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Abstract: For the solutions of an initial-boundary value problem for the equations
of viscoelasticity with isotropic hardening we derive a uniform bound under a growth
condition for the nonlinearities in the case of one-space dimension. Global-in-time
existence of solutions to large initial data is a consequence of the existence of this
bound. In the most simple form, the equations we consider are

Φt + dx)a = \gγ(\β - a - s\,zλ)(β - a - s),

(dt - dx)β = -\gx(\β -a-slzλ)(β-a-s),

dts = gλ{\β - a - s|, zγ) (β - a - s) - g2ί\s\,z2)s ,

dtz = dt(zι,z2) = h(z,\β-a-s\,\s\),

with suitable functions gι,g2,h satisfying g2 > 0 and

+ M2, ρ<2.

1. Introduction

To study the viscoelastic behavior of metals frequently constitutive models are used
whose derivation is based on the hypothesis that a set of internal variables exist
which together with the stress- and strain tensors completely characterize the state
of the material. In this paper we investigate an initial-boundary value problem for
a system of partial and ordinary differential equations resulting from this hypothesis
and from the hypothesis of small deformations. The constitutive model leading to
these differential equations is shortly presented in the appendix of this paper.

It is known that when the right-hand side of the system of ordinary differential
equations (A3)-(A5) stated in the appendix is the gradient of a convex functional,
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then the theory of monotone operators can be used to prove existence of solutions for
the initial-boundary value problem. This gradient condition is automatically satisfied
in the case when isotropic hardening is not taken into account in the constitutive
model. Accordingly, the monotone operator approach is used in [2, 3, 4, 6, 8, 12, 13]
to prove existence for models without parameters of isotropic hardening, and in [7]
for models with isotropic hardening satisfying the gradient condition. More precisely,
in [7] the elastic-perfectly plastic case is treated, but since this is a limit case of
viscoelasticity, the proof generalizes immediately to viscoelastic models.

However, this gradient condition is not a consequence of the thermodynamic laws.
In thermodynamics it is often assumed that a convex dissipation potential exists
associated with the constitutive model, cf. [9, 11, 13], and under some additional
assumptions the gradient condition follows from the existence of such a dissipation
potential, for instance if the model contains only one parameter of isotropic hardening
and satisfies some other conditions. In general however, neither does the gradient
condition follow from the existence of a convex dissipation potential, nor is the
existence of a dissipation potential itself a consequence of the thermodynamic laws,
and actually, for most constitutive models from engineering the gradient condition is
not satisfied, cf. for example [5, 10].

But since all models are dissipative, it seems probable that a global solution exists
for the initial-boundary value problem also when the gradient condition is not satisfied
and the monotone operator approach cannot be used. New arguments must be used in
the proof of global existence, and in this paper we study this problem and consider the
case when the deformations only depend on one space variable. Under some growth
conditions for functions appearing in the set of constitutive equations L°° -bounds for
the solutions of the resulting initial-boundary value problem to large initial data are
derived. These bounds imply that the solutions exist globally in time.

Our investigations are motivated by viscoelasticity, but we believe that these L°°-
bounds are of independent mathematical interest.

We now state the partial differential equations treated in this paper. To make
these equations better understandable, we start with the equations in the full three-
dimensional form and subsequently reduce them to the one-dimensional form consid-
ered in this paper.

Let S^3 be the space of symmetric 3 x 3 matrices, and let v(x,t) G M? be

the velocity, σ(x,t) G ^ 3 the Cauchy stress tensor and ε(x,t) = ^[Vv(x,t) +

(Vv(x, t))τ] G 5^3 the time derivative of the strain tensor at the point x G M3 at time
t. For tensors e = (ei3)ij=γ^ 3, e = iβi3)ιJ=ι;i we write

(e,e)= Σ eτjetJ, \e\ = (e,e)1/2.

Then in three dimensions the partial differential equations are

(1.1)

dtσ = Dε- gx{\Pσ - s\, z{)D(Pσ - s), (1.2)

dts = J&gx{\Pσ - s\,zλ) (Pσ - s) - J%g2{\s\,z2)s , (1.3)

Here ρ > 0 is the density, which we assume to be constant, and Ό\S^3 —> 5^3 is the
elasticity tensor, which is assumed to be constant, symmetric and positive definite.
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The operator P : 5 ^ 3 -> ̂  is defined by

[Pσ] (x, t) = σ(x, t) - \ (tr σ(x, t))I, (1.5)

where / is the identity matrix. Thus Pσ is the stress deviator, and P is the orthogonal
projector from the space of symmetric tensors to the space of symmetric tensors with
vanishing trace. The variable s(x, t) G ̂ 3 is a parameter of kinematic hardening and
has the dimensions of a stress, z{x,t) = (zι(x,t),z2(x,t)) G R2 are parameters of
isotropic hardening, gι,g2:M>Q x R —> R j , h:R2 x (Rj) 2 —> R2 are given functions
which together with the constant Λ£ > 0 and the elasticity tensor characterize the
properties of the inelastic material.

We assume now that all functions in (1.1)—(1.4) only depend on the first component
of x and on t, and appropriately let x denote now a real variable from the interval
[0, L] with a constant L > 0. We also assume that ρ = 1. Equations (1.1)—(1.4) can
then be written in the form

v\ = ί 0 Q\(v\ ( 0

) )σjt \DQ* Oj \σ)χ \gx(\Pσ - s\,zx)D(Pσ - s)

dts = yMgχ{\Pσ — s

dtz = h(z, \Pσ — s

(1.7)

(1.8)

where the linear operator Q'.S^3 —•> R3 is defined by

Qσ = ( σ t l ) 1 = l j 2 > 3 , (1.9)

and Q*:R 3 -> ̂  is the adjoint of this operator. If v G R3 and if (υ,0,0) is the
3 x 3-matrix with columns t>,0,0, then

Q*^=i[(? ; ,0,0) + ( ^ 0 , 0 ) T ] .

The remaining notations are as above. We also require

Qσ(0,t) = Qσ(L,t) = 0, ί > 0 , (1.10)

υ(χ, 0) = ^°(x), σ(x, 0) = σ°(x),

s(x, 0) = s°(x), ^(x, 0) = z°(:z) 0 < x < L .

Equations (1.6)—(1.11) define the initial-boundary value problem studied in this paper.
The properties of the material modelled by (1.6)—(1.11) are specified by the choice of
the functions gx, g2 and h, and in the engineering literature a wide variety of choices
for these functions can be found, cf. [5, 10] for examples. In particular this is true
for g2 and h, whereas some specifications of gx are determined by basic properties of
viscoelastic materials. A typical example is

with material parameters C and m ~ 5 . . . 7. In this example the function h
in (1.8) and the initial data z° must be given such that the solutions z satisfy
zι{x) t) > c(t) > 0. Often the functions g{,g2,h are not even differentiable.

It is therefore desirable to prove existence of solutions of (1.6)—(1.11) for a class
of functions gλ,g2,h as large as possible. Since gλ,g2 > 0, there is damping in
(1.6)—(1.11), as follows from the energy estimate proved in Sect. 3. This suggests
to use energy estimates to prove existence of solutions, and in [1] this has been
done for a special choice of gx,g2,h. However, this approach seems to be severely
restricted: First of all, since the equations are nonlinear, it required proofs of a-priori
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estimates for derivatives of the solution. But as is seen from [1], the proof of such
estimates is difficult already for first derivatives in the case of one space dimension,
and it strongly depends on the special form of gχ1g2^h chosen. Generally, because
of physical and mathematical reasons it is not probable that solutions of (1.6)-(1.11)
have many derivatives. And secondly, a fundamental difficulty is that the method of
energy estimates only works for small initial data. Because of all these reasons, it
seems desirable and even necessary to prove existence of solutions without recourse
to estimate for derivatives whatsoever, and in this paper we give such a proof for the
global in time existence of weak solutions of (1.6)—(1.11) to large initial data under
growth conditions for gx and h. To state the main results of this paper we need two
definitions:

Let T > 0 or T = oo. A function

(υ,σ,s,z):[0,L] x [0,T)^M3 x ̂  x^3 xR2

is called a continuous weak solution of (1.6)—(1.11) in [0, L] x [0, T) if (v, σ, s, z) G
C([0, L] x [0, T)) and if (υ, σ, s, z) is a weak solution of (1.6)—(1.8) satisfying (1.10)
and (1.11).

Let Ω be a nonempty subset of lRn. We call a function f:Ω->R locally Lipschitz
continuous if to every compact subset K of Ω there exists a constant Cκ with

\f(x)-f(y)\<Cκ\x~y\

for all x,y e K.
The main result is

Theorem 1.1. Let the functions gx ,g2: R+ x R -> Mj, h: R2 x (Ej) 2 -> R2 be locally
Lipschitz continuous, and assume that there are constants M*, M*, ρ > 0 with

)<MΪηe + MΪ (1.12)

for all η > 0, ζ e M, where
0 < ^ > < l (1.13a)

or
0 < ^ < 2 and g2 = 0. (1.13b)

Then there exist constants M3*, M* ,ko,Λ>O such that to all initial data

(υ°, σ°, 5°, z°) e C([0, L], R3 x y3 x ̂  x R2)

satisfying

Q σ ° ( 0 ) = Qσ°(L) = 0 ; t r s ° ( z ) = 0 for all 0<x<L, (1 .14)

there is T > 0 and a continuous weak solution (v, σ, s, z) o/(1.6)-(l.ll) m [0, L] x
[0, T). ΓAw solution satisfies for all0<t<T,

sup |
0<x<L

(1.15)

= sup (|Λ
0<a;<L

=\ I \v\x)\2 + (D-ισ°(x), σ\x)) + - ^ \s°(x)\2dx
2 J JB
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and

ra=0

2 + ρJ2-ρ\

For the constants 7 in (1.15) and K in (1.16) we have in case that (1.13a) holds

7 = 7 ^ — , K = t, (1.17)
1 - ρ

and in case that (1.13b) holds

Ί=l±l^ κ= J (1.18)
2 - ρ (2 + ρ)μ0

with a suitable constant μ0 > 0.
The solution (i>, σ, s, z) is locally unique, that is if(υ^\ σ^\ s^\ z^) are continuous

weak solutions of (1.6)-(lAl) on [0, L] x [0,Γz) to the same initial data for i = 1,2,
1 s •) z ) — {V , <J , 5 , 2̂  j (9w [u, LJ\ x [u, m i n ^ j , 12))'

Note that the series in (1.16) converges, since for all sufficiently large m

by Stirling's formula.
The components (v, σ, s) of a local solution of (1.6)-(1.11) are thus contained in

the space L°°([0,L] x [0,T)) for every 0 < T < oc. It is a standard result that
local solutions can be continued as long as they stay bounded in L°°, which means
that solutions of (1.6)—(1-11) can be continued as long as the hardening parameter z
remains bounded. In the engineering models normally the function h in Eq. (1.8) is
of such a form that z remains bounded, but from the only assumption we made for h,
namely that h is locally Lipschitz continuous, one cannot conclude this. The following
simple assumption, normally satisfied in models of viscoelasticity, is sufficient to
guarantee boundedness of z:

Corollary 1.2. Let the hypotheses of Theorem 1.1 be satisfied and assume that there
exists a monotonically increasing function c* : RJ —•> Rj with

^\) (1.19)

for all (C, ηx, η2) G R2 x (Rj)2. Then to all initial data

(v°, σ°, 5°, z°) e C([0, L], R3 χ y 3 x / 3 x R2)

satisfying (1.14) there exists a locally unique, continuous weak solution o/(1.6)-(l.ll)
in [0, L] x [0, oo). The solution is contained in L°°([0, L] x [0, T))for every 0 < T < oo
and satisfies (1.15).

The estimate (1.15) is the main result of this paper, and as already noted, we believe
that this result is of mathematical interest beyond the application to the equations of
viscoelasticity. Therefore we state it here in the most simple form: Consider the totally
one-dimensional case with v, σ, s G R and D = 1, set Sfά = 1, drop the operator P,
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introduce the Riemann invariants a = ^ (v — σ), β — \ (v + σ), and assume z(x, t)

to be a known function. Then (1.6), (1.7) reduce to

(\P \t)(β-a- s),

Φt - dx)β = ~ gλ(\β - a -

dts = gλ{\β - α - s\, x, t) (β - a - s) - g2i\s\,x, t)s .

Basically, what we prove is that solutions of this system satisfy the estimate (1.15)
if (1.12) is satisfied with ρ < 2. In this simpler case it is not necessary to require
g2 = 0 when 1 < ρ < 2.

From the example given above it is seen that for many engineering models the
condition ρ < 1 or ρ < 2 imposed by (1.13a), (1.13b) is too restrictive. We do not
know whether this condition is necessary for the boundedness of solutions, nor do
we know whether global solutions can be found in a function space larger than L°°
if this condition is not satisfied.

The paper is organized as follows: In Sect. 2 we transform the initial-boundary
value problem into an equivalent periodic Cauchy problem in characteristic form.
In Theorem 2.5 and Corollary 2.6, Theorem 1.1 and Corollary 1.2 are restated for the
reformulated version of the problem. The remaining sections are devoted to the proofs
of Theorem 2.5 and Corollary 2.6. In Sect. 3 we state the local existence theorem and
prove an energy inequality, which is needed in the proof of the a-priori estimate
(1.15). In Sect. 4 and 5 the proof of this a-priori estimate in the reformulated version
is given. Section 4 contains some preparatory results and Sect. 5 the final proof of the
a-priori estimate, and at the end, the proofs of Theorem 2.5 and Corollary 2.6.

2. Reformulation of the Problem

In this section we reformulate the problem in the form of an equivalent characteristic
and periodic Cauchy problem, and at the end of the section we state Theorem 2.5 and
Corollary 2.6, which are the equivalent versions of Theorem 1.1 and Corollary 1.2 for
the reformulated problem.

In a first step we transform the problem (1.6)—(1.11) into a periodic Cauchy
problem. To this end we define some function spaces. For u = (υ,σ,s,z),
ύ = (Ό, σ, s, z) e R3 x y23 x S^3 x E 2 we define a scalar product

[u, ύ] = (υ, v) + (D-ισ, σ) + — (s, s) + (z, z), (2.1)

where (w, w) = Σ wiwi and (σ, σ) = Σ σij°rιj w n e n w > ™ £ Mn, σ, σ

To define scalar products and norms on the spaces R3 xS^3, R3 xS^3 xy3, y3 xR2

we identify these spaces with the subspaces R3χy3x {0} x {0}, R3χy3χy3x {0},
{0} x {0} x / 3 x l 2 of R3 x y3 x y3 x R2 and use the scalar product induced by
[u, ύ] on these subspaces. We also denote these scalar products by [ , ••]. The norms
belonging to these scalar products on the different spaces are denoted by

\\u\\ = [u,u]l/2 • (2-2)
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Let JΓ(R) be the space of all functions (υ, σ, s, z):R -> M? x y3 x ̂ 3 x M2 with

(v,σ,s,*)€C([0,L]), (2.3)

(v, σ, 5,2) (x) = (u, —σ — 5, z) (—x), x φnL for all integers n , (2.4)

(υ, σ, 5, 2) (x + 2L) = (v, σ, 5, z) (x), (2.5)

Qσ(0) = Qσ(L) = 0. (2.6)

These conditions imply that v, Qσ and z are continuous on R. For Γ > 0 or
T = oc let JΓ(M x [0, T)) denote the space of all functions (v, σ, s, * ) : R x [0, T) ->
M 3 x / 3 χ y 3 x M2 with

A x [0, T)) (2.7)

such that
(v, σ, s, z) ( , 0 G Jg"(R) (2.8)

for every ί G [0, Γ).
Finally, let A:E3 x / 3 ^ ! 3 x / 3 denote the operator

0 -Q

-£>Q* 0

with Q defined in (1.9).

Lemma2.1. Lef (v,σ, 5,z) G C([0, L] x [ 0 , Γ ) , E 3 x 7 3 χ y 3 x M2) be a continuous
weak solution <?/(1.6)-l.ll) to the initial data (v°, σ°, s°, z°) satisfying (1.14), and
let (i),σ, s, z) denote the unique extension of (v,σ,s,z) to R x [0, T) contained in

(ϋ°, σ°). Then (w,s,z) is a weak solution of

- Pi)) ' ( 2 1 0 )

dts = J%gλ(\Pσ - Ps\,zx) (Pσ - Ps) - ^g2(\Ps\,z2)Ps , (2.11)

dtz = h(z,\Pσ-P§l\Ps\), (2.12)

w(x, 0) = w°(x), s(x, 0) = 5°(x), z(x, 0) = ̂ °(x). (2.13)

Conversely, if(w, s, ̂ ) € iΓ(R x [0, T)) is a weak solution o/(2.10)-(2.13) with initial
data satisfying

tr5°(x) = 0 (2.14)

for all x G R, ί/î n ίΛe restriction (w,s,z)of(w, s, 5) to [0, L] x [0, T) w a continuous
weak solution o/(1.6)-(l.ll) with initial data

\W ,S ,Z ) — {W ,S ,Z j|[θ,L]

Proof If (v,σ, 5,z) is a continuous weak solution of (1.6)—(1.11) with initial data
satisfying (1.14), then (1.7) implies

dt(irs) = -J&gx(\Pσ - s\,z^)iχxs) - ^Mg2(\s\,z2)trs

in the weak sense in (0, L) x [0, T), since tr Pσ = 0, and

trs(x,0) = trs°(x) = 0, x G [0,L],

hence
trs(x,t) = 0,
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and therefore Ps(x,t) = s(x,t) for all (x,t) G [0,L] x [0,T). Equations (1.6)-( 1.8)
thus hold in the weak sense if s is replaced by Ps on the right-hand sides of these
equations. On the other hand, if (2.10)-(2.14) hold, then (2.11) yields dt(tcs(x,t)) = 0
for all (x,t) G R x [0,T), which together with trs(x,0) = trs°(x) = 0 yields
Ps(x,t) — s(x,t), and we can replace P s in (2.10)-(2.12) by s. The other parts of
the proof are standard, and we leave them to the reader.

In the next step we write (2.10)-(2.14) in characteristic form. The initial data and
solution will be contained in function spaces J^(R) and J^(R x [0, T)), which we
define now.

As preparation for this definition we need some information about the operator A
defined in (2.9). Note that A maps the space R3 x,9^3 of dimension nine into itself and
is symmetric with respect to the scalar product [w,w] = (v,v) + (D~ιa,ά), where
w = (v, a), w = (Ό, ά). Therefore A has a complete orthonormal system {w J of nine
eigenvectors. To determine the eigenvectors and eigenvalues, let λ be an eigenvalue
and w — (u, a) an eigenvector of A. Then

-Qa^Xu -DQ*u = \a (2.15)

hence, for λ φ 0,

QDQ*u = \2u, DQ*Qa = λ2a. (2.16)

The operator QDQ* is symmetric and positive definite on M3, hence has eigenvalues
0 < μ{ < μ2 < μ3 counted according to multiplicity, and a set of eigenvectors
ri> T2 > r3 satisfying

Lemma 2.2. The eigenvalues λ_ 4,..., λ4 of A, counted according to multiplicity, are

{ — fβ—:—, i = — 4, — 3,— 2

0, i = -1,0,1 (2.18)

V T V T ' i = 2,3,4.
L ί̂ {tf̂ }^=_4 &£ β^ orthonormal system of eigenvectors of A with wi corresponding
to X{. Then

1

(0,α2) i / i = - 1 , 0 , 1 ,

where α _ 1 , α 0 , α 1 G 5^3 /orm a basis of the space ker(Q) of dimension three and

satisfy (D~ιat, aQ)) = δ%3 for - 1 < i, j < 1.

Proof All statements follow immediately from (2.15)-(2.17).

In the set theoretic sense, that is, not counted according to multiplicity, let

< χW

be the eigenvalues of A. Then k0 < 3, \{~k) = -λ(k\ and λ(0) - 0. Let Yk C R3 x ^ 3

be the eigenspace of A to the eigenvalue λ(/c), and let Πk be the projector from
R3 x ,9^3 onto Yk orthogonal with respect to the scalar product [w,w]. Then the
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space y_fe x . . . x Yk is isomorphic to the space R3 x y3 and the mapping

w -+ {Π_kw,..., ΠkQw):R3 x ^ 3 -+ Y_kQ x . . . x YkQ (2.20)

is an isomorphism with inverse

/co

(w^~k°^ w^k°^) > w = \ Λ vft^ (2 21)

fe=-fe0

if we define the scalar product on the new space by

/co

\(w^~k^ w^k®^} (w^~~k^ w^k®^}~\ = \ \w^ w^k^~\

k=-k0

with corresponding norm

/ /en \ V2

\k=-k0 /

On the spaces y_fco x . . . x yfco x ^ 3 x M2 and y_fco x . . . x YkQ x ^ 3 we use the

scalar products

), ( tD ( - f c o ) , . . . , w{ko))] + [5, s ] ,

where [(5, z), (s, i)] = —- (s, s) + (2;, i) and [5,5] = —-(s,s), with the norms

\\(w{~k°\ . . . , 2)|| and | |( i i/- f c o ) , . . ., s)|| corresponding to these scalar products.
We also need the operator

(u, a) -> f T ° J (ix, α) = (u, -α):IR3 x / 3 ^ M 3 χ y 3 . (2.22)

We now come to the announced definitions. By $f(R) we denote the space of all

functions (w{~k°\ . . . , w(k°\ 5, z):R —> YL^ x . . . x 7 f c ( ) χ y 3 x l 2 satisfying

(tt; ( - f c o ) , . . . , w(k°\ 5, z) G C([0, L]), (2.23)

^ ( f c ) G C(R, yfc) for fc φ 0 , (2.24)

iϋ(A;)(a;) = ί j iy(~ fe)(-a;), x φ nL for all integers n , (2.25)

(5,2) (x) = (—5, 2) (-x), x φnL for all integers n , (2.26)

(w(~k°\ . . . , z ) ( x + 2L) = (w(~k°\ . . . , z ) ( x ) . (2.27)

For T > 0 or T = oo let J^(M x [0, Γ)) denote the space of all functions

(w{-kQ\...,w{kQ\s,z):Rx [O,T)->y_fco x . . . x YkQ x y3 x I
2



574 H. D. Alber

with
(w(-fc°\ . . . , * ) € C([0, L] x [0, T)) (2.28)

and
^ (2.29)

for every t e [0, Γ).

Lemma 2.3. 77ιe spaces JΓ(R) <zra/ JΓ(R x [0, T)), respectively, are isomorphic to
the spaces J^(R) and J^(R x [0, T)), respectively, and in both cases the mapping

(w, s, z) -> (Π_kQw,..., i7fcow, 5, z) (2.30)

is an isomorphism with inverse

,8,z\. (2.31)

f. We first show that JΓ(R) and βf(R) are isomorphic. Let the mapping defined
in (2.30) be denoted by Ω and the mapping defined in (2.31) by Ω'. From (2.20) and
(2.21) it follows that Ω' o Ω is the identity on JΓ(R) and that ΩoΩ' is the identity on
J^(R). To prove the statement it is therefore enough to show that 4?(JΓ(R)) c J^(R)
and Ω'(gf(R)) C JΓ(R).

To prove the first relation, let (w, s, z) G JΓ(R). It must be shown that the function
(w(~k°\...,w(k°\s,z) with w{k) = Πkw satisfies (2.23)-(2.27). This is clear for
(2.23), (2.26) and (2.27), which are immediate consequences of (2.3)-(2.5). To prove

(2.25), note that the operator ί I maps wk to w_k for 2 < \k\ < 4 and wk to

—wk for \k\ < 1 with wk defined in (2.19). This implies

0 - /

Together with (2.4) we thus obtain for x φ {nL: n integer} that

= Πkw(x) = w(k\x),

which is (2.25). To prove (2.24) observe first that (2.23) and (2.25) imply that w{k)

is continuous on [0, L] and on (—L, 0). Moreover, note that w(x) has the expansion

4

w(x) = ^ b (x)w-

with suitable coefficients b3{x) G R. From (2.3) and (2.6) we conclude with

w{x) = (υ(x),σ(x)) G ί x / 3 and Wj = (Uj,a3) G l 3 x / 3 that

/ 4 \ 4

0 = Qσ(0+) = Q V
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From Lemma2.2 we have Qa_χ = Qa0 = Qaχ = 0, and (2.15), (2.19) imply

Qa3 = -XjT^^ for 2 < \j\ < 4. Therefore (2.18) and (2.33) yield

which yields 6^(0+) = b_j(0+) for \j\ > 2. Since

for a suitable set Nk, which is a subset of {j: 2 < | j | < 4} if |fc| > 1, we obtain with
(2.25) and with N_k = -Nk that

Σ ίI 0 \ / / 0

b_ (0+) w_ = I

which shows that w{k) is continuous at x = 0. In the same way it is seen that u>(fc)

is continuous at x = L, and therefore everywhere, since w^ is periodic with period
2L. This proves (2.24), whence β(JΓ(R)) C j^(R).

To prove i?'(j^(R)) C ^ ( R ) let (w(~ko\... ,w(k°\s,z) e ^ (M). It must be

shown that (υ, σ, 8, z) with (υ, σ) = w; = ^ w<<k) satisfies (2.3)-(2.6). The relations
k=-ko

(2.3) and (2.5) are immediate consequences of (2.23) and (2.27), and (2.4) follows
from (2.26) and from (2.25), since for x £ {nL:n integer}

k0 k0

UU\Jb) / LJU \«^7 7

k=-k0 k=~k0

To prove (2.6), let w(k\x) = (υ{k\x), σ(k\x)). Then

Q fjfγλ — Γί \ Λ rft*)/ \ _ \ Λ ΠΠ^(Ύ\ — \ Λ ΠΓΓ^(ΎΛ O λ4^

u \Jb) — v̂ y 7 u yjb) — 7 v ^ u v*^/ — / ^°c^J KM-') i K )
k=—kβ k=—kβ

since (v(0)(x),σ(0)(x)) G Yo, and therefore, by Lemma 2.2,

From (2.24) and (2.34) it follows that Qσ is continuous on R, which together
with (2.4) and (2.5) yields Qσ(0) = Qσ(L) = 0, which is (2.6). We thus have
β ' ( ^ ( R ) ) C JΓ(R), and it follows that (2.30) defines an isomorphism from JΓ(R)
to J^(R). The corresponding result for JT(R x [0, T)) and j ^ ( R x [0, Γ)) is an
immediate corollary of this result and of the definitions of the spaces JΓ(R x [0, T))
and pφi x [0, Γ)) in (2.7), (2.8) and in (2.28), (2.29). The proof of Lemma 2.3 is
complete.
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In the next lemma we write the system of differential equations in characteristic
form: Let the operators J : R 3 x J^ 3 -> J^3, J* : ^ 3 -> R3 x ̂ 3 be defined by

Jw - J(u, α) = a , J*σ - (0, σ ) G l 3 x y 3 , (2.35)

for every w = (w, α) G R3 x J^ 3, σ G J^ 3. Moreover, let

Pk = ΠkJ*DP:.y3 -> R3 x ̂ 3 (2.36)

for I/cI < fe0, with P defined in (1.5).

Lemma 2.4. For (w, s, z) G JΓ(R x [0, Γ)) and (ιu°, s°, z°) e S\R) let w(k\x, t) -
Πkw(x, t) and wO{k)(x) = Πkw°(x). Then (w, s, z) is a weak solution 6>/(2.10)-(2.13)
to the initial data (u>°, s°, z°) satisfying (2.14) if and only if(w^~k°\ . . . , u>(A;o), s, z) G

x [0, Γ)) w β w f̂l̂  solution of

c

in R x [0, Γ)

w(k)

for all x G R
satisfying

dtw
{k) + λ{k)dxw

ik

\s = J%gx(\Pσ -I

with

(x,O) = wO(k\x),

and ~k0 < k < k0,

) = -gι(\Pσ - PslZl)(Pka - Pks)
yslz{)(Pσ -Ps)-J6t

= /ι(*,|Pσ-Ps|,|Ps|),

σ = j y ww
k=-k0

six 0) = s^(x) z(r

and with the initial data

g2(\Ps\,z2)F

v,0) = z°(x)

(w°(-k°\...

(2.37)

>s, (2.38)

(2.39)

(2.40)

(2.41)

t r s V ) = 0, xβR. (2.42)

/ Equations (2.11) and (2.12) are identical to (2.38) and (2.39). It is clear that
(2.13) holds if and only if (2.41) holds. Therefore it is enough to show that (2.10)
holds if and only if (2.37) holds. We leave the obvious proof to the reader.

This completes the reformulation of the problem. From Lemma 2.1 and Lemma 2.4
it is clear now that Theorem 1.1 is equivalent to

Theorem 2.5. Let the functions QX and g2 satisfy the hypotheses of Theorem 1.1. Then

there exist constants M3, M4 > 0 such that to all initial data

W° =

satisfying
(2.43)

there is T > 0 and a weak solution W = (w{~k°\ . . . , w{k°\ s, z) G J^(R x [0, T)) of
(2.37)-(2.41). This solution satisfies for all0<t<T,

sup \\(w<-k°\...,w<k<>\s)(x,t)\\

< m a x { M 3 [ l + K*(f, Eφ))] \\(wO(-k<>\ ..., s0)^,

[M4K*(t, E(0)) ||(«;O(-fco),..., s 0 ) ! ! ^ } , (2.44)
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where
= sup IKuΛ-^,..., w°^\ s°) (x)

The solution (u>( k°\ ..., z) is locally unique.

Here #(0), K*(t, Eφ)) and 7 are the constants from Theorem 1.1. The functions υ°
and σ° in the definition of E(0) are given by

Corollary 1.2 is equivalent to

Corollary 2.6. Let the hypothesis of Corollary 1.2 be satisfied. Then to all initial
data W° = (w(~k°\ ..., z) G £S(R) satisfying (2.43) there exists a locally unique
weak solution W G p(R x [0,oo)) of (2.37)-(2.41). The solution is contained in
L°°(IR x [0, T))for every 0 < T < 00 and satisfies (2.44).

The proofs of Theorem 2.5 and Corollary 2.6 and therefore the proofs of Theorem 1.1
and Corollary 1.2 are given at the end of Sect. 5.

3. Local Existence and Energy Estimate

In this section we formulate the local existence theorem and prove an energy estimate,
which is needed in the proof of the a-priori L°°-estimate of Theorem 2.5. To formulate
the local existence theorem we need some definitions.

For W G j^(M), W G pf(R x [0, Γ)) and 0 < t < T let

||WΊI^ = sup ||W(a;)||, H^IL,* = SUP \\W(x, τ)\\,

0<τ<ί

if the supremum on the right-hand side of the second of these equations is finite. Here
|| || denotes the norm onY_k x . . . x Yk x 3^3 x R2 defined after Lemma 2.2.

Let T > 0 and W G p(R °x [0, T)) be°a weak solution of (2.37)-(2.41). We call
T maximal time of existence of W if and only if there does not exist δ > 0 and a
weak solution W G j ^ ( R x [0, T + δ)) of (2.37)-(2.41) with W ) M x [ 0,τ) = w-

The local existence theorem is

Theorem 3.1. Let the functions gx, g2: R^ x E -> E j , h: R2 x (Mj)2 -> M2 fee /ocα«y
Lipschitz continuous. Then to every initial data W° = (iί;O (~ f eo) ?... ? ̂ °^o) 5 ,§0̂  ̂ o^ ^
^ ( E ) satisfying trs°(x) = 0/or α// x G E ί/ι^r^ ^x^ίί α T > 0 and a weak solution
W = (w{-k°\ . . . , w(k°\ s, z) € ^ ( E x [0, T)) (9/(2.37)-(2.41). Γ/ι̂  jo/Mrion w locally
unique.

If there exists a maximal time of existence T^ < oo of this solution, then

sup 11̂ 1100,7 = 00. (3.1)

Sketch of the Proof We only state the idea of the standard proof. Let T > 0. Below
we define an operator B:p(R x [0,T» -> ^ ( E x [0,Γ)) such that ^ is a fixed
point of B if and only if W is a weak solution of (2.37)-(2.41). Of course B depends
on W°. Next it is shown that if C > 0 is a constant, then there exists To = T0(C) > 0
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such that to all initial data W° with || W^H^ < C/2 the operator B maps the closed
set of all W G p(R x [0, To)) with ||W^H^^ < C into itself and is a contraction on
this set, hence has a unique fixed point. This yields existence and local uniqueness
of the solution, and at the same time (3.1), in a well known way. To define B let
W = (w(-k°\ ...,z)e p(R x [0, T)) and set

w(k\x, t) = J[-gx(\Pσ - Ps\, zx) (Pkσ - Pks)} (x + λ(fc)(r - t), τ)dτ

o

+ wm(x-λ(kh), (3.2)
t

s(x,t) = <J% I [gΛ\Pσ - Ps\,zx){Pσ - Ps)
J
o

— g2(\Ps\,z2)Ps](x,τ)dτ + s°(x), (3.3)
t

z(x, t)= [h(z, \Pσ - Ps\, \Ps\] (x, τ)dτ + z°(x) (3.4)

o

with
k0

σ = J ^ ™{k) (3-5)
k=-k0

Now set

The details of the proof are left to the reader.
Next we state the energy inequality. For W = (w(~k°\ . . . , w(k°\ s,z) e p(R x

[0, T)) define the energy

E(t) = E(t, W) = l- ί Σ [w«\x, ί), w{k\x, t)] + ~ \s(x, t)\2dx
o ̂ = - ^ 0

L

^ \s(x, t)\2dxM 0 ( *)1 + \( t)\2

o
L

- 1 ί\v(x, (3.6)

with

k0

w = (υ, σ) = Σ,
k=-k0
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Lemma 3.2. IfWe gf(R x [0,T)) is a weak solution 6>/(2.37)-(2.41), then

t L

E(t) - E(0) = - / / gx(\Pσ - Ps\,zx) \Pσ - Ps\2dxdr

o o

t L

~ f f g2(\Pslz2)\Ps\2dxdr.

0 0

Proof Since

-gλ{\Pσ - Ps\, zγ) (Pkσ - Pks) e C([0, L] x [0, Γ)),

it follows from (2.37) that w^k\x,t) is continuously differentiable in direction of
the vector (λ(/c), 1). We denote the derivative by D(λ(k) X)w

{k) and obtain from the
fundamental theorem of calculus

k° } Lr
2 V / [w(k\Diλ(k)l)w

(k)]dxdr

t L

J j D(λ(k)Λ)[ww,w(k)]dxdτ

k° ί ί
k=-k0 { I
+ \{k) ί[w(k\L, r), w(k\L, r)] - [w(fc)(0, r), w(k)(0, τ)]dτ i. (3.7)

For k φ 0 the function x \-+ w(k\x, t) is continuous on M,by (2.24), and therefore
satisfies (2.25) for all x eR. From (2.25) and (2.27) we thus obtain for k Φ 0 and
x = 0 or x = L

k=-k0 {

k0

k=-k0 { {

k° ( L

hence

[w{k\x, t), w{k\x, t)] = [w'k(x, ί), w~k(x, t)].

Since λ(0) = 0 and λ(fc) = -X(~k\ we thus obtain

Z_^ J 5 ) 5 5 5 )

k——kr\ n
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Insertion of this equation into (3.7) yields together with (2.37)

L

/ [w(x, t), w(x, t)] — [w(x, 0), w(x, 0)]dx

0

= -2 J2 f j[w{k\9ι{\Pσ-Ps\,z{){Pkσ-Pk

k=-k0 0 0

t L

= -2 / gι(\Pσ-Ps\,zι)(Pσ-Ps,Pσ)dxdr,

8)]dxdτ

t L

(3.8)

0 0

because the definition of Pk in (2.36) implies

k0

Σ Γniil ' (IΎ* -f-\ y~t (\ ΊDs-r P θ | */ \ (~P ΓT "P θ\ (T* /Λl

Lϋu \ ^ 5 ̂ / j ί/i \ •* ^ — - ^ ^ p ^ i / \ A* — k / v1^} / J

fc=-fc0

= Σ 9ι(\Pσ - PslZι)[w(k\j*DP(σ - s)]

= gx(\Pσ - Ps\,z{) [w, J*DP(σ - s)]

= gλ(\Pσ - Ps\,z{) (D~xJw, D(Pσ - Ps))

= gx(\Pσ - Ps\,zλ) (σ, Pσ - Ps) = gx(\Pσ - Ps\,z{) (Pσ, Pσ - Ps).

Finally, (2.38) yields

L

-^J\s(x,t)\2-\s(x,0)\2dx
0

t L
2 ί f

~ ̂ s J J St x'τ's x'τ

0 0

t L

= 2 ί l(9ι(\Pσ - Ps\,zx) (Pσ - Ps) - g2(\Ps\, z2)Ps, Ps)dxdτ.
0 0

Combination of this inequality with (3.8) yields the statement of the lemma.

4. Fundamental Solutions

In the proof of Theorem 2.5 we also need some information about fundamental
solutions of linearized versions of Eq. (2.37) and (2.38). These fundamental solutions
are defined and studied in this section. As motivation for the following definitions
note that Eq. (2.37) and (2.38) can be written in the form

d
-—• w'

m(x + λ ( f c )(τ - ί), r) = -gxPkJw{k\x + \{k\τ - Q, r) - a (4.1)
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for k φ 0, and

d_ (w®Xx,τ)\ = ( -9ιP0J 9ιP0 \ (w«»(x,τ)\ _

Or \ 8(x,τ) ) \.JS9lPJ -y£{gλ+g2)P) \ s(x,τ) ) K '

with

*=9lpk\j y^ w{j) - s

If gλ{\Pσ - Ps\,zι),g2(\Ps\,z2), a and b were known, then (4.1) would be a linear
system of ordinary differential equations for u>(/c) and (4.2) would be a linear system of
ordinary differential equations for the pair (w(0\s). The functions Fk(τm,x,t) defined
in the following essentially are the fundamental solutions of these systems, and in the
proof of the a-priori estimates in the succeeding section they are used to represent the
solutions w{k) and s.

A linear operator F from M3 x,c/^3 to the subspace Yk of M? xS^3 can be represented

by a matrix. If this operator depends on a real parameter r, then — F(τ) denotes the

operator obtained by differentiation of the matrix elements of F. In this section we
assume that (w(~k°\ . . . , w{k°\ s, z) e J^(M x [0, T)) is a given function. For brevity
we set

5iCM) = 9ι(\Pσ(x,t) - Ps(x,t%zx{x,t))

k0

with w = (v, σ) = Σ w{k).
k=-h0

Definition 4.1. Let (z, ί ) G l x [0, T), 0 < tQ, r < Γ.
(i) For every integer k φ 0 w/ί/z \k\ < k0 let

= Fk(to,τ;x,t)

be the linear operator from M3 x ,9^3 to Yk such that

^ Fk(τ) = -gλ{x + λ (/c)(r - t), r)PkJFk(τ), 0 < r < T , (4.4)

^b(*o) = ̂  ( 4 5 )

(ii) L^ί

^0,l(r) = ^0,1^0' T ' X Ό

Z?̂  the linear operator from R3 x y3 x , ^ 3 to F o and

the linear operator from M3 x J^ 3 x y3 to 5^3 such that

d

-gλ(x,τ)P0J gι(x,r)P0

ix(x,T)PJ - .
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forO<τ <T, and

( Py«°Λ = Π (B I, (4.7)
^ 1 0,2^0/ '

with Πo Θ / :M 3 x y3 x y3 ^ Yo x y3 defined by

We set

F0(τ) = Po(tOiτ-,x,t) = ί ^ 0 ' 1 ^ ) ( 4 8 )

F 0(τ) is a linear operator from R3 x y3 x y3 to Yoχy3.
(iii) For every integer k with \k\ < k0 let

F (t ' x t) = F (t t' x t). (4.9)

To study the properties of Fk we need the following results.

Lemma 4.2. (i) For every integer k with \k\ < k0 the operator PkJ\γk

 :^k ~^ ̂ k ^
selfadjoint and nonnegative, if the space Yu is equipped with the scalar product [w, w]
induced by the scalar product on R3 x y^.
(ii) The operators Ux, U2: Yo x y3 —> Yo x y3 defined by

-poJ

are selfadjoint and nonpositive, if the space Yo x J^ 3 is equipped with the scalar
product [(w, 5), (w, s)] induced by the scalar product on R3 x S?3 x y3. For every
(x, ί ) G l x [0, T) the operator

U = §!(*, t)Uγ + §2(x, t ) t/ 2 :F o x ^ 3 ^ r 0 x ^ 3

w selfadjoint and nonpositive.

Proof (i) The definitions of [w,#] at the beginning of Sect. 2 and of J, J*,Pk in
(2.35), (2.36) imply for w e l 3 x y3, w eYk

[PkJw,w] = [ΠkJ*DPJw,w] = [J*DPJw,Πkw]

= [J*DPJw,w] = (D~ιDPJw,Jw) = (PJw.PJw). (4.10)

If w, w e Yk we obtain in the same way

[w,PkJwPkw] = (PJw.PJw). (4.11)

Equations (4.10) and (4.11) together show that PkJ^Yk is selfadjoint and nonnegative.

(ii) Equation (4.10) and the definition of the scalar product on R3 x y3 x y3 at the
beginning of Sect. 2 yields for (w,s) eR3 x y3 x y3ΛwJ) eYQ x y3

[U{(w, s), (ώ, §)] = -[P0Jw, w] + [Pos, w] + —^ (<J%PJw, 3) - — (J&Ps, s)

= -(PJw, PJw) + [Π0J*DPs, w] + (PJw;, Ps) - (Ps, Ps)

= -(PJw, P(Jw - s)) + (D~ιDPs, Jw) - (Ps, Ps)

= -(P(Jw - s), P(Jw - §)). (4.12)
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For (w, s), (w, s) G Yo x S^3 we obtain in the same way

[(w, s), t ^ w , s)] = -(P(Jw - 5), P(Jw - §)).

This equation and (4.12) together show that Uγ is selfadjoint and nonpositive. To
prove this statement for U2, note that for (w, s), (w, s) G M3 x S^3 x . ^ 3 we obtain

[U2(w, s), (u>, 5)] = —-Z (—.yMPs, s) — — (Ps, Ps) = [(if, 5), U2(w, s)], (4.13)

and the statement follows. The statement for U is an immediate consequence of these
results, since gγ{x,t),g2(x,t) > 0.

After this preparation we can prove the following

Lemma 4.3. (i) There exists μ > 0 such that for every integer k φ 0 with \k\ < k0,
for all (x, t)eRx [0, T), 0 < t0 < t and all w G M? x y3

and

\\Fk{t^x,t)PkJw\\<^\ - X(k\τ - t),τ)dτ\\\PkJw\\ (4.15)

with \\w\\ = [w,w]1/2.
(ii) Let (x, t) e R x [0, T), 0 < ί0 < t and (w, s) £ R3 x ^ x 5^3.

0;x,ί)](«;,s)| | < \\[Π0® I)(w,s)\\ < \\(w,s)\\ (4.16)

= [(u>, s), (if;, s ) ] 1 / 2 .

(iii) Lei #2(77, C) = Ofor all (η, ζ) G Mj x R. Γ/zen ί/zere ejcwto z/ > 0 ŵc/z that for all

(x, ί ) e M x [0, Γ), 0 < t 0 < t and w G M3 x ^ 3

<exp<^ -z/ / Qx(x,τ)dτ Jw

*o

, (4.Π)^o(*o;^*)( ^ p ) Λ"

where the operator

Proof (i) Since P^J\Y is selfadjoint and nonnegative on Yk, there exists a set

y0 x ^ 3 w defined by

of eigenvalues 0 < μ\} < μ2 < . . . < μ\ ) of this operator, counted according

to multiplicity, and an orthonormal system of eigenvectors ω\k\... ,ω\k\ which is

complete in Yk. By

we denote the orthogonal projector onto the subspace spanned by the eigenvector

ωψ\ With these definitions and with Definition 4.1 we obtain
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To prove this, note that differentiation of this function shows that (4.4) is satisfied,
and that

Ik

which is (4.5). This yields the statements, since the solution of (4.4), (4.5) is unique.
For the function defined in (4.9) we thus have

( I f ~ t), η)dη \ JFk(t0; x, t) = 2 ^ I exp <̂  - μ ^ / gλ(x + λc^(r7 - ί), r/)dry ^77ω<fc) I, (4.18)

whence

\\Fk(t0; x, t)w\\2 < ^ ||77^(/c)κ;||2 = UTT^-L^H2 < \\w\\2

3 = 1 °

for 0 < ^0 < t and w G M3 x ¥Δ. This proves (4.14).

Observe now that for w e ker(Pfc J) Π yfc Eq. (4.10) yields

0 = [Pk Jw, w] = (PJw, PJw),

hence P Jw = 0. From (2.36) we thus obtain

ker(Pfc J)Yk = ker(P J) ΠYk. (4.19)

Now if μ3 ^ = 0, then Λ" (fe> is a projector onto a subspace of ker(Pfc J)Γ\Yk. Therefore

Eqs. (4.10) and (4.19) yield for all w,w eM? x ^ 3 ,

[Πjk)PkJw, w] = [PkJw, Πjk)w] = (PJw, PJΠjk)w) = 0,

which implies Π (k)PkJ = 0. With

μ = min({/i^: - k0 < j < fe0,1 < i < lpμ[j) φ 0} U {1}) > 0,

we thus obtain from (4.18) that

= Σ ( e x P I - μ f / §i(χ + X(k)^ ~ *)- rDdη \ J \\Ajk)PkJw\\

l 2

\2

< ί expj -μy^ίx + λ^Jί-^^dηl j \\PkJw\\2,

which proves (4.15).
(ii) From (4.6), (4.8) and the definition of U in Lemma 4.2 we obtain with

u = (w, s),

£ \\F0(τ)u\\2 = 2 ̂  F0(τ)u, F0(r)M]

= 2[UF0(τ)u,F0(τ)u]<0,
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since F0(τ)u E Yo x S^3 and U is nonpositive on this space, by Lemma 4.2(ii). For
t > t0 we thus conclude from (4.7) that

\\F0(t0;x,t)u\\ = \\P0(t0,t\x,t)u\\

< \\Po(to,to;x,t)u\\ = \\[Π0Θl]u\\ < \\u\\,

which is (4.16).
(iii) Since U{ is selfadjoint and nonpositive on Yo x J^ 3 , there exists a set of
eigenvalues 0 > vx > ... > vx of Uι, counted according to multiplicity, and an
orthonormal system of eigenvectors # 1 ? . . . , ϋl9 complete in YQ x y3. By

we denote the orthogonal projector onto the space spanned by the eigenvector ϋy

When g2 = 0, Eqs. (4.6) and (4.7) can be written as

_ pQ(τ) = gχ(X) t)UxP0(r), F0(t0) = Πo Θ / .

From these equations we obtain exactly as in the proof of (4.18) that

' / if } \
F 0 (t 0 ;x,t) = y , e x P { vi \ 9\(x^)dr >Πϋ . (4.20)

Now observe that (4.12) yields for (w, s) e (kerUJ Π (Yo x y3) that

0 = [Ux(w, s), (ιy, 5)] - -(P(Jw - 5), P(Jw - s)),

hence P(Jw — s) — 0. Together with the definition of C/j in Lemma 4.2 and the
definition of PQ in (2.36) it follows that

(ker£/j) Π (Fo x y3) = {(^, 5) e Fo x y3:P{Jw - s) = 0} . (4.21)

Now if ẑ  = 0, then Πϋ is a projector onto a subspace of (kerί/j) Π (1^ x J^ 3 ) .

Therefore (4.12) and (4.21) imply for (w, s), (w, s) e R3 x y3 x i ^ 3 with

(it/, s') = ^ (ri>, s) G (ker C/̂  Π (y0 x J^ 3

that

= -(P(Jw - 5), P(Ju/ - s')) = 0,

which yields Π$ U{ — 0. Again using the definition of Uλ in Lemma 4.2 we thus

conclude that

for all w eR3 χy3. With

v = mm({-ιsj:l <j <l,vά ^ 0 } u { l } ) > 0 ,
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we thus conclude from (4.20) that

1 ( ί f )
Σ e x p I V3 / 9ι(χ>r)dr\

/ f t \ \ 2

^(x,r)( i r

which proves (4.17) and completes the proof of Lemma 4.3.

Jw

5. The L°° A-priori Estimates

In this section we first prove an L°° -estimate which is basic for the results of this
paper. At the end of this section we use this estimate to prove Theorem 2.5 and
Corollary 2.6. Before we can state the estimate, we introduce some notations used
throughout this section.

For W = (w(-k°\ . . . , w(ko\ s, z) G j^(M x [0, Γ)), (x, ί ) G l x [ 0 , T ) , 0 < τ < Γ
and —k0 < k < k0 we set

W(k)(x, t) =

and
Gk(τ χ,t) = 9ι(\Pσ - Ps\, zλ)(x + λ(k)(r -

Moreover, for this W let W = (W{~k^\ . . . ,

(5.1)

(5.2)

| | ^ W ) | | 2 = Σ ||W(fc)(χ,ί)||2

k=-k0

and

11^11^= sup HW^r)!!. (5.3)
0<τ<ί

Here || W{k\x, t)\\ is the norm of M3 x i^73 when fe φ 0 and of M3 x ^ 3 x ^ 3 when
fc = 0. From the definitions given before Lemma 2.3 it is clear that

\\Wf(x,t)\\ = \\(w(-k°\ ... ,w(k°\s)(x,t)\\.

The same conventions are also used for W £ J^(M), where (5.3) is replaced by

The a-priori estimate is

Lemma 5.1. Let the functions g1 and g2 satisfy the hypotheses of Theorem 1.1.
Then there exists a constant & with the following property: Let T > 0 and let
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W = (w{~ko\ . . . , wik°\ s, z) G j ^ ( R x [0, Γ)) be a weak solution of (2.37)-(2.41)
to the initial data WΌ = (wO{~k°\ . . . , wO(k°\ s°, z°) G gf(M) τ^n we have for all
(x, t)eRx [0, T) and all \k\ < fc0,

max Gk(τ;x,trK*(t,E(0,W))]\\(W°)'\\
<τ<ί J0<τ<ί

(5.4)

with K*(t, E(0, W)) defined as in Theorem 1.1 and with

when g2 = ®

otherwise.

The a-priori estimate in Theorem 2.5 will be a corollary of this estimate.
We now prove Lemma 5.1. The proof is in several steps and needs several lemmas.

At first we need a representation formula for the solution W.

Representation Formula. In this section we always assume that

W = (w(~k°\ ...,z)e &(R x [0, Γ))

is a weak solution of (2.37)-(2.41) to the initial data W° = (wO(~k^\ . . . , z°) G
From (4.1) and (4.3) it follows for (x, ί ) e R x [0, Γ) and k j - 0 that

r

w(k)(x + λik)(r -t),τ) = - j Fk(η, r; x, t)a(x + λ(k\η - ί), η)dη

(5.5)

To prove this formula it suffices to differentiate this equation with respect to r.
Using (4.4) and (4.5) and noting that wO(k\x) G Yk and a(x,t) G Yk, which is a
consequence of the definition of Pk in (2.36), it follows that (4.1) is satisfied and that
w(k\x - λ(k)t,O) = wO(k\x - X(kH). This justifies (5.5), since solutions of (4.1) with
given initial data are unique. Setting r = t i n (5.5) we obtain with (4.9) and (5.2) for
k Φ 0 that

w(k\x,t) = W(k\x,t)

t

= - JFk(τ;x,t)Gk(τ;x,t)Pk

o

+ FJ0;x,t)uP{k)(x - \{k)t).

k0

w(3) _ g \{k\τ-t),τ)dτ

(5.6)

An analogous formula for W(0) = (w(0\s) is obtained from (4.2), (4.3) and (4.6)-
(4.9). To write this formula and (5.6) in a unified way, let for integers k, j with
—k0 < fe, j < k0 the operator Pkj be defined by

W -D (5.7)
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w i t h i n ) defined as in (4.17) and with

(w, s) ^ (J, -I) (w, s) = (J, ~I) ( W J = Jw-s:R3 x ,^3 x ,r3 -> . ^ 3 .

W i t h ( 5 . 1 ) w e t h e n o b t a i n f o r - f c 0 < k < k0 a n d ( α , ί ) e R x [ 0 , Γ ) t h a t

W(k\x,t) = - Fk(τ\x,t)Gk(τ;x,t) ^ PkjW
ω(x + Λ(/c)(r - ί),r)dr

o J = 7ί 0

4- Ffc(0; x, t)W0{k\x - λ{k)t). (5.8)

We can apply this formula recursively. To simplify the notation in the resulting
formula, let for j , k G {—fc0,..., k0} with j φ k,

Hjk(r;x, t) = -F3(τ\x, QG^r;x, t)Pjk . (5.9)

For a non-negative integer n and for —ko<k<ko let

Mn(fc) = {j = (Jo, Jn+ΰ e {"^0> . & θ } n + 2 : iθ = *
and j , 7̂  j ι + i for alΠ = 0 , 1 , . . . ,n} . (5.10)

For j = (Jo,. . . , jn+1) e Mn(fc), a; G R and 0 < ίn+1 < tn < ... < t0 < T define

Ln{x,t0,tv.. -,tn+ι,j) = HJoJι(t1;x,to)HJιJ2{t2;x

ra-l

Recursive application of (5.8) yields for every non-negative integer n,—ko<k<ko

and (x, t0) e R x [0, T) the representation formula

*0 tn

r _J_ \ \W(f — f \ f \rlt d+
i / /Λ v^^-f-l //? n + 1 I 72+1 * * * ^ ^ 1

1=0

n-\
t r n

m=0 jeMm(k)

F^Jo x- Lm+\

V /=0 /

fc(0; a;, ίo)PFO(fc)(x - \{k\). (5.12)
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Lemma 5.1 is proved by estimating the different terms in this formula. The necessary
estimates are derived in a sequence of lemmas.

Lemma 5.2. Let gx: R j x R —» R j be continuous and assume that there are constants

Mf, M2* > 0, 0 < ρ < 2 with

λf Ϊ (5.13)

for allη>0,ζe R. Let

r=\ + \, (5.14)

&> = m a x { | | P i ; | | : - k 0 < j , I < k 0 , j φ l ] , (5.15)

*)̂  + ( y _
For j , /c, / G {—A:o,..., £;0} with j φ k, j φ I and for 0 < t0 < T we then have

ί ί
/ / \\H,1(U\x-\-λik\t] -U),tλ)\\2rdtΊdtλ < A(U + l)2(E(0, W) + L). (5.17)

J J J

o o

The norm in the integrand in (5.17) is the operator norm of H t.

Proof From the definition of Hjt in (5.9) and from (4.14), (4.16), (5.15) we obtain

I Iff j(τ\y,t)\\ < G -(r;y,ί) II-P JI < S^G (τ;y,t). (5.18)

Therefore

*o *i
r r

0 0

0 0

2 r r r

J J
0 0

= ^2rN. (5.19)

For 0 < t2 < tx < t0 let

and let Z\(x, t 0) be the triangle with vertex (x, t0) bounded by the lines tλ

x + λ(k)(tι - ί0), ί2 f-> x + λ ω ( ί 2 - t 0 ), and by the line t = 0. Then

and
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since by assumption j φ k, whence

2 .20)J {[gϊ(\Pσ-Pslz1)Uξ,τ)}2rd(ξ,τ). (5.

Δ(x,t0)

Let
A = {(£, r) G Δ(x, t0): [gλ(\Pσ - Ps\, zx)] (ξ, r) > 2M*} .

From (5.13) we then obtain for (ζ,τ) e Z\1?

2M* < ^ f l P σ - P S | , ^ ) ( £ , T ) < M f | P σ - Ps\° + M* ,< ^ f l P σ - P S | , ^ ) ( £ , T ) < M f | P σ - Ps\° + M

hence

9ι(\Pσ - Ps\,Zι)(ξ,τ) < 2Mt

and therefore

[gx{\Pσ - Pslzλ){i,τ)γr < 9ι(\Pσ - Ps\,zλ){^

Because of ρ(2r - 1) = 2 we obtain from this estimate and from (5.20) that

<

x |Pσ - Ps\2d(ξ, r) + y (2M*)2rd(ξ, r)

^

d(ξ,τ)\. (5.21)

Δ(x,t0) J

Since W e gf(R x [0,T)), it follows from Lemma 2.3 that (σ,s,z) satisfies (2.4),
which implies

[9ι(\Pσ - Ps\,zx) \Pσ - Ps\2] (x,t) = [9ι(\Pσ - Ps\,zx) \Pσ - Ps\2](-z,t),

and since (σ, s,z) is periodic with period 2L, we obtain from Lemma 3.2 that

t y+L

ί J gλ(\Pσ - Pslzx) \Pσ - Ps\2d(ξ, r) < 2JΘ(0, W) (5.22)

0 y-L

for every (y, ί ) e l x [0, T). Let n be the smallest integer with

t0 max | λ z | < n L . (5.23)
~ko<l<ko

Then the triangle Δ(x, t0) is contained in the union of n disjoint strips of the form
[y - L, y + L] x [0, oo). From (5.21) and (5.22) we therefore obtain

N
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The estimate (5.17) is a consequence of this estimate, of (5.19) and of

n< (L~ι max

which results from (5.23).

Lemma 5.3. Let the hypotheses of Lemma 5.2 be satisfied, let q > 0, and let j , k, I be
integers with — k0 < j , A:, / < k0, k φ j , k φ I. Then

to ( tι \ hΓ ί \
/ WH^it^x^t^Wi^ + l^l / \\Hkl(t2;x + \{j\tι - ίo),*i)||2rΛ2J

 dtι

<(Λ(E(0) + L)y
'

J \\Hjk{tύx,t0)\\2rdtx

2r

Proof. To simplify the notation we set

Ψjk(τ;y,t)=\\Hjk(τ;y,t)\\. (5.24)

Let r = - + - > 1 be the constant from (5.14) and let r' satisfy

έ + έ = 1 (5 25)

whence

Also, let p, p' satisfy

2r
2r' = -=— < 2r.

2r- 1

- + - = 1, 2r'p = 2r ,
P P

hence

2r , 2 r -
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We apply Holder's inequality twice and use Lemma 5.2 to obtain

ί
t{

x z, t0)

κ 0

- ί0), txf
rdt2 ) dtx

x < / / Ψkιlt2>x

o o

*o

0

l)2(£(0) + L)]*

1
2rfpf

< [Λ(t0 + l)2(E(0) + L)]^ ί [φjk(tι;x,t0)
2rdtι

1

ir

'737 + 1

*0
2r

L e m m a 5.4. Let the hypotheses of Lemma 5.2 be satisfied, and let j , k , l be integers

with —k0 < 2 > k,l < k0, k φ j , k φ L Then

t0 tλ

J j\\H3k{t^x^)Hkι(t2^x-
0 0
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Proof. Let rr be the constant from (5.25) and let Ψjk be the function from (5.24).
Holder's inequality yields

60 H

/ / '

0 0

to

<

0 0

*0t0 Γ t} -. _L Γ tγ -, J-,.

9 Γ / 1 2 r Γ / 1
/ ^ ( t i ; x , t 0 ) / ̂ (V.X + λ^ίt ! -tQ),t{)

2rdt2 J dtΛ dt
o "-o J Lo J

/ ^ ( ^ x, ί0) (t. + D^ij Ψkι(t2;x + Au)(i! - ί0), tx)
2rdt2 J ^

We use Lemma 5.3 with q — — to estimate the right-hand side of this inequality
2r

and obtain the statement of the lemma.

Lemma 5.5. (i) Let & be defined as in (5.15) and let j , k be integers with —ko< j ,
k < k0, j φ k. Then

max

(ii) If in addition g2(η, ζ) - 0 for all (η, ζ) G Mj x R,

max

where μ0 = min(μ, z/) w/ί/z ί/ẑ  constants μfrom (4.15) and v from (4.17).

Proof, (i) From (5.18) we obtain

f ^0

J ||JyJfcc*i X Λ :
\2? / *°

Il2 r<iί

< ^ t n r max
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(ii) The definitions of Hjk in (5.9), of Pjk in (5.7), of G in (5.2) and the estimates
(4.15), (4.17) yield

to Γ (
< J expj

to

y- / ! „
ι 2 r

j J l | )X) ^0/ I CLVΛ

max

/
exp < - 2rμ0 / Gj(τ\x,tQ)dτ (Gj(

I I
o L 11

2rΓ max G ^
2 r μ o

*0 / /< *0

/ ( ~~ dΓ eXP ] ~ 2 r μ ° I G?j(τ; X'

max

x I 1 — exp

to \\

-2rμQ / Gό(τ\x,tQ)dτ > ,

π J/

which implies statement (ii).

Proof of Lemma 5.1. We use Lemma 5.3-5.5 to estimate the terms in the representa-
tion formula (5.12). The definition of Ln in (5.11) yields

*0 ίn

dtι

0 0

*2

/
o o o z=o

i n + 1 . . . d ^ . (5.26)
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The last term in this inequality can be estimated using Lemma 5.4. With

595

we obtain

*n-l tn

0 0

n - 2

y =
1=0

I J Jn-Un n>2/> n 1

J_
2r

1 +
2r- 1
2r-2

l-l/r
(5.27)

Invoking Lemma 5.3 the term resulting after insertion (5.27) into (5.26) can be
estimated as follows:

n - 2

z=o

2r 2r

1 + 2r-l
2r-2

(7 n - 3

" ^ *n-n - 2

z=o

2r

2r / r - 1

since

1 + 1 - 1 \ r

2r 1 r — 1

2r - 1

l-l/r '

2r I r - 1
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It is clear that we now can apply Lemma 5.3 repeatedly to (5.26) and finally obtain
for n > 1,

H) %

J . . . J \ \ L n ( x , t 0 , . . . , t n + u j ) \ \ d t n + ι . . . ,
0 0

1

For n = 0 we obtain from Holder's inequality,

(5.28)

2r \ ^ / ? \
dtΛ I I dti \

) \! )

1-τ-
( ί n + D 2 Γ '

k 0

which shows that (5.28) also holds for n = 0.
Observe next that with the norm IIW'H^ defined in (5.3), we obtain for n > 0,

*o tn

0 0

z=o

< f . ' f \\Ln(x, t 0 , . . . , tn+ιj)\\dtn+ι ...dtγ \\W ( 5 2 9 >

0 0

From (4.14) and (4.16) we conclude

\\FΛ0;y,t)W^\y - (5.30)
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which yields for m > 0,

0 m

/ •/
oo

o o

W b 3)F3m+ι ί O x +

\dtm+ι...dtι
1=0

(5.31)

Taking into account that the set Mm(k) defined in (5.10) contains (2/co)m+1 elements,
we infer from (5.12) and from (5.28)-(5.31) that

1-1/r \\w'\oo,ί0

(2ko)
m+ι(to+l)

1 _ J _
Lψ

π
1-1/r

0\/|

+ \\(w»y (5.32)

Because of

1+ l-
2 r r - l

for / > 1, it follows

2r-2

1-1/r

which implies that the first term on the right-hand side of (5.32) tends to zero for
n —> oo. The estimate (5.4) of Lemma 5.1 is therefore obtained from (5.32) by letting
n —• oo and using Lemma 5.5 to estimate the term

*o

ji»,

remembering the definition of r in (5.14) and remembering that j 0 = k, by definition
of Mm(k). The proof of Lemma 5.1 is complete.
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Proof of Theorem 2.5. By Theorem 3.1 there exist to every initial data

w° = (iiΛ-*0*,..., wO(k°\ s°, z°) G pφ.)

satisfying (2.43) a T > 0 and a weak solution

W = (w{'k°\ . . . , w(A:o), 5, *) G ̂ ( R x [0, T))

of (2.37)-(2.41), which is locally unique. To show that (2.44) is satisfied, note first
that the definition of | | in the introduction and the definition of the scalar product
[ , »] in (2.1) imply for k φ 0,

\Jw{k)\2 = (Jw(k\ Jw{k)) < δ(D-ιJw(k\ Jw(k))

< δ[w(k\w(k)] = δ\\w(k)\\2 = δ\\W(k)\\2 < δ\\W'\\2

and

_L (5j s)

7||2 (5.33)

where δ is the largest eigenvalue of the positive definite operator D. Since P:S^3 —>
y3 is an orthogonal projector with respect to the scalar product ( , ••), we thus obtain
from these estimates and from (2.40) that

\Pσ(x,t)-s(x,t)\ =

k0

w(k) - s

k0

k=-k0

< (2k0
(5.34)

Therefore (5.2), (5.3) and estimate (1.12) yield for 0 < r < t and for the constant ω
from Lemma 5.1 that

&>Gk(τ ,x,ty < - Ps\ (x + λ ( f c )(τ - t),τ)]e

M*}ω

with Cx = ̂ 2){M1*[(2fc0 + 2)Vδ + y?S]ρ}ω, C2 = ̂ M 2 * , wher we used that ω = 1
or ω = 2(2 + g)""1, whence α; < 1. Consequently, from the estimate of Lemma 5.1
we conclude for 0 < t < T,

/co

\\W'\\^t< sup ^ ||W(fc)(x,r)||

(2*6 + l ^ + c^^^^o^iK^yiL
(5.35)
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within* =K*(t,E(0))and

M3 = 2(2k0 + 1) (1 + C2), M4 = 2(2k0 + \)CX .

Either we have M4K""\\W'\\Q^^ < M3*(l + K*)9 in which case (5.35) yields

II^Ίloo,* = M3(l + # * ) ||(W°)Ίloo (5.36)

Otherwise we have

whence

Halloo,* < ( M ^ I K ^ / I L ) 1 ^ , (5.37)

because the hypotheses of Theorem 1.1 and the definition of ω imply 0 < ρ < 1 and
α; = 1, or 0 < £ < 2 and ω = 2(2 + ρ)~ι, and therefore in both cases ρω < 1. The
estimates (5.36) and (5.37) together imply (2.44).

Proof of Corollary 2.6. Let W G J^(R x [0, T)) be the local solution to the initial data
W° G ̂ ( M ) which exists according to Theorem 2.5. We abbreviate the term on the
right-hand side of (2.44) by Γ(t, W°). The differential equation (1.8) or, equivalently,
(2.39), and the estimates (1.19), (2.44) and (5.33), (5.34) then imply

dt\z\2 = 2z dtz = 2z - h(z, \Pσ - s|, \s\)

< 2\z\c*(\Pσ -s\ + \s\)(\s\ + 1) < 2 c * ( C 3 | | ^ / | | ) ( | ^ | 2 + \z\)

since \z\ < \z\2 + 1, where C3 = (2k0 + 3)\/<S + M. Hence,

dt \n{\z\2 + 1) < 4c*(C3Γ(t, W 0 )).

Integration yields

which implies that

zeL°°(Rx [0,Γ» (5.38)

whenever the solution W exists on R x [0, T). Now if the solution W would not exist
on M x [0, oo), then there would exist a maximal time of existence X^ < oo, and
therefore (3.1) would hold. But (3.1) contradicts (2.44) and (5.38), and consequently
the solution exists on the domain R x [0, oo).

This completes the proofs of Theorem 2.5 and Corollary 2.6 and therefore also the
proofs of Theorem 1.1 and Corollary 1.2.
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Appendix

We state the equations describing the viscoelastic deformation of metals in the form
which derives directly from the model assumptions often used in engineering. We use
the notations of Sect. 1.

Let B C M? be a bounded domain with smooth boundary dB, and let u: B x R j —-»
M? be the displacement field. Then for (z, t) e B x Kj,

ρutt(x, t) — div σ(z, ί)

e(z, 0 - I [Vxu{x, t) + (Vxu(

σ(x,f) = D(e(x,t) - en(x,t)).

(Al)

The boundary condition is

σ(x, t)n(x) = 0, (x, t) G 9 5 x Mj ,

where n(z) denotes the exterior unit normal vector at x € (95, e(z, £) is the strain
tensor, en(x,t) is the tensor of inelastic strain. (Al) is a constitutive equation, but
others are necessary to determine en(x, t). To formulate such equations, the material is
modelled as a system of springs and dashpots. This system is completely characterized
by the equations

S(χ, t) = σ(z, t) — 2 (trσ(z, \

S = = s + sf,

e n = ea + e p ,

s = yMea,

—

—- — 2(1, ί) = - , t), \sf(x,

(A3)

(A4)

(A5)

Fig. 1.
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Here z — (z{, z2) are hardening parameters, / is the identity matrix, eα, ep are strain

tensors, and s, s^ are stress tensors. The equation (A2) is the constitutive equation of

the spring, (A3) and (A3) are the constitutive equations of the two dashpots in the

figure, and Eq. (A5) controls the evolution of the hardening parameters. The necessary

initial conditions are

u(x, 0) = u°(x), ut(x, 0) = v°(x), σ(x, 0) = σ°(x),

s(χ, 0) = s°(x), z(x, 0) = z°(x).

Equations (1.1)—(1.5) follow from the equations stated here by combination.
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