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Abstract: We consider a stochastic particle system on the line and prove that, when
the number of particles diverges and the probability of a collision is suitably rescaled,
the system is well described by a one-dimensional Boltzmann equation. The result
holds globally in time, without any smallness assumption.
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1. Introduction

It is well known how hard the problem is of proving rigorously the validity of the
Boltzmann equation for a rarefield gas from the Newton equations of a system of N
interacting particles. Very few results are available up to now (see [1] and [2] in the
References). The only successful way to approach this problem is to introduce the
BBGKY hierarchy for the jf-particle distribution functions and try to show that they
converge, in the Boltzmann-Grad limit, to a factorizing solution of the Boltzmann
hierarchy (that is a j-fold tensor product of the solution of the Boltzmann equation),
provided that the initial state of the BBGKY hierarchy converges to a factorizing state.
This program can be achieved completely once one has suitable L^ estimates on the
j-particle distribution functions for the Λf-particle system. However this is a very
difficult task in general. In [1] and [2] such estimates have been obtained for a system
of hard balls in special situations: either for a short time or for a moderate perturbation
of the vacuum. For more general situations, the problem of proving L ^ estimates for
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the j-particle distribution functions is much harder than that of proving L^ bounds
for the solutions of the Boltzmann equation itself. This is not yet known (maybe even
false) although recent progress on the existence problem for the Boltzmann equation
have been achieved by compactness methods [3].

In this paper we prove the validity of a one-dimensional kinetic Boltzmann equation
starting from a TV-particle system. The existence theory for such a kinetic equation
is well understood (see e.g. [4] and references quoted therein) and, in particular, L^
bounds for the solutions are available. The underlying one-dimensional model we
are considering is stochastic: two particles on the line collide with probability ε and
go ahead with probability 1 - ε. In this way the number of collisions per unit time
performed by a tagged particle should be finite in the limit N —> oo (ifε ^ N~ι).
Notice that the stochasticity of the model involves only the collision mechanism and
this is strictly pointwise. In other words the stochasticity we allow is the minimal
one we need to give sense to a one dimensional problem. On the other hand the
model we consider is the simplest one with these features. A model of this type has
been considered, at the level of a kinetic picture, by Ianiro and Lebowitz for some
stationary problem [5].

We now anticipate the leading idea in the validity proof. The j-particle distribution
functions satisfy a hierarchy of equations (with the same structure as the BBGKY
hierarchy for Hamiltonian systems) from which it is extremely hard to obtain L^
estimates globally in time. However for any (tagged) group of j-particles we can
prove, for the combination λ = εN small, the following remarkable fact: with a
large probability, each particle interacts with a finite cluster of other particles and
such clusters are disjoint. As a consequence the j-particle distribution function is
expressed as a j-fold tensor product of L^ positive functions plus a correction,
which is small in Lx. This fact, combined with a trace control, allows us to prove
the convergence of the one-particle distribution function to the solution of our one-
dimensional Boltzmann equation and also the propagation of chaos. The tool we use
to outline the above picture is a cluster expansion technique similar to those used
in Equilibrium Statistical Mechanics. The analysis is perturbative (with respect to
the free motion) and therefore the cluster expansion is converging for small values
of λ, independently of the size of the initial datum. Moreover, we can control the
local particle density. This implies, thanks to the finite speed of propagation, that
any particle is influenced, in a small interval of time, by a small fraction of the total
number of molecules. Hence the analysis for small λ can be applied locally in space
and time to give the desired result by an inductive procedure.

Beyond the purpose of the present paper, the cluster dynamics we propose is
interesting in itself and clarify the mechanism of propagation of chaos which is
expected to hold in a rarefield gas. It is conceivable that the cluster dynamics is the
real physical mechanism responsible for the factorization of the j -particle distribution
functions in the limit N —> oo, also for Hamiltonian systems, although this crucial
features would be very difficult to prove.

We also mention a recent result in which the validity of the two-dimensional
Broadwell model was established, assuming the existence of a smooth solution and
starting from a stochastic particle system on a lattice [6]. The techniques of that paper
do not apply to the present context because they were based on a lattice approximation
and on the presence of a noise on the free stream. Our model is less stochastic, as
we said, but is one-dimensional and we take advantage from this fact. Actually the
approach presented here is not directly applicable to solve the problem posed in [6].

The paper is organized as follows. In Sect. 2 we present the model, develop some
preliminary heuristic considerations and pose the problem. In Sect. 3 we discuss some
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preliminary steps concerning our particle model. In Sect. 4 we present and discuss the
convergence result for small λ. In Sect. 5 we face the crucial step of the paper. Here
we develop our cluster expansion and obtain estimates for the j-particle distributions
already used in Sect. 4. In Sect. 6 we show how to extend the previous results to λ
large.

We finally remark that our approach is based on probability estimates, namely
on the fact that the j -particle distribution functions are expectations with respect to
a probability measure and that large and small probability events can be estimated
differently. Actually it seems very difficult to obtain the same result by a purely PDE
approach.

2. The Model

Let us consider a system of N particles on the line. Denote by ZN = (XN, VN) —
{x\V^ . ,xNvN} a state of the system, where x% and vτ are the position and the
velocity of the 2-th particle and XN e RN and VN G VN denote the set of all
positions and velocities. V = {±1,±2} is the velocity space of a single particle. A
collision between two particles is defined through the following law: if vx and v2 are
the ingoing velocities and v[ and υ2 are the outgoing velocities, then two cases are
possible

either (υvυ2) = (2, -1) and (υ[,υ'2) = (1, -2)

or ( 1 ^ 2 ) = (1,-2) and (υ[,υ'2) = (2, - 1 ) .

If i?j = — v2 then the particles go ahead freely.
Notice that the above collision rule is equivalent to a specular reflection of each

colliding particle. However we prefer a labelling for which the direction of the velocity
does not change in the collision because in such a way any pair of particles can interact
at most only once. This fact will play an important role later on. Moreover collisions
of particles travelling in the same direction are considered as transparent.

The dynamics of the system is stochastic, in the sense that each pair of particles
collides (independently) with probability ε and go ahead with probability 1 - ε. Such
a stochastic process can be represented in the sample space:

N(N-l)

β = {0,l} * .

Hence ω G Ω, ω = ω(i,j) is a function defined on the set of all pairs of particles,
taking values 0 and 1. The time evolution of the system is described by means of a
one-parameter group of transformations

T^:(RxV)N ^(RxV)N t e R

defined as follows. T^ZN is the free motion up to the first time in which two particles
(say i and j) arrive at the same position, then if \υi — v | = 3 and tϋ{i,j) = 1 (that
is we are in a precollisional situation) the two particles collide according to the law
given in (2.1), otherwise they keep their free motion. We repeat the procedure up to
the next collision time and so on. Notice that the modulus of the relative velocity of
any pair of particles \vi — Vj\ is an invariant for such dynamics:

- V 3
= \v't-v'.\=3 ViJeN. (2.2)

T^ is, in principle, well defined since, by (2.1), two particles having interacted once
cannot interact anymore. Moreover Tι

ω is almost everywhere (a.e.) defined with respect
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to the Lebesgue measure on (R x V)N. Indeed it is not defined on the sets of all ZN's
which deliver triple collisions and on the set of configurations for which, for some
z, j e N, it is xi = Xj, \υτ — Vj\ = 3 and ω(i,j) = 1, being, in this last case, not
possible to distinguish between pre- and post-collisional configurations: nevertheless
these two sets have measure zero.

Defining the probability of a single event ω G Ω by

p(ω) = JJ ε<*M\i - εγ-<*«J), (2.3)

where Y[ denotes the product on all pairs, {Ω,p} is a probability space and Tι

ω a
hj

stochastic process on it.
Suppose now that the TV-particle system is described at time zero by a symmetric

probability density on (R x V)N denoted by μff. We define the time evolved density
μN(',t)by:

μN(ZNit) = YjV{ω)μ^{ZN,t) := Έ[μ%(ZN,t)], (2.4)

where
μH(ZN,t) = μN(TjtZN). (2.5)

We now want to establish an evolution equation for μ% and μN and to this end we
will proceed by heuristic arguments, which will be made rigorous in the next section.

We have, formally, for any sample ω £ Ω:

( 2 6 )

where 3 = \vi — v | is the relative velocity, dz is the derivative with respect to xi9

δ( ) is the ̂ -function centered in zero, χ(i,j) = 1 if \υt — Vj\ = 3 and 0 otherwise
and

Z'N(iJ) = (x^i, x^ ... XJV'V. .. xNvN).

Taking now the expectation with respect to p(ω) in (2.6), we obtain

- xJ)χ(iJ){μN(Z/

N(iJ\t) - μN(ZN,t)} . (2.7)

This equation is expected to hold because the event ω(i,j) appearing in (2.6) is
independent of the random variable in the curl brackets.

Let us now derive, always formally, the kinetic equation associated to the above
process. We start by the usual j-particle distribution densities, defined as:

ff(Zpt) = JdZN_jμ

N(ZN,t), (2.8)

where άZN_j = Σ dxj+1 ... άxN.
vJ+\...vN
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After a rather straightforward algebra, we obtain from (2.7):

U + £ vΛ // = εGjf" + ε(N - j)CjJ+J»+ι, (2.9)

where

^ \ Σ QiffiZfakM-tfiZ^t)} (2.10)

and

i=\ vj+ιev

(2.11)

We are interested in performing the Boltzmann-Grad limit on Eq. (2.11), that is letting
N —• oo and ε —• 0 while TVε -^ λ, λ a fixed number. Assuming that such limit of
the f^ does exist and denoting it by fj9 these functions are expected to satisfy the
following infinite hierarchy of equations:

\^t + }_^vιdJJfJ=XCjJ+ιfJ+ι. (2.12)

Moreover, if the fj are factorizing functions, i.e.:

3

fj(xιvι,...,xjυj,t) = Y[f(xkvk,t), (2.13)

then / solves, as it is easily seen, the Boltzmann equation associated to our model,
which is

Φt + υdx)f(x, v) = 3λ{/(x, υ')f(x, v[) - /(x, υ)f(x, υx)} , (2.14)

where vx is the only precollisional velocity associated to υ, that is l^ — υ\ = 3.
The aim of this paper is indeed to prove that all the above arguments can be made

rigorous, so that the Boltzmann-Grad limit holds in this context.

3. Considerations on the Model and Preliminary Estimates

In this section we shall make rigorous some of the considerations on the process X^
developed at a heuristic level so far. Moreover, we shall give two basic estimates
which will be employed in the proof of the main result.

We start by introducing the "collision manifold" S^ω defined, for any ω, as:

<r*= ( J j%>, (3.i)

9% = {ZN :Xi = Xj, \Vi -Vj\ = 3,ω(i,j) = 1} . (3.2)
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On .^ω we define the measure dY whose restriction on ̂  is given by:

dY = ^2 X(hJ)d%\ • dxi_ιdxi+ι... dXj . . . dxN . (3.3)
υ{...vN

Such codimension-one manifold ,^ω is indeed of great importance as far as we
are concerned with the dynamics of our system, so that for a correct definition of the
equation describing the evolution in time of μ%, we have to extend the definition of
Tι

ω on ,^ω. For this reason we have to specify whether the velocities of the colliding
pairs in the configurations ZN belonging to ̂ ω are to be interpreted as incoming or
outcoming velocities.

Denoting the free flow semigroup by

SιZN = (x{ + vxt, υx...xN + υNt, vN), (3.4)

we define, for any Y e .^ω:

Tt

ωY = Stπ(Y) for ί G ( 0 , α ( 7 ) ) , (3.5)

where

a(Y) = inf{τ > 0: Sτπ(Y) e ^ ω } (3.6)

and
π(Y) = Y'(iJ) if Ye 3%. (3.7)

Definition (3.5) implies that we consider the elements of .(F'ω as having precollisional
velocities. The set (J Stπ(Y) is of positive measure so that we can conclude

that Tι

ω is defined for dF-almost all Y e .^ω. Furthermore, by (3.5) it follows that

T~ιY = S~ιY for t small. (3.8)

Now we are ready to derive an evolution equation for μ^(ZN, t). Notice that, by the
previous arguments, we can extend μ^( ,t) on the collision manifold according to
Definition (2.5).

Given ZN, let tγ be the smallest collision time in the interval [0, t]. Then by
):

,t) = $(?-* ZN) = μ^{T^-^T-^ZN) = (^(T-^MS-^Zff))

= {μ^(π(S-^ZN), ί - ί,) - μ£(S-* ZN, t - ί,)}

If tλ . . . tk are the solut ions of the equat ions x i — vfi = a; — υ3t wi th 1^ — ̂ 1 = 3 ,
ω(i,j) = 1, i,j = 1 . . . TV in the interval (0, t ) , i terat ing the a b o v e p r o c e d u r e w e
obtain

k

μ%(ZN,t) = μgiS-tZn) + ̂ 2{μ^(π(S-^ZN\t- tr) - μ^S'^Z^t- tr)}
r=l

t

f dτ{δ(Xi - v-τ - Xj + VJT)

x [μ^(π(S-rZN, ί - r) - μ^(S~τZN, t - r)]} . (3.9)
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Integrating now (3.9) against a smooth test function with compact support Φ, we have:

J dZNΦ(ZN)μ^(ZN,t) =

t

+ 3 J άτ J άYΦiS^Ύ) {μ%(π(Y), r) - μ^(Y, r)} . (3.10)
o .rω

From (3.10) we deduce that the r.h.s. is an a.e. differentiable function w.r.t. the time
and

N

j t J dZNΦ(ZN)μ^(ZN,t) = J dZN Σ vxd&ZN^(ZN, t)

+ 3 f dYΦ(Y) {μ%(π(X), t) - μ%(Y, t)}

f ^ Λ

3 V - s : f dYΦ(Y) {μ%(Y'(i,j),t) - μ%<y,t)} , (3.11)

where

Taking now the expectation of Eq. (3.11) we obtain the searched equation for μN:

N

N , t)
d r r N

- j dZNΦ(ZN)μN(ZN,t) = j άZN 5 3 vt

μN(Yf(iJ\t)-μN(Y1t)}. (3.12)

** ί
The last passage is justified by our Definition (3.5) of the flow on &ω\ indeed the
collision between the pair (z, j) is not included in the random variable in curl brackets
in (3.11) (the so-called collision operator) which turns out to be independent of ω(i, j).
Notice that the other possible choice of representing the elements of Jrω in terms
of outgoing velocities would create problems in taking the expectation in (3.11) and
moreover would give the opposite sign to the collision operator.

Let us now derive the first equation (for j = 1) of the hierarchy (2.9). We consider
in (3.12) a test function Φ = Φ(z{) depending only on the first variable and using the
symmetry property of μN we obtain:

j t Jdz&zdfFiz^t) = Jdz^υ&Φ)(zjfdz^

(3.13)

with \υ2 — V\\ = 3.
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Furthermore it is not hard to see that fx

N is differentiable along the stream flow
and

jt fx

N(xx+vxt1vx;t) = 3(N - l)ε{/f (a?! + υιt,υ[,xι + vxt,v'2;t)

- f2{xx + vxt,υx,xx + vγt,υ2\t)}. (3.14)

We have now given a rigorous meaning (actually we have derived the first equation
of the hierarchy (2.9) only, but this is what we need) to Eqs. (2.7) and (2.9), so that
we are ready to prove two basic estimates which will be useful in Sect. 5.

From now on we will assume ω fixed. We recall that f^{Z ,t \ ω), the marginal
distribution densities of μ^, are defined in analogy to (2.8); moreover we will
sometimes be concerned with the "trace" of f^( \ ώ) defined as

f2

N(xx,vx,xx,υ2;t\ω) = I dZN_2μ$f(Tjt(xx,vx,xx,υ2,ZN_2)). (3.15)

Finally, all through the paper the measure μ$ will be assumed as factorizing, that is

N

with
\\fo\\Lχ<A. (3.17)

Denote by k the number of (possible) collisions among the N particles, that is

N

k(ω)=

then we have the following result:

Proposition 3.1. Let ω(l, 2) = 1 and \υ2 - vι | = 3. Then:

oo

y dίy dxJ?{Xι,v{,X!,v2;t\ω) < ̂ ψ .
0

Proof.

oo oo

dt dxxf2

N(xx,vx,xx,v2,t\ω)= ] P / dt
0 V3 VN o

x / dx!dx3 . . . dxNμQ(T~t(xι, ^ , a ,̂ υ 2 , . . . , x ^ υ ^ ^ l , 2)

oo oo

< Jdt J άYμ^{T-\Y)) <fdtj dYμ${T-\Y)). (3.19)
0 . ^ j ^ 0 J^w

Define
β(Y) = inf{r > O:S~TY G J^^}

- oo if ^ " ^ y φ ̂ ω for all ί G (0, oo),
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then the mapping R\^ω —> <Fω

R(Y) = π(S-β{Y)Y) (3.20)

is invertible and preserves the measure dY. Now we have

r=0 J=θ

7x / dtμS(S~tRί(Y)), (3.21)

o

where
Ar = {Y e ^ ω \T~ιY displays r collisions if t G (0, oo)} ,

and from now on χ(A) will denote the characteristic function of the set A. Notice
that if Y € Ar then β(Rr(Y)) = +oo.

Since R is measure preserving, we have:

(3.21) -tΊ« i
β(Y)

<k(ω) ί dY ί dtμ^iS^Y). (3.22)
J J

Notice that Y is of the form (xl1υι,... xιvi... xτv-... xNvN) for a couple (z, j), so
that by (3.22) we get

(3.21) < k(ω)

oo

ί άY [
o
oo

/

r
f-\ \/ / r\~t~ I I (rp /j i •/- n\ nr* n i 4- n i /v>

U I I \ΛLμr\ \JL i — ί/it/j t/i . . . X« — ^2^7 C, . . Jy^
.^-w 0

oo

— Kyίϋ) I O.I j UZZ/XQ \Xγ^ Vγ, . . . X^, c/̂  . . . X^ — ^ V • — ^i)^i Vj > X ]\[) ^7V/

,k{ω) f N k(ω)
< —r- I dZNμ0 (ZN) = — — , (3.23)

3 J 3

from which we complete the proof. D

Our next goal in this section is to give an estimate on the probability density of
one particle f^(-\ ω). To this purpose we need some more definitions which will play
an important role in Sect. 5.

Given an integer k, we denote by Ik = {1,2,... k} the set of the first k integers,
while / will stand for any subset of indices of IN.



612 S. Caprino, M. Pulvirenti

Given ω G Ω, we denote by ch(z) ("chain" starting from ϊ) any set / C IN of
indices such that

ω(i,i1)ω(ivi2)...ω(ik_ι,ik) = 1

for some ordering i l 5 . . . , ik of the set /. The union of all chains starting from the
particle i will be called "cluster of i" and denoted by

cl(z) = (Jch( ϊ ) . (3.24)

Notice that the index i is not included in cl(i). Finally we denote by

(h,k), (3.25)

h,kei

the number of collisions occurring in /. We want to stress that

N(N - 1)
|cl(i)| < n(cl(i) U {i}) < - ^ J-

(here and after \A\ stands for the cardinality of the set A) so that |cl(ί)| is the minimum
number of collisions in order to set the cluster.

Proposition 3.2. Given ω G Ω, assume that

n(cl(l)U{l}) = |cl(l)| = h.

Then

Proof. Let φ = φ{zx) be a positive real function such that

/ •

Then we have:

dzj(f(zι;t\ω)ψ(zi) = jάZNμ^{ZN)ψ{{Tt

ωZN\), (3.26)

where (T^ZN)λ denotes position and velocity of the first particle of the configuration

τίzN.

Let us put (T^JZN)ι = (y, u) and consider, for fixed v1, z2,..., zN, the mapping

xx»y. (3.27)

We will show that
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which implies that the mapping (3.27) is invertible, so that we can conclude, by (3.26)
and (3.16) and (3.17):

jάzxfx

N(zx;t\ω)φ(zx) < A I dZN_xμ»\ZN_χ) jάzxφ(y,u)

f3\h f
~ \2/ J

(3.29)

which is our thesis.
Thus, the whole proof relies upon estimate (3.28), which we now prove. Let us

start by analyzing T^ZN. Let us denote by 0 < t{ < t2 < ... < tm < t the collision
times and by (ij,s3) the pair of particles colliding at time ty j = 1,..., m. Putting

we have, for r e (tut2):

H(τ) = (1 - bx)xH +

bx)xSl - υtιτ,

x H ( τ ) = ( 1 - b x ) x H + bxxsχ - v s τ ,

since v' — — υQ and υ' = — v- . Hence,
l\ S\ S\ l\

Tr

ωZN = (XN(τ), VN(r)) - (W{XN + V^(l)r, V^(l)), (3.32)

where V^(l) = (υλ,..., v[ , . . . , v'Sι,... υN) and Wx is the N x TV matrix whose
elements (Wι)rl are the following:

1 if r Φ ix or sx

1

(3.33)
1 + bγ if r = s{

bx if (r, I) = (ij, sx)

0 otherwise

By iterating m times formula (3.32) we have at time t:

XN(t) - (xx(t),..., xN(t)) = WπιWm_x... WXXN

m-\

r=\

where WJ9 j = 1,.. ., m, are the analogues of Wλ, associated to the j-th collision
and are defined as in (3.33) replacing the index 1 by j everywhere. Similarly,

< r (3.35)

Putting

W{m) = Wm...Wι, (3.36)
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we easily realize that

^- = (W^\{, (3.37)

so that to prove (3.28) we have to give more details on the matrix W(rn\
Since we have, by definition:

r=l

there are two possibilities:
(i) the particle 1 is not involved in the ra-th collision. In this case

( W ( m ) ) M = (W{rn-λ))lΛ , (3.38)

(ii) the particle 1 collides with particle sm. Then

{W^\λ = (1 - bm){W^~ι\λ + bm(W^-\mΛ . (3.39)

We are going to show that in case (ii), under our assumptions, we have

(W(m-\mΛ=0. (3.40)

Indeed:
N

r=l

and iterating this formula we obtain

where at are suitable coefficients and the sum is taken over the indices / of particles
σ 1 ? . . . , σp, each of them being linked to particle 1 by a chain. An element (Wι)ι γ is
different from zero only if there is a collision between the particle 1 and one of the
σ/s, z = 1,... ,p, but this is not allowed by our hypothesis since a collision of this
kind would necessarily imply n(cl(l)) > |cl(l)|. Thus (3.40) is proven and we can
conclude by (3.39):

(W(m))lΛ > I (W(rn-l))lΛ (3.42)

which, by iteration, implies the thesis by (3.37). D

4. The Main Result and the Strategy of the Proof

From now on c will denote any positive constant independent of N and t. The main
result in this paper is the following theorem.

Theorem 4.1. Suppose f0 G L^ is an initial datum for the Boltzmann equation (2.14)
and f = /(x,^,ί) is the solution of the initial value problem. Let {ff*} be the
j-particle distributions associated to the measure μN(ZN,t), solution to Eq. (2.7) with
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N

initial condition μ$(ZN) = Y\ /O0^). Then, there exists λ0 > 0 (independent oft and
1=1

f0) such that for λ = Nε < λ0, for all j and t > 0, the following holds:

lim /lim
N

(4.1)

The proof of the above theorem follows from the following fundamental proposi-
tion, which we shall illustrate in this section and prove in the next one.

Proposition 4.1. Under the same assumptions as in Theorem 4.1, there exist a function
fN:RxV-^R+ and a sequence of functions g^ :Rj x Vj'^ R+, j = 1,.. ., N
such that the following holds:

(4.2)

fc=l

with the properties

(i) fN <c (c independent of t and TV),

(ϋ) hf \\Lι < ^ >
oo

Σ f f N C

V\iV1

Proof of Theorem 4.1. By (2.9), (2.14) and (4.2),

t

\\f{t)-f?{t)\\Lγ<6{\-ε) j άτ
o

x / dx J ^ /(X^ T ) ! / ^ , ^ ; ^ - / ^ ^ , ^ ; ^ !

^ |υ — υ^ |=3

+ fN(x, vx τ) \f(x,υ;τ) - fN(x,υ;τ)\\

-I*!
0

t

0

the factor 6 in (4.6) coming from the trivial observation that

(4.3)

(4.4)

(4.5)

6ε

•6(λ

άx

dx (4.6)
V 1V\

|
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Since / is bounded in L^ (see [4]) by (4.3), (4.4) and (4.5) we obtain for t < T
(Γ arbitrarily fixed):

11/(0 - ./fWlL, < ~ ^ +cjdτ\\f(τ) - f (r)

o
t T

γ + c j άτ\\g? {τ)\\Lχ

o o
t

^{τ)\\Lι, (4.7)

0

so that for any t e [0,T] we have by the GronwalΓs Lemma,

ll/ω-z^ωiL^o. (4.8)

Finally, since by (4.4) it is also

\\f(t)-fN(t)\\Lι^O, (4.9)

we can conclude the proof. G

Remark. In the proof of Theorem 4.1 we have made use of the fact that there exists
a L^ -solution to the Boltzmann equation 2.14. However this is not a necessary
assumption, since proceeding as in this proof we could show that the sequence {/ĵ }
is a Cauchy sequence in Lγ and its limit satisfies Eq. (2.14).

Let us now argue about the meaning and the implications of Proposition 4.1.
We know, following Lanford's arguments [1], that an estimate of the j-particle
distributions of the kind H / ^ H ^ < cj would imply the convergence, but it seems
very hard to deduce it for a large time interval, even for λ small, starting directly
from the hierarchy of Eqs. (2.9). Thus we change point of view. The leading idea in
this paper is to show that the dynamics of our TV-particle system can be interpreted
as a "cluster dynamics" in the following sense: for λ small the cluster of any particle
i is, with large probability, minimal (i.e. n(c\(i)) = |cl(i)|) and this implies that any
tagged group of particles have non-overlapping clusters. Moreover, the probability
of having |cl(z)| large is exponentially small and this fact, together with the previous
considerations allow us to say that the f^ are to be interpreted as "almost" factorizing,
but for a small (order I/TV) error.

5. Proof of Proposition 4.1

For any subset / of the integers we put

2 ; = W , e ί - (5-1)
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We have, by definition:

617

, ) = Dx(n(I U I.) = k)

Id? k>h
\I\=h

(5.2)

where, as before, n(I U / J) = ^ ω(i, k) and cl(/) = (J cl(i)//.

Let us decompose f^ as:

rN rN >N (5.3)

where / ^ represents the contribution to f^ by those ω's for which n(I U Ĵ  ) is
minimal that is:

fJ(ZJ;t) = p = /)χ(n(7 U jp = h)

(5.4)

while R1^ is defined accordingly.
The fact that n(I U Ij) = h necessarily implies that / has to be the disjoint union

j 3

of sets, i.e. / = (J Js, with | Js\ = hs and Σ hs = h. Therefore:
s=\ s=l

Σ
Ls=i

(5.5)

where J s = J s U {s}.
Indeed:

s = l

(5.6)

due to the definition of cluster and to the fact that clusters of different particles have
no intersection.
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We will show that f^ is "almost" a product of functions. More precisely let us
define:

/"(*.;*) = Σ Σ E
h>0 Js:\Js\=h

= Js)χ(n(Js) = h)

and

3 ί) = ff(Z3 0 - *>*>

(5.7)

(5.8)

s = l

Before proving that hζ is small in Lx we need to get a L^ -estimate of fN. To this
purpose we note that by Proposition 3.2:

Σ (-
h>0 I:\I\=h V

Σ(|
>0 I:\I\=h X

= ft)]

(5.9)

Now, to estimate the above expectation we need to introduce one more definition.
Given the set / = cl(l) with |/ | = ft, we call a "graph" of / [denoted by G(I)] a
way to settle ft links among the ft + 1 particles of /, in such a way that each particle
is connected to the first through a chain.

Fig. 1.

A graph is specified when a number s < ft is given, together with s groups of
particles H1,..., Hs such that \Hτ\ = hτ and arranged as follows: H{ is connected

s

with particle 1, H2 with particles of Hγ and so on up to 5, so that YJhi = ft. Moreover

1=1

R\, where i2J is the group of particles of Hi which is connected with the
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l-th particle of the group Hτ_l9 \R\\ = τ\ and Σ rl = \- Notice that h% is always
ι=ι

different from zero, while r\ may possibly be zero.
Given a graph G(I) we denote by χ(G(I)) the characteristic function of the event

"G(/) is realized," that is ω'(i,j) = 1 if i and j are connected by a link in the graph.
We want to stress the fact that if cl(l) = /, then at least a graph G(I) is realized.
Therefore:

^ (5.10)

which implies

]Γ\ (5.11)

Moreover

Σ
3=1 hlt...,h

ΣK=h

Π Σ ίj — I i

χ i ι > i ' ι ι

1 hi_Λ

h, - rι

β = l hu...,h8

 n l ' - - - n s - ι = 2 rl rl
h0 ι hl

h\eh<h\ch. (5.12)
s=\ hu...,hs

hz>0

The last passage in (5.12) follows from the fact that:

hv..hs h^.-hg \hi>0 / V

Hence (5.11) and (5.12) imply that

E(χ(cl(l) = /) < (εc)hh\, (5.13)

which, inserted in (5.9) gives us:

Σ (f ) (εc)^ ! ^ Σ jjrη (^h

/ι>0 X 7 /ι>0 V y* h>0

for λ < λ0, a sufficiently small constant. Thus 4.3 is proven.
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Let us now go back to (5.3) and (5.8): to prove (4.4) in Proposition 4.1 we have
show that g^ := ^ ^ f

It is by definition:
to show that g^ := R^ + h^ is small in the LΓnorm. We start by estimating Rf.

Σ Σ
h>0 lCl<j k>h

\I\=h

x jάZN_Jμ^{T-tzA . (5.15)

Let Jx,..., Jx be defined as follows:

Jx =

Then, by definition, the Jk's are disjoint "subclusters," Jk C cl(fc), union of some
chains starting from k.

Thus, by (5.15) (using the fact that / άZNμ^(Tj* ZN) = 1) we have:

Σ Σ
h>0 Idc k>h hι,...,hJ

\I\=h Σhτ=h

\Jr\=hr

Σ Jτ=y
r=\

E

Lr=l

p = fc)|. (5.17)

Now, since

we have

χ(cl(r) D Jτ) <
G{Jr)

E Y[χ(cl(r)DJr)χ(n(lUlj) =
_r=l

x J ] E[χ(G(J!)... χ{G{J3))χ{n{I U / ^ = fc)]. (5.19)
G(Jι)...G{JJ)

S i n c e i n t h e last s u m j g r a p h s a r e t o b e fixed, a l s o hx,...,h- l i n k s a r e fixed, s u c h
j

that J2 ht = h. It only remains to fix k — h links, which can be settled in

ways, being ./ί =

Σ
G{JX)...G{J3)

. Thus

r = l

k-h

( 5 - 2 O )
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by (5.12) and this implies:

h>0 k>h ^ ' hu...,hj l * * * j '

h>0 r = l

since k > h. Recalling that

we have:

(5.23)

which, inserted in (5.21) gives us finally:

We will also need to control the term
oo

/ at / άxR^(x,vι,x,υ2',t)

in order to prove (4.5). This can be done by exactly performing the same procedure
as before, with the only difference that, instead of bounding as in (5.17) the LΓnorm
of

/ ^ (5.25)/

by one, we make use of Proposition 3.1. This implies that in all passages made from
(5.17) up to (5.21) an extra divergent factor appears, which is k < (h + j)2, but this
does not affect the convergence of the geometric series, so that:

oo

"1 0
 J

Σ dt dxR?(x,vl:x,υ2;t)< ~. (5.26)
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Now, let us estimate the LΓnorm of h^ (see (5.8)). We have, by definition

where

= Σ Σ

(5.27)

(5.28)

r=\

= Σ
\Ji\=hi

\Ji\=lH

, Jr;t)
Lr=i

-f[Eh(zr,hr,Jr;t)Λ, (5.29)

r-\

where Σ is the sum over sets Jι,..., J • such that at least two of them have non-void
intersection and

(5.30)

(5.31)

(5.32)

η(zr, Λr, J r ; ί) = χ(^ r)ξ r(α;, zr),

We start by a bound on ^ ' . It is:

< v
hι,...,h.

s Σ
h\,...,h.

*

J\,..., Jή

\Jχ\=hi

Σ J

TT]

r = l

—>

..,Jj
\=hi

FΓv

j

r = l

(5.33)

Now we have, using (5.13):

Elχ(ArnΈlχ(A,)]
hr,hs

Σ Σ Σ Σ
hr,hs Jr iξϊJr Js' i^J

\Jr\=hr \Js\=h

hr,hs

^Σ
hr,hs

(N\)2
1 1

(TV - Λr)!(JV -h, + 1)!
(cλ)Λ

(5.34)
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Hence, by (5.33) and again (5.13):

ιι^ K^IJJΊΣ, Σ EWA-)]\
 j~2 < I . (5.35)

\ hr Ir I
\ \Ir\=hr /

Let us pass to 9^'. To simplify the algebra we consider for the moment j = 2. We
set, for I,JcIN,

, J ) = {ω(i, k):ieI,keJ}. (5.36)

First ofallwe notice that the function ξ r in (5.32) depends on ω through its restriction
on β ( J r , Jr) and we will denote such restriction still by ξr. Now

E[Ί(zr, Λr, J r ; ί)] = ^

α;r6i7(Jr,Jr)

J] = 0 ) (5.37)

for r = 1,2, where

Ar = {ωr e Ω(Jr, J r ) : cl(r) - J r , n(J r ) = ftr} . (5.38)

The sum over ηr in (5.37) can be computed, giving (1 - £)
hr(N-hr)^ Q n m e other

side

, Γt i , c/1 , LjrΊ\^Zj j ΓL'}, c/o, 6 J J

-- 0). (5.39)

The last two sums in (5.39) give (1 - ^ l + ^ M ^ - ^ i - ^ i _ ε ) ^ 2 a n c i by (5.38):

(5.40)

Hence, inserting (5.40) in (5.29) we obtain

2

II 2 Il-Lj — / j / j

Noticing that

(5.42)

proceeding as usual we obtain, by (5.41), (5.42) and (5.13):

y2 IlLi ^ "77 1 / Λc/X^ I ^ T7 (5.43)
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For the term i ζ J we proceed analogously and prove that

• 3 Ί 3 3 - γ[ h h

E Π χ(Ar)ξr - H E[χ(Ar)ξr] = H E[χ(Ar)ξr] [(1 - ε) '<« ' * - 1]. (5.44)
_r=l J r=l r=l

Following (5.42):

^ e Λ A > h = £ κ , (5Λ5)

we can conclude that

\W\\Lι<^- (5-46)

To achieve the proof of the proposition we have to show that (4.5) holds. Indeed,
proceeding as in the proof of estimate (5.26), by the use of Proposition 3.1 we can
conclude that

oo

ί At / ^ 2 ( x , ^ , x , ι ; 2 ; t ) d x < —, r = 1,2. (5.47)

o

6. From Small to Large λ

In this section we remove the assumption on the smallness of λ we used so far. In
doing this we pay a price: the quality of the convergence we are able to prove is
weaker. This is, probably, a technical limitation only.

The idea underlying this extension is the following. Look at the particle system
at time t + At, with At sufficiently small, and at a small interval A on the line. Due
to the boundedness of the velocities, the particles inside A are influenced only by
the particles in an interval, say Λo, a little bit larger than A, if At is small. Suppose
that at the time t we have convergence to the solution of the Boltzmann equation.
This means that, with large probability, the number of particles in Ao, say N(A0), is
of the order aN9 where a = Σ I dxf(x,υ;t). Since we have L^ bounds for /, a

v Λo

can be made arbitrarily small, provided that A and At are sufficiently small. They
will be fixed in such a way that αλ < λ0, where λ0 is the value under which the
cluster expansion is convergent and λ = εN (in general larger than λ0). On the other
hand the particle system at time t-\- At restricted in A is the same as if the particles
outside Λo were absent at time t, so that we are in a situation for which the number
of particles is aN and consequently the effective λ is aNε — aλ < λ0.

Therefore, using the previous analysis, we expect convergence at time t + At, if
we look at the region A. Then it is not difficult to show that the local convergence
in each region A of small size implies the convergence in any region, so that all the
argument can be iterated to reach an arbitrary time, since At is a priori fixed.

To make rigorous the above argument we need a local characterization of a physical
state of the system (and we shall do it later) and the lemma below:

Lemma 6.1. Let {MJ/V}ΛΓ>I be a sequence of densities of symmetric probability mea-
sures on (R x V)N, Denote by f^ their marginals. Then the following two statements
are equivalent:
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i) For all j and all φ bounded, φ: R x V —> R,

3

ί f"<7 ^
i=\

with f e Lx(Rx V).

TV—> oo

N1
Here (•) denotes the scalar product, (ιsN,φ) = -ττΣψ(zi)> and ^N ^ tne

expectation with respect to μN. %~

Proof. By definition, for N > j :

N(N - 1 ) . . . (TV - j + 1)

Indeed the first term in the right-hand side fof (6.1) arises from the contribution in
the sums in which all the ik's are different and the second one from the contribution
in which at least two indices coincide.

We now establish a proposition which, combined with the results of the previous
section, allows us to prove the convergence for any λ.

Consider now our particle system distributed, at time zero, according to a sequence
of symmetric densities {μN}N>ι such that, for all bounded continuous φ of compact
support and for all j :

EN((vN,φy)-^{f,φy (6.2)

N—>oo

with \\f\\r < M.

Proposition 6.2. Assume hypothesis (6.2) and consider an interval A with \Λ\ = length

of A = δ, δ = β (here λ0 is a value for which the cluster expansion is convergingand λ = εN). Define

Λo = {x ± IT I x e Λ} , T = δ.

Then, for all η > 0 sufficiently small, Zo e(ΛxV)J,t<T the following hold:

where Ω^ is a positive function such that:

ί Ω?(ZΊ,t)φΛZΊ)dZ —> 0 (6.4)
J J 3 Γ3 3 JV^oo

(Λ x vyi
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for all bounded continuous φ-: (A x Vy —> R and

/ f ± ( Z j , t ) = y dZ t ( Q ± l j ) A n _ J E(7 [ ( e ± ' ' ) J V I (T ( :
t Z [ ( a ± I / ) J V ] ) ) (6.5)

being [a] the integer part of a and

k

)k) W /(*) a~k
Ίk(Zk) = χ(Zk e (Λo x V)k) W /(*.) a~k (6.6)

2 = 1

with

a= ί dzf(z). (6.7)

ΛoxV

Before giving the proof of Proposition 6.2 we discuss its meaning and conse-
quences.

From Proposition 6.2 we see that the j-particle distributions / ^ ( ,ί), for t

sufficiently small, are controlled, in the region (A x Vy, by the j -particle distributions

/ ' of a particle system whose initial distribution is 7^, i.e. a product measure

supported in Λo, associated to a system of H — [(aη)N] particles.
Notice that

aNε < X4M(δ + 4δ) < λ0

so that, for a sufficiently small 77, (for instance η < λo/2λ) the cluster expansion,
associated to the initial measure ηH, is convergent. By Theorem 4.1:

lim
± =

in Lj(R x V). (/ι±) is the solution of the Boltzmann equation (2.14) with initial datum
h0 = h±(t = 0) = XΛ (x)f(x, v)a~x and λ replaced by \(a±η). Since η is arbitrary,
we proved:

J dzjf?
ί(zj,t)φj(zJ)= J

(ΛxV)J

for all continuous bounded Ψj'-(Λ x V)j —» R, where h(t) solves Eq. (2.14) with
λ replaced by αλ and initial datum h0 (indeed, thanks to the L^ bounds, it is not
difficult to show that h(t) is Lx -continuous with respect to λ). Finally by a simple
scaling argument and by virtue of the boundedness of the velocities we conclude
that h(x,v,t) = f(x,v,t) for x e A and t < T. Therefore we proved the local
convergence:

Λ!™, / ^/M.*W^)= / dZj/^W/Z,) (6.8)
(ΛxV)3

for all intervals A such that \Λ\ < δ and all ψj'(A x V)j —» R continuous and
bounded.

We now show how convergence (6.2), assumed at time zero, also holds at time T.
Indeed take φ:R x V —> R, continuous bounded, supported in A with \A\ < 2δ. Let
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Λi9 I-ΛJ < δ, i — 1,2 be two disjoint intervals such that Ax U Λ2 = Λ, and φi the
restriction of φ to Λ{. Then:

U—Γ\ \ /k=0

+ (/, ̂ - ^ ( ( z Λ Ψ γ ) k - (/, ̂ ) f e)|} . (6.9)

By Lemma 6.1 and (6.8), the 2nd term in the curl bracket vanishes as N -» oo. The
first term is bounded by:

h)J EN((1' i ΨiY )' ( 6 1 0 )

Also (6.10) vanishes as TV —» oo. In fact, for all j , EN((uN, ^ 2 ) J ) ""* (/? Ψi)3* ag a*n

by Lemma 6.1 and (6.8), so that (6.2) holds at time T, because, using the above
argument, we can deal with any bounded continuous function ψ of compact support.
Finally, since the time T is a priori fixed, we can iterate the argument to prove:

Theorem 6.3. Suppose f0 E L^ be an initial datum for the Boltzmann equation (2.14)
and let f = f(x, υ, t) be the unique solution satisfying

sup sup f(x,v,t) < M (6.11)
0<t<t* x,v

for an arbitrary (but fixed) t* > 0, with M a suitable positive constant depending on
f0 and £*. Let μ^ = /® be the initial condition for the particle system and λ = εN
arbitrary. Then:

lim {f?(t),φή) = {/^(fyφΛ (6.12)

for all j and all continuous ψj : (R x V)J -^ R of compact support.

Remark 1. The Lx convergence of the previous section has been replaced by the weak
convergence (6.12). Actually (6.12) has been proved for factorizing test functions φy

but it can be recovered by a standard approximation argument.

Remark 2. In the above theorem we used the existence and uniqueness of the solution
/ ^ •k(χ)([0>**]»-£'ooO^ x ^)) J u s t t 0 c o n t r o l t n e number of particles (uniformly in
time up to an arbitrary fixed time) in an interval of a given size. This can also be done
differently by means of the iί-theorem. Indeed it is easy to show that the Entropy
per particle

HN{t) = 1 j dZNμN(t) log μN(t) (6.13)

is a decreasing function of time. By the subaddivitity of the entropy:

f?{z,t)]ogtf(z,t)te < HN(t) < HN(0)

= ί /0 log fodz < C < +oo. (6.14)
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From the above inequality we obtain

, 0 - ^ 0 as \Λ\->0 (6.15)
/ •

uniformly in time.
This observation, combined with the remark in Sect. 4 allows us to avoid to assume

the existence of the limit solution, but just to prove it, together with the validity proof.

Remark 3. It is not difficult, at this point, to deal with a particle system in a bounded
box with suitable (for instance periodic) boundary conditions. We do not give here
the details to avoid an even longer and heavy exposition.

Before proving Proposition 6.2 we need some preliminary definitions.
Let ΛQ C R1 be a bounded interval and μ^ be a distribution density of a TV-particle

system.
Denote (for Zn e (Λo e V)n) by:

/ dZN_nμ
N(ZN), (6.16)

the probability density of finding n particles in ΛQ in the configuration Zn and by

dZnμln(Zn), (6.17)

(ΛoxV)n

the probability of finding n particles in Λo.
Finally we set

(6.18)

which is the conditional probability (of having n particles in ΛQ) density and

Φ»$(Zk I n) = J άZn_kμ
N

AQ{Zn I n) (6.19)

its marginals.

Proof of Proposition 6.2. Fix φ-: (Λ x V)j —> R + continuous and bounded and t>T.
Then

(^.,/f (ί)) = JφJ(Zj)ff(ZJ,t)άZJ = JάZNμN(ZN)E(φ(T^ZN)3)

(where ( ^ ) j denotes the first j particles of ZN and μN is the initial sequence for
which (6.2) holds)

Zk I k)Ψ(Zk), (6.20)

where we set
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since the first j particles of Tι

ωZN depend on the particles of ZN which are in Λo

only.
We now estimate the probability of having a number of particles in ΛQ (such

a random variable is denoted by N(ΛQ)) much different than aN. We have, by
Tchebichev inequality:

2>A,(fc) = Prob(|iV(yl0) - aN\ > βN)
\k-aN\>βN

< ί — j EN(\N(Λ0)-aN\2)

= (βNΓ2{E(N(Λ0f) + a2N2 - 2aNEN(N(Λ0))} . (6.21)

Here E ^ denotes the expectation with respect to μN. By (6.2) N ° > a2,

a as N —s oo, so that the right-hand side of (6.21) is bounded by
EN(N(Λ0))

N
1 , where ξj(iV) —> 0 as N —> oo. In conclusion, denoting from now on by <̂

i = 1,2,... vanishing sequences in the limit TV —» oo,

( ^ , /^(O) - ξ2(7V) + ^ p^(fe) / dZ f c μ^(Z f c I fe^Z^). (6.22)

\k-aN\<VN {Λ

J

Q)k

Observe now that for k G [(a — η)N, (θί+η)N], with a sufficiently small η, the cluster
expansion is convergent, that is:

[(a+η)N] k

x jάZIUIΦ
N

A^{ZlΌlj I fcMd^Z^.),.)] , (6.23)

from which we argue that

ξ4(N) + S-(N) < (/f (ί), Ψj) < ξ3(N) + S+(N), (6.24)

where

Ka±η)N]

Σ V(x(cKIj) = D
(cx±η)N]\Ij

\I\=h

N N ^ t l O l 3 ) 3 ) . (6.25)
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On the other hand, for a positive function φ supported in Λo we have:

*=Wv)*
^ Σ ^Λ ftpΐ'

Nj

k=j

X

(Λ0xV)3

J φ(Zι)... φ(zJ)ΦN^(ZJ | k)άZ3 + O (JΛ . (6.26)

We know that p^Q{k) is concentrated around aN as follows by the arguments after
(6.21). In conclusion

A r
(a - β)J 22pA0(k) / φ(z{)... φ(zj)ΦN^J(ZJ \ k)άZJ + ξ5(ΛΓ)

N

(Λ) / Ψ(zθ... ψ{z3)
k~J (ΛoxV)J

x ΦNJ(Zj I A:)dZi + ^6(iV). (6.27)

Choosing a suitable sequence /? = βN —> 0 as AT —> oo, making use of Lemma 6.1
and a standard approximation argument we conclude that:

N r

k=l UoxV)J

for all ψ- continuous and supported in (Λo x V)j.
Inserting Eq. (6.28) in (6.25) we obtain:

[(a±η)N]

- V V
/ /

\I\=h

J dZIUIjf^+j(ZIUIj)φ((Ίt(ZIυI.)^ + ξs(N). (6.29)
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Finally, by (6.2) and the dominated convergence theorem, which we can apply thanks
to the convergence of the cluster expansion, we obtain:

\I\=h

This concludes the proof. D
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