth partitions of unity exist on
M. The sequence of complexes of global sections

0— T'e(M\N,F?) — I'(M,F?) — I'(M,insiy'F2) — 0
(here iy : N — M) has the terms which possess the following properties:

D) I'(MF?) = DR‘(MV,Z)

2) FC(M \ N,F}) is a subcomplex of ,_, ,DR*(M, N U Z;) and its natural inclu-
sion is a quasi-isomorphism. Indeed, if @ € DR*(M,N U Z,) is a closed form then
o = dv in a neighborhood of N in M) (where v is a smooth form with the zero geo-
metrical restriction to N). So w — d(¢v) = 0 in some neighborhood of N in M(¢
is an appropriate cutting function). We have I'.(M \ N,F?) = I'(M, jj~'F?), where
Jj M\ N M and ji is the direct image with proper supports, j~'Fy ~ DR®|y\y.
The sheaf jij~!F? is c-soft according to [KS], Proposition 2.5.7.

3) I'(M, iN,*iﬁva’) has a natural homomorphism g, :=r, o (i},i3) onto DR*(N)
(where r, is defined in (1.15)) and g, is a quasi-isomorphism. In fact, if the form
u=dt Nwy(t) on I x N is closed then it is exact because then dywy(¢) = 0 and
sou=df f)wN(r)dr. (Here ¢ is the coordinate on / and ¢t = 0 is the equation of
N=0xN<—1IxN,0e&l\dJL) Hence g, is a quasi-isomorphism. (This assertion
follows also from the Poincaré lemma.) The sheaf iy.iy IFV° is c¢-soft by [KS],
Proposition 2.5.7.

For a compact manifold M the category of c-soft sheaves on M is injective with
respect to the functor of global sections I'(M;-) ([KS], Proposition 2.5.10). The
complex F; is a c-coft resolvent of a constructible sheaf ([KS], Chapter VIII) C,
on M, which is isomorphic to €\y on M \ N and to Cy on N (where Cy is a con-
stant sheaf on X), and the gluing map for €, is [v|""?*(a, f) : Cy — i;lj*(EM\N =
Cy ® Cy (ie., ¢ — |[v|7"(Be,ac)). The complexes jij ~'F? and zN*zN 'F® are c-soft
resolvents of constructible sheaves jij~'C, = J1 €y and of in,iy 'C,. (The latter

one is isomorphic to iy Cy under r,.) So the exactness of the cohomology sequence
in the top row of (2.27) follows from [KS], (2.6.33), Remark 2.6.10.

1% 1t is supposed that w, has the zero geometrical restriction to Z; (at points x € Zy C 0M).
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2. The projection operator py : DR*(M,,Z) — (DR*(M)), — Ker(43) pro-
vides us with the isomorphism pu. : H*(DR(M,,Z)) — Ker(4?) (by Lemma 1.1).
So the inclusion i, : (WS (v),d) — (DR*(M,,Z),d) is a quasi-isomorphism and
(ia)« : Ker(42)—H®*(DR(M,,Z)) is equal to (ps.)~' (since pyi, =id on
Ker(4y)). From an obvious equality R,(a) = R,i, it follows that R,(a) is a quasi-
isomorphism. [J

Thus the assertion of Lemma 2.4 can be applied to the bicomplex (2.26). The
result is as follows.

Corollary 2.3. The equality holds:

To(C* (X, VIV I Ty cconeo Rycayy = To(W) - (228)

The identifications ¢3"(a) (for an arbitrary a > 0) and ¢2" are defined such that
the following norms on Det(M,N,Z) are equal:

oM@ ol - [Gawsy = @3 0 To(Wa) . (2.29)
Hence, as it follows from (2.28), (2.29), we have

9(@) 0 ||+ Pawen = (0 0 To(C* X VD)) 0 (TP 7k coner ey - (230

Pltoposition 2.4. The factor (“1”%"O(Cone‘(R\v(a))))_] in (2.30) is a continuous function
of v e Uyla).

Proof. The complex Cone®(R,(a)) is acyclic according to Proposition 2.3. Its scalar
analytic torsion

HlllzToCone'(R,v(a))) = exp <4>Z_1(—1)i]‘@,(0)> (2.31)

J

is defined as in (1.1) by the {-functions of the “Laplacians” L, := d%d, + d,d* of
the complex (Cone®*(R,(a)),d,)."® Since the complex Cone®(R,(a)) is acyclic, we
see that these Laplacians are positive definite. (So they have the zero kernels.) Their
determinants det(4y) are continuous positive functions of v on U, (a) (and so the
expression on the right in (2.31) is a continuous function of v € U, (a)). The latter
statement is derived as follows.

Proposition 2.5. Let me Z, and m = my:=1+min{k € Z, : 4k = dimM}.
Then there exists a positive constant C = C(M,N,Z,gy) independent of v €
R?\ (0,0) (and of m also) such that the following estimate holds uniformly with
respect 1o x € M{ UM, :

lo()? < Cf%llAi,wH% (232)

' The spaces W, are equipped with the Hilbert structure from ((DR®(M)), gy ). The spaces
C*(X,,V)C C*(X)) @ C*(Xy) are equipped with the Hilbert structure defined by the basic
cochains in @C*(X;) and Cone®*(R,) = W2~ '(v) ® C*(X,,V) is the orthogonal direct sum of
Hilbert spaces.
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for all @ such that*
® € DR*(M\,Z), we€ D(A}), AwweDAY),....A'w e D(AY). (2.33)

(Here |w(x)|* is the norm at \*T.M defined by gy and || - ||} is the Ly-norm in
(DR*(M ),.).

Corollary 2.4. If w € W;(v) then w € D(AY) for an arbitrary m € Z,. So the
Jollowing estimate holds uniformly with respect to x € My UM, and to v €
R?\ (0,0)

P < Cilwl3 (2.34)

where C; = C\(M,N,Z,gy) > 0.
The graded Hilbert space C*(X,, V) is isomorphic to the direct sum

C*(X,, V)= C*(X,Ny UV) & C*(Ny), (2.35)

where V :=XNZ, Ny :=XNN, C*(X,Ny NV) is a graded linear subspace of
C*(X,, V) (with respect to the natural inclusion), and the inclusion j, : C*(Ny) —
C*(X,, V) C D,C*(X,) is defined as j, := («? + f*)~'(fid,aid). The space on the
right in (2.35) is independent of v. Hence (2.35) provides us with the isometric
identification of the graded Hilbert spaces

et CO(X V)2 CO (XL V). (2.36)

Corollary 2.5. Let v € U, (a) be sufficiently close to vo. Let W3 (v) be identi-
Sied with W2 (vo) by II5(v): W(ve) — W7(v). Let C*(X,,,V) be identified with
C*(X,, V) by p, (2.36). Then the estimate (2.34) implies that for such v the family
of homomorphisms of the integration over the simplexes of X

0°

RY(a) : (Wi(v).d) — (C*(X., V). dc)

is a continuous in v family of quasi-isomorphisms between finite complexes of
finite-dimensional Hilbert spaces.

Let f,:(F*(v),dp(v)) — (K*(v),dg(v)) be a family of homomorphisms be-
tween finite complexes of finite-dimensional Hilbert spaces. Let the trivialization
of these two families of complexes be defined by the identifications of the graded
linear spaces

II, . F*(vo) — F*(v), p.:K*(vo) — K*°(v).

Let these identifications be chosen such that /', becomes a continuous family of the
homomorphisms

foi (F*dp(v)) — (K®,dk(v))

between the continuous families of complexes with the fixed underlying graded
linear spaces F'® := F*(vy) and K*® := K°®(vg). Let the Hilbert structures of F/ and
K/ are continuous functions of v for all j. In this case, f is called a continuous
family. Then the following assertion is true

Proposition 2.6. Let [\ be a continuous family. Then the determinants det(L?) of
the Laplacians LY = did, +d.d* on (Cone® f\,d,) are continuous functions of v.

20 The domain of definition of D(4?) for A? is defined by (1.27) and (1.26).
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Proof. The operator di adjoint to the differential d, of Cone®f, (with respect
to the Hilbert structure Cone®f, = F*~! ® K*)*' is defined on the whole finite-
dimensional space Cone®f,. Since d, tends to d,, (for instance, in the operator
norm*”) as v — vo, we see that d; also tends to dj . Thus Ly — L3 as v — v and
detLy — detLy (since the space Cone® f, is finite-dimensional). [

Corollary 2.6. The functions det(Ly) of v for f, = R}(a) are continuous and
positive.

The positivity of det(Ly) is equivalent to the acyclicity of (Cone®R,(a),d,) (where
dy = dcone(Ry(a)) )-
Proposition 2.4 is proved. [

Remark. 2.4. Propositions 2.2, 2.5, and Corollary 2.5 claim that under the identifi-
cations (2.36) and I12(v), the Hilbert structures on det Cone®(R,(a)) and the dif-
ferentials d, in Cone®(R,(a)) are continuous in v at vo. Hence the analytic torsion
norms || - HZTO(COM.(RV(‘I))) on € = detH*(Cone(R,(a))) = det0 are also continuous
in v at vy.

According to (1.61) we have @i" = ¢, where ¢¢ is defined by the
bottom row of the commutative diagram (1.59). So the continuity of the norm
o*™a)o| - ”(zietW(,‘(v) on Det(M,N,Z) can de deduced from (2.30) and from the

following lemma.

Lemma 2.5. The norm @$To(C(X,,V)) on Det(M,N,Z) does not depend on v €
Uyy(a).

The continuity in v of the norm ¢3"7o(M,,Z) on Det(M,N,Z) follows from
(2.20), (2.21), and from the continuity of the norm ¢@2(a)o || - |3, e (The lat-

ter assertion is proved above.) The equality (1.12) holds with co(v) which is con-
stant and positive on each connected component U; of U (2.3). Because the norm
@™ To(M,) on Det(M,N,Z) is continuous in v € R?\ (0,0), the equality (1.12)
holds for all such v with ¢ independent of v. Theorem 1.1 follows from (1.12) and
from the assertion of Lemma 1.2. [J

Remark. 2.5. Tt is not important for the proofs of Theorem 1.1 and of (1.12)
that the family of finite-dimensional complexes (C*(X,,V),d.) in (2.30) is of a
combinatorial nature. It is enough for the proof to have a family of finite-dimensional
complexes (Fy,dr) which are defined locally in v (i.e., for v in a neighborhood of
an arbitrary vy € R? \ (0,0)) together with the data as follows. Continuous families
of quasi-isomorphisms f,(a) : (W7 (v),d) — (F;,dr) and of Hilbert structures 4, on
F? are defined. A family (Fy,%,) may depend on a and on v, but it has to possess
the property as follows. The norm ¢ o (f,(a).)~! o To(F?,h,) on Det(M,N,Z) is
continuous in v at vg. (Here fy(a). :detH*(M,,Z)detH*(F,,dr) is the induced
identification.)

2l Cone® f is the direct sum of Hilbert spaces F*+' @ K* (with the Hilbert structures on F**!
and K*® depending continuously on v).

22 As Cone® f, is a finite-dimensional space, the weak convergence of the operators acting in it
is equivalent to the convergence with respect to the operator norm.
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Proof of Lemma 2.5. Let i, be the identification of the determinant lines defined
by the bottom row of the commutative diagram (1.59):

Py det C* (X, 1| Q) det C*(Xe, WU V) | @ det C* (W) =: Det C*(X, V, W)
k=1,2

(where V is the induced smooth triangulation Z N X of Z C 0M, V} := V N oM, and
W := X NN = Ny). The following diagram is commutative:

detC*(X,, V) L5 DetC*(X, ¥, W)

wl a |

detH*(X,,V) —5  Det(X,V, W) (2.37)

-0

I ) I

detH*(M,,Z) 25  Det(M,Z,N)

(The determinant lines on the right in (2.37) are defined by(1.54). The identification
d. on the right in (2.37) is a triple tensor product of the identifications induced
by d. on C*(X;, W UVy) and on C*(W). The identification R is defined by the
integration over the simplexes of X.) The commutativity of the diagram (2.37) is
equivalent to the definition (1.60) of ¢S. Since the identification d. on the right in
(2.37) is independent of v, we see that the statement of Lemma 2.5 is a consequence
of the following proposition.

Proposition 2.7. The identification , in (2.37) is an isometry between the com-
binatorial norm || - Hﬁetc.(x‘,’,,) and the triple tensor product of the combinatorial
norms on det C*(X,, W U Vy) (k = 1,2) and on det C*(W).

(The Hilbert structures on @k:uC'(Xk, Vi) and on C®(W) are defined by the
orthonormal basis of the basic cochains.)

Proof. Let p,.: C*(W) — C*(X,,V) be defined by (1.63). Then r, .p,. = Id and
Py,c Is an isometry onto Im(p, ) (relative to the Hilbert structures, defined above).
The subspace Im(p,.) is the orthogonal complement to Im j(@k:mC‘(Xk, wu
Vi) in C/(X,,V) and j is an isometry onto Im j. (Here, r,. and j are the same
as in the bottom row of (1.59).)%

Thus Lemma 2.5 is proved. O

2.2.1. Uniform Sobolev inequalities for v-transmission interior boundary condi-
tions. Proof of Proposition 2.5. Let I x N C M (where | =[—1,1]) be a neigh-
borhood of N =0 x N C M and let gy be a direct product metric on / x N. Propo-
sition 2.5 is a consequence of the assertions as follows.

Proposition 2.8. The inequality (2.32) holds uniformly with respect to v €
R?\ (0,0) for all w € DR*(M,) of the class (2.33) and such that suppw C
[—4/5,4/5] x N C M.

2 This proposition is essentially equivalent to Proposition 1.5, Sect. 1.
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Proposition 2.9. The inequality (2.32) holds for all w € DR*(M,Z) such that
suppw C M\ ([—1/3,1/3] x N) and such that**

@ € D(Ayz), Adw € D(Ayiz), ..., A"w € D(Ayz) . (2.38)

The last assertion is well known ([Ch], Sect. 5).

Let /' be a smooth function on M,0 < f < 1,f =1 on [—1/2,1/2] x N and
S =0on M\ ([-3/4,3/4] x N) The 2m-Sobolev norm on the right in (2.32), de-
fined as

m
oo Eam) = kZOHA'JwII% ;

is equivalent uniformly in v € IR? \ (0,0) (i.e., with constants c3,c4 > 0 independent
of v and of ®) to the norm® [|w|%,,,, ; = Y il 4ECf )3 + [ 45((1 = fHwl3) :

C3Hw||%2m) < Hw“%Zm),f = C4“¢“||%2m)- (2.39)
It 1s enough to verify the upper estimate (with ¢4 independent of v) for fw. It
is true for m = 1, since the estimate holds:
4 folz £ Ci - (|40l + ol + [doll; + [60]3)

< 332G (| 403 + |lo|3),

where C; depends on f but it is independent of v. Hence the following estimate
holds for w € D(4*) (with C, independent of v and of w):

[45Cf )5 £ C - (|4l + 147" = 0l + - + [lol3) .

The upper estimate is done. Thus Proposition 2.5 follows from (2.39) and from
Propositions 2.8 and 2.9.

Proof of Proposition 2.8. The form w on I x N is the sum wy + w1, where w;
is an i-form in the direction of I (where I =[—1,1]). It is enough to prove the
inequality (2.32) separately for wo and for w;. Let us prove it for wy. For v =
(o, B) € R?\ (0,0) the Green function G(v) for the Laplacian 4, ; on functions on
1 with the v-transmission boundary condition at 0 € / and the Dirichlet boundary
conditions on 0/ = {—1,1} is given by the kernel

2 2

(GI(V))xl,xz = gx[,xz + gz—_?'ﬁz‘g—xhxz for Xy,X2 € Ql = [—190] >

o — B2
(GI(V))XI,XZ = gxl,xz + az__l_%g—xhlﬁ for x17~x2 6 Q2 = [0’ 1] >

20

(GI(V))XI Xy T mgxl X2

for x,x; from different Qy . (2.40)

2 For @ with supp w C M \ N the conditions (2.33) and (2.38) are equivalent. The domain
D(Ayz) of Ay z consists of smooth forms on M with the Dirichlet boundary conditions on Z and
the Neumann ones on oM \ Z.

25 The lower estimate with c3 in (2.39) is obvious. Note that supp((1 — /)w) C M \ ([-1/3,1/3]
xN). Then the upper estimate with a constant ¢ for ||(1 — f)w||2m) by ||@|l2m) is well known
([H6], Appendix B and Proposition 20.1.11).
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Here, gy, x, is the Green function for the Laplacian on functions on / with the
Dirichlet boundary conditions on 0I:

c-(+)(1-x) -1=x=x
Ix1,x, _{

c-(xi+1)(1=x), -1=2x=x

I\

>

2.41
. (241)

IIA

where ¢=+0 is a constant. .
It follows from (2.40) and (2.41) that G;(v) has a continuous kernel on 0, x

@,2 and that it is estimated uniformly with respect to v € R? \ (0,0) and to x,x;:

sup [(G1(")x;, x| < 2. (2.42)

X1, X2,V

Since supp wo C (I \ 8I) x N and since the Laplacian 4, has the zero kernel
on functions with the Dirichlet boundary conditions on 0/, we have

wo = (Id; @ I§(N ) + G1(v) @ Gy ((4y,1 ® 437 Joo) (2.43)

where Gy is the Green function for 4% and where II5(N) is the orthogonal projec-
tion operator in (DR®*(N)), onto Ker A%. The operator Gy on a closed Riemannian
manifold (N, gy ) has a square-integrable kernel (relative to the second argument) for
my; > (n—1)/4 (where n — 1 = dimN) and it has a continuous on N x N kernel
for my > (n—1)/2.

The following estimate holds uniformly with respect to v € IR? \ (0,0) for any
my € Zy, my > (n— 1)/4. From (2.43), (2.42), and from the Cauchy inequality we
have

oG < esCllonllz + (s @ id)ooll3 + [(Ans @ AP )0ll3) . (244)
Indeed, the following two Banach norms on the finite-dimensional space Ker 4y

Al = max|a(x)]* and [|4]3y
XEN

are equivalent. So we get (where x = (x1,xy) € { x N and I =[—1,1]):

((id; ® RN ))wo)(®))* < TSN )wo(x1, #)]3 < collwoCxr, )3y, (2:45)
lwoGer, )n £ 25uppl(Gr(v))eyy > = (s @ id)oo |5 e
X2

< 28||(Avs @ id)awol3 - (2.46)
The following estimate is obtained by the similar method:

[((G1(v) ® Gy )(Ay; @ A Yoo )(x, 30 )|

(2.47)
< 265supp|(Gy )y llon = 1(dvs @ AR o)l ar -
Y1

Hence the estimate (2.44) holds for wy (even without the first term on the right
in (2.44)), as it follows from (2.43), (2.45), (2.46) and (2.47).

Since 4, = id; ® Ay + 4,(I) ® idy and since 4y and 4, ; are nonnegative self-
adjoint operators, we have for my € Z:

[(Avr ® A3 dovoll2 < (147> ool - (2.48)
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The inequality (2.32) for wy follows from (2.44) and (2.48). For w; the ana-
logous to (2.43) equality holds:

wp = (1) & (idy — 0§~ (N )y + ((dr = (1)) @ 157 (N )

+ (L) @ I3~ (N Dor + (Gi(v) @ Gy N Avr © A on) (2.49)

where IT}(1,) is the projection operator of (DR'(/)), onto the one-dimensional space
¢ + dx; and Gy(v); is the Green function for the Laplacian 4, ; on DR'(I‘,) (with the
Dirichlet boundary conditions on 0/ = {—1, 1} and with the v-transmission boundary
conditions at 0). The kernel G;(v); is continuous on Q.I X @,2 because it can be
written in a form similar to (2.40). It is written through the Green function g; of
A; on DR'(I) with the Dirichlet boundary conditions on 9/ (the kernel (91)x,,xs
of g; is continuous on / x /). Hence the second term on the right in (2.49) is
estimated similarly to (2.45) and to (2.46). The kernel H(')(Iv),q,x2 is expressed in a
form analogous to (2.40) through the kernel 27 'dx; ® dx, on I x I (corresponding
to I15(1,,1)). So the kernel of I1j(1,) is continuous on O, x Q,,, and it satisfies the
estimate (2.42) (with the upper bound c¢). The first and the third terms in (2.49)
are estimated as follows:

[(IT'(1)®(idy ~ T3~ (N )i (xp,x )

< 26 supp (G )y I3 I(id @ A3 s (1301 »
»1

(T (1) ® 1157 (N )y (x) < 2¢cql|wr[[3, -

Hence the estimate (2.44) holds uniformly with respect to v € IR?\ (0,0)
for any me€ Zy, m = my:= 1+ min{k € Z,,4k = n}. Thus Proposition 2.8 is
proved. [J

2.3. Actions of the Homomorphisms of ldentifications on the Determinant. Proof
of Lemma 2.3. The most simple method to compute the action of g, . on
Det(M,N,Z)* is to obtain the expression for the action of v, on the determi-
nant line DetC*(X, V, W) (1.54), induced by the identifications of the correspond-
ing cochain complexes 1§ = vﬁvO : C(Xy,, V) — C*°(X,, V) (where v5(ct,c2) := (c1,
(kv/kyy)c2) for v,vp € U (2.3)), and then to use Proposition 2.10 below. The ac-
tion of vf, is defined by identifications ., and v, where ¥, : detC*(X,, V)<
DetC*(X, V, W) are defined by the exact sequence in the bottom row of the dia-
gram (1.59). The following diagram of the identifications is commutative:

<

detC* (X, V) —>  detC*(X,,V)

b | 1 K

DetC*(X,V, W) —% DetC*(X,V,W).

Proposition 2.10. Under the conditions of Lemma 2.3, the equality holds:
Gur = Uy - (2.50)

26 This action is multiplying by a nonzero factor.
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The proof of the equality (2.50) is done just after the end of the proof
of Lemma 2.3. The expression for the action of v, on the determinant line
can be obtained as follows. Let v€ U and let j be the natural inclusion j :
D=1, C* X, W & Vi) — C*(X,, V). Then v acts on C*(X;, W UV)) as the iden-
tity operator and it acts on C*(Xp, W UV,) as the operator (k,/k,,)id. Proposi-
tion 2.7 claims that the identification ¥/, is an isometry between the combinatorial
norm on detC°®(X,,V) and the triple tensor product of the combinatorial norms
on the components of DetC*(X, W, V). It is enough to compute the action of ¢,
on the component detC*(W) of the tensor product Det C*(X, W, V). The inclusion
Prc : C* (W) — C*(X,, V) (defined by (1.63)) is an isometry onto orthogonal com-
plement to Im j and », .p, . = id on C*(W). So the action of v$ on this orthogonal
complement (Im /) (identified with C*(W) by Ty and by 7, ) can be expressed
as the composition

me C’(W)m ((ﬁo,ao)/\/aé + ﬂé)m - ((ﬂo,ao(kv/kvo))/\/aﬁ + ﬁé)m
- ((1,1@)/,/1 +k30>mf> <\/1 +k§/,/1 +k30)m eCcwy. (251)

(Here, the signs are written for positive § and fo.2”) The expression for v<, follows
from (2.51) and from the assertion that v§ acts on C*(X2, W U V3) as (k,/k,,)id.
Namely.

Ul = (kofkg ) 7N 4 D)1+ kg ) THR (2.52)
for [ € DetC*(X, V,W). It follows from (2.52) that the equality holds (for /+0):

d,log ||vs, 11> = =2x(Ma, N U Z3)d,log (k) — 2x(N)(1 + &, )" d,log (k,) .
(2.53)

Proposition 2.10 claims that the same identity holds also for the action of g, on
Det(M,N,Z).

The right side in the formula (2.19) (i.e., in the assertion of Lemma 2.3) is
defined in analytic terms while the right side in (2.53) is defined in topological
terms. Each b, ;(M,,,Z) on the right in (2.19) is the sum of integrals over M, and
over N of the locally defined densities, according to Theorem 3.2. So it is enough
to compute (in topological terms) the expression on the right in (2.19) in the case
of a mirror-symmetric M = M, Uy M, with a mirror-symmetric metric 95 (which is
a direct product metric neat 0M and near N) and with mirror-symmetric boundary
conditions on the connected componenets of M. In this case, the expression in
(2.19) is the same as for a general M (if the piece M, of M, gasza,, and the
boundary conditions on M N M, are the same as in the mirror-symmetric case on
each piece M, of M). It is supposed from now on in the proof of Lemma 2.3 that
M and all the data on M are mirror-symmetric relative to N. In this case the kernel
Ep. () (ve R2\ (0,0)) of the operator exp(—t4%) with the Dirichlet boundary
conditions on Z = Z, UZ, C M and with the Neumann conditions on M \ N is

27 The signs are not important for the transformations of the norm on the determinant line under
the actions of vf,.
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expressed through the fundamental solution E7, , for d, + 4° on DR*(M,Z) (with
the same boundary conditions on oM )?® as follows?:

Ef (W) =E5 , + (&8 — B/ + BNOTE® )rx,y for x € M,y € My, (2.54)

Lx,y

ES ,(v) = apjo’ + BES, , for x € M,y € M, . (2.55)

Lx,y

Note that the kernel (E; + o] E, )y, , =: E,Nf“y for x, y € M, is the fundamental so-
lution for J, + 43, where 43, is the Laplacian on DR®(M,, Z;) with the Neumann
boundary conditions on N and the kernel (E; — 6{E;),,, =: E,I’);fy is the kernel of
exp(—t4yy, v ), where AXQ,N is the Laplacian on DR*(M,,N U Z,) (i.e., with the
Dirichlet f)oundary conditions on N). It follows from (2.54) that the alternating
sum of zero-order terms (in the asymptotic expansions of the traces of the heat
equation operator relative to ¢+ — +0) on the right in (2.19) can be represented in
the following form (where m,, :=27'(1 — k;;>)/(1 + k;;%)):

S 1) bay (M, Z) = S(=1) [ 10 (B, (0))°
My
=270 [ ()
M
+m, D1 [ @ (ERS ~ w(EL))
M)

=27" (M, Z) + my,(x(M2, Z2) — (M2, Zy UN)))

= (M3, Zy UN) + (1 + k)" x(N) . (2.56)

Hence the expression on the right in (2.53) is equal to the right side of
(2.19), and the assertion of Lemma 2.3 follows from Proposition 2.10. The
zero superscripts in (2.56) denote the densities on M;,N,0M, corresponding to
the constant terms (i.c., the %-coefficients) in the asymptotic expansions as t —
+0 for Tr(p;exp(—t4°®)), where A® is the Laplacian with appropriate boundary
conditions. In (2.56) |, M, tr( . )° denotes the sum of the integrals over M;,N, and

over 0M, \ N of the corresponding densities. We use the following equalities to
produce (2.56):

SV [ w(EL ) =M 2Z),
M

S0 wERSY = (Mo, 20)
M,

YD [ wE = (M N U Z) . (2.57)

M)
These equalities are consequences of the analogous equalities without the zero
superscripts and of the existence of asymptotic expansions in powers of ¢ for the

28 1t is proved in Proposition 1.1 that 4* on DR®*(M,Z) for M obtained by gluing two pieces,
M = M Uy M,, has the same eigenvalues (including their multiplicities) and eigenforms as 47,
in DR*(M,,,Z). The analogous assertion is true for the operators exp(—¢4} ) and exp(~t4°®) in
(DR*(M)); and for their kernels.

29 These formulas are analogous to (2.40).
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corresponding traces as t — +0 ([Se2], Theorem 3, or Theorem 3.2 below). [
Proof of Proposition 2.10. The identifications

Det C*(X, V, W) 25 Det(X, V, W) < Det(M,N,Z) (2.58)

do not depend on v (the determinant lines in (2.58) are defined in (1.54)). So the ac-
tions of v, on Det(X, V, W) and on Det C*(X, V, W) are the same (i.e., they multiply
by the same number). To prove (2.50) it is enough to show that the corresponding
operators on Det(M,N,Z) are the same (i.e., that g,. = v§,on Det(M,N,Z)).

The proof of Proposition 2.10 uses the following assertion.

Proposition 2.11. Let ¢ : (F§,dr,) — (F},dFr,) be an isomorphism of finite com-
plexes of finite-dimensional linear spaces. Then the diagram is commutative:

detFy % detFp

all all (2.59)
detH*(Fy) 25 detH*(F))

Proof. This identifications detF? L detH *(F,) are defined with the help of differ-
entials d = dr,. Hence the commutativity of (2.59) holds. [J

The commutativity of the following diagram of the identifications (for v suffi-
ciently close to vy such that v, is an isomorphism) follows from (2.59):

Uy

det W7 (vq) — deto (W7 (vg)) —1:7% detW > (vo)

dfl a1 |24 (2.60)
detH*(M),Z) — detH*(M,,Z) = detH*(M,,Z)

where the identification j,. : H*(v,(WS(vo))) — H*(DR(M,,Z)) = H*(M,,Z) is de-
fined by the natural inclusion j : v,(W,; (vo)) — DR*(M,,Z) of a quasi-isomorphic
subcomplex. The commutativity of the left square in (2.60) follows from (2.59).
The commutativity of the right square in (2.60) also follows from (2.59) because
the operator induced by the projection operator I1, on H*(DR(M,,Z)) is the identity
operator.

The commutativity of the following diagram is a consequence of the commuta-
tivity of the diagram (2.60):

Uy

detWr(vo) = det W2 (vo) —  detv, (W7 (v))
d dil
Pry@|2 detH*(M,,Z) o~ detH*(M,,Z) (2.61)
o o2

Det(M,N,Z) = Det(M,N,Z) 2% Det(M,N,Z)
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The action of v, : H*(M,,,Z) — H*(M,,Z) coincides with the combinatorial
action v§, : H*(X,,,V) — H*(X,,V) under the identification of the cohomology
R:H*(M,,Z) — H*(X,,V) induced by the integration R of closed differential forms
over the simplexes of X. Hence the commutativity of (2.60) implies also the com-

mutativity of the diagram:

det W2 (vo) = deto (W2 (vo))

af af
detH*(M,,Z) = detH*(M,,,Z) —  detH*(M,,Z)
Uyx
dc|l AL
et |1 O,V deCt, ) 2.62)
o 2 W)l
DetC* (X, V, W) — DetC*(X,V, W)
(2.58)|2 @358)2
Det(M,N,Z) =Det(M,N,Z) -— Det(M,N,Z)
Urx

The equality (2.50) follows immediately from the commutativity of the right
bottom square in (2.61) and from the commutativity of (2.62). Proposition 2.10 is
proved. [J

2.4. Analytic Torsion Norm on the Cone of a Morphism of Complexes. Proof of
Lemma 2.4. Lemma 2.4 is a particular case of the following assertion. Let f be
a morphism (2.22) of finite complexes of finite-dimensional Hilbert spaces.>* Then
Cone® f is defined by (2.23). The exact sequence of complexes:’!

0 — V* — Cone® f—A°[1] = 0, (2.63)
P

(where the left arrow maps y € V* into (0, y) € Cone® f and p(x,y) =x for
(x,y) € A/ @ V/) defines the identification of the determinants of its cohomol-
ogy:

Plones = detH*(Cone f) T detH*(V) ® (detH*(4))™" . (2.64)

Let the Hilbert spaces Cone’f be the direct sums 4/ @ V/*! of the Hilbert
spaces.

Lemma 2.6. The analytic torsion norm on the determinant of the cohomology of
Cone® [ is isometric under the identification (2.64) to the tensor product of the

analytic torsions norms>?:

To(Cone® f) = To(V®) @ To(A®) " . (2.65)

Remark. 2.6. Let h € detH*(Cone f) be identified by (2.64) with #; ® hz_lfor h €
detH*(V) and hy € detH*(4). Namely @conee i =M ® hz_l, where hz_1 is an

30 The morphism [ is not supposed to be a quasi-isomorphism.

31 4*[1] is a complex with components A[1]/ = 4/"! and with d ;) = —d 4. There are the canon-
ical identifications: det4*[1] = (det4®*)™' and detH*(4[1]) = (detH*(4))~".

32 The analytic torsion norm on detH*(4[1]) = detH*(4)~" is the dual norm Ty(4*)™".
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clement of the dual one-dimensional space detH*(4)~! such that Ay Ihy)=1. In
this case, the equality (2.65) claims that

1217y cones 1) = Il Zycrey / 12l Fyae) - (2.66)

Remark. 2.7. The identity (2.65) (Lemma 2.6) and the equality (2.66) also hold
under weaker assumptions. Let the Hilbert structures on 4°,7*, and on Cone® f be
such that the identification

PCones £ © det Cone® f T detV® @ (det4®)™! (2.67)
(induced by the exact sequence (2.63)) is an isometry. Then the equality (2.66)
holds.

Corollary 2.7. Let [ : A* — V* be a quasi-isomorphism. Then H®*(Conef) = 0.
Hence detH*(Conef') is canonically € and 1 € € = detH*(Cone ') is identified
by (2.64) with hy ® hz_l. Here, f.h, = hy under the identification induced by f :

S« detH*(A)Z detH*(V) . (2.68)
In this case, the equality (2.66) claims that
||1“2T0(Cone'f) = millZy ey / W2l Fycamy = To(V®) [ To(4°) (2.69)

where To(V*)/To(A®) is the ratio of the two norms on the same determinant line
(since detH®*(V') and detH®(A) are identified by (2.68)).

The equality (2.69) is the assertion of Lemma 2.4.

Proof of Lemma 2.6.The identification (2.67) is an isometry of norms on the de-
terminant lines. Let u be a nonzero element of det Cone® f and let

PCone® ;U = U1 ® uz_l s (2.70)

where u) € detV'® and u, € detA®. Let A, hy, hy be the images of u,u;,u; under the
identifications (definied by the differentials of the corresponding complexes):

det Cone'fﬁi_cj“vi detH*(Cone f),

detA® %4 detH*(4), detV® L detH*(V).

Then by the definition of ¢f .. s we have Pl h=m&h L

The analytic torsion norm on the determinant of the cohomology of a finite-
dimensional complex is the norm, corresponding to the L,-norm on the determinant
of this complex defined by the Hilbert structures on its components. Hence the
equalities hold:

”hH%O(Con&f) = ”u”ﬁet(Cone'f) >
“hIHZTO(V') = ””luﬁet(V‘)’ ”h2”2T0(A‘) = ”u2”§et(A*) . (2.71)
Since the identification (2.67) is an isometry, we see that the equality
20 7ycones ) = WallTycrey / 2l Tycao) (272)
follows from (2.71) and from (2.70). O
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The equality (2.24) in Lemma 2.4 is a particular case of (2.72) (by Corollary
2.7) corresponding to the case of a quasi-isomorphism /. Lemma 2.4 is proved.
O

2.5. Variation Formula for Norms of Morphisms of Identifications. Proof of
Lemma 2.1. The assertion (2.14) of Lemma 2.1 can be deduced from the defi-
nition of ¢, and from the following proposition.

Proposition 2.12. There is a neighborhood U, , vy € U, C R?\ (0,0), such that
a family of finite rank projection operators I1,(v):= II,(v;a) in (DR/(M)), is
smooth on Uy, > v.

Its proof follows just after the proof of Lemma 2.1. Let / € detW(vy),/+0,
+1
and let [ = ®,l(,"1)/ , where /, € detWj(vq),1,+0. Then we have

log {lgv/{[Geuwe vy = (=1 Hog lgndil13, i, - (2.73)
Proposition 2.13. For cvery j the following equality holds (under the conditions of
Lemma 2.1):

108l = 2000e0|_Te( o0} o

Thus the assertion (2.14) of Lemma 2.1 is a consequence of (2.74) and of (2.73).

Proof of Proposition 2.13. It is enough to prove the equality (2.74) in the case
when HZ,Hﬁet W) = 1, ie, when [ =e; A...Aey, where {e} is an orthonormal

basis in W (vg) (vo = v(0)). In this case, we have

208 I9vlll |, = r(@a, MmN (2.75)

where a(v) = (a,(v)) is a matrix of scalar products in (DR/(M ) ® DR/(M3),gum)
of the images of the basis elements

az/(") = <g\'ei7g\'e/> .

The formula (2.75) is deduced as follows. Since ||g\,lH§et Wi = deta(v), we have

d.log deta(v)|.—g = tr(d,a - a='(v))|.—o = tr(8.a)|,— .

The family of the operators IT,(v) is smooth in v for v € U, (Proposition 2.12).
Hence the operator d.11;(v) exists. Since IT}(v) are projection operators, we have

Hg =1, 0.1, 1,=(d—1,)d.1l, .
So e, are orthogonal to 0,11,],_ge, and we get
6:"111(")\7:0 = 6}'<Hagveu Hag\'e/>l‘,':0
= <a (Hag\')elaejﬂ”,':o + <€,,E‘~“ (Hng\')e/>i‘,':0
= 0.(log k\)|.=o((p2es,€)) + (e, pae;)) - (2.76)
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Since {e,} is an orthonormal basis in W (vy), we have

tr({paeie;)) = tr( p21i(vo)) . 2.77)

Hence (2.74) follows from (2.75), (2.76), and (2.77). Thus Proposition 2.13 and
Lemma 2.1 are proved. [J

Proof of Proposition 2.12. Let U,, C R*\ (0,0) be the set of v € R?\ (0,0) such
that the Laplacians 4,; on DR/(M\,Z) (for all j) have no eigenvalues A from
(a—¢1+2¢) C Ry (where ¢ > 0 is small enough). Then for v € U,, the projec-
tion operator IT4(v) from (DR/(M)), onto a linear space W.(v) (spanned by the
eigenforms of 4, ; with the eigenvalues A from [0, a]) is equal to the contour
integral

vy = il2n [ GL(v)d2,

ru+.’:

where Gj,;(v): (4., - 2)~! is the resolvent for the Laplacian A, ; and I,y is
a circle I'yy, = {4 : || = a+ ¢} oriented opposite to the clockwise. For 1 € Iy,
and v € U,, the operators Gf (v) form a smooth in (4, v) family of bounded operators
in (DR/(M)),. (It is an immediate consequence of Proposition 3.1 below. Indeed,
Spec(4,,;) is discrete and it is a subset of R U0, according to Theorem 3.1. Thus
if (a—¢,a+2¢) C Spec(4,,;) =0 then I';yc N Spec(4,;) =0 and Gﬁ(v) form a
smooth in v € U,, and in 4 € I'q;, family of bounded in (DR/(M)), operators by
Proposition 3.1.) Proposition 2.13 is proved. O

2.6. Variation Formula for the Scalar Analytic Torsion. Proof of Lemma 2.2. First
the lemma is proved in the case when a > 0 is less than 4~ lll(vo) (where 4;(v) is
the minimal positive eigenvalue of the Laplacian 4, on (EB DRI(M,,Z),gx)). Let
Ui(a) be a neighborhood of vy, vy € Ui(a) C U (2.3), such that for v € Uj(a) we
have a < 27'A(v). (Such a neighborhood exists according to Theorem 3.1 and to
Proposition 3.1.)

Let v(7) be a smooth local map (R',0) — (U(a), o).

Proposition 2.14. For ¢t > 0 the following variation formula holds®

0,2 (=1)/jTr exp(—t4, ;)|y=0
= 20,10 (ky)|y=0>_(—=1)/(—10/0t)Tr( prexp(—tdy, ;)) , (2.78)

where k, := o/p for v= (o, ) € U (i.e., for aff£0).

Proposition 2.15. Let Res > (dimM)/2 and let 0 < a < Ay(vg). Then the follow-
ing equalities hold.

33 The operator exp(—t4, ) acts from (DR/(M)), into the domain D(4, ) of 4, , defined by
(1.27). The operators exp(—t4,,,) and p; exp(—t4, ) are of trace class. Their traces are equal
to the integrals over the diagonal of the traces of their kernels restricted to the diagonals (by
Proposition 3.8).
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o,| ()~ [£7152(—1)/j(Trexp(—t4,,;) — dim Ker Av,j)dt]
0

7=0
= () ZO Y1) (=0T (pi(exp(—tdy,) — Th(vo)))dt
— 20, og (ky)ly—o(s/T () (~1)/

o0

x [T Tr(pi(exp(—tdy, ;) — Th(vo)))dt . (2.79)
0

Proof of Proposition 2.15. To produce the second row of (2.79) from (2.78), it is
enough to prove ([Bo], 11.26, Proposition 7) that for Res > (dimM)/2 the integral

fts(—at)Tr(pl exp(—t4,;)) dt = ftSTr(plAw exp(—t4,,))dt (2.80)
0 0

converges uniformly in v for v from a small neighborhood U,
the convergence of the integral

v of vo and to prove

[ £~ (Tr(exp(—t4,, ;) — dimKer 4,, ;)d1 (2.81)
0

together with the uniform convergence in v for an arbitrary v; € U,, (as v — v;) of
the function

(=1 Te(pidy jexp(=4,,0)) — £ 2(=1) Tr(pi 4y, j exp(—t4,, 1))
(2.82))
for ¢ from any closed finite interval ¢ € I C (0,+00). (To apply the theorem from
[Bo], quoted above, it is useful first to do the transformation R, 3¢t — A =log t €
R,dt — tdh.)
The following estimates are satisfied

ITr(plAv,/' CXp(—-tAV,j))I <Tr(4,, exP(“tAv,j))
< |4, exp(—t4,,;/2)||2(Tr(exp(—t4,,;/2)

— dim Kerd,)), (2.83)
|4, exp(—t4, ;/2)|2 < r{lg())((/l exp(—t1/2)) = 2/(te) , (2.84)

(where || - ||, are the operator norms in (DR/(M)),). The first estimate in (2.83)
follows from the Mercer Theorem. (Applying this theorem here is similar to its
application in the proofs of Propositions 3.8 and 3.9 below.)

Let #p be any positive number. Then for ¢+ = 2¢, and for v sufficiently close to
vo we have the following uniform with respect to v estimate

Trexp(—td, ;/2) — dimW!(v) < C exp(—cit), (2.85)

where C and ¢; are positive constants. Indeed, according to Theorem 3.2, for any
to > 0 there is a constant L > 0 (depending on #y) such that the inequality

Tr exp(—to4,,;/2) £ L
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holds uniformly with respect to v € R?\ (0,0). So for all v € U sufficiently close
to vy and such that 4;(v) > 2a, the estimate (2.85) is true for ( = 2¢) with C =
L and ¢; = a/4:

Tr exp(—t4,;/2) — dimW/(v) £ Lexp(—ta/4). (2.86)

The uniform convergence (with respect to v) of the integral (2.80) for Res >
(dimM )/2 follows from the asymptotic expansion (2.15) in powers of ¢ as t — +0
and from the estimates (2.83), (2.84), and (2.85). The convergence of the integral
(2.81) for Res > (dimM)/2 follows from (2.85) and from the existence of the
asymptotic expansion of the trace at t — +0 (by Theorem 3.2):

Tr exp(—t4,,,) = f gt M2 g dTEmIN2
+ fklk’/z + O(t(l"J“])"z) R (2.87)

where k € Z, and f,:= f,(v;j) are smooth in v € IR?\ (0,0). This asymptotic
expansion (2.87) is differentiable with respect to v, according to Proposition 3.2.

The uniform convergence of (2.82) for t € I C (0,00) (if s is fixed and Res >
(dimM )/2) follows from Proposition 3.8 and from the uniform convergence (with
respect to v) of the functions of ¢

00 [TrE] (v) — 716, [wE] (v)
M, M,

for t € I. (The latter assertion follows from Proposition 3.2 and from Theorem 3.2.)

The last equality in (2.79) is true for Res > (dimM )/2 according to the asymp-
totic expansion (2.87), to the estimate (2.86), to the absolute convergence of the
integral (2.80), and to the following estimates (where 0 < a < A1(vy)):

0 < Tr(pi(exp(—tdy, ) — IMh(v0))) < Tr(exp(—idy, ) — i(v0)) . (2.88)

(These estimates are deduced from the Mercer theorem the same way as in the
proofs of Propositions 3.8 and 3.9.) Thus Proposition 2.15 is proved. [

Proposition 2.16. For 0 < a < A(vg) the assertion of Lemma 2.1 is true, i.e., it
holds:

2,JogT (M, Z)|;—0 = 20,10g (k)03 (~ 1)/ Tr( pr(exp(—tdy,)) — Th(vo)))" .
(2.89)

(The zero superscript denotes the constant coeflicient in the asymptotic expansion
as t — 40 for the operator trace.)

Proof. The equality (2.79) claims that for Res > (dimM)/2 and for 0 < a <
A(vg)/4 we have

a“(z(_ 1 )l] C\'./(S))!;-z()
= 20, log(ky)|,—o(s/T(s))Y(~ 1)’

X Tt‘“"lTr(pl(exp(~lA\,0;,) — [I(/;("())))dl . (2.90)
0
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The final expressions in (2.90) and (2.79) are analytic functions of s for Res >
(dimM )/2 according to (2.88), (2.86), and to (2,15). The meromorphic continuation
to the whole complex plane € > s of this function of s can be produced with
the help of the asymptotic expansion (2.15) (or of the expansion (2.91) below
for Tr( pi(exp(—tdy,, ;) — ITi(v)))) using the estimates (2.88) and (2.86). Let the
asymptotic expansion as ¢ — +0 for the trace of the operator below be as follows
(n:=dimM):

Tr(pi(exp(—tdsy, ;) — ITi(v9))) =q—nt ™"* + - + qot° + 4,22
o Gt () (2.91)

where 7y ;(t) is O(t**tD/2) as t — 40 and ry ;(¢) is a C¥?-smooth functions of
t € [0,1]3* Then the analytic continuation to Res > —(k + 1)/2 of the integral
on the right in (2.90) is given by the expression

o0

fts-lTr(pl(exp(_[A‘,o,j) — HA(VO)))dZ‘
0

=q_n/(—1/2+5) +qns1 /(=12 + 1/2 = 5)+ -+ qo/s

1
+ G /(1245)+ -+ G /(K2 +5) + [ j(1)dt
0

oo

+ [ Tr(pi(exp(—t4y, ;) — Ii(v)))dt . (292)
I

The latter integral in (2.92) is an analytic function on the whole complex plane
€ €5 (according to (2.88) and (2.86)). The integral of r; ; in (2.92) is an ana-
lytic function of s for Res > —(k + 1)/2. The asymptotic expansions (2.87) for
Tr exp(—t4,;) can be differentiated with respect to v according to Proposition
3.2. They provide us with the analytic continuation of Y (—1)/(, ;(s) to Res >
—(k + 1)/2 as follows:

S0l () =T () (F_n/(=n/2 +5) + - + Fi/(k/2 + 5)
1 oo
+ [ e ()de + [ (=1) jTr(exp(—t4,,,)
0 1
— dim Kerd, )dr) , (2.93)
where Fj := Zi(—l)/j(fk(v,j) — doxdim Ker4, ;) and the functions my,(t) are
C™2_smooth in ¢ € [0,1] and in v (for v € IR?\ (0,0)) and are such that my , =
O(t%*+1/2) uniformly with respect to v as t — +0.

The latter integral in (2.93) is an analytic function of s € €. We obtain its
derivative with respect to y taking into account (2.78), (2,86), and (2,88):

34 This asymptotic expansion exists and is differentiable with respect to ¢ by Proposition 3.2.
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o
8, [£1S°(—1)jTr(exp(—t4,,,) — dim Ker 4, ;)dt|,—
1 J

=20, log(kv)]yzo{sjots_IZ(—l)jTr( piexp(—td,, ;) — IT)(vo)))dt
1 J
+ (=1 Tr(pi(exp(—4yy,;) — Ma(v0))} 5
J

where 0 < a < A;(v9).>®* Using (2.87), (2.93), and (2.92), we get the equali-
ties (where g(/, vo) := qx for k £ 0, qx(j,v0) := ¢, for k > 0 and g4, q, are from
(2.91)):

0;Fily=0 = 2ay10g(k\')i7=0(‘l/2)2(—1)jIII(j» o),
Oymy (1)];=0 = 20,10g(ky)|;=0(—1 )&Z(—l)j (1) . (2.94)
J

Hence the equality (2.90) holds on the whole complex plane € > s. In particular,

we obtain _
0ylog T(M,,Z),—0 = 20,log (ky)l;—03_(—1) qo(j, vo) -
Thus Proposition 2.16 is proved. O

Remark. 2.8. A consequence of (2.94) is as follows. For any smooth local map
v(7) : (R',0) — (U,0) (where U is defined by (2.3)) the identity 9,Fy = 0 holds
according to (2.94). Hence the function on U

Fo(v) = 2 (=1)j(fo(v,j) — dim Ker4, ;)

is independent of v. The dimension of Kerd4, ; is independent of v for v € U as it
follows from the cohomology exact sequence in the top row of (2.27). Indeed, for
v € U the dimension of Imdp (where dp : H'(N,€) — @, ,H (M, Z; UN; T)
is a differential in this exact sequence) is independent of v because for different
v =vg and v; from U the maps 0p (v) : H'(N,C) — H(My,N U Z;; C) for fixed
k = 1,2 (and for a fixed i) differ by the nonzero scalar constant factor (depending
on vo and v;). Hence Y (—1)’jfo(v,j) is a constant function on U.

Proof of Proposition 2.14. Let E,’ xy(v) (where ¢ > 0) be the heat kernel of the

operator exp(—‘4, ;). By the Duhamel principle, a variation in v of E?, ,(v) can be
written as follows. Let (E7 , (Vi),E} . ,(V))y = fE,‘ a2 (VD) AxED - (V) be a
scalar product (1.23) (with respect to the variable z) We have
t—e¢
B}, (0) = Efy () = lim [ dd/d(ES 0,E}....,(0))
€
t—¢
= lim fdf[( AED (VE . (%))
+ ( r,x,*(v)’ A*E:_T,*’y(\/o))] . (295)

33 For such a the operator IT)(vo) is the projection operator from (DR/(M)), onto the space of
harmonic forms Ker(4,,,).
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Stokes’ formula claims that for any two smooth forms w;,w; € DR/(M;) on a
manifold M; with boundary we have

(dwr, )u, — (01,002, = (ror, Aw)spy, = [ rog A xop Aws (2.96)
oM

where the density »w; A xgrAw, on M =: N and the operators » and A4 are defined
as follows. Let any local orientations be chosen on 7M|y and on TN. Then the
following forms on N are locally defined:

roy =[Nt My]ij o1, Aoy =3 iy kg @2 (2.97)

where iy, - DR*(M ) — DR*(N) is the geometrical restriction to N (and [N : M;]
=1 if N is locally oriented as dM; and [N : M1] = —1 in the opposite case). The
locally defined form rw; A *ap, A, is a globally defined density on N = oM 36 So
the equality (2.95) can be written in the form

t—e¢
Ep,(v) = EP, ,(vo) = HTO / dsz ([(—(rO)E* (), AED_ . ,(Vo))an,
=l =12

+ (A*Er.,x,*(v)v (ré)*Et.-‘(,*,y(VO))ﬁMk]
+ [((Ad)E? (V). 1 EP_ o (V))aon,
- (r*ET.,x,*(v)a (Ad)*Et.—r,*,y(vO))ﬁMk] p (298)

where r = ry, A = A; are the corresponding operators for pairs (My, OM;).

Let any local orientations be chosen on TM|y and on TN. Then the conditions
(1.27) for the domain D(4}) claim that for the kemels E°(v) and E®(v,) (where
v = (o) and v; = (a1, B1) are from R?\ (0,0)) the following equalities hold on
N:

OCFZ(M],N) © EZx,z(v) = _ﬁrZ(MZaN) © EZx,z(v) 5
ﬁAZ(MI’N) OEZx,z(v) = (XAZ(MZ’N) Osz,z(v) ’
OU"Z(MI,N) o 5ZE:x,z(v) = -ﬁrZ(M27N) © 5ZE.’Z,\:,z(v) >
pA:(My,N)od,E;, (v) = 0d,(Ma,N) o d.E, (V). (2.99)

The analogous equalities hold for E?(v{) (where (a, ) are replaced by (a1, f1)).
Hence the equality (2.98) for v € U(a) C U can be written in the form

EL, ) = By (0) = lim [ del=(1 = (hfhog O8).E O AL, (),
+ (1 - (k\’g/k\’))(A*Et.,x,*(V)’(ré)*Et.-—r,*,y(vO))aM|
+ (1 = (kg )AL B2 (V). 7B y(V0))ou
= (1= (ko/ks )P E2 (V) Aud i EY_ o ,(Vo))ams ] - (2.100)

36 1t does not depend on a local orientation on TM and if a local orientation on TN changes to
the opposite then this local form changes its sign.
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The kernel £7, (v) is smooth in v € IR?\ (0,0) as a smooth double form on

M, x M,, (where the limit values on N C M, are taken from the side of M,)
according to Proposition 3.2. So we can conclude from (2.100) that

t—¢
a?EZx,y(V)lV:O :a‘/IOg(k")L/:OEl_i)TO f dt[((ra)*Er.,x,*(VO)»A*Et.—r,*,y(VO))(')M|

+ (A*E;,x,*(vo ), (ré)*Et.—r,*,y(vo))aﬁ/h
+ (A*d*E;x‘*(VO)’ r*Et.—r,*,y(VO))aM|
+ (V*E;x,*(VO),A*d*El.—r,*,y(VO))(')MI] s (2101)

where the limits of the kernels are taken from the side of M;.
By Proposition 3.8, we have the equality

Trexp(—t4,,,) = 212 JisnElLe (Vo) s (2.102)
r=1237,

where the exterior product of double forms on the diagonals iy, : M, — M, x M,
are implied.

We deduce from the semigroup property for the kernels of the operators
exp(—t4,,,) that

(O1,20E], 12, (v0), 02,2, B, (Vo)) =

= le,zlE{l,x,zl (vo) Ax *xQZ,zzEt/z,zz,x(VO)
M

= 012025, 11272, (V0) (2.103)

where Q;, are differential operators acting on differential forms, # > 0 and the
integration is with respect to the variable x. We deduce the following variation
formula from (2.101) using (2.102) and (2.103):

a)'Tr exp(—tAv,j)l"/:O :2ay10g(kv)ly=01[(Az|(Ml7N)dzlrzz(MlsN)E{;z‘,zz(vO))N
+ (Az) (M1, N Yro, (M1, N Yo, E ;. ., (V)N T s (2.104)

where the summands are the integrals of the densities on N (as it is defined in
(2.96) and (2.97)). For instance,’’

Az, dz 1, EL, L, (V)N = [(Azdzy N toywrsEL L (00)) (2.105)

The local forms Fy = (i, *z, dzleZE,thzz(vo)) and F, = (i,}}l %2, 5Z|a’Z|E,fjleZ(vo))
are smooth on the diagonal iy, : M1 — M, x M. (The limit values on N C M, of
these double forms are taken from the side of M, and the exterior product of these
double forms is implied). The local form iy *y,, Az‘dzerZEZthz(vo) is a smooth
density on the diagonal N C oMy, iy : N— N x N. Hence we can apply Stokes’
formula (2.96) to the expression on the right in (2.104). The result transformed
with the help of the equality d E?, ,(v) = 8,E7!}(v) is as follows:

37 We assume (but do not write) the restriction to the diagonal N < N x N in (2.105).
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0,Tr exp(=tdy |0 =23log(ky) | _ f1=(3, dEl, L, (o), + (dz 0., L (v0)),

+ (o0 El 2 (0D, — (B ELZ L b0 ], (2.106)
where the summands in (2.106) are the integrals of the densities of the type:

(5zldzlEt:z|,zz(v0))M| = fl;/l‘ ¥z, 5zldz]Et:z,,zz(v0) (2107)
M,

(and the exterior product of double forms is implied in (2.107) and (2.106)).
The formula (2.78) is an immediate consequence of (2.106) if we take into
account the equalities
OEr, , = —AE; —-AE. ,, E., =E;

tx,y = tx,y> Erxy £ y,x

and use the formula (3.67) in Proposition 3.8. Thus Proposition 2.14 is proved.
Hence Lemma 2.2 is proved in the case of a < 4711,(vg). O

Let now a > 0 be an arbitrary number such that a ¢ U, Spec(4,,;). Then for
any nonzero element / € det W (vy) we have by Lemma 2.1 that

a}'log”gvlncziet W;(vo)lv=0 = _zaVIOg(kv)1y=02(_1)jTT(P2H£(V0)) )

where g, = IIJv, is defined by (2.13). We know that under the identifications
(2.4) and (2.6), the analytic torsion norm 7To(M,,Z;a) on det W7 (v) is trans-
formed into the analytic torsion norm To(M,,Z) on detH*(M,,Z),||g.! ”2T0(M..,z;a) =

“(gvl)HH%"O(MV z)- (Here, (g:1)n € detH*(M,,Z) corresponds to g,/ under these iden-
tifications.) Let (g,/)n be fixed. Then the analytic torsion norm of g,/ € det W (v)

”gVIHZTO(M\r,Z;a) = ”gvl”ﬁetWa‘(v) . T(MV’Z;a) (2108)

is independent of @ > 0. Let vy = (0, fo) € U (i-e., pfo+0). Then using (2.108),
(2.89) we obtain (u := 0,log(k,)|y=0):

d,log T(M,,Z;a)|,—0 = liriloéylog T(M,,Z;¢)|,=0
+ 2(= lim Y3(=1) Tr (p21T;(vo))
£—
+ 2 2(=1) Tr(p2lTa(vo)))
=2u[3 (= 1)/ (Tr p1 exp(—14y,,))" = S(=1) TrIEi(v)
+ (= 1)/Tr(paITi(vo))] - (2.109)
Note that for arbitrary ¢ > 0, a > 0 we have

S(—1YTrIH(vo) = y(Myy; Z) = S (= 1)/ Tr((py + p2)T(v)) -

So the final expression in (2.109) is equal to

20,log(k,)|,=0 3 (—1) Tr(pi(exp(~14,, ;) — Ti(vp))) .

Thus Lemma 2.2 is proved for an arbitrary @ > 0 such that a ¢ U,Spec(4,,,). O
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2.7. Continuity of the Truncated Scalar Analytic Torsion. Proof of Proposi-
tion 2.1. Taking into account the definition (2.11) of the truncated scalar analytic
torsion T(M,,Z;a), we see that Proposition 2.1 is a consequence of the assertion
as follows. For Res > (dimM)/2 the truncated {-function (2.8) for 4, ; is defined

by the integral’®
Goj(s;a) = T(s) ™" [ Tr(exp(—t4, ;)(1 — IT4(v)))dt . (2.110)
0

Proposition 2.17. For a > 0 the truncated determinant for the v-transmission in-
terior boundary conditions

det(A43;a) := exp(—0/0sl,. o (s;a)|5=0)
is a continuous function of v for v € R?\ (0,0) such that a & Spec(A4?).

Proof. Let E7, (v), t > 0, be the kerel of exp(—t4}). According to Proposi-
tion 3.8 we have

Trexp(—t4y) = Y, [t(xniEry ) s (2.111)
=

where i : M; < M; x M are the diagonal immersions. (The exterior product of
the restriction to the diagonal of double forms is implied in (2.111).) Set / =
[=1,1]. Let I x N C M be the inclusion of the neighborhood of N =0 x N into
M and let gy be a direct product metric on / x N. Let 47, be the Laplacian on
DR*(I x N) with the v-transmission boundary conditions on N =0 x N and with
the Dirichlet boundary conditions on 6/ x N. Let E? y(v;O), t > 0, be the kernel
of exp(—t4y,). The equality analogous to (2.111) holds also for Tr exp(—t4y,)
(where M, is replaced by O x N, Q) := [—1,0], @, := [0,1]).

Let vo=(0,0) and let a & Spec(47 ) be a fixed positive number. Then from
Theorem 3.2, Proposition 3.1, and from the estimate (2.86) it follows that for an
arbitrary ¢ > 0 there are a neighborhood Up(e) of vy and 7 > 0 such that for v €
Up(c) and for ¢t = T the estimate holds

[Tr(exp(—243)(1 — I3 (v)))| < cexp(—at/2) . (2.112)

To prove the continuity of det(4$) in v at v = vy, it is enough to obtain the follow-
ing estimate.>® For a given b,1 > b > 0, and for an arbitrary ¢ > 0 there exists a
neighborhood U; 3 vy such that the estimate holds for ve U, —(1 —b) <s < 1:

fT|Tr(exp(—tA;)(1 — II2(v))) — Tr(exp(—tA2 )(1 — T2 (vo)))|t~dt < &. (2.113)

Vo
0

3% The analytic continuation of this integral from Res > (dimM)/2 to the whole complex plane
coincides with the meromorphic continuation of {, ,(s; a).

39 The integrals (2.110) for the values vy and v of the transmission parameter have the analytic
contunuations from Res > (dimM)/2 to the whole complex plane. It follows from the estimates
(2.113) and (2.112) that the difference of these integrals multiplied by I'(s) is an absolutely
convergent integral for Res > —1. Hence this difference is an analytic function of s for such s
and it is equal to the difference of the analytic continuations of the integrals (2.110) for v and vy.
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The spectrum Spec(4y) is discrete and it depends continuously on v (by Propo-
sition 3.1). Since a ¢ Spec(4}), we see that TrII;(v) = TrII3(v) (=1kII}) in a
neighborhood of vy and that the following estimate is satisfied uniformly with re-
spect to s,—1/2 < s < 1, and to v for v sufficiently close to vy:

fT[Tr(exp(—tA:)H;(v)) — Tr(exp(—t4y, MIS(vo))|£F'dt < /2. (2.114)
0 :

The inequality
T
J1Tr(exp(—t4}) — Trexp(—t4y )| ~'dt < ¢/2 (2.115)
0

for v sufficiently close to vy and for —1/2 < s < 1 is obtained as follows. According
to Proposiion 3.1, Trexp(—¢4%) is equal to the integral over UM of the density
defined by the restriction to the diagonal of the corresponding kernel. So it is
enough to estimate in (2.115) the integrals of the difference between the densities
defined by exp(—47) and by exp(—t4}) separately over a fixed neighborhood U
of N=0xN<— M and over M \ U. The estimate of the integral over U C N
is obtained with the help of the kernel E7, | (v;0) of exp(—t47,). Set e7, ,(v) =
Ep. ,(v) = EP, ,(v;0) for x, y,€ [ X N.

Proposition 2.18. For an arbitrary m € Z there is a neighborhood of vy such
that for all x,y € Mi_1 12 :=[—1/2,00 x N U[0,1/2] x N — M, UM, and for
t € (0,1] the estimate is satisfied uniformly with respect to v € R?\ (0,0)

|E?, (V] = cnt™, (2.116)
(where cy, is independent of t and of v).

Proposition 2.19. The following estimate holds uniformly with respect to s for
—(1=b) <s < 1 and to v for v sufficiently close to vy

T
fts_ldt] S otsitel, () — tr(xifel, . (vo)| < ¢/4. (2.117)
0 Mi_1/2,1/2)

Remark. 2.9. For x, y € [—1,1] X N the equalities hold (analogous to (2.54), (2.55),
(2.40)):
ES, + (B — o/ + o®WOTE )y for x,y € 01 x N,
Ep ,(v0) =14 EX 4 (&% — B*/B* + *)0TE® ),y for x,y € Oy X N, (2.118)
Qup/a? + BIE? . for x,y from different Op x N .

Lx,y

Here, EJ, , is the kernel of exp(—¢4°®) on I x N with the Dirichlet boundary con-
ditions on 01 x N and o; is the mirror symmetry with respect to N = 0 x N acting
on the variable x of the kernel. So we get

[ otGgigel, O = [ wloiEr, ,0)—Ef, ). (2119)
M 11217 Mi_,2,1/2
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From this equality and from the estimate (2.117) it follows that the integral over
M_1p2,1/2) of the difference between the kernels for v and for vy gives the term in
(2.115) which is less than ¢/4.

Proposition 2.20. The following estimate holds uniformly with respect to s,
—(1 =b) < s < 1, and to v for v sufficiently close to vy:

T

f' I i Er () = tr(ei®E,  (oD|de < e/4. (2.120)
0 M\M[_ 2112

The estimate (2.115) is a consequence of (2.117), (2.119), and (2.120). The
estimate (2.113) follows from (2.114), (2.115). The estimate (2.115) together with
(2.112) gives us the continuity of 4°(v;a) in v at vo. Thus we get the proofs of
Propositions 2.17 and 2.1. O

Proof of Proposition 2.18. The following equality is obtained similarly to (2.98)
by using of (2.99):

e,xy(v)— — llm ft 6d’[a/a'[:(’) f [((r(s)* Ix*(v) A Et T*y(v;o))b‘lxN
I xN

+(rED (V) (Ad)E], . ,(v;0))arxn] (2.121)

where the operators » and A4 correspond to the pair (/ x N,0l x N). So the estimate
(2.116) follows from the analogous estimates for the kernels

r:Ep (V). (RO)ED (v), AED, (v;0), (dd).E;; (v;0), (2.122)

where x,y € M{_yp,15) and z € I x N = {—1,1} x N— M. Such estimates are
derived with the help of Proposition 2.5 for 47 and 47, as follows.
Let m € Z, be taken large enough. Then there is an approximate fundamen-

tal solution P*"™(v) for (9, + 43,) which is the sum of an interior term Py

and of terms, defined near the boundaries dM and N. The kernel P*™(v) is a
good approximation for E;, (v) for small £ > 0. Its interior term is defined as fol-
(m)

tX y
lows. For any closed Riemannian (M, gy ) there is a locally defined parametrix p,
(i.e., an approximate fundamental solution for (J; + 43,)) such that the dlfference
(p'(m) — E*®);x,y (Where E?, | is the fundamental solution for (d; + 4},)) is a C*°-
double form for £ > 0 and such that the following estimates hold uniformly with
respect to (x,y) € M x M and to t € (0,T] :

o(m)
Lx,y

° —n/2 —k
(A (pr") — ER, )| S gt 2!

—n/24+m+1
tx;l = Cm t >

(0 + A3) P < comt™"HH™

(42)5 0+ )P < cmint ™ (2.123)
([RS], Proposition 5.3, [BGV], Theorems 2.20, 2.23, 2.26, 2.30). Such a parametrix

can be represented in the following form (n := dimM ):

e = (4mt) ™ 2exp (—d(x, y)}/40) f(d(x, y»zt«p(x ¥, (2.124)
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where d(x, y) is the geodesic distance between x and y, f € Cf°(R.), f(1) =1
for 0 £t < ¢ and f =0 for T > 2¢. The injectivity radius i(M, gy ) is supposed
to be greater than 2, i.e., the exponential map exp, By, is a diffeomorphism on its
image for any x € M (where By, := {& € T, M, |¢| = 2¢}). The coefficients &,(x, y)
in (2.124) are smooth double forms on M x M whose germs on the diagonal M —
M x M are unique. The principal term @y(x, y) is the kernel of the parallel transport
in A®*TM along the geodesic line exp, ¢ =x from y into x (and it is defined for
d(x,y) < i(M,gy)). Each ®,(x,y) is determined through @;_(x, y) in differential
geometry terms and it is well-defined for d(x, y) < i(M,gs) ([RS], Sect. 5, [BGV],
Theorem 2.26, Lemma 2.49).

Let 0 x N— I x N— M be a neighborhood of N =0 x N — M, where the
metric gp is a direct product. The fundamental solution for (d, + 43) on I x N
(with the Dirichlet boundary conditions on dI x N) is

P(v) = Z():Ej,,(v) QEN,, (2.125)
i=0,1

where E7,(v) is defined by the formulas completely analogous to (2.40) and (2.118).
(Here, Ey, is the fundamental solution for (J; + 43). The operator corresponding
to the kernel Ej,(v) ® E,f,;i acts on DR'(1,0I) ® DR*~'(N). The kernel E} (v) corre-
sponds to the Laplacian on / with the Dirichlet boundary conditions on 0/ and with
the v-transmission boundary conditions at 0 € /. The term in (2.125) with i =1 is
equal to zero for e =0.)

The parametrix P;, )(Cmy) (v) for (6, + A%) on M is defined by

PY©) = Y2 (Do + i pre (1 — @) . (2.126)

Here, ¢ = @(y;),¥ = ¥(x1) (in the coordinates (x;,x')=x and (y;,y') =1y of
points in I xN), @, € C(Lal); o, 20, p(y1)=1 for |y1| <27+,
o(y1)=0 for |y;| = 5/8, y =1 in a neighborhood of supp ¢, and ¥ =0 for
|x1| = 3/4, ¥ € C°(M\N), 1 =1 in a neighborhood of supp (1 —¢)C
M\ Mj_\),2. Hence the parametrix P,f(y) is equal to zero for y € M[_s 172}, X €
M\ ([—3/4,3/4] x N). The term 1 p*™(1 — ¢) in (2.126) is defined from now on
as P2 (In the case of OM #{ the terms, completely analogous to 2*(v) for v €
{(0,1),(1,0)} have to be added to P*"™. Their supports are in ([0,1] x OM )> —
M x M and gy, is a direct product metric on [0, 1] x 0M.)

Proposition 2.21. 1. The boundary condition for P, ("')(v) on N and on 0M and the
boundary condition for (A3YP; i’”y)(v) (k € Z,) are the same as for E?  (v) and
Jor (43 VE?, (v). Namely P2§f"}3(v) is a smooth in t > 0 and in (x,y) € M x
M, kernel, A Pf’ﬁ)v(v) C D(A42,) for fixed y,t > 0, and for any k € Z, UO.
Here D(43 ) C DR*(M,,Z) is the domain of definition of A%, on pairs (wi,w;)

of smooth forms on M;. It is defined by (1.27)).
2. The following estlmates (analogous to (2. 123)) hold for t € (0, T] uniformly

v, X

Zzth r;spect to veR?\(0,0) and to (x,y) € M;, x M, (with C,,,,C,,, « indepen-
ent of t):
(0, + 45 )PLT) (V)| < Gt ™2™ (2.127)

(43,58, + A3 DPEI) )] < Cpget ™2k (2.128)
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The kernel r; i.f';,)(v) = (0 4 AL PE)(v) ds smooth in (x,y) € M x M, and its
C*-norm on M x M is estimated through c,,t~"/**"~'. For any linear differential
operator F of order d = d(F), acting on double forms on M x M,, and for any
T > 0 the kernel F orf\")(v) satisfies the estimate as follows when t € (0,T]. It
holds uniformly with res;fecl 10 (x,y) € M x M; and to v € R*\ (0,0),

[Fort™)| < c(Fy e (2.129)

3. For 0 = k = [-n/2] +m — 1 the following condition is satisfied uniformly
with respect to v € R*\ (0,0) and 1o (x,y) € M;, x M, :

limO(A",‘\.)"(E‘ — Py (1) =0. (2.130)
11—+ :

Corollary 2.8. 1. For k€ Z,, 0 <k < [—n/2)+m — 1, the following estimates
of Ly-norms (with respect to the variable x) of the kernel (P*"™(v) — E®*(v))...,
hold for t € (0,T] uniformly in y € U,-1,M, and in v € R?\ (0,0), where C,, and
Cpx are the same as in (2.127) and (2.128):

IES(v) — P () wnlls £ Cu(=n/2 +m 4 1)~ m2met (2.131)

”Af;_*(E.(v) _ P'(m)(l'))t.*\\'HZ < Cm,k(_”l/z +m4+1— k)*lt~/1,/2+m+l~k ) (2’132)

2. The following estimate for E?. (v) holds for t € (0,T] and for an arbi-

trary q € Z uniformly with respect to v € R*\ (0,0), to x € M \ ([—3/4,3/4] x
N), and to y € M(¥1/2‘]/2J :

ES, (V)] S e (2.133)

It holds according to (2.131), (2.132), and (2.32). (Indeed, for such x,y and for
an arbitrary m € Z, we have E?. (v) = (E*(v) = P*"(v)),\ . Hence m can be
chosen large enough to get (2.133).)

The estimate (2.131) is a consequence of (2.127) and of the following equality:
—¢
(E. - P.(m))f,.x,y(") = “m() [ dT@T(E,:T’XA*(V), (E. - P.(m))r,*.v(v))/vl

e—+0 7

I

t—e
= lim [ de(E] () (e + AL NES =P (V)

e—=+o

(2.134)

This equality follows from the assertions that (E® — P*")), . (v) — 0 as { — +0
and that (E* — P*")). . (v) € D(4; ) with respect to the variable x.

The estimate (2.131) is a consequence of (2.134), (2.127), and (2.135), since
the operator exp(—r47) for ¢ > 0 is bounded in (DR*(M)), and its operator norm
is less or equal to one:

llexp(—t4D)|, < 1. (2.135)

(This inequality follows from Theorems 3.1 and 3.2. They claim that A7 is a non-
negative self-adjoint unbounded operator in (DR®*(M)), and that exp(—¢4?) is a
trace class operator.)
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The inequality (2.132) for | < k < [—n/2] + m — 1 is a consequence of (2.127),
(2.135), and of the following equality (which is a generalization of (2.134)):

AL (B = PY) ()
lllll [ (E[ X, *(‘ )ﬂ(/]\.g )k((/}r + A\w)(E. - P.(HI))T.*.\’(V))/W .

This equality holds since 4% (E® —P*™), (v) = 0ast— +0 (for 0 £k <
[—n/2]+m —1) and since (A2 )(E® —P*™),, (v) € D(4%,) for fixed y and
t > 0.

The proof of Proposition 2.21 is preceded by the proof of Proposition 2.18.

The estimates analogous to (2.133) (with 1 € (0,7] and ¢ € Z. ) hold also for
the kernel £7, (v;0) = 27 | of exp(—i4},), where x € (/ \ [-3/4,3/4]) x N, vy €
M| _1/2,121- Indeed, such estimates are true (n is replaced by 1) for (£, (V). With
x; €1\ [-3/4,3/4) and y, € [~1/2,1/2], and the kernel (Ey ")y v is O~ 1'%)
for t € (0,T7].

The desired estimates for (r0)E®(v) and Ad £*(v;0) are obtained from the esti-
mates (2.131), (2.132), and from the generalization of the inequality (2.32) as fol-
lows. Let K be an arbitrary first order differential operator acting on DR*(M ). Let
w € DR*(M,,Z) obeys the conditions (2.33) with m; = 1 + min{/ : 4/ = dimM +
1}. Then the inequality is satisfied uniformly with respect to @ and to x € M, U M,:

ny

Ko < CAZ”/"(/)HZ (2.136)

where Cx > 0 is independent of v € R?\ (0,0). The proof of (2.136) is exactly
the same as the proof of (2.32) given above except the kernel (G(v) % Gy )., , has
to be replaced by K (G;(v) % Gy?),,. Thus Proposition 2.18 is proved. [J

Proof of Proposition 2.21. 1. For x from a neighborhood of N =0 x N — M,

(m)

where /) = 0, the parametrix P{")(v) is equal to 25 (W)g(*). So Pr")(v) e
D((A2,)") with respect to the variable x, since Z;\")(v) € D((42,)) for k € Z,.

2. The estimates (2.127) and (2.128) hold for the term .2*(v)p of P*")(v)
with an arbitrary m € Z,, since (&, + 4% )2Z*(v) =0 (for x € (/ \ d]) x N) and
since min,, ¢ min,, esuppe(jx1 — y1l, yi|) > 0 > 0 (where 4 := supp(dy, ) and
the number § > 0 is fixed). For x; € 4 and y; € supp ¢ the estimate (2.133) (n is
replaced by 1) holds with an arbitrary ¢ € Z . for the fundamental solution (£7,), ,
of (6, + 47) with the Dirichlet boundary conditions on d/. The same estimate for
such x;,y; holds for the kernels (o}£7,)y,.,, and (E7,(v))y,.\,- So this estimate
holds also for the kernel (#*(v)), /) (. (defined by (2.126)), since the ker-
nel (E )y, is O(@~"=1D2) uniformly with respect to (x’, ") ([RS], Proposition
5.3, [BGV], Theorem 2.23). By the analogous reasons, for such x;, y; the estimate
(2.133) with an arbitrary ¢ € Z holds for the kernel (F' o 2°(v))., « YRIRGE where
F is a linear differential operator of finite order d(F') on M x M, acting on double
forms on M X M,W, and n in (2.133) is replaced by n + d(F).

So the estlmate (2.133) with an arbitrary ¢ € Z  is satisfied by (¢, + 47 ) (W 2*¢)
and by (43 (0, + A )W 2° @) with k € Z...

The estimates (2.127) and (2.128) hold for ¢, p*™ (1 — ¢) =: P2, since they
hold for pf\") and since the distance on M between the closure B of B (where
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= {x : dx}y1 #0}) and the support supp (1 — @) is greater than a positive number
0. Hence the uniform with respect to (x,y) € B x supp (1 — ¢) estimate (2.133)

(with an arbitrary q € Z,) is satisfied by p,'f(my) This estimate holds also for the

kernel F p,x y, where F is a linear differential operator of finite order d(F'), actmg
on the smooth kernels, defined on M x M. (For instance, the function f(d(x, y)) in
the definition (2.124) of pt'&m; can be chosen such that f(t) =0 for t = J. These
estimates follow also from [RS], Proposition 5.3, estimates (5.5), and from [BGV],
Theorem 2.23(2).)*

3. The difference (E® — P‘('")),,X,y(v) can be written as the Volterra series (ana-
logous to [BGV], 2.4):

(B® = P*"),(v)

=XE0 PR O, (), () (2137)
121 Ay e, UML)

where 4; = {(d9,....0/): 0 < 0; £ 1,0, = 1} and r{w}(v) := (dyx + 3)PLY) (V)
(a scalar product tr(w; A xw,) with its values in densities on M is assumed in
(2.137)). The assertion (2.130) follows from the convergence of the series (2.137)
in the topology of uniform convergence of smooth kernels on M, x M, together
with their partial derivatives of orders < 2k on M, x M, (i.e., in the C*-topology
on M, xM,).

Indeed, the definition of P,')((m)) (2.126) implies that the kernel r,("i)y(v) is
equal to zero for x from a fixed (independent of v, and m) neighborhood of
N=0xN<M in M. So r{?),(v) is a smooth kernel on M x M, and the in-
equalities (2.129) claim that the C*-norm of 17 ) (v) is O+ =ky for t € (0, T]
uniformly with respect to v € IR? \ (0, O) Itis O(t) for 0 £ k < [—n/2]1+m— 1,
and the series (2.137) is convergent in the Cz"-topology for such k, since the
volume of 4, is (I!)~! and since the following assertion is true. For any 7 > 0

the parametrix P; imy) (v) defines a family of bounded operators from the space of

smooth forms DR®*(M) (equipped with a C*-norm) into the space €B,_, ,DR*(M )
(equipped with a C*-norm on DR®*(M)). These operators are bounded uniformly
with respect to ¢ € (0,7] and to v € R?\ (0,0). This assertion for the opera-

tors, corresponding to P;](tmt), is proved in [BGV], Lemma 2.49. It is also true

for the operators corresponding to l//?,'(m)(v)(p. Indeed, it holds for the opera-
tors exp(—tA4%) in DR*(N) (equipped with a C*-norm and for the operators v
exp(—t47 )¢ in DR*(I) equipped with a C%*-norm. (Here 4 is defined on forms
with the Dirichlet boundary conditions on 0/.) It holds also for the operators with
the kernels y(x1)(0{E] )x,,», @(¥1), acting from smooth forms on / into smooth
forms on [0, £1] (where the Dirichlet boundary conditions are assumed on d/ and
g is the mirror symmetry with respect to 0 € 7).

The C*-norm of the kernel (P°(m) —Ep)on N x N is O~ =27k for t €

(0, T], where P°(m) and EY , are the parametrix of the type (2.124) and the funda-
mental solutlon for (6, + 4 ) ([BGV], Theorem 2.30). The operators in DR*(N)

corresponding to PN(I ) are uniformly bounded for ¢ € (0, 7] with respect to a C*-
norm ([BGV], Lemma 2. 49). So the operators exp(—t4y,) in DR®*(N) are uniformly

40 For the sake of brievity the proof of Proposition 2.21 is written in the case of oM = §.
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bounded for ¢ € (0.7] with respect to a C**-norm. The convergence of the series
on the right in (2.137) with the respect to C%*-norms (k < [~n/2]+m — 1) for
the kernels on M,, x M, implies also a proof of the equality (2.137) (in the case
of m = —[—n/2] + 2). Indeed, we have*!

@+ AL )PP )y = (7 Y (2.138)

where(—1)"P;™ is the term with the number / in the right side of (2.137),

(=1)"r?™ is the same term in which P°(m) is replaced by rgé:”),P'(m) = P*™_ For

any fixed y and ¢ > 0 and for any k € Z, U0 we have (A‘,’x)(Pl.(m))t,x,y C D(45,).
The series PP = Y ,go(—l)’”P,'(m) for m = [—n/2] + 2 is the fundamental solution
for (0, + 47) since(0; + 4y )P = 0 for ¢ > 0 and since the operator correspond-
ing to Pr™ tends in a weak sense to the identity operator in (DR*(M)), as t — +0
(ie., P; ™My — o as t — +0 for w € (DR*(M)),). The latter assertion holds for

'('n)

Py (1= @)w and for 2*™@w. Proposition 2.21 is proved. O

Proof of Proposition 2.19. Proposition 2.18 implies the following conclusion. For
any ¢ >0 there exist a 6 >0 and a neighborhood U := U(vy¢)C
IR?\ (0,0) of vy such that the estimate holds uniformly with respect to v € U and
tos, —1 <s < 1:

féts_ldt J 3 tr(xigel (v))

0 M{_1 5 1/7k=1,2

< ¢/20.

So it is enough to prove the existence of a neighborhood U; of vy such that for
any v € U the following estimate holds uniformly with respect to s for —(1 — ) <
s < 1(b,0 < b < 1, is fixed):

T
[t ar
)

[ 3 (r(xigef (v)) — tr(xize; (vo)))l < ¢/10. (2.139)

M[_12,121k=1.2

For e(v) and e(vy) the equalities (2.121) hold. So the estimate (2.139) takes
place for v sufficiently close to vy since the convergence

E?, ,(v) = Ep, ,(vo) (2.140)

is uniform with respect to ¢ € [01,T] (where §; > 0 is fixed), to x € M \ ((—3/4,
3/4) x N), and to y € M_12,1/2;. The convergence of the kernels

duEL, (v) = diEf, (vo), 8:Ef, (V) — O:Ef, (o) (2.141)

is a uniform one for such (z,x, y). All the double forms in (2.140) and (2.141) are
uniformly bounded on the set of such (z,x, y) and their norms at (z,x, y) satisfy the
upper estimate for ¢ € (0, ;] (obtained in Proposition 2.18 above) through ¢,,¢” with
an arbitrary m € Z, and with ¢, independent of v. The uniform convergence of the
kernels in (2.140) and (2.141) on the compact set of (¢,x, y) defined above follows

41 The proof of (2.138) is analogous to the one given in [BGV], Lemma 2.22. It follows from
the formula for 0, fo' f(x,t)dx.
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from the continuity in ¢,x,y and v for (x,y) € M; x M;, of the corresponding
double forms. (See Proposition 3.2, where it is proved that these double forms are
C*°-smooth in ¢,x,y and v for Ret > 0 and v=(0,0).) O

Proof of Proposition 2.20. 1If (09, fo) =ve € U (i.e., if oy - fo+0) then we can
suppose that v € U in (2.120). In this case, the identity (2.100) holds for the
difference

(E*(V) = E*(0)ixx, - (2.142)

Let vo € R?\ (U U (0,0)). For example, let vy := (a,0),% #0. Then the iden-
tities (2.98) and (2.99) claim in the cases of vy and of v := (a, f) that (2.142) is
equal to

t—e
(g) aETO Il dt[~(reom, 07 1, o (V)s A ort EL— s 2, (V0))N

+ (A*,0M| E;xl’*(v), r*,aMz 5*E,'_T,*x2(v0))N
+ (A*,5M| d*E’[.,X|,*(v)7 r*,ﬁMzEt.—t,*,xz(v()))N
- (r*,ﬁMzEr.,xl,*(v)’A*,aM|d*Et.——z,*,xz(VO))N] . (2143)

The factor k! = B/o in (2.143) tends to zero as v tends to vg. The factors
(1 = ky/kyy) and (1 — ky,/k,) in (2.100)) also tend to zero as v — vy in the case
vo,v € U. The estimate (2.120) follows from (2.143) and (2.100). Indeed, there
are the uniform with respect to v upper estimates (analogous to (2.116)) for the
kernels (2.122), where x,y € M \ M{_1/21o) and z € N =0 X N C 0M;. These es-
timates follows from (2.32) and their proofs are completely analogous to the proof
of (2.116). The main step in these proofs is using the parametrix P™*? and the
estimates (2.127), (2.128), and (2.132) for r € (0,7]. O

2.8. Dependence on the Phase of a Cut of the Spectral Plane. Analytic Torsions
as Functions of the Phase of a Cut. Gluing Formula for Analytic Torsions. The
scalar analytic torsion (2.11) depends not only on (M, g, Z,v) but also on the
phase 0 of a cut on the spectral plane € > 1. A zeta-function (, «(s; 0) is defined
for Res > n/2 (n := dimM) as the sum of absolutely convergent series ) m(4; )/1;;,
where the sum is over nonzero A; € Spec(4;) and m(4;) are the multiplicities of
;. The function /1;5 = exp(—s logy)4;), 0 > Im(log,4;) > 0 — 2m, is defined
for 0 & arg A; + 2nZ. (For positive self-adjoint operators this condition means that
0 ¢ 2nZ.) All the results for the analytic torsion norm are obtained above in the
case of 0 < 6 < 2z (for instance, for 0 = ).

The zeta-function {, «(s;6) does not depend on 0 ¢ 27Z, if [6/2%] does not
change. However we have

0y, 0(s; 0 +27) = exp(—2mis){,e(s;8) for Res > n/2. (2.144)

Since {, «(s; ) can be meromorphically continued to the complex plane € > s (The-
orem 3.1 below), we see that {, o(s;0) for 0 ¢ 2nZ also can be meromorphically

42 The parametrix P")*(v) for E*(v) can be chosen such that P{"'>*(v) = 0 for x ¢ [~1/3,1/3] x
N> M and z € [~1/6,1/6] x N < M.
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continued to € with at most simple poles at s, := (n — j)/2. The continuation of
{y,e(s;0) is regular at s, for (—s;) € Z, U0. So the equality (2.144) holds for all
0 ¢ 2nZ, s € C. Hence for such 6 we have

{y.6(5;0) = (. o(s)exp(—2mism) , (2.145)

where {, o(s) := {, o(s;7) and m := [0/27],0 ¢ 2nZ. From now on this {-function
will be denoted as (, «(s; m) with m = [0/2n]. The value (, +(0,m) is independent
of m (according to (2.145)).

The dependence of the scalar analytic torsion (2.11) on m is given by

T(M,,Z;m) = T(M,,Z)exp(—2nimF(M,,Z)) , (2.146)

where®  F(M,,Z) =Y (—1)/j{, «(0)mod Z) and T(M,,Z) := T(M,,Z;0), ie.,
T(M,,Z) corresponds to & = m and it is the scalar analytic torsion defined by (2.11).
Here Z is the union of the connected components of M where the Dirichlet bound-
ary conditions are given. The Laplacian 4} is defined on w € DR*(M,,Z) with the
v-transmission boundary conditions (1.27) on N, with the Dirichlet and the Neu-
mann boundary conditions on Z and on dM \ Z. The equality (2.146) is obtained
by using

asz,-(S; m)ls:O = "znim(v,o(o) + asz,c(s)ls:O .

The number F(M,Z) is defined also in the case of a manifold M without an
interior boundary N. In this case, {, +(0) in the definition of F(M,Z) is replaced
by (.(0) for the Laplacians on DR®*(M,Z). The dependence of T(M,Z;m) on m
is given by (2.146) with F(M,,Z) replaced by F(M,Z). In particular, F(M) is
defined for a closed M and also in the case OM (), Z = ). Let M be obtained by
gluing two pieces M; and M, along the common component N of their boundaries,
M = M, Uy M,, where N C M is closed and of codimension one. Then F(M,Z) =
F(M,,,Z), according to Proposition 1.1.

The class of F(M,,Z) in €/Z is the same as the class (modZ) of the number
F\(M,,Z) € C, where

Fi(M,,Z) := 3 (=1)/j({,;(0) + dimKer (4, ;)) .

The Laplacian 4, ;(M,,Z) with its domain Dom (4, ;) C (DR/(M)), is self-
adjoint according to Theorem 3.1. For Res > 27!dimM the zeta-function {, (s)
is defined by the absolutely convergent series Y m(J;) exp(—s logi) ([0/2n] =
0,0+0), where the sum is over 4, € Spec(4, ), 4 +0, and with the branch of log-
arithm —n < ImlogA < . Because log /; € R for 4; > 0, the function {, ;(s)
is real for real s. Hence F1(M,,Z) € R. It is supposed from now on that a metric
g on M = M; Uy M, is a direct product metric near N and near oM.

Proposition 2.22 1. For a closed manifold M the number Fi(M) is an integer.
2. Let M = My Uy M, be obtained by gluing two its pieces My and M, along
the common component N of their boundaries. Let the v-transmission boundary
conditions (1.27) be given on N, the Dirichlet boundary conditions be given on
a union Z of some connected components of oM and the Neumann boundary

43 By the definition, F(M,,Z) € €/Z but it can be also defined as Z(—l)’jé‘..,(O) eC.
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conditions be given on OM \ Z. Let L be a closed Riemannian manifold. Then the
Jollowing holds. **

Fi(M, x L,Z x L) = y(L)F\(M,,Z) + Fy(L)x(M,,Z) . (2.147)

3. Let K C OM \ Z be a union of some connected components of OM. Then the
following holds under the conditions on M above:

Fi(M,,Z) = F\(M,,ZUK)+ F\(K) + 2" 5(K).. (2.148)

4. Under the conditions on M above, the number F\(M,,Z) obeys a gluing
property analogous to the gluing property (2.1) for the analytic torsion norms.
Namely the following holds:

Fi(M\,Z) = F\(M1,Zi UN) + Fi(My,Z, UN) + Fy(N) + 27 'y(N),  (2.149)
where Z = Z N OMj.

Corollary 2.9. 1. For a closed M the scalar analytic torsion T(M,[0/2n]) is
independent of 0 ¢ 2nZ.
2. Under the conditions of (2.147),(2.148), and (2.149), the following holds in
R/Z :
F(M, x L,Z x L) = y(L)F(M,,Z)

F(M,,Z)=F(M,,ZUK)+2""x(K),
F(M,,Z) = F(My,Z UN) + F(M,Z, UN) + 27" 4(N) .

Example 2.1. The number Fi(S') is equal to —fo1 = — fo0. ¥ The latter one is
equal to zero because the asymptotic expansion for Trexp(—t4o(S')) as t — +0
(where 4y is the Laplacian on functions) is f_1.0t™"% 4+ f1.0t'? 4+ f303? + ...

Example 2.2. The number F(1,d]) is equal to —fo1(1,01) = — fo0(I). Since S!
has a mirror symmetry relative to its diameter, we have, taking into account (2.54)
and (2.118),

foo(S") = fooll) + fool,01) =0. (2.150)
Since fo.0(1,01) — fo.1(1,01) = y(I,0]) = 1 and (2.150) holds, we see that
Fi(l,0) = = foa(L,0l) = — foo(I) = fooll,0) = =27". (2.151)

Remark 2.10. The equality (2.151) means that the analytic torsion T'(/,0l;[0/2x])
is multiplied by the factor exp(—2mi - (=27')) = —1, if 0 is replaced by 0+
27 (0 & 2nZ).

It is necessary to note the following. The scalar analytic torsion T'(/,d) :=
T(1,01I;m) is the factor in the analytic torsion norm. But the latter one is the square

# The Euler characteristic y(M,,Z) := Y _(—1)dimH'(M,,Z) is equal to the Euler characteristic
of the complex (C*(X,,X NZ),dc) (as it follows from Proposition 2.3). Hence it is equal to
7(M,Z) and is independent of v € R? \ (0,0).

4 The coefficients fy, 1= f ,(M,Z) are the coefficients in the asymptotic expansion Z S, 152
(k =z —n) for Trexp(—t4,(M,Z)) as t — +0 for the Laplacian on DR/(M,Z) (n := dimM).
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of the norm on the determinant line detH!(/,0/). So the factor, corresponding to
the norm itself, is multiplied in the case of (M,Z) = (1,01) by the factor

exp(nil1(1, 01)|s=0) = exp(—mi/2) = —i,
if 0 is replaced by 0 + 2%, 0 ¢ 2nZ. Indeed, we have
_2~1 = Fl(la 61) = —(dlmHl(I’ 61) + (:l([a aI)“S:O) )

and so (i(L,00)|js=0 = —27' = —F(I,dI). For M =S" it holds that —F(S') =
{1 (SY)|y=0 = —1, and so exp(—miF(S')) = —1.

It follows from Proposition 2.23 below that F(M,,Z) and F(M,Z) have a form
(1/2) + Z, if the numbers n := dimM and y(M,Z) are odd. So in this case the
factors exp(—mniF(M,,Z)) and exp(—mniF(M,Z)) are equal to {%i}.

Proof of Proposition 2.22. 1. Theorem 3.2.1 claims that the number {,,(0) +
dim Ker(4,;) is equal to the constant term f,;(M,,Z) in the asymptotic expansion
(2.87) for Trexp(—t4,;) as t — +0. So according to Theorem 3.2.1, the number
Fi1(M,,Z) is equal to the sum of the integrals over M, M,, N, and M of the locally
defined densities. Then we have

Fi(My,Z) = (~ 1Y) fo (M, Z) . (2.152)

If (M, ga) is a closed Riemannian manifold then fo. (M) = fo,—;(M). Hence
taking into account (2.152) and (2.57), we get (for even n := dimM)

Fi(M) = 3= 1)) fo;(M) = (n/2)3(=1) fo, (M) = (n/2)y(M) . (2.153)

Let n be odd. Then fo;(M) is equal to zero since the asymptotic expansion
for trexp(—t4;(M,gy)) (as t — +0) is t‘”/ZZtlle_n;,(M, dgum ), where the sum is
over [ € Z, U0 ([Gr], Theorem 1.6.1; [BGV], Theorem 2.30). Hence F (M) =0 =
(n/2)y(M) for an odd n also.

This number (n/2)y(M) is an integer for any closed M. (The assertion that
Fi(M) is an integer follows also from the equality which holds for any closed
even-dimensional Riemannian (M, g,,):

S J=D M, s) = 3j(=1) L (M,s) = (0/2)32(=1) (M, 5) = 0,

because {,(M,s) = (,_;(M,s).)
2. Let A € Spec (4, (M,Z)), u € Spec(4,(L)) and let m;(j; M,,Z),m,(i;L) be
their multiplicities. If 1340 and ©+40 then we have

S (=D + iyma(j; My, Z)my (i3 L) = 0, (2.154)
since the subcomplexes (V7 (M,,Z),d)— (DR*(M,,Z),d) and (V(L),d)—
(DR*(L),d), corresponding to the A-eigenforms for 4,.(M,Z) and to the p-

eigenforms for A4(L), are acyclic. If 10 but u = 0 then the right side of (2.154)
is equal to

(S jm; (s My, Z))(2(— 1Y dim Ker4i(L)) = (L)Y (= 1Y jm;(j; My, Z) .
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So under the conditions of 2, by using (1.37), we have
Z(_l )jjcv,i(Mv X LaZ X L)|s=0

= 1 (L) (=1)jl j(My, Z)|s=0 + x(My, 2)) (= 1) j§;(L)|s=0 ,  (2.155)

S(~1)/ jdim Ker(4,,(Mv x L, Z x L))
= (L)Y (—1)/ jdim Ker(4, j(M,, Z)) + x(M,,Z)3 (—1)/ jdim Ker(4,(L)) ,
(2.156)

The equality (2.147) follows now from (2.155) and (2.156).

3. The numbers F{(M,,Z) and F(M,,Z U K) are the sums of the integrals over
My, M,,N, and OM of the locally defined densities (as it follows from (2.152) and
from Theorem 3.2). The densities, corresponding to the pairs (M,,Z) and (M,,Z U
K), differ only on K. So the difference F(M,,Z) — F1(M,,Z UK depends only on
K and on gy near K. Thus taking into account that g), is a direct product metric
near K, we get

2Fy(My,Z) — Fy(M,,ZUK)) = Fi(K x I) — F\(K x (I,0])) (2.157)

for any fixed metric on K in all the terms of this equality.
According to (2.147) we have

Fi(K x 1) = Fy(K)x(I) + Fi(D)x(K) ,
Fy(K x (I,01)) = Fi(K)x(1,0) + F1(I,ol)y(K) ,
Fi(K x1I)—=Fy(K x ({,0])) =2F(K)+ y(K)(F\(I) — F\(I,0])) . (2.158)
Since {1(s;1) = {y(s;1,01) (on the same /) we have
Fy(I) = Fy(L,al) = =0(Ds=0 + L1, 0)]s=0 + dim H ' (L,1) = 1 .
By (2.157) and (2.158) we get
Fi(M,,Z) =F(M,,ZUK) + Fi(K)+27"%(K) .

4. The number F;(M,,Z) is the sum of the integrals over M, M,,N, and over
OM of the locally defined densities. (It is a consequence of Theorem 3.2). So the

densities on M;, N, and on M N Hj- are the same as for the number F{(M ) Zj(-z)),

VA

where M;z) =M, M, Zj(z) =2Z;NZ;, and gMj(z) are mirror symmetric with re-

spect to N (the v-transmission boundary conditions are given on N — Ml(z)) and
9,,|m, = gu|um,- Thus we have
J

2F(M,2) = 2 (M, 2
j=1,2

gV ?

Since pairs (M ) ,Zj(-z)) are mirror symmetric with respect to N, it follows from
(2.54) and (2.55) that

FM,Z0) = FMP,27) = FuM;, 2) + FuM, Z;UN) . (2159)
F(M,,Z)=2"" ‘ZIZ(Fl(M,,ZJ-) + F\(M;,Z; UN)). (2.160)
J=1
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The equality (2.149) follows from (2.148) with M =M;, Z=Z;,, K = N, and
v=(1,1) and from (2.160), because F\(M,, Z;)=F(M,,Z;UN)+ Fi(N)
+271%(N). Thus Proposition 2.22 is proved. [

The analytic torsion 7o(M,,Z;m) (where Z C OM is a union of some connected
components of M, m = [0/2n], 0 ¢ 2nZ) is defined as the product of the norm
I« llZetzzoas,.z) (given by the natural norm on harmonic forms for 43(M,,Z)) and
of the scalar analytic torsion T(M,,Z;m):

ToMy. Zsm) = ||+ |Gemrs o) T (M, Zsm) . (2.161)

The analytic torsion To(M,Z;m) is the norm | - ||§etH.(M,Z)T(M,Z;m), where
the norm on the determinant line is given by the harmonic forms for 44(M,Z).

(If N is the interior boundary and if gy, is a direct product metric near N then
To(M, Z;m) = To(M,,1,Z; m) according to Proposition 1.1.)

Theorem 2.1. 1. Let M be obtained by gluing two pieces along N, M = My Uy M,
where N is a closed of codimension one submanifold in M with a trivial normal
bundle TM |y /TN and gy is a direct product metric near N and near OM. Then
for v e R?\ (0,0) the following gluing formula holds:

O To(M,, Z;m) :=

= (~1"NTy(M1, 2y UN;m) © To(M, Zy UN;m) @ To(Nsm),  (2.162)

where the identification @3" of the determinants lines is defined by the short exact
sequence (1.14) of the de Rham complexes and by Lemma 1.1, Z; := Z N OMy. The
factor To(N;m) := To(N) is independent of m (according to Proposition 2.22.1).

2. Let K C OM \ Z be a union of some connected components of OM. Then
the formula holds for gluing K and (M,,Z UK):

Pan To(M,, Z;m) = (= 1) O To(M,, Z U K;m) @ To(K;m) . (2.163)

Here the identification ., is defined by the short exact sequence (analogous to
(1.20)):
0 — DR*(M,,ZUK) — DR*(M,,Z) — DR*(K) — 0 (2.164)

(the left arrow in (2.164) is the natural inclusion and the right arrow is the geomet-
rical restriction) and by Lemma 1.1. The factor To(K;m) := To(K) is independent
of m. The analogous formula holds for gluing K and (M,Z U K):

PanTo(M, Zym) = (= 1) OTy(M,Z U K3 m) @ To(K) , (2.165)
where @q, is defined by the short exact sequence (2.164) with M, replaced by M.

Proof. 1. For Toy(M,,Z) := To(M,,Z;0) the following gluing formula holds (ac-
cording to (1.12) and to Lemma 1.2):

" To(M,, Z) = To(M1,Z UN) ® To(M2,Z; UN) ® To(N) . (2.166)
By the definition of F(M,,Z) we have

TO(MV:Z;m + 1) = exp(_zniF(M\’aZ))TO(M\'aZ;m) N
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(Analogous equalities are true for To(M;,Z; UN;m). The differences F(M,,Z) —
FM,,Z), F\(M,,Z;UN)~ F(M;,Z; UN), and F\(N)— F(N) are integers and
Fy(N) is an integer (according to Proposition 2.22.1). Hence (2.162) is consequence
of (2.149) and (2.166).

2. The gluing formula holds for To(M,Z) := To(M,Z;0) according to (1.18)
(Theorem 1.2): @ To(M,Z) = To(M,Z UK ) ® Ty(K). So the gluing formula (2.165)
follows from (2.148) since To(M,Z;m + 1) = exp(—2niF(M,Z))To(M,Z;m) and
since the difference F1(M,Z) — F(M,Z) is an integer.

Let N C M be a disjoint union N; U N, of two closed codimension one subman-
ifolds of M with trivial normal bundles and let the v;-transmission interior boundary
conditions be given on N;. Let M = M Uy, M, and let N, C M;. Under these con-
ditions, the equality (1.12) and the assertion of Lemma 1.2 are also true. Their
proofs are similar to that given above. The resulting formula is

O3 To(My, ), Z) = To(Myy,,Z1 UNy) ® To(Ma, Zr U Ny ) & To(Nr) - (2.167)

(Here Z C OM is a union of some connected components of oM, Z, = Z N 0M,
and gy is a direct product metric near N, and dM.) As a consequence of (2.167)
(obtained by the same method as Theorem 1.2 is obtained from (1.16) and (1.17))
we get the following equality

PanTo(M1,,,21) = To(M1,,,Z1 UN1)To(Ny) (2.168)

The equality (2.163) follows from (2.168) (where My,,,Z;,N; are replaced by M,,
Z,K) and from (2.148) since To(M,,Z;m + 1) = exp(—2niF'(M,,Z))To(M,,Z;m).
Theorem 2.1 is proved. O

Proposition 2.23. Let M = M\, Uy M, be obtained by gluing along N and let the v-
transmission boundary conditions (v € R? \ (0,0)) be given on N. Set n := dimM.
Then the number F1(M,,Z) for the scalar analytic torsion T(M,,Z;m) is expressed
by

FiM,,Z) =27 ny(M,,Z) =27 "'ny(M, Z) . (2.169)

The number F(M,,Z) = > (—1)/j, ;(0) is as follows:

F(My,Z) =S (=1)(—j+2"'n)dimH’/(M,,Z) .

Proof. 1. Propostion 2.3 claims that x(M,,Z) (i.e., the Euler characteristic Y (—1)/
x dimH/(DR(M,,Z))) is equal to the Euler characteristic for the finite-dimensional
complex (C*(X,,ZNX),d.). Note that dim C/(X,Z NX) is equal to dim C/(X,,Z N
X). Hence y(M,,Z) =Y (—1)/dimC/(X,ZNX). This sum is equal to y(M,Z) by
the de Rham theorem ([RS], Proposition 4.2). Thus y(M,,Z) = y(M,Z).

2. According to (2.149), the gluing formula holds:

F\(M\,Z) = Fi(M1,Z UN) + Fi(M2,Z UN) + Fi(N) + 271 7(N) .

For the Euler characteristics the analogous formula holds:
1My, Z) = y(M,Z) = x(M1,Z UN) + x(Mp, ZLUN) + 2(N) . (2.170)

The number F;(N) for a closed manifold N is equal to y(N)(dimN)/2 by
(2.153). So Fi(N)+27'(N) = ny(N)/2. Let (M,gy) be a closed Riemannian
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manifold, mirror symmetric with respect to N = oMy, M = M, Uy M,. Let gy be
a direct product metric near N. Then the equality Fi(Mi,N) = 2" 'ny(M;,N) fol-
lows from (2.153), which claims that Fy(M) = 2"'ny(M), and from (2.170). So
(2.169) holds for pairs (M, Z), where Z = 0M. For any union Z of some connected
components of 0M the equality (2.169) follows from (2.148) for K = oM \ Z,
as Fi(K)+27'y(K) = ny(K)/2, according to (2.153). The equality (2.169) for
Fi(M,,Z) follows from its particular cases for Fi(M,,Z; UN) by using (2.149)
and (2.170). O

Corollary 2.10. 1. The analytic torsion To(M,,Z;m) (defined by (2.161)) is the
following function of m = [0/27] (0 ¢ 2nZ):

To(My, Zym) = (=1)""*MOTy(M,, Z) . (2.171)

Here To(M,,Z) := To(M,,Z;0),n := dimM.

2. The analytic torsion To(M,Z;m) is equal to T(M,,,Z;m) for vo=(1,1)
according to Proposition 1.1. The formula (2.171) holds also for To(M,Z; m), where
To(M,, Z) is replaced by To(M,Z) := To(M,Z;0).

Let (M, gps) be obtained by gluing two Riemannian manifolds M; and M, along
a common component N of their boundaries, M = M; Uy M. Let g) be a direct
product metric near N and near 0M and let Z C 0M be a union of some connected
components of dM. The following main theorem is an immediate consequence of
Theorems 1.4, 1.5 and of Corollary 2.10.

Theorem 2.2 (Generalized Ray-Singer Conjecture). 1. The analytic torsion
To(M,,Z;m) is expressed through the combinatorial torsion norm (1.62) as follows:

To(M,, Z;m) = 2%(3M)+X(N)(_ 1 )mnl(M,Z)/%O(MV, Z)

(where m = [0/2n], 0 ¢ 2nZ is the phase of a cut of the spectral plane € > 1 and
n=dimM).
2. The analytic torsion To(M,Z;m) is expressed through the combinatorial
torsion norm:
To(M, Z;m) = 21O (— 1 ymMO2q,(A 7)) .

Remark 2.11.  The combinatorial torsion norms t¢(M,Z) and t9(M,,,Z) (where
vo = (1,1)) on the determinant line detH*(M,,,Z) = detH*(M,Z) are different,
if y(N)=+0 (by Remarks 1.7 and 1.9). The canonical identifications H*(M,,,Z) =
Ker(43)) = Ker(4*) = H*(M,Z) are given by Proposition 1.1 and by the de Rham

theorem.

3. Zeta- and Theta-Functions for the Laplacians with v-Transmission Interior
Boundary Conditions

3.1. Properties of Zeta- and Theta-Functions for v-Transmission Boundary Con-
ditions. Let M be a compact manifold with boundary obtained by gluing man-
ifolds M; and M, along a common component N of their boundaries, M =
M, Uy My, (N C M is a closed codimension one submanifold of M with a trivial
normal bundle TM|y/TN). Let gu be a direct product metric near N = 0 x N <
I x N — M. Let the Dirichlet boundary conditions be given on a union Z of some
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connected components of 0M, the Neumann ones be given on 0M \ Z and the
v-transmission interior boundary conditions (1.27) be given on N.

The operator 43 is originally defined on the set D(A47) of all the pairs of smooth
forms @ = (wy,w;) € DR*(M) @ DR*(M;) such that the Dirichlet boundary con-
ditions hold for w on Z, the Neumann boundary conditions hold on oM \ Z and
the interior boundary conditions (1.27) hold for @ on N. Let Dom (47) be the
closure of the. D(A4%) in (DR*(M)), in the topology given by the graph norm #°
[oll3 + |43 |5 =: [||3mpn- The closure of the operator Ay (with respect to the
graph norm) is an operator with the domain of definition Dom (4}). If w, — w in
the graph norm topology, w; € D(4}), then 43(w) is defined as lim;4,w; in the
L-topology in (DR*(M)),.

Theorem 3.1. 1. The operator AS with the domain Dom (A4?) is self-adjoint in
(DR*(M)),. Its spectrum Spec(A?) C R, U0 is discrete. ¥

2. Its zeta-function is defined for Res > (dimM)/2 by the absolutely convergent
series (including the multiplicities) (, o(s) :== > 7, €Spec (43N0 A", This series con-
verges uniformly for Res = (dimM)/2 + ¢ (for an arbitrary ¢ > 0). The zeta-
function {,, can be continued to a meromorphic function on the whole complex
plane with at most simple poles at the points s; := (j —dimM)/2, j =0,1,2,...
It is regular at s =0,1,2,...

3. The residues ress— (ve(s) and the values {,e(m)+ dpodimKer(47) are equal
to the sums of the integrals over M,0M, and N of the densities locally defined on
these manifolds.

Proposition 3.1. 1. Let A & Spec(42). Then the resolvent Ge(v) := (A2 — )71,
G3(v) : (DR*(M)),=Dom (4}) < (DR*(M)),, is the isomorphism (in algebraic
and topological senses) onto the closure Dom (A%) of D(A?) with respect to the
graph norm. *® The operators G3(v) for pairs (4,v) such that A ¢ Spec(4}) form
a smooth in (4,v) family of bounded operators in (DR*(M)),.

2. The families d o G3(v) and 6 o G3(v) for A ¢ Spec(4y) form a smooth in
(4,v) family of bounded operators (DR*(M)), — (DR**'(M)),.

Theorem 3.2. 1. The operator exp(—tAy) in (DR*(M)), for an arbitrary t > 0 is
of trace class. For its trace the asymptotic expansion (2.87) (relative to t — +0)
holds. The coefficients [ _qmm+, of this expansion are the sums of the integrals
over M,0M, and N of the locally defined densities. If j+=dimM + 2m, m € Z, U0,
the densities on M, OM, and on N for f_gimm+; are the same as for

F((dimM — j)/2)ress=s, {,o(s) -
If j=dimM +2m, m € Z, UO, these densities are the same as for
(m) ™ (=1)"(La(m) + dpodim Ker(47)) .

2. Let py : (DR*(M)), — (DR*(M1)), — (DR*(M)), be the composition of the
restriction to My and of the extension by zero of Ly-forms. Then the operator

46 The L,-completion (DR®(M)), of DR®(M) coincides with the L-completion of DR®*(M,) &
DR*(M>).
47 A spectrum is discrete if it consists entirely of isolated eigenvalues with finite multiplicities.

* The topology on (DR*(M)), is given by [|o[|3, and on Dom (47) it is given by [|o[2,-
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prexp(—t43) in (DR*(M)), for t > 0 is of trace class. For its trace the asymptotic
expansion relative to t — +0 holds

Tr(prexp(—t42)) = gt " + -+ qot° + @it + -+ gut™* +ra(t), (3.1)

where ry(t) is O™tV uniformly with respect to v and it is smooth in t for t > 0
(n:=dimM). The coefficients q, are equal to the sums of the integrals over M,
and over OM, = N U (0M N M) of the locally defined densities. The coefficients
q, in (3.1) depend only on (j,My,gu\rm,,Z N M, N,v) and do not depend on M,
and Z N 8M2,gM\TMZ.
3. For any t > 0 the traces of exp(—tA4y) are bounded uniformly with respect
to v e R?\ (0,0):
Tt exp(—t4°%)] < C(1). (3.2)

The traces Tr(p,exp(—t4y)) are also bounded uniformly with respect to v for
any t > 0.

Proposition 3.2. 1. The kernel E7,, . (v) for exp(—t4}) (where t > 0) is smooth
in x; € ]\_/I,/,t, and in v € R?\ (0,0).

2. The asympttotic expansions (3.1), (2.87) are differentiable with respect to
v € R?\ (0,0).

3.2. Zeta-Functions for the Laplacians with v-Transmission Interior Boundary
Conditions. Proofs of Theorem 3.1 and of Proposition 3.1. Let A be an ellip-
tic differential operator on a manifold with boundary (M,0M). Let the differential
elliptic boundary conditions be given for 4 on dM such that 4 with these bound-
ary conditions satifies Agmon’s condition (formulated below) for 4 from a section
0, < argd < 0, in the spectral plane € > . Properties of zeta-functions for 4 with
these boundary conditions can be investigated with the help of the parametrix for
(4 — A)~!. The analogous statement is true also for elliptic interior boundary condi-
tions. ¥ The parametrix P7? for (47 — A)~! is defined locally in coordinate charts.

Namely
P = WPy 9 . (33)

where ¢; is a partition of unity subordinate to a finite cover {U;} of M by coordi-
nate charts, ¢, = ¢, € Cg°(U;). If U;N(OM UN) = ( then the operator Py,

is a pseudodifferential operator (PDO) with parameter / ([Sh], Chapter II, Sect. 9)
and its symbol is equal to 0(&, A)sum((4® — A)7')(x, &, 4). This symbol is defined
as follows. Let s(4° — 1) = ((b2 — A)id + b1 )(x, &) be the symbol of 4° — A (where
4° is the Laplacian on DR*(U;)) and let

s(A* =)= Y a6 EA)

JEZLU0
be the symbol of (4° — 1)~! as of a PDO with parameter (a_; is positive homoge-
neous of degree —k in (&, AY2)). Set s5(m((4° —A)71) = > igd—2—j(x, &, 2). The
condition s(4® — A)os((4* — A)~') =1, where o is the compositon of symbols
4 Theorem 3.1 is analogous to the results of [Sel, Se2] with modifications connected with the

v-transmission interior boundary conditions. In [Sb], Ch. II, the theory [Sel. Se2] of the zeta-
functions is written in detail in the case of a closed manifold.
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with parameter ([Sh], Sect. 11.1), is equivalent to the system of equalities

a—z(xa 57/1) = (b2 - }')_l s
a_3=—(by— A) '[bra_s + >_D¢br0za-],

ao_j=—(by— l)—l Z %Débzqa:’;a_z_/ . 34)
Pol+i+1=57"
The sum in the last equation of (3.4) is over (y,i,/) such that y = (y1,...,7,) €
(ZoUOY, [yl =71+ 47, 0= | £ j for by, [yl +i2 1 (D:=i'9). The
function 0(&,2) (in the symbol of P7') is smooth, 0(¢,4) =1 for |&]* + |1 = 1,
and 0 is equal to zero for |¢|* + |A] < e.

Let U, NN #0. Then the term P}, of the parametrix is the sum of the interior
term (which is a PDO with parameter and its symbol is defined with the help of
(3.4)) and of the correction terms. (Here U := U;.) The latter terms correspond to
the v-transmission interior boundary conditions on N and to the Dirichlet and the
Neumann boundary conditions, given on the connected components of oM. First of
all we’ll verify that these v-transmission boundary conditions are Agnon’s conditions
on any ray arg 4 = ¢ in the spectral plane not coinciding with R, .

Let (#,y) € I x Uy be the coordinates on U := U; near N =0 x N — I x N —
M, I =[-2,2], and let ¢ > 0 on M;. From now on it is supposed that ¢;(z,y) =
¢j,1(t)p;n(y) and that ¢@;;(t) =1 for [¢t| < 1. It is supposed also that y(z,y) =
(Y n(y) and that ¢, are even functions: ¢;;(—t) = ¢, (t), Y, 1(—1) =
%.1(t). The forms dy° and dtdy’ (where ¢ = (c1...,cn=1)s f = (L1s- s fro1)sCis
fi€{0,1}) provide us with a trivialization of A*TM|;xy,, Namely w; =37, _,
Wed Y+ 30 1= Wi dtdyl . Let o = (w1,w2) € D(4}) C DR*(M,). Then on
Uy =0 x Uy — I x Uy the conditions w € D(4}) can be written as follows. Set
[v] = (% + B*)V/2. Let £ be the transformation (¢ = 0)

V18, ¥) := |~ (@@ (4, y) — Bar,(~1,y)) .
02,65, 7) = V|7 (Bore(t, ) + 4w o(—1, 1)) 5
w2008 ») = T o8 Y) + Boran(=11))
wi 1. y) = |7 (=Bwrant ) + awy a0 (=t »)) - (3.5)
Then the conditions w € D(4?) are equivalent on Uy to
01(0,y) =0, wya(0,y)=0,
Oivnclico =0,  dwaaplim0 = 0. (3.6)

The inverse to (3.5) transformation #~! is

( wre(t, y) ) =L“‘(U"C)(t,y), (coz,(l,/)(—t,y)) :L—l(Wl,(l,f)>(t’y)’ (3.7)

w2, (—1,y) V2,¢ w11, y) Wa,(1,1)

L:= |v|“l<; —f) .

Agmon’s conditions on a ray /:= {argA = ¢} in the case of v-transmission
boundary conditions claim that for (¢, 4)+(0,0) and A € [ the equation on R, > ¢

(= 4+ ba(3, &) = Do(t) =0, v(t) — 0 for 1 — +oc, (3.8)
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has a unique solution for each of the initial conditions v,—g = vy or 0,v|,=0 = v;.
(Here ¢ are dual to y and by(4y) = by(y,&')id is the scalar principal symbol of
Ay on Uy.) Agmon’s conditions for the v-transmission boundary value problem
are satisfied on each ray arg A = ¢ not coinciding with IR ; because eq. (3.8) with
each of the initial conditions given above has a unique solution for any A ¢ IR,
(&, 2) ¢ (0,0).

It is convenient to compute the contribution to P, from v-transmission bound-
ary conditions in the coordinates v,.(t,y), w, f)(t y) defined by (3.5) with
t 2 0. (Then the v-transmission boundary conditions are transformed into the
conditions (3.6).) These contributions are defined with the help of the symbol
d=3cz, ,0d-2-;(ty,7,&,2), which is the solution of the equation 30

(=07 + (ba(3, &) = Did + by(y, &) 0 d(t,y,7,E,2) =0 (3.9)

(with the composition o of symbols of (y,&’) in it). Equation (3.9) holds for ¢+0.
The boundary conditions for (3.9) are: d_;, — 0 as |¢| — oo and

(ZLd i )iclim0 = (La—i)icli=0,  (Ld_i)i,p)li=0 = (La_i)i,r)li=0s

0(Ld _i )y clim0 = it(La_i )2, c|i=0, 0:(Ld i )2, (1, 1)l =0 = iT(La_i )2, 1, i=o0 -
(3.10)

Here the transformation % acts on the columns of the matrix-valued functions
d, a (depending on ¢ and on ). 3!
Equation (3.9) is the recurrent system

1
—0%d _j 4 (by — A)d_; + ZWDg,b,a}d_m =0, (3.11)

where the sum is over m < k and y such that m+ |y| +2 —i=+k 0 < |y] < i for
b;.

For t = 0 the symbol d_; over M; N Uy is positive homogeneous of degree (—k)
in (t,&,2"2). The boundary contribution to P, is an operator Z,, corresponding
0 2 0((& )Y gd 2 (8, y,7, &', A). This operator acts on f € DR?(R, x R}™")
such that supp / N (0 x R?%~') = () as follows:

(D ),t) = Qr)™" [ [exp(i(y, 5'))?9161_2—_/(@ 1o ENF ), E)d dr

(3.12)
(where (Z f)(1,&") = [ [exp(—i(tt + (x,&))) f(t,x)dxdt is the Fourier transform
of f). The term of the parametrix, corresponding to U (if U NN £§) is defined
by

Py =Pl = D, (3.13)

,nt

0 Here by(y,&")id + bi(p, &) is the symbol s(4%) on Uy of the Laplacian on DR*(N) for the
components Wy v (¢, y) and on DR*~'(N) for wnpomn(t, ). The variable t is dual to ¢.

51 Note that the function a_,_ J(t,y,7,&, %) is continuous in N and nonsingular for 4 ¢ IR
and (7,&,2) ¢ (0,0,0). (It is also independent of ¢ for |¢| small enough.) So the right sides of
(3.10) can be simplified for a_. In (3.9)-(3.11) it is used that g,, is a direct product metric on
I xXN— M.

2.0,(¢,4) € C¥(R"™' x €),0, =0 for |E'P+ i <¢ and 0, =1 for |E'P+]A = 1;n:=
dimM.
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where Py is the PDO with the symbol 5. (2 y,7,&', 1) defined by (3.4) (x is
replaced by (¢4,y) and & = (1,&")).
For U, N oM =0 the boundary term in Py, for the Dirichlet or the Neumann

boundary conditions on the connected components of OM is defined similarly.
The following assertions are true:

1. For m = n the operator (4° — )P} —id (where (4° — 1) acts on the restric-
tions of forms to M, and to M,) has a continuous on M, x M, kernel which is
O((1 + |A|/2y'=m) for A € A, := {A%0,6 < argA < 2n — ¢}, where 7 > ¢ > 0 is
fixed ([Sel], Lemma 5, p. 901). This estimate is satisfied uniformly with respect
to v since the families d_,_; are smooth in v € R2 \ (0,0) and since the estimates
for £d_,_; by [Sel], (29), p. 900, are uniform with respect to v=(0,0).

2. Let m = n and v= (o, B) € R?\ (0,0). Let 4; := A(M,,N) be the same as
in (2.97) and (2.99) and R, be the geometrical restrictions to N C dM; of forms
on M;. Then the operators

|71 @Ry — BRPY, v 7' (BA1 — ady)PY,
V| (R 6 — PR2OIPT,  |v| N (BA1d — adrd)PT

have smooth kernels on N x M; which are O((1 + [4|V2)*=™) for A € V,, where
n>¢ >0 and ¢ is fixed ([Sel], Lemma 6). These estimates are uniform with
respect to v € R?\ (0,0).

3. Set By, :=|v|"'(aR) — BRy) : @®; DR*(M;) — DR*(N). Let pi:[0,1]
N — N, p : [-1,0] x N — N be the natural projections. The operator

g1y : DR*(N) — ®DR*(M;), qi(wn) = V|~ o) (apion, —fpson)  (3.14)

(where ¢(t) € C°(I), ¢(t) =1 for t € [—1/2,1/2]) is the right inverse to B;, since
By,q1, = id. The analogous right inverse operators gy, are naturally defined for By,

By, = |v|7N(BA1 — 0dy), Bs, :=|v| " (aR5 — BRyI),
By, := |71 (BArd — adad),
B.yqjy = 6 - id (3.16)

(3.15)

For instance, g3, 0 wy := ¢|v| o(t)t(adt A piwy, —pdt A poy), ¢=+1. Set
B, := (B;,), qv := (q;y), and ¢,B, := (q,,,B;,). For m = n the operator is defined>

R} =P} — q,B,P] . (3.17)

It maps (according to [Sel], Lemma 12, p. 912) C*°-forms w € DR*(M), suppw N
N =0, to C*°-forms on M;. Moreover R? : DR2(M \ N) — D(4}).

4. For m = n and 2 e,.é IRJr U0 the operator R; can be continued to a bounded
operator in (DR'(M))z, i (DR*(M)); — Dom (A')

Indeed, for any fixed differential operator F' of order d = d(F') < 2 the operator
FR; is bounded in (DR®(M)), with its norm O((1 4+ |2|"2)?=2) in a sector A €
A, (1 > ¢ > 0 and ¢ is fixed) according to [Sel], Lemmas 7, 13, 14. This estimate
is uniform with respect to v € R? \ (0,0). The continuation of R; to (DR*(M)), is

33 For simplicity we’ll suppose from now on here that M = (). For the Dirichlet or the Neumann
boundary conditions on the components of dM the appropriate terms have to be added to R”'.
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as follows. If w; € DR}(M \ N) and w; — @ in (DR*(M)), then R;w, converges
in (DR*(M)), and R;w is defined as its limit. We see that R w; € D(47) and
(4 — A)R;w; converges in (DR*(M)),. Hence R, € Dom (45).

5. The operator G$(v):= (43 —A)~': (DR*(M)), — Dom(4}) exists >* for
le A, :={A%0:¢ < argd < 2n — ¢} and || sufficiently large. Its operator norm
is O(|A|~1) for such A uniformly with respect to v € R? \ (0,0) ([Sel], Lemma 15).

6. The Laplacian 47 is a closed unbounded operator in (DR®(M)), with its
domain of definition Dom (4}). Actually, if {u,} C Dom(4?) and if the limits
lim,u; =: u and lim; (4} — A)u,) =: v exist in (DR*(M)), then for sufficiently large
A€ A, we have u=I1im;G;(v)((4y — A)u;) = G;(v)v € Dom (4y). Hence
(4y = Mu = (47 — A)(G3(v)v) = v, ie., the operators 47 — Aid and 4} are closed
in (DR*(M)),. The operator 4% is defined on Dom (4}). It is a self-adjoint un-
bounded operator in (DR*(M)),. Indeed, the domain of definition Dom ((4} — 1)*)
of the adjoint operator (49 — A)* in (DR*(M)), is the set of v € (DR*(M)), such
that the linear functional ((4) — A)w,v) is continuous on Dom (49) 5> w in the
L,-topology of (DR*(M)),. If v € Dom(4}) then for any w € Dom (4}) we have
(45 = A)w,v) = (,(43 — Ao)v) for 1y € R_. Indeed, for each w and v from
Dom (47) there exist sequences {w;} and {v,} of elements D(4y) whose limits in
the graph norm topology are @ and v. Hence we have

lim (4,w},v), = limlim (4,w;, v;), = limlim (w,, 4,v,), = (@, 4,v), .
J ‘ Joi : Joi

So ((4% — Ap)u,v) is a continuous linear functional on Dom (4) 3 u with re-
spect to the L,-topology of (DR*(M)), for any v € Dom (4}). Hence Dom (4}) C
Dom ((47 — 49)*) and (4, — 49)*v = (4, — A9)v for v € Dom (47).

Let 4o € R_ and [4| be sufficiently large. Then for any w € Dom ((43 — 20)*)
there exists an element v € Dom (43 ) such that (43 — o)*w = (47 — Ap)v = (4} —
Ao)*v (since Im(43 — Ag) = (DR*(M))2). So w—v € Ker((4y — 4)*) and for
any u € Dom (43 ) we have 0 = (u, (47 — 4)*(w —v)) = ((43 — Zo)u,w — v). Then
w—v=0, as Im(4) — )= (DR*(M)),. Hence Dom/((4) — 4)*)=
Dom (47) = Dom ((4y)*), and 47 is a self-adjoint unbounded operator in
(DR*(M)),.

The operator 47 is nonnegative, (4yw,w); = 0 for any w € Dom(4}),
since there exists a sequence {w;},w, € D(4y), such that its limit in the
graph norm topology is w. So we have lim, (4w, w,), = lim;(d,w;,d,w,); +
]imj(éij,évco,-)z g 0.

7. The spectrum Spec(4?) of the operator 4 is discrete because the operator

(A2 = A)(A2 = 2) L =id + (48— 20) ' - (Ao = 2)

differs from the identity operator in (DR*(M)), by a compact operator. Here, 4y €
A, and |4o| is large enough. The assertion 5 above claims that (42 — Ag)~! exists
for such g. The operator G (v) := (47 — A0)~! is compact since it is bounded
in (DR*(M)); and since the operators / — (47 — 29)R} (for m = n) and R} are
compact in (DR®*(M)), ([Sel], Lemmas 4,5,9 (iv)). So the operator

(A3 = 2o) ™" = R+ (A = 20) ™ (I — (47 — A0)RY,)

54 This means that 4° — ) maps Dom®(4,) one-to-one to (DR*(M)),. It is equivalent to the
existence of (42 —A)~! : (DR*(M)); — Dom (42), (42 — 2)o (4 —3)~' =id on (DR*(M)),.
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is compact in (DR*(M)),. Since G;,(v) is a compact operator for A9 € Aq, |4g|> 1,
and since 47 is a closed operator in (DR®*(M)),, it follows that A3 is an operator
in (DR*(M)), with compact resolvent. So (according to [Ka], Ch. 3, Theorem
6.29) its spectrum Spec(4}) consists of isolated eigenvalues with finite multiplicities
(i.e., Spec(4y) is discrete) and the operator G;(v) is compact in (DR*(M)), for
A € €\ Spec(4?). The operator 43 is nonnegative. Hence Spec(43) C R, UO.

If 4y ¢ Spec(4}) then Ker(4y — 49) = 0 and Im(4y — 4p) = (DR*(M)),. Hence
ind(4y — A¢) is equal to O (as the index of the operator from (Dom (43),]] - Héraph)
into ((DR*(M))2, 1| - |13)). The operator (1y — A)id from Dom (4?) into (DR*(M)),
is compact (since G;O(v) is a compact operator in (DR®(M)); and since it is a
topological isomorphism Gj,(v) : (DR*(M)), <Dom (45)). So ind(4; — 4) = 0 for
an arbitrary A € C (according to [Ka], Ch. 4, Theorem 5.26, Remarks 1.12, 1.4).

8. The operator (43)™° for Re s > 0 is defined by the integral

2—’71-f,1~3(41; )7k = Ty, (3.18)
r

where the contour I’ is
{A=re" oo >r>e}U{l=¢’n>¢p>-njU{d=re e <r<oo}.

Here the number ¢ > 0 is such that Spec(43) N (0,¢] = 0. The integral (3.18) is
absolutely convergent (with respect to the operator norm || « || in (DR*(M)),)
because the estimate ||(4? — A)7!||, < C|4|7! is satified as 2 — —oo for 1 € R_.
So T_4(v) is a bounded operator in (DR*(M)), for Res < 0.

For —k =2 Res > —(k+ 1), k € Z,, the operator T_; is defined as
Al‘f_)_l T_(S+k+1). Its domain is Dom (T-5) = {a) S (DR'(M))z, T_(S +h+ 1O
€ Dom ((42)*+")}, where

Dom ((42)*!) := {w € Dom (4?), 42w € Dom (4?),...,(42Y'w € Dom (42)} .

The restriction 7°, of 7_; to the orthogonal complement L, of Ker(4%) in
(DR*(M)), is defined on Dom (T°)) := D(T_;)ULg, T, := T_g|r,. Then T_; is

the direct sum®® of 70 and of the zero operator on Ker(4?). Theorem 1 in [Se2]

claims that the family 7°, of operators in the Hillbert space Ly for Res, > 0 satis-
fies the equation TESIT 932 = TE(S' 4y, and that the same is true for —s; € Z, and
for each s,. This theorem claims also that

1
70 =id on Lo, T°, = ((A;)—‘|LO)  for [ € Zy, and T = A7,

(the domain of T} is Dom (43) N Lg) and that 7%, for Res > 0 is a holomorphic

function *® with its values in a Banach space B(L) of bounded operators in Ly,
where the Banach norm is the operator norm (as the norm on B(Ly)).

3 If v € Ly and Res > 0 then we have T_ v € Ly since for h € Ker(4®) and 4 € I' it holds
0= (v,h) = (47 = )G (v)v,h) = —A(G?(v)v,h) and since the integral (3.18) is absolutely con-
vergent. For h € Ker(4?) and for Res > 0 we have T_ 4 = 0 because for such s the integral
frl_s"dl is absolutely convergent and is equal to zero. Since T_;4 = (48 Y ' T_(ihi1)h =0
for —k = Res > —(k+ 1), we get T_h =0 for all s.

56 A function with the values in a Banach space is holomorphic in a strong sense if it is weakly
holomorphic ([Ka], Ch. 3, Sect. 1, Theorem 1.37, p. 139).
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9. For Res > n/2 the kernel of T_y(v) is continuous on M, x M,, and analytic
in s ([Se2], Theorem 2(i)). For Res > n/2 the zeta-function {, 4(s) is equal to
the sum of integrals over the diagonals M — M; x M (j = 1,2) of the densities
defined by the restrictions to these dlagonals of the kemel T_s(v), according to
Proposition 3.9 below. So (,«(s) is holomorphic for Res > n/2.

The operator G3(v) — P} for m = n (where P7 is the parametrix (3.3)) is a
bounded in (DR*(M)), operator with a continuous on M;, x M;, kemel (¥");, .
which is

(s = O((1+ 2]y~ @Hmm) (3.19)

as |A] — +oo, 4 € A; ([Sel], Theorem 1, or also the assertions 5, 1, 2, 7 above).
So the operator

317G - P (3.20)

for Res > (n—m)/2 is of trace class and its kernel is continuous on M/’l X sz
and analytic in s.
The trace of the operator (3.20) is holomorphic in s for Res > (n —m)/2.

Let us denote by K[™(s) the kernel of the operator (i/2m) [ A75PY, dA (where

/,int
Pl = 2Py U int P is a term of (3.3) and P}, i is a PDO with symbol 0 (m),

defined by (3.4)). This kernel is continuous on M,I X sz for Res > n/2. Off
the diagonals M; < M; x M, it extends to a kernel which is an entire function
of s € € equal to zero for (—s) € Z, U0. The density on U_,H,— defined by the
restriction of this kernel to the diagonals also can be continued to a meromorphic
inseC density This density has at most simple poles at s, = (n — j)/2 for (—s,) ¢
Z,U0,0 = j < m, and it is regular at 5, for (—s;) € Z, UO0.

The residue at s = s; is completely defined by the component a_,_,(x,¢, 1)
of the symbol s((4® — A)~') ([Se2]), Lemma 1, or [Sh], Theorem 12.1). These
components are given by (3.4). The value of this density at s =s; for (—s;) €
Z, U0 is completely defined by a_,_; (by the formulas (11), (12) in [Se2] with
changing of the sign in (11) to the opposite one). Here, j =n+2m, m € Z U 0.

The kernel Kay(s) of the operator®” (i/2n) [ .A™D;d ) for Res > n/2 is con-

tinuous on M j X M; j, and analytic in s ([Se2]), Lemma 4). Let (x,y) be off the

diagonals or let either x or y be not from U;dM; D N. Then Ka (s) is an entire
function of s € € and it is equal to zero at s for (—s)eZ, U0 ([SeZ] Lemma 4).
For Re s > n/2 the densities defined by the restriction K ,x(s) of K y(s) to the diago-

nals M are integrable over the fibers of the natural projections p; : [0,1] x N — N
and p; : [—1,0] x N — N. These integrals are densities on N. They can be con-
tinued *® to meromorphic in s € € densities (on N) with at most simple poles
at s; =(n—j)/2, 1 £j < m, such that (—s,) ¢ Z, UO0. Their residues at s; for
1 £/ £m+1 are completely defined by a term d_,_;;; in d ([Se2], Theorem

57 Here @,,; = Zt@@,,,,y()v,v)(p,. The operator &, ¢ from (3.13) is defined for UNN 0 by
(3.12), (3.9), and (3.10).

8 Let £9,,u(,v) be an operator acting on Lw as L(D,,u(2v)w) (for any o € DR?(R")
such that suppw NIR”~! =, where R"~' are local coordinates on N). All the assertions about
the kernels analogous to K\‘:‘,(s) in the case of ¥92,, (4, V), and about the corresponding densities
in this case, are proved in [Se2]. Thus the transformation (3.7) provides us with all the assertions
about the kernel K¢ (s) (and about the corresponding densities) connected with 2y, (v).
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2(iv), formula (//)). The values of these densities at s; for (—s;) € Z, U0 (where
n=<j=<m+1 are also completely defined by d_,_;.; ([Se2], Lemmas 2, 3, 4,
Theorem 2(iv), formula (/I’) with changing of the sign to the opposite one).

10. The kernel of the operator (3.20) is the difference of the kernels

(T sy — (KP5(s) = KL (5)) - (3.21)

For Res > (n —m)/2 it is holomorphic in s and continuous on M, x M ,. The term
(Kt — KP),\‘V(S) is equal to zero for x= y and (—s) € Z, U0. The term (7—y),, is
equal to zero for x= y and (—s) € Z, (according to the assertions of 8 above, since
A3 is a differential operator). We have (7o), = — A%, where #°* is the kernel of
the orthogonal projection operator in (DR*(M)), onto Ker(4?) (the assertion 8).
The properties of {, 4(s) *° formulated in Theorem 3.1, follow from the assertions

of 9 and 10. The theorem is proved. [J

Remark 3.1. The kernel (3.21) of the operator (3.20) is holomorphic in s and
continuous in (x,y) € M; X M;, for Res > (n— m)/2. It is equal to zero for x =+ y
at s = —k, k € Z, and to —#} (v) at s = 0. So the analytic continuations of the

densities on M, and on N defined by the kernels (7_,)., and (K™(s) — K(s))..,
have the same residues at s =5;, 0 < j < m, (—s;) ¢ Z U0, and the same values
at s =s;, (—=s;) € Zy, n+2 < j < m. They differ at s =0 (i.e,, for j =n) by
the densities on M;, defined by —#°¢ (v). Hence the densities on M, and on
N, corresponding to the residues and to the values at s =5;, 0 < j <= m—1, of
(K™(s) — K(s)).. are the same for all the parametrixes P defined by (3.3) (with
different covers {U,}, partitions of unity {¢,} subordinate to {U;}, and {4 }).
And back, the values and the residues of the analytic continuation for the integral
fﬁ/tr(z’;‘(T_x)) + 5V~ofﬁltr(i;",7f‘(v)) at s;, 0 < j < m, are defined by an arbitrary
parametrix P7'.
Proof of Proposition 3.1. Let m Z n:=dimM, me Z,, and L€ A, Then
the parametrix R? for G3(v) ° (defined by (3.17)) is a bounded operator °' in
(DR*(M)), with its norm estimated by O((1+ [2]'2)72) for 2 € A,. It holds
that R, : (DR*(M)); — Dom(4?). For a linear differential operator F of order
d = d(F) £ 2 the operator FR; is defined on smooth forms @ € DR*(M\N) and
its closure in (DR*(M)), is a bounded operator in (DR®*(M)), with its norm es-
timated by O((1 + |4]"2)=2) for J € A,. (All these estimates are uniform with
respect to v € IR?\(0,0).) The only terms of R depending on v are the terms

4 — q,B,P"(v), where & = Z(v) := =S Z,, v, ¢, has the kernel with support

3 The values of {, ¢(s) at (—s) € Z, and the residues of {, o al s =, can be also cxpressed
in terms of noncommutative residues ([Wo] or [Kas]). The density on M whose integral over M

is equal 1o a volume term in Res, ., {;+(s) can be written as 27 res (x A(, )_) Here res is a

noncommutative residue for the symbol of PDO A(:; . This symbol is defined with the help of
the symbol Zawgv,(x, &, 2) of (4° — 7))~ (ISh], 11.2). The boundary term in Res,—, (vo(s) for
(—s,) ¢ Z. U0 is expressed similarly.

% The statement that G®(v):(DR®(M)), — Dom(4?) is an isomorphism for / ¢
Spec(4?) is proved in Theorem 3.1.

°' The terms Pi':'“)‘, % Zue,, and q,B, P in R” are bounded operators with the same estimate
of their norms in (DR*(M)), for 7 € A, (the proof of Theorem 3.1). For the sake of brevity the
proof of Proposition 3.1 is given in the case of ¢M = {).

0 &, = %y, is defined by (3.11), (3.10), and (3.12).
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in the neighborhood 7/ x N of the interior boundary N — M. ¢ The parametrix
P2(v):= P77 — P(v) is defined by (3.13)). We need the following assertion now.

A,int

Proposition 3.3. The operators %(v) and q,B,P7(v) depend smoothly on v &
R2\(0,0) as bounded operators in (DR*(M)),. For a C®-map v = ¢(y) : [—a,a)
— R?\(0,0) the operator 8,2(v) is a bounded operator in (DR*(M)), whose
norm is uniformly with respect to y estimated by O((1 + |A|'*)72) for 1 € A,.
Let F be a linear differential operator of order d = d(F) < 2 from DR*(M;) into
DR***(M ), k € Z. Then F%(v), F0,%(v) are bounded operators from (DR*(M)),
into (DR***(M)), whose norms are estimated by O((1 + |A|')F)=2) for ) €
Ae. The operator 0,(q,B,P}(v)) is uniformly with respect to vy estimated by
O((1 + AV~ for A € A,.

Proof. The kernel of the operator Ly Py, ;¢ (where & = & (v) and £~
are defined by (3.5) and (3.7)) has a support in ((U; N N) x [0,1])?. The operator
Dmy, is defined in (U;NN) x Ry by (3.11) and (3.10). The right sides of the
boundary conditions (3.10) depend on v only by their dependence on L(v) (where L
is the matrix defined by (3.7)). Since gus is a direct product metric near N, a mirror
symmetry (relative to N) acts as the identity operator on the symbol Y a_,_;(x, )
of the Laplacian 4°® on M for x = (£,x") from the neighborhood / x N of N. The
symbol > a_,_;(t,x',7,&, 1) is independent of ¢ for ¢t € 1.

So the symbol #3 a_,_; (for t € I) is expressed as LaL ™', where L and L™
act on the components of a matrix-valued functions a_,_; in the coordinates w; .
and wj (1 sy as follows (according to (3.5)):

(La)ies = |7 (@ = BX@)ess, (La)irpys = [V 7' (=B + )@, fye »

(Laks,ee = V7N B+ )@ Lady,1, s = V7 @+ B@1 gy - (3:22)

The boundary conditions (3.10) (according to (3.22)) depend on v only by the
matrix transformation whose coefficients are independent of (z,x") and smooth in v.
This transformation acts separately on each homogeneous component a_,_;. The
right sides in (3.22) are nonsingular in (x', 7, &', 1) for by(x', 7, &) — A0 (where b,
is the principal symbol of the Laplacian on M for (¢,x') € I x N). Hence Lemma 2
in [Sel] holds also for the symbol 0,(Z(v)> d_»_;). Thus the desired estimates
for the norm of 0,%(v) in (DR*(M)), and for the norms of FZ(v) and of F0,2(v)
are consequences of [Sel], Lemma 7.

The operators g, (1 < j < 4) from (3.14) and (3.16) (for ¢(¢) even on ¢t) can
be defined such that ¢

LB PT( ()L™ =Y q,B,LPIMf()L ",

where f € Cg°(I), f(t) =1 for t €[0,1/2] and f(t) =0 for ¢t > 3/4. The oper-
ators B, and g¢; are independent of v € R?\(0,0) and correspond to B;, and g,

3 In the case OM #0 the terms connected with the Dirichlet and the Neumann boundary condi-
tions are added to 2(v). Then the corresponding kernel has its support in a neighborhood of oM
in M.

4 The operator B,P”(v) has a continuous on M, x M,z kernel which is estimated uniformly
with respect to (x,x2) € (N N M,) x M,, and to v € R?\(0,0) by O((1 + |2|"2)=™) for 4 € 4,
([Set], Lemma 6). Such an estimate holds also for the kernel of ¢,B,P(v).
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from (3.15), (3.16). (Here By, B,, B3, B4 are the operators (3.6) acting respectively
on Vi, Wa(1,r)> Wigl,f)> Wa,c.) These operators are such that B,q, = 4,;id.

The operator Y g;B;L(0,PT(v))f L' is equal to Y ¢,B;L(—0,2(v)f)¥
(since P7,, is independent of v). The operator ng(a,,@(v))gﬂl is defined
on smooth forms @ € DR2((0,1) x N) and its Ly-norm is estimated by O((1 +
|A]¥2)=1) for 2 € A, ([Sel], Lemma 7). The operators d,(¢,B,)Py,, are defined
on smooth forms @ € DR2(M\N) and their operator L;-norms are estimated by
O((1 +14]Y*)~") for 1€ A, uniformly with respect to v (according to [Sel],
Lemma 7). The proposition is proved. [J

Let A€ A, and |A| be large enough. Then the Green function G$(v) can be
represented by the series

Go(v) = R:{’f:o(w)" : (3.23)

where (L}) :=id — (4y — A)RY is a bounded operator in (DR*(M)), for /€ A,.
The norm of L7 in (DR*(M)), is O((1 + |A|/2)y"="*2) (where n := dimM) be-
cause the norm of (id — (4° — A)P?) is O((1 +|A|"?)"™™) and the norm of
(4° — 1)q,B P is O((1 + |A|"/2y"=™+2) (according to the proof of Theorem 3.1).
Hence if m > n+2 and if 1 € A, with |4] large enough then the series (3.23) is
convergent with respect to the operator norm in (DR*(M)),. The operator L7 de-
pends smoothly on v € R?\(0,0). The norm of 9,L” is estimated by O(1 + |/1|‘/2)
(according to Proposition 3.3). Let v : [—a,a] — IRZ\(O 0) be a smooth map. Then
the series for 0,G3(v) is convergent (in the operator norm) if 4 € A, and |4] is large
enough. Hence for such A the resolvent G$(v) := (43 — 2)™' depends smoothly on
7. So the family G3(v) of bounded operators in (DR*(M)), is smooth in (v,4) for
such A. Their operator norms are estimated by O(|4|~!) uniformly with respect to
v € R?\(0,0). Let F be a linear differential operator of degree d(F) < 2. Then
the operators FG}(v) for such A are bounded in (DR®*(M)), with their operator

norms estimated by O(|4|“~2)/2) uniformly with respect to v. These operators de-
pend smoothly on v for such 1 and we have

0,FG2(v) = Fo,G3(v) . (3.24)

Hence for a given vy € R?\(0,0) there exists 4; € A, such that G‘ (v) depends

smoothly on v for v sufficiently close to vy. For 4 € ([?\Spec(A‘) the resolvent
G?(vp) can be represented as follows:

Gi(vo) = —(A— A1)~ = (A= A)R((L = 1)1, G5, (w)) (3.25)

where R(7, GZ,(VO)) = (G;‘_l(vo)—n)_1 is the resolvent of a bounded operator
G2 (vo) in (DR*(M)), ([Ka], Ch. IV, (3.6), Ch. III, (6.18)). The bounded operator
R(n,B) is an analytic function of a bounded operator B and of # for # ¢ SpecB
(i.e., near (o, By), Mo ¢ SpecBy, it is locally defined by a convergent double power
series in (y — ny) and (B — By)). The operator G;I(v) depends smoothly on v for v
sufficiently close to vo. Then it follows from (3.25) that G3(v) depends smoothly
on v for 1 € C\Spec(4y) and for v sufficiently close to vo.

Let F : @, DR*(M;) — @, DR***(M), k € Z, be a linear differential operator
of degree d(F) =< 2. Then for 1€ A, and |A| large enough the operators
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FG3(v): (DR*(M)), — (DR***(M)), are defined, bounded, and smooth in v €
R?\(0,0). (It is proved above.) For example, dG$(v) and 6G$(v) are smooth in v.
According to (3.24) we have 0,(dG3(v)) = d0,G(v), 0,(6G3(v)) = 60,G3(v).

The operators dG$(v) are defined for A ¢ Spec(4y). From (3.24) and (3.25) we
get

6v(dGz(V))|y=0 = d(ayG/‘T(V)‘vzo)
0
=—(A—A) (@R((/1 - 4)"',B) B=G/?‘(vo)a‘/G/?,(V)]V:O>

for a C*°-local map (R},0) — (IR*\(0,0),vo), where A; € A, with || large enough
and 4 ¢ Spec(43). Proposition 3.1 is proved. U

3.3. Theta-Functions for the Laplacians with v-Transmission Boundary Condi-
tions. Proofs of Theorem 3.2 and of Proposition 3.2. Let ¢ be fixed, 0 < ¢ < 7/2.
The operator exp(—t47) is defined for Ret > 0, n/2 — ¢ > argt > —(n/2 — &), by
the integral

exp(—14%) = ;—n [ exp(—it)G3(v)di., (3.26)
r]..);

where 'y, =1T,UTI7,, I'l, ={A=—L+xexp(ic),+o0 > x 2 0}, I'7, ={A=
—L + xexp(—i¢),0 < x < 400},L > 0. The integral (3.26) is absolutely conver-
gent because the operator norm in (DR®(M)); of the operator G$(v) (which is
bounded in (DR*(M)),) is estimated by O(]A|~!) for A € I';, according to The-
orem 3.1. % This integral is independent of L > 0 and of ¢, n/2 > ¢ > 0, for
¢t such that |args| < m/2 —¢, since the spectrum of AP is discrete and since
Spec(4¢) C R, U 0. With the help of the inverse Mellin transform f — M~'f,

M)y = Qri)™" [ T(s) ™ f(s)ds ,
Res=c
it is possible to obtain the results about the asymptotic expansion for Tr exp(—¢4})
as Ret — +0 (when 7/2 — ¢ > |arg¢|) from the results about {,4(—m), m € Z, U
0, and about res,— {,e(s) obtained in Theorem 3.1. The integral (3.26) can be
transformed as follows:

exp(—tdy) = H°(v) + é [ exp(—tA)G3(v)dA,
r

—0,¢

where #°(v) is the kernel of the orthogonal projection operator of (DR*(M)),
onto Ker4? and where 6 > 0 and p, p = 9, is such that Spec(42) N (0,p] = 0.
The operator exp(—¢43) for |arg t| < 7/2 — ¢ can be represented as follows (where
I’ is the same as in (3.18) and ¢ > 0):

exp(—t4%) = #*(v) + érf exp(—tA)GS(v)d A

=%'(V)+% f (Zni)‘lG;(v)< f (/u)*sr(s)ds) d)
gy

Res=c

5 The constant factor in this estimate depends on e.
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Res=c

= () +Qri) [ T (s) (~ [ G (v)d/) ds

—a,

= A°(v)+ Q2ni)! [ 17T(s) (if/l““'GZ(v)d/") ds
Res=c 2n r

= A0+ Qui)” [ ()T (v)ds . (3.27)
Res=c

Here, the integration is over Res = ¢ from ¢ — ico to ¢ + ico (where ¢ > 0). The
operator T_4(v) for Res > 0 is defined by the integral (3.18). The transformations
we apply in (3.27) are correct by the Fubini theorem since the estimate

HG/.(V)HZ <C- V‘l_l’ / S F~<>,z: 5

is satisfied by the operator norm of G} (v) in (DR*(M)), and since for Res > 0
the gamma-function can be estimated as follows. We have

oo

I'(s)= 71“‘"1 exp(—t)dt = ft“'“‘ exp(ips) exp(—t exp(iq))dt
0 0

for Res > 0 and for an arbitrary ¢ € R such that 7/2 > |¢|. So the estimate holds
for any ¢, 0 < ¢; < n/2 and for Res > 0:

IF(s)] < (sing) " I'(Res)exp (— (g — 81> ]Ims|> ) (3.28)

The kernel of (7_4(v))x,.x, is continuous in (xy,x,) € M, x M;, for Res > n/2
(according to Theorem 3.1). The equality (3.27) holds also for ¢ = Res > n/2.
For such s the integral fRes:(,F(s)l“"(T_y(v))‘lﬁ_rzds is absolutely convergent (by
Proposition 3.5 below and by (3.28)). Hence it defines a continuous on 7\/7” X M—,z
kernel. So the kernel E?, | (v) of exp(—4}) is continuous on M, x M, because
we have

Ef () =AW, + Qui) [T (To(0)ydt (3.29)
Res=c

where ¢ > n/2. (The integral in (3.29) converges uniformly with respect to xj,x;
for any fixed ¢ > n/2 by Proposition 3.5.)

From the functional equation I'(s)=s"'(s+ 1) - (s+ 1~ 1) (s+ 1) it
follows that |I'(s)| for Res > —!/ is also estimated by exp(—(n/2 — ¢ )|Ims|) as
Ims| — oo (with any fixed ¢;, 0 < ¢ =< n/2). The operator exp(—i47) for Res >
0 is a trace class operator. Namely its kernel is continuous on M, x M, (as it
follows from (3.29)). Hence it is a trace class operator and its trace is equal to the
sum of the integrals over the diagonals M, of the corresponding densities (according
to Proposition 3.8 below).

The theta-function 0, 4(t) for A% is defined as the trace of exp(—t4y) for Ret >
0. The analogous theta-function 0, .(¢; p,) is defined as the trace Tr( p,exp(—147))
for Ret > 0 (where p,: (DR*(M)), — (DH*(M,)), — (DR*(M)), is the composi-
tion of the natural restriction and of the prolongation by zero). Proposition 3.8 claims
that 0,4(f; p,) is equal to the integral over M, of the density tr(*rziM E? ().

The zeta-function (,4(s) is defined by (2.8) for Res > n/2 (n:= dlmM) It is
equal to Tr 7_y(v) for Res > n/2 (accroding to Theorem 3.1 and to Proposition 3.9).
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The zeta-function {(s; p;) := Tr(p,T—s(v)) is equal for such s to the integral over
the diagonal i(M;) — M; x M, of the density, corresponding to the restriction of
the kernel T_,(v) to i(]\_/[ ). The integral of this density over M, can be represented
as the sum of the integrals of densities on M, and on oM; (they are defined by
the parametrix (3.3) and can be continued to meromorphlc functlons on the whole
complex plane € > s) and of a density on M; j» which is holomorphic for Res >
(n — m)/2. (This assertion follows from the proof of Theorem 3.1.) The contour
of the integration in (3.27) can be moved to Res =a for an arbitrary a such
that (—2a) ¢ Z, U0 (according to the estimates of |I'(s)| as |Ims| — 400 and to
Proposition 3.4 below). Then it follows from (3.27) that

Ove(t; pj) =3t~ res (I'(5)0ve(s5 2)))
+ (2mi)~! [ 17T () ve(s; pi)ds + Tr(p;#°(v)),  (3.30)

Res=a
where the sum is over k£ such that s, := (n — k)/2 > a. The estimate of the integral
over Res = a in (3.30) is obtained with the help of (3.28) and (3.40) as follows. For
Ret > 0, |arg?| < m/2 — ¢ (5,0 < ¢ < m/2, is fixed) and for Res = a the estimate
is satisfied:

—(a—[a])

[t 7T (s)ve(s; py)| < (sm4) ['(a)| |t]™“exp ( - %[Imsl)C(a, %)

x {21 = @), cap'®) + max(p™%, (1 + Ylse —al™H}, (331)

where the sum is over & < n — 2a. The constants C(a,¢/4),cy4 in (3.31) and the
function I'(u;x) are as in Proposition 3.4, (3.40). The latter estimate is a conse-
quence of (3.28) and (3.40)), where ¢; and ¢ are replaced by ¢/4. We see that

J t7°T(s)ue(s; pp)ds| < Ci(e,a)lt] ™, (3.32)
Res=a
where Ret > 0, |argt| < 7/2 —¢, n/2 > ¢ > 0,a <0, and (—2a) ¢ Z.. The as-
sertions of Theorem 3.2 about the asymptotic expansion (3.1) for 0, ,(¢; p;) (relative
to t — +0 when |arg¢| < n/2 — ¢) follow from the equality (3.30) and from the
estimate (3.32). The estimates analogous to (3.40) below and to (3.32) are satisfied
also by the analytic continuation to € 3 s of the densities (on M; and on M;) de-
fined by the parametrix P7(v) (as in Proposition 3.5 below). Thus we see that the
equalities between the densities in the integral representation for the coefficients of
the expansion (3.1) and the corresponding densities for the residues and the values
of {,4(s; p,) are satisfied.

The uniform with respect to v € IR? \ (0,0) estimate (3.2) for the traces of
exp(—t4y) (for a fixed ¢, Ret > 0) follows from (3.30) and (3.31) because for
a=-m-—1/4, m e Z,, m>1, the integral over Res = a on the right in (3.30) is
absolutely convergent. The estimate ® (3.31) and the equality (3.30) provide us with
the uniform in v upper estimate for Tr(p;exp(—24%)),v € R?\ (0,0). Indeed, the
estimate © dimKer4$ < C is satisfied uniformly with respect to v. The formulas

% For a < 0 the function I'(2(1 — a),cy4p'’?) tends to I'(2(1 —a)) as p — +0 and so it is
bounded for 0 < p < 1.

87 1t follows from the exact sequence (1.14) (where Z, := Z N 0M,) and from Lemma 1.1 that
dimKer 43 = dimH*(M,,Z) < 3 dimH*(M,,N UZ,) + dim H*(N) .
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G—ntk = 1€85—s, (I'(5)Cy,0(85 p))) + Ops Tr(p;# *(v)) for the coefficients g_, . of
the asymptotic expansion (3.1) are consequences of (3.30) for a = —m — 1/4, where
me€Z,. For a=—m—1/4 the absolute value of the integral over Res =a in
(3.30) is estimated (with the help of (3.31)) by C|¢|"*"/* uniformly with respect to
v € R?\ (0,0) (where Ret > 0, |argt| < m/2 —¢, n/2 > ¢ > 0 and ¢ is arbitrary
but fixed). So it holds

n4+2m—1

0wt p) = > qonal "2 4+ {q piamt™ + Ot )} . (3.33)
k=0

The latter two terms in (3.33) are O(|¢|") relative to ¢ — +oo uniformly with
respect to v=(0,0) (for |argt| < /2 —¢). The statements about the structure of
the values and the residues of {, 4(s; p;) (Theorem 3.1) provide us with the desired
information about coefficients g_,; in (3.1). These values and residues (up to
OnixTr(p, #*(v))) are the sums of the integrals over M,,0M, and N of the densities
which are defined by the absolutely convergent integrals of the components a_;_
and d_,_g41 ([Se2], Theorem 2, and the proof of Theorem 3.1 above). The latter
symbols are defined by (3.4), (3.11), and (3.10). These integrals are smooth in
v € R?\ (0,0). Hence the coefficients g_,4 in (3.1) are smooth in v=(0,0) (and
are invariant under v — cv, ¢=#0). Theorem 3.2 is proved. [

Remark 3.2. The coefficients g_, 4 of (3.1) for 0 < k& < m are completely defined
(according to (3.33) and to Remark 3.1) by an arbitrary parametrix P7(v) (3.3) for
4y ="

Proof of Proposition 3.2. The parametrix % P;")(v) for Ef, ,(v) (defined by
(2.126)) is such that it is smooth in (x,y) € M, x M, and in v € R?\ (0,0).

The v-transmission boundary conditions (1.27) are satisfied for (A;,x)" P," f:";(v)

(i.e., the image of (DR®*(M)), under the action of the operator with the kernel
PZ ,(Cmy) (v) belongs to D((4%)F) for an arbitrary & € Z,). The uniform with respect
to v € IR?\ (0,0) estimates (2.127), (2.128) are satisfied and for x from an ap-
propriate neighborhood U of N C M we have (0, + 47, )PZ g"y)(v) =0 (where U is
independent of v).

Set rf";’,)y(v) = (0 + 45,) Pp, ,(v). Then the estimates are satisfied for any k €
Z,U0,

|48 D ] < gt ™24 (3.34)

vx© X,y

where C, is independent of v € R? \ (0,0) and of ¢ € (0, T)(n := dimM).

The kernel £, ,(v) can be represented as the Volterra series 69
k (
B =200 F I - PN 0 L O R S (O
k=20 Ay ) EM UM
(3.35)

8 The properties of such a parametrix are summarized in Proposition 2.21. For the sake of brevity

the proof of Proposition 3.2 is given in the case of dM = §. The terms of P""(v), connected with
the Dirichlet and the Neumann boundary conditions on the components of M, are independent
of v and the proof in the case of 0M +{ does not contain any additional difficulties.

% This series was used in the case of a closed manifold M in [BGV], 2.4, 2.7. See also the
formula (2.137) above.
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where 4y = {(gg,...,04):0 = 0; = 1,> 0, =1} (and the scalar product
tr(w; A *w,) with the values in densities on M is assumed in (3.35)). The proof
of (3.35) (or of (2.137)) is given in the proof of Proposition 2.21.

Let ¢ : [ — IR?\ (0,0), v = ¢(7), be a C*°-map (where 7 € [—a,a] =: I). Then
the only term in P:ft’l)d,)i(‘w,)(v) depending on 7 is

Eng @ Y(x)EL (Vo) = Exy (v), (3.36)

but it does not depend on m. (Here E;, corresponds to A; with the Dirichlet bound-
ary conditions on 0, ¢,y € C§°(/\ dl), Yy =1 in a neighbourhood of supp ¢ C
I\ 0L @(x;) =1 forx; € [—1/2,1/2] and @, are even: p(—x1) = @(x1), Y(—x;) =
(x1).) So, as it follows from the explicit formulas (2.40) for (G;(v))y,., (and from
the analogous formulas (2.54) and (2.55) for (£7,(v)):,.v, ), the uniform with respect
to y estimates are satisfied for any k,q € Z,

25" (] < gt (3.37)

because they are true for (3 + Ay + A, ){(Exo)y @ $r EL(v)y,.y, @)} and
For (&, + Ay + e H(Eniwr v @ ¥ X0 Ery(0))er 1y @(01)} (where @) is the reflec-
tion of / = [—1, 1] with respect to 0 € / which acts on the variable x;). The kernels
E)fl‘fE,(,J(v) are the linear combinations of these two kernels with the coefficients in-
dependent of x and y. (These coefficients are smooth in 7). The estimate (3.37)
is satisfied for ¢+ € (0,7') and for an arbitrary ¢ € Z, uniformly with respect to 7,
because if J¢y(x;)=+0 then p(x,suppp) > d > 0.

Let DR$, () be the space of forms on M of a class C’ (i.e., of forms with
! continuous derivatives on M) equipped with a C'-norm. 7% Let DR}, (/) :=

DRE,(M ) & DR (M) be the space of pairs (w,w;) of forms w; of a class C’

on M, with a C'-norm. The operators with the kernels P,f(\.f’i‘?(v) for v € R?\ (0,0)
and the operators corresponding to (?fP,fif';?(v()y)) (for a fixed k € Z, U0) are fam-
ilies of uniformly (with respect to v and to ¢ € (0,7]) bounded operators acting
from DR}/ (1) into DR}y (/). For the operators corresponding to the interior terms

in P,'_(x,t”‘?(\)) this assertion is proved in [BGV], Theorem 2.29, Lemma 2.49. This
proof uses that this statement is local in x € M (for a closed M) and it uses also
the explicit definition of Pi(:f) over a geodesic ball exp, B C M (where B is a ball
[lvl] < ¢ in T, M and exp, is the exponential map for (M, gy ) from T, M).

The kernel (3.36) (i.e., the term of P,f(rf'f‘,)(v) corresponding to the interior bound-
ary N) is equal (up to the factor Y(x;)p(y;)) to a linear combination given
by (2.54) and (2.55) of the kernels £} for N x [ and ¢jE} (o, is the mirror
symmetry with respect to N x 0). 7' Its coefficients depend on (i, /»,v), where
(x,y)€ M, x M,. These coefficients and their derivatives of a fixed order on 7y
are uniformly bounded.

70 This norm corresponds to a smooth partition of unity {¢,} subordinate to a finite cover {U,}
of M, and of M, by coordinate charts (i.c., ¢, € Ceo(U,)). For v € DR, (1) its Cl-norm ||,
is equal to Zsup\eusupwé,ID‘\’((p,v)\ i.e., to the sum of the suprema of partial derivatives of
orders < /. The C'-norm for an arbitrary smooth finite cover {U’} and for a partition of unity
{¢!} subordinate to {U/} is equivalent to the one defined by {U,} and by {¢,}.

"' The operators 04P")(v) = X Ex(v) for k € Z. are expressed similarly.
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For a closed N the operators defined by (P,(J")), = (P (::,)N)t are uniformly
bounded for 0 < ¢ < T with respect to a C'-norm in the space DRy(I) of C'-

smooth forms on N. The equality (3.35) is satisfied by EN,,P'('") and rl(\,'") Since
the estimate (3.38) below (as well as the analogous estimate (3.34)) is satisfied

by r](\,m,). (where n is replaced by n — 1) we see that the series of operators on

the right in (3.35) is convergent for m = (n + [ — 1)/2 with respect to a C'-norm
in DR} (/). Hence the sum of this series defines a family of the operators Ey, in
DR3,(1) bounded uniformly with respect to ¢ € (0,7]. The analogous assertion is
also true for a family of operators defined by the kernels ¥(x1)(E7,)x, .y, (1) act-
ing on smooth forms with compact supports on (/, 1) (with respect to a C’-norm).
So the kernels Eg (V) (x, x),(y,,»") and 6§’,E;,J(v(y)),,(x,J/)’(y,,y/) (for a fixedge Z,)
define collections of uniformly (in ¢ € (0,7] and v or in ¢ and y) bounded with
respect to a C’-norm operators from DR}, (/) into DR}, ~().

The kernel r,(x)y(v) is smooth on M x M; according to the definition (2.126) of

P; i’"y)(v) The C'-norm of rt,c y(v) on each M X M satisfies the estimate (analogous

to (3.34))

eyl < =212 (3.38)
uniformly with respect to v € R? \ (0,0) and to ¢ € (0, T]. The estimates analogous
to (3.37) an to (2.129) are satisfied uniformly with respect to v and to ¢ € (0,7]
also by the C’-norms of 6’y‘r(”’) (v) on each M x M, for any k,q € Z:

t,x,y

842l S cguont ™24 (3.39)

Leibnitz’s rule claims that Pt(x »(¥(y)) is a bounded operator from the space of
CP-maps w : [—a,a] — DR;,(]) (equipped with the norm leosupye[_aﬂ]”@,w“l)
into C?([—a,a], DRy y(1)). Indeed, the kernel 8§P§;"_fv(v(y)) depends smoothly on
v € [—a,al on M;, x M, for k € Z, U0, since P,(,';'))y(v) = (P0 ),y + Epy(v) and
since Ey;(v) is smooth in v € IR \ (0,0). For 0 < ¢ < T the operators (P"(v(y)))
from C’([—a,a],DR}(1)) into CP([—a,a], DR} y(/)) are uniformly bounded be-
cause aij,('”) (for a fixed k € Z, U 0) are the operators from DR}, (/) into DRy, (1)
bounded uniformly in y and 7, 0 < ¢ < T, with respect to a C'-norm. Hence, ac-
cording to (3.38), (3.39), and to the fact that the volume of A4 is equal to (k!)~!,
the series (3.35) for the derivative 0}, ;, x,(v(7)) is convergent in the C'-norm on
U(M,, x M) for m > (n+ 1)/2. (The number m in the definition P is greater
than (n+1)/2.) L

This proves that (3"E,’xI x (V(y)) is C*-smooth on M, x M ,. (For instance, for
k =0 this proves that E?, . (v) is C*°-smooth on M;, x sz )

So the restrictions ifE, (v(7)) to the diagonals i; iM; — M; x M; are C>-
smooth double forms on M; which are C*°-smooth in y. Since r,(z,v) in (3.1)
are O(t"+1/2) uniformly with respect to v € IR?\ (0,0) and since g, are C>-
smooth in v we see that the asymptotic series (3.1) can be differentiated on y.
Actually, the equality (3.35) holds for E®(v),Pf"(v), and "™ (v). The kernel
rf'")(v) satisfies the estimates (3.34), (3.37), and (3.39) and the kernel Pf(m)(v(y))
defines a family of uniformly with respect to ¢ € (0,7] and to y bounded opera-
tors from C?([—a,a], DR},(1)) into CP([—a,a], DRy,5(1)). Hence the power terms
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((=mtD2 0 < j < 2m, in the asymptotic expansion of fM,tr i70,Ef(v) as t — +0
are equal to the appropriate terms in the asymptotic expansion of [ M, 2*6},P; (m)(v).
(The kernel &,(E,’(v)—P;('")(v))xl,,(2 is O(¢+7"/**m+1y " according to (3.35).) But
the coefficients ¢,, 0 < i < 2m, in (3.1) are completely defined by ifP; ™ (v), be-
cause the kernel (E7(v) —P,°(m)(v)),q,,(2 is O(t~"/2*m+1y yniformly with respect to

(x1,%2) € M;, X M, and to ¢ € (0,T], according to (3.35). Thus Proposition 3.2 is
proved. [

3.4. Estimates for Zeta-Functions and for the Corresponding Kernels in Vertical
Strips in the Complex Plane.

Proposition 3.4. The meromorphic continuation of the zeta-function {,4(s; p;) :=
Tr(p,T-s(v)) for Res > n/2 is estimated by C(¢)exp(e|lms|) as |Ims| — +oo for
any fixed ¢ > 0. Namely for any ¢ > 0 and for an arbitrary a € R the following
estimate is satisfied if Res = a:

[Ce(s; Pyl =C(a, e)exp(ellms))
x (c2Re=Dr(2(1 — Res), c;p"?)
+max(p R, (1 + Y —5;171) (3.40)

where p > 0 is such that Spec(43)N(0,p] =0 and the sum is over s;:=
(n—j)2,—s, ¢ Z+ U0, s; = a. The constants C(a,e) and c, are positive and
independent of v € R*\ (0,0), and I'(u,x) := [ t*"‘exp(—t)dt for x > 0.

Proposition 3.5. For Res > n/2 (n:=dimM) and for any ¢ > 0 the following
estimate is satisfied (where p > 0 is such that Spec(43) N (0, p] = 0):

(T s rys] = Cop™™exp(elims])( (Res - g)‘ +1). (4D

Proof of Proposition 3.4. 1t is proved in Theorem 3.1 that the operator norm
IG$(v)||]2 in DR*(M)), of the Green function G$(v) for the Laplacian A} is esti-
mated by C;|A| ™! for A€ A, :={A€ C,c < argd < 2n—¢}, where e, 0 < e <7
is fixed. The spectrum Spec(4y) is a discrete subset of R, UOQ by Theorem 3.1.
So the operator 7_4(v) defined by the integral (3.18) is equal to the same integral
with the contour I" replaced by I'¢y :=I'1, U T, U T,

I ={A=xexp(ic),00 > x 2 p}, T, ={A=pexp(ip),ec> ¢ > —¢},
I = {4 =uxexp(—i¢),p < x < 00}. (3.42)

There is a constant ¢ > 0 such that the principal symbol (b,(x,&) — A)id of
A® — Jid on M is invertible for

IE? > ]| (3.43)

in the coordinate charts U; (of the same finite cover {U;} of M as in (3.3)). The
integral (3.18) over the contour I'(; (the latter one is defined by (3.42)) does not
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depend on p for all p > 0 such that (0, p] N Spec(4?3) = . We suppose from now
on that
0<p<@+1)! (3.44)
and that (0, p] N Spec(4%) =0
The kernel (r7)y,x, of the operator r7' := G;(v) — P} for m = n is continu-
ous on M; x M) for 2 € A,\0. (The parametrix P? is defined by (3.3).) It

is estimated for |A| = p,4 € I', (according to (3.19)) uniformly with respect to
v € R?\ (0,0) by

l(rzﬂ)xlle < Cs,s|(1 + MII/2)~(2+m)+n+c| (3.45)
for any ¢ > 0. Since (3.45) is satisfied for all A€ I';), we have for Res >

271 (—m+n+¢)

2Dt =[5 (S + )10

il T

o0
< 2C, exp(eltms|){ [12]7Re5(1 + |2)V2)-@+mnsgy)
p

+ 7p max (pRes, 1)} . (3.46)

The estimate (3.46) claims that for the proof of (3.40) in the domains Res = a
it is enough to prove the analogous estimate for the analytical continuation of the
densities on M;,N, and on 0M, corresponding (for Res > n/2) to the kernel of

— f AP (3.47)
2 Tr,

where m = m(a) € Z, is sufficiently large. (These densities were introduced in the
proof of Theorem 3.1, and the sum of their integrals is equal to the trace of (3.47).)

Let Res > n/2 and pjy(x) be the density on M;, corresponding to the restric-
tion to the diagonal i, : M; — M, x M; of the kemel P(x1,x2) of the operator
fr( A (piy i Py, qo,)dl (where P'”mt is defined by (3.13) and by (3.4)). Then

Pii(x) can be continued to a whole complex plane € > s as a meromorphic density
([Se2], Lemma 1, or [Sh], Theorem 12.1).

Proposition 3.6. The density pi(x) satisfies the following estimate for any ¢ > 0:
| P (x)] < Comax(p ™R, 1)exp(e|Ims|)Y|s — se| 7", (3.48)
where the sum is over 0 < k < m such that (—s;) ¢ Z, UO.

Proof. The density pii(x) for Res > n/2 corresponds to the sum of the integrals

@n)” "Dp,(x)fdcf— A0, A)Za 2 (& A, (3.49)

Tl

where a_; is a positive homogeneous of degree (—k) in (&, A?) component of
the symbol s((4* — A)~!) in the coordinate chart U; defined by (3.4). The integral
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(3.49) is the sum of the integrals Jg (x) + Ji (x) +J; .(x) over the three corre-
sponding domains:

Ko:={(&A): [EF S 1= p AT, |2 < (1 —[EP)},
L={(EA) &P S T—pdeTe,lAl > (11— ¢},
Li={(&EA): e > 1-p,ieT)}. (3.50)

IIA

\

Since K, is compact and since l_sﬁzg"a,z_ i(x,&,A) is continuous on M; x Ky,
the density Jg,(x) is holomorphic in s € € and it is estimated by

o0 = Cgexp(s|lms|)max(p_Res,I)Agngl)é Yole(x)0>a o j(x, &A1) . (3.51)
] 07 0

The latter factor on the right in (3.51) does not depend on s and p. Hence it is
estimated by a constant.

Set Ji(x) :=J; (x) from now on. For Res > n/2 the density Jy(x) does not
change if the interior integral in (3.49) is replaced by the integral over

Ty = 1EPA = p) Ty (3.52)

because 0 a_>_; is holomorphic in A in the domain between the contours I';) and
I'(;y)¢)- Indeed, this symbol is holomorphic in 4 for (£,4) such that &> + |4] > 1
and [£]? > c|A| (where ¢ > 0 is the same as in (3.43) and (3.44)). Since 0 < p <
(2c+ 1)7" we have for 1 between I'¢;y and I’y

p SIS 1P —p)7 A S cEPp(l —p)Tt < 27N < ¢,
and |2+ ]A] > 1 for (&) el

The density J5(x) is represented as the sum J; ,(x) + ijmJ?i j(x), where J3,
and J; , correspond to (3.49), with the interior integral replaced by the integral over
e = €1 = p)~'Tj, and over I, == |E2(1 — p)~'I%. The density Ji(x) is
equal to the sum . =121 j(x), where the interior integral in (3.49) for the term
Ji ; is over the contour I';; \ Dy_ep (Dy := {4 |4] < r}).

Set 4 := exp(ig(—1)Y*1)? on s (for |€F > 1 —p)and on '), \ Dy_p (for

[£]> < 1 — p), where ¢ > 0 is a new variable. Then we have
5, +J5)x) =22m) " iexp ((— 1) ie(s — 1))
X i) [t e (X aco i (x, & 2o(0))dt dE, (3.53)
1 F 0

where 4,(¢) := exp((—1)’*'ie)t?, Res > n/2, and F is the domain

v

{E): P+ 2 LIEP S 1—pt = p YU {(E0) |EP 2 1 —p,
|Elp /(1 = p)' 2} .

t

v
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Since a_(x, &, ) are nonsingular for 4 € I';,; and since » - ({,1) € F for ({,1) €
F and r = 1, we see that (3.53) can be written as follows:

i, +J3,)(x) =2(21)" " Viexp((—1) ie(s — 1))

XS0 @s 4k — n) " i) [ tra g (x, & Ao(t)d s |
T k=0 F

(3.54)

where Fy = FN{(&t): & +1* =1} and w,y; is the volume form on the unit
sphere in ]R’é’jl. The integral over the compact F in (3.54) is an entire function of
s € €. So the right side of (3.54) realizes the analytic continuation of the density
(Ji; +J3 ;) (x) to a meromorphic in s € € density with no more than simple poles
at the points sy, = (n —%)/2, 0 < k < m.

Since 1 = p(1 — p)~1|¢]Pexp(ip) on Y g (where ¢ = ¢ = —¢), we have

J3(x) = —iQr) "N Y 0i(x) [ 17 (s, E)dE (3.55)
T k=0
where the integral is over {¢:|¢> = 1 —p} and

I£(5,8) 1= [ exp(—i(s — 1))a_s_¢(x,& A, |E))dolE] 2D p767Y

M, 1E]) == [EPprexplip),  pii=p(1—p)~". (3.56)

The symbol (3.56) is positive homogeneous of degree (—2s — k) in & It is
analytic in s € € and nonsingular. So (3.55) realizes a meromorphic continuation
of J(x) to the whole complex plane € > x. Namely

Jy(0) =27 @m) S S gu) ([ IG5 D) (5 =507 (1 = p) O,
! k=0 |el=1
(3.57)

where w, is the volume form on the unit sphere in R”. The formulas (3.54) and
(3.57) provide us with a meromorphic continuation of the density p;(x). Together
with the estimate (3.51) they provide us with the estimate (3.48). (However, with
the sum in it over all s, 0 < k& < m.) The analytic continuation of the density
defined by the sum of the integrals (3.49) with the interior integral over the contour
I'tmy (ie., with ¢ = 7) is regular in s = s for (—sx) € Z, UO0. (This assertion is
obtained in the proof of Theorem 3.1.) For |é[> > 1 — p the interior integral over
I';y in (3.49) is equal to the integral over I'(r). So the estimate (3.48) is satisfied,
where the sum is over sg, 0 < & < m, such that (—s;) ¢ Z, U0. O

Let Res > n/2 and let p73(x) be the density on M; corresponding to the term
in (3.47) determined by the v-transmission interior boundary conditions. % It is

2 From now on we’ll suppose that M = {). Estimates of the contributions into {, «(s; p,) from
the Dirichlet and the Neumann boundary conditions on the components of dM, \ N are analogous

to the estimates for the contributions from the v-transmission interior boundary conditions.
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defined by the restrictions to the diagonal M, — M; x M; of the kernel for the
operator

[ A75dap, > 1Dy, 91 (3.58)

i
2n
I 1

where 2, = Z,(4,v) is defined by (3.9), (3.10), and (3.12).

The operator Z,, is defined by the symbols Y d_; 4, 0 £k < m, in a co-
ordinate chart (x,¢),U; C R"™! x R' (where NNU; = (R"!' x 0)NU; and the
structure IR"~! x IR! corresponds to the direct product structure of the metric gy,
near N). Its action on f, f € DR2(R"~! x (R, \ 0)), can be represented for ¢ > 0,
t; > 0, as follows ([Sel], (26)—(28)):

éOP(Hld—z—k)f(x/at) = Er::@ﬂ)“"ffe)(p(i(f',x'))@ldiz_kf“(i', n)dnde',

d—, (', 6,8 1n,2) = — [exp(—itt))d _r—x(x",1,&", 7, A) ,
I_

S7(€ ) = [exp(=i&, y) f(y.t1)dy

where I'_ = I'_(&, 1) is a simple contour in the half-plane Im 7 < 0 which once
goes round (in the direction opposite to the clockwise) the only zero of the principal
symbol (by(x’,&,t) — A)id of the Laplacian (4° — Zid). 7> Lemmas 2 and 3 of [Se2]
and Lemma 2 of [Sel] claim that the integral over IR, (where U; N (R""! x R, ) =
UnM,) [d-, (x',t,&,t,A)dt is a symbol of (x,&’, 1) positive homogeneous of
degree (—2 — k) in (¢, A1/2). They claim also that the kernel on IR”~! defined by
the integral over [T,00) C R (for an arbitrary 7 > 0)

[exp(i(¢'x' — y))AE' [di [ A0y (&, 2)A~>d—_(x',1,E',1, 2)
r T

is an entire function of s € € smooth in x’, y’,s and vanishing at s for (—s) € Z, U
0. The latter assertion is an immediate consequence of the estimate ([Se1],(29)) for

2k
DL, DL (D' D, DYd—,_((x',1,& 11, 7))

< Crexp(—c,([t] + [nDUE] + [ + || + |2y~ I klalt2p =t Demen
(3.59)

with positive constants Cj(¢) and ¢, independent of v € R?\ (0,0).

Proposition 3.7. The analytic continuation to the whole complex plane C > s of
the integral over M; of pj:g(x) (which is defined for Res > n/2) is estimated by

‘fpjj;(x)‘ <cpmax(p R, Dexp (e|lms|)Y s — sx] ™!
MI

+ ¢3..exp (e[Ims)(2cXR=D(2(1 — Res), c,p'?)
+ mpmax (p~ R, 1)), (3.60)

where the sum is over 1 < k < m+ 1 such that (—s;) ¢ Z+ UO.

> The whole symbol of 4°® does not depend on ¢ in the neighborhood of N.
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Proof. The trace of the operator (3.58) for Res > n/2 is given by the integral

(20)™"S [dx'digy(x', 1) fdg'(éi [A7da0(E ) S d=, (o, £.67)) .
Tr, k=0

(We suppose that ¢;(x’,¢) are independent of ¢ for 0 < |¢] < 1). It follows from
the estimate (3.59) that the density on N corresponding to the integral

[ dt(i(x' 1) — pi(x',0)) fdg'tr(i [ a~da BIEdZZ_k)
R, 27 I

has the analytic continuation which is an entire function of s € € and which satisfies
the estimate

Coman exp (ellms| (e, Res) [(1 + [E) ™ exp(—c.|&'Dde,  (3.61)
hy(cs, Res) = f;oexp(_cgtl/z)t~—Resdt+ p max (p~Re, 1)

= 2cHRes=D(2(1 — Res), c.p'?) + mpmax(p R, 1),
where n; € Z, is sufficiently large.
The density on N is defined by the integral

P = (2n)'"(p(x’,0)fdtfd§/tr<—l- S ),‘Sd2012d:2_k)) , (3.62)
. R 2T k=0

which is absolutely convergent for Res > (n — 1)/2. Hence it is analytic in s for
such s. The integral over t € IR, of d_,_, is a positive homogeneous of degree
(=2 —k) in (&', 2?) symbol, which is smooth in (x, &, 1) and analytic in 1 for
c|A] < |&|* (where c is the same as in (3.43) and (3.44)) and in A € A, := {A:
§/2 < argd < 2m — ¢/2} for (&,4)=(0,0) ([Sel], Lemma 2, [Se2], Lemma 2). So
the proof of Proposition 3.6 is valid also for the density (3.62) (where (x,&,n)
are replaced by (x',&',n — 1)). We conclude that this density has a meromorphic
continuation pfj’a(x’ ) with no more than simple poles at the points sy,...,Sy,41. This
proof provides us with the estimate

< ¢j max (p‘Res, 1>exp(s[lm s Js — s 7t (3.63)

where the sum is over 1 < k£ < m+ 1. The analytic continuation of the density
on N defined by the sum (over /) of the integrals (3.62) for the interior integrals
over the contour I'() (i.e., with & = m) is regular at 5 = 53 for (—sx) € Z; U 0. (It
is proved in Theorem 3.1.) For |[¢'|* > 1 — p the integral over Iy in (3.62) is
equal to the integral over I'(;). Hence the estimate (3.63) is satisfied if the sum
is over k,1 < k < m+ 1, such that (—s;) ¢ Z, U0. The estimate (3.60) follows
from (3.63), (3.61). O

The estimate (3.40) follows from Propositions 3.6, 3.7, and from (3.46). Thus
Proposition 3.4 is proved. [

|pit o)

Proof of Proposition 3.5. The estimate (3.46) in the proof of Proposition 3.4 is
satisfied by the integral of (#7')s, x,. So it is enough to obtain the estimate (3.41)
for the kernel of )

1

— [ A7°PTdA

2n r{, AT
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where Res > n/2. The term p)7(x;,x;) in this kernel has the same form as in
(3.49) but with the addition factor exp(ié(x; — x,)) under the integral sign (where
x and ¢,(x) are replaced by x; and by y,(x;)¢;(x2)). The integration over the
domains (3 50) in the integral corresponding to (3.49) represents this kernel as the
sum (Jg, +J7, +J5,) (x1,x2), where Jj, corresponds to the integration over the
appropriate domam in (3.50). The term J(;,(xl,xz) satisfies the estimate (3.51) if
Res > n/2. (In this estimate max (p~R%, 1) can be replaced by p~R¢ since Res > 0
and since 0 < p < 1.)

The contour I'(;y of the interior integral in (3.49) for J;, can be replaced by
the contour I'(;) ¢ defined by (3.52). The sum of the integrals over the straight
line pieces of I'i) and of I’y ¢ in the kernel (Ji, +J;,) (x1,x2) has the same
form as (3.53) (but with the factor exp(i(x; — x3)&) under the integral sign). The
integral over the circle part of Iy, ¢ for the kernel J; (x1,x2) is also completely
analogous to (3.55). This provides us with the estimate for the kernel pi(xi,x2)
(where Res > n/2):

| (x1,x2)] < Ceexp(ellms])p R (Res — n/2)~". (3.64)

The proof of (3.41) for an arbitrary closed manifold M follows from the estimate
(3.64) together with the estimate (3.46) for (7)., ,. (They also give us the proof
of (3.41) for a part p‘l‘l;;(xl,xQ) of the kernel (7_,),, , defined by a local parametrix
Z P e,) IE (M, gy ) is mirror symmetric with respect to (N, gy) (and the v-
transmlssxon interior boundary conditions are given on N) then the kernel (7_y)y, 1,
for Res > —n/2 can be represented by the formulas (analogous to (2.54), (2.55),
and to (2.118)), where v = (o, )= (0,0) and 7Y corresponds to a closed manifold
(M, gp) (or to vg = (1, 1) that is equivalent accordmg to Proposition 1.1):

j2
(Tﬁs')x,,.\v ( )\1 X3 /2 T /),2( I TM )‘I x> for X1,X2 € Ml 5
ﬁ2
(T*»\‘)X|.Xw ( )z\] X2 o2 + ﬁz( 1 .\')—\'|>\‘2 for X1,X) € M2 P
2“’3 M o :
(T— )y, = ' T2 )x.x, for xi,x; from different M, , (3.65)

where ¢, is the mirror symmetry on M with respect to N, acting on the variable
x;. The kernel (T™),, ., can be analytic (meromorphic) continued to the whole
complex plane € > s (separately on the diagonal x; = x; and off the diagonal ). It
follows from [Se2], Theorem 1, or from the proof of Theorem 3.1. Hence (3.65)
is true for all s € €. So the estimate (3.41) is satisfied also in the case of the v-
transmission interior boundary conditions on N if (M, gy ) is mirror-symmetric with
respect to V.

The boundary term ™ Y"1, ¢, of the parametrix P" can be identified with
the same term in the mirror-symmetric case (as it is defined in a neighborhood
N x1 of N =N x 0,/ =[-2,2]). The estimate (3.46) for the integral over I'(,
of (¥7),,, is satisfied for the mirror-symmtric case also. So the estimate (3.41)

is satisfied by the kernel pf’lirz(s) of the operator Y %, y. This estimate for

™ The operator %,, = %,,,(v) is defined in the coordinate chart R”~' x R' 3 (x’,r) by (3.12),
(3.11), (3.10).
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pfixz(s) together with the estimates (3.64), (3.46) for p*(xi,x;), and with the
estimate (3.46) of the integral of (#7'),, ., over I’y provides us with the estimate
341). O

3.5. Appendix. Trace Class Operators and their Traces. A bounded linear operator
A acting in a separable Hilbert space H is a trace class operator if the series of
its singular numbers (i.e., of the arithmetic square roots of the eigenvalues for the
self-adjoint operator 4*A4) is absolutely convergent. If 4 is a trace class operator
then its matrix trace exists for any orthonormal basis (e;) in H:

> (de;,e,) =: SpA

and this sum is independent of the orthonormal basis ([Kr]). It is called the matrix
trace of 4. The Lidskii theorem ([Li]) claims that if 4 is a trace class operator then
the series of its eigenvalues is absolutely convergent: ) |1;(4)| < oo and its trace
Trd := > A,(A4) is equal to its matrix trace: Tr4 = Sp 4.

Proposition 3.8. For t > 0 the operators exp(—t4,, ;) and piexp(—t4,,,) are
trace class operators in the L,-completion (DR/(M)), of DR/(M) > and their
traces are equal to the integrals of the densities defined by the restrictions to the
diagonals of their kernels:

Trexp(—td,, ;)= > ftr(*le'zf@E{,x,,xz(Vo)) , (3.66)
r=1,2ﬁ]

Tr(prexp(—td,,;)) = _ftr(*xZij(llEix‘h(vo)) . (3.67)
M,

Here p; : (DR/(M)), — (DR/(My)); — (DR/(M)), is the composition of the re-
striction to My of differential forms and of their prolongation to M by zero on
another piece of M, iy,,: M, — M, x M, is an immersion of the diagonal and
the exterior product of the double forms (restricted to the diagonal) is assumed.

Proof. The operator 4, := exp(—t4,, ;) is positive definite on (DR/(M)), and for
an arbitrary f € (DR/(M)),, £ =0, it holds (4, f, f) > 0 (where the scalar product
on (DR’/(M)), corresponds to (1.23)).

The operator B, := piexp(—t4,,,;) is positive definite on the subspace
(DR/(M})), of (DR/(M)),. Namely (B,m,m) > 0 for m € (DR/(M)),, m=0, and
it is a non-negative operator on (DR*(M)), : (B.f, f) = 0 for f € (DR/(M)),.

The operator exp(—t4,, ;) is self-adjoint on (DR/(M)), by Theorem 3.2. Its
kernel A(xy,x;) is smooth on H,] X ]l_lrz (as it is proved in Proposition 3.2) and
its trace is equal to

Trexp(—t4,,;) = kz Tr(prexp(—t4,,,,)) = kz Tr( prexp(—tAy,, ;) pi) . (3.68)
Si2 =12

(The matrix trace for exp(—t4,, ;) in (DR/(M)), =: H can be computed with the
help of an orthonormal basis (e;(1)),(e;(2)) in H, where (e,(k)) is an orthonormal
basis in Hy := (DR/(M}));.)

> DR/(My) @ DR'(M;) C (DR'(M)),
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The operator 4; := prexp(— tAVO ;) Dk acting in H = H; @ H, has a continuous
kernel Ax(x1,x2) = tx|,xz(v0) on My x M, (and it has the zero kernel on Mk.
M, &, for ki#k;). The operator 4; is a self-adjoint operator acting in the Hilbert
space Hj and it is positive definite, (44 f, f) > 0 for f € Hy, f 0. So according
to the Mercer theorem [GG], IV.3, [RiN], Sect. 98, the Fourier series for the kernel
of A, by the eigenforms of 4

Ak(xl,x2)= Zujwj(x1)®wj(x2)a (369)

(where y; = 0 are the eigenvalues of A;) converges absolutely and uniformly with
respect to M x M. Hence integrating this series over the diagonals in M; x M,
(for k = 1,2) we obtain the equality (3.66):

Trexp(—tdy;) = 3 Trdy = 3 [ tr(iy, Ax(x1,x2)) .
k=12 k=127,

The equality (3.67) is obtained similarly
Tr(prexp(—t4y,,)) = Tr(piexp(~tdy ) p1) = [ tr(izy, Ai(x1,x2)) -
M,
The proposition is proved. O

Proposition 3.9. For Res > n/2 the operator T_ defined by the integral " (3.18)
and the operators p;i(A3)™° are trace class operators (n := dimM ). The traces of
these operators for Res > n/2 are equal to the integrals over the diagonals of the
densities, defined by the restrictions of their kernels to these diagonals.

Tr((43)™ = Z;zftr(*ni]’({] T_y(x1,%2)) , (3.70)
r=1, M:

Tr(p(40)™ = [ tr (egy iy, To(x1,52)) (3.71)
M

]

Proof. The kernel T_4(x1,x,) for Res > n/2 is continuous on M;, x M, (Theorem
3.1). The operator T_; for such s is nonnegative, (7, f, f) = 0, and self-adjoint. It
is a trace class operator (Theorem 3.1). For Res > n/2 the equality holds (analogous
to (3.68))

TrT_s= Y Tr(p;T—p,)).
=12

The operator p,T_;p; is self-adjoint in the Hilbert subspace DR*(M,)), of
(DR*(M)), and its kernel coincides with the kernel K_;; of T_; on M, x M.
So for Res > n/2 its kernel is continuous and, according to the Mercer theorem
the series on M, x M; for K_j ; expressed by the eigenforms of pjT _sp; (anal-
ogous to (3. 69)) is absolutely and uniformly convergent on M, x M. Hence for
such s the integral over the diagonal of the density, defined by the restriction of
the kernel K_; ;, is equal to Tr(p;7_, p;). Thus the equalities (3.71) and (3.70) are
proved. O

7% The operator T_, for such s is defined on (DR®(M)), and it is equal to the direct sum of the
operator (47 )" on the orthogonal complement to Ker(4y) and of the zero operator on Ker(4?),
by Theorem 3.1.
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