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Abstract: Let / be a set of invariants and θ be a set of angle variables for a system of
differential equations with an 0(ε) vector field. When time dependent stochastic
perturbations, also of O(ε\ are added to the system, we have shown that under
suitable conditions / becomes a stochastic adiabatic invariant satisfying a diffusion
equation on time scales of order 1/c2, in the limit as ε -» 0. Here we show that the
angle variables converge weakly to a Gaussian Markov process on an 0(ε~4/3)
time scale, and thus the phase becomes randomized at these times. Application to
nearly integrable Hamiltonian systems is considered.

0. Introduction

We consider the behavior of the stochastic differential equation in IRJ,

x = εf(x,t) + εF(x,t,ω) + 0(ε5/3) (0.1)

as ε -> 0. We require that the expectation EF(x, t) = 0 and that the time average

(0.2)
ί-»oo 0

exists for all x.
Making the change of scale v = εί, (0.1) becomes

, . (0.3)
dv

Then (0.2) and the law of large numbers applied to F suggest that the method of
averaging may apply to (0.3), and for small ε the solution should be close to the
"unperturbed equation"

(0.4)
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In fact Khas'minskii [9] established that this was the case under suitable regularity
conditions. Now suppose y = /(x) taking values in IRP is an invariant for the
unperturbed system:

(x)J(x) = 0 . (0.5)

Letting Xε denote a solution to (0.1) and Yε(t) = I ( X ε ( t ) \ where / is a smooth
function, Yε solves

—Γ-̂  = ε — ( X ε ( t ) ) f ( X ε ( t ) , t ) + εG(Xε(t),t,ω) + o(c5 / 3), (0.6)
at ox

where G = (— IF. In [3] we show that, provided the unperturbed system (0.4) is
\dxj

ergodic on the surfaces /(x) = constant and certain regularity conditions apply, the
Yε(t) processes converge weakly to a diffusion on O(ε~2) time scales as ε -»0.

In this study we suppose that, in addition to X ε ( t ) and Yε(t\ there is a third
process Zε(t) with values in IR9 solving

^ = ε { v ( Y ε ( t ) ) + h ( X ε ( t ) , t ) + H(Xε(t)9t,ω)} + 0(c4/3), (0.7)

where EH(x,t) = 0 and h has time average 0.
The corresponding unperturbed system for Zε is

I - «ΌO, (0-8)

where y is constant, hence the unperturbed z(ί) is a linear function of t.
The most obvious example fitting this description is an oscillator in phase space

x, where y is the energy and z is the phase position. Or alternatively, y and z may be
the "action" and "angle" variables of the system. This problem will be discussed in
Sect. 2. In such cases there is a constant vector £ whose /th coordinate £t is the
period of the ith coordinate z/ of z. Taking z(mod() to be the vector whose /th

coordinate is z^modζf), from one point of view we should have z(modζ) = Φ(x)
for some function Φ: IRJ -» IR*, however this implies discontinuities in the Φ func-
tion, so in the usual way we regard Φ(x) to be a multivalued function, the branch in
effect at any given time being determined by continuity.

Another possibility would be where x is a laminar flow with shear, y indexes the
layer of the unperturbed flow and z is the distance traveled in the layer. In both of
these examples, using a suitable interpretation, we have z = Φ(x) and the unpertur-
bed orbital derivative of Φ is

dΦ -
_/(x) = v(y), (0.9)

a function of y, and (0.7) becomes

^ = c jv( yβ(ί)) + ̂  ( X ε ( t ) ) ( ( f ( X ε ( t ) , t) -f(Xε(t)) + F ( X ε ( t ) 9 ί,ω))!
dt [ dx l

+ 0(ε4/3). (0.10)
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Let x0 be the initial value for the Xε process and yo = I(XQ) and z0 be
corresponding initial values for the Yε and Zε processes. We will show that in the
scaled time τ = c4/3ί, the process

Wε(τ) = Zε(τε~4/3) - z0 - τε~ 1/3v()>o), (0.11)

representing the deviation of Zε from the unperturbed solution, converges weakly
to a Gaussian Markov process as ε -> 0, under suitable conditions. From this we
conclude, under a nondegeneracy condition, that Zε(modC) becomes uniform on
an ε~4/3 time scale.

The following heuristic argument motivates the c~4/3 time scale. In a one degree
of freedom nonlinear oscillator a point x0 moves roughly on its phase plane oval
with variance in action increasing like E ( J ( t ) — J0)

2 = $( J0)ε2ί. The earliest time
to expect uniformity on a thin energy shell containing x0 would be when adjacent
points on J0

 and J ( t ) have separated by one revolution, i.e.,

(v(J(ί))-v(J0))cf = 2π.

Thus v'(J0)($(J0)ε2t)υ2εt ~ 2π, which gives

2π \2/3 __

In Sect. 1 we introduce notation, discuss the assumptions and state the main
results, and in Sect. 2 we discuss several examples that illustrate the theorems.
Section 3 contains estimates, auxiliary results and proofs of the theorems.

1. Formulation of the Main Results

As in the introduction, the invariant / : JRd -> KΛ Since y = I(x) varies only by
small amounts on the time scales to be considered, it suffices to consider any open
neighborhood D{ of the initial value y0 = 7(x0) in ^p- We let D0 be the largest
connected set in /" l(Dι) such that x0 e D0.

In what follows (Ω,^, P) is a probability space, and for each x e D0 and t ^ 0,
F(x9 1) = F(x,t,ω) is an 1RP valued random variable on Ω.

For an m x n vector or matrix M = (MM), let |M| = χ^= t Σk= i | Λ f / t f c | . When
M(x, s, ί, ω) is a vector or matrix valued function of x0 e D0, s ̂  0, t ^ 0 and ω e Ω,
let

|| M || = P — ess sup sup sup | M(x, s, ί, ω)| ,
ω xeD0s,t^O

H M U ! = P — ess sup sup sup |M(x1?s, ί,ω)
ω j c , ,x 2 eD 0 s,ί ^ 0

αc Φ x2

-Aί(x2,s,ί,ω)|/|x, - x 2 l +

| |M| | 2= max llδM/δxJ, + ||M|| ,
1 ^ f c ^ d

and use the same conventions when M depends on a subset of these arguments.
Note that

Now consider the assumptions:
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(Al) Writing (0.1) as the initial value problem

x = ), x(0) = x0 , (1-1)

we require F and # to be continuous in x and ί, R to be locally x-Lipschitz
and || F \\ ι < oo . We also require EF(x, t) = 0 for all x, ί. All order statements
for the limit as c -> 0 are to be understood in terms of the first norm defined
above, so the o(ε5/3) quantity in (0.1) means \\R\\ = 0(ε5/3).

We require /(x, ί) to be almost periodic, with the Fourier representation
f ( x 9 t ) = Σak(x)eiλkt Hence the λk are distnct, Λ _ Λ = — / t Λ a n d t f _ f e = a((ihe
conjugate of ak\ Note that a0(x) = f ( x ) as defined by (0.2). We assume

oo, \ \ a k \ \ l / \ λ k \ < oo and < oo (1.2)

for some 0 < θ ̂  1.
(A2) The mapping / must satisfy (0.5) and we require that

this assumption and (Al) imply that || G || i < oo .
(A3) The function v: D{ -> IR^ must satisfy the global Lipschitz condition

2 < oo . Note that

(1-3)

The equation (0.7) in z must have continuous, locally x-Lipschitz right-hand
side and we require h to satisfy

sup < oo (1.4)

ι oo, £H(x,ί) = Oand \\H\\i < oo.
(A4) For 0 <; s g ί ^ oo let &\ be sub-σ-fields of & such that for

*ι ?i *2 ίi *3 ίi *4, P\\*=-&\\ and such that F(x,ί) and H ( x , t ) are J^/
measurable for all xe D0 and ί ^ 0. If the initial state x0 is random, then we
also require x0 to be ^Q measurable. Let

sup sup \P(B\A)-PB\ .

(1.5)

(1.6)

(1.7)

We require the mixing condition

as ί -> oo .
Before stating the next assumption we need some notation. Let

and

f(x,s):= J(Γ(x,s,ί)+

An application of (A4) (see Lemma 3.1) shows that, for each fixed s and
ί, | |Γ(x,5,ί)llι ^ Cp(|ί-s|), and it follows easily that f is well defined
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and H / Ί l ! < oo. Let

$(x,t):=(x)f(x,t)(x)τ. (18)

>0 (1.9)

(A5) We assume there exists a function $(x) such that

lt+l

sup - J $(.
xeD 0 , f ;>0 ' r

as / -> oo. Note || f || l < oo and (A2) imply || $ \\ l < oo and || $ \\ l < oo.

(A6) Let x(ί,x0) be the solution to the initial value problem

x =/(x), x(0) = x0 .

Assume there exists a continuous function $(y) of y on Dl such that

/-»OG ' 0

exists uniformly in x in D0.

(A6') Assume there is a matrix M0 such that

(1.11)
/-»x ' 0

exists uniformly for xGl~l{y0}, where y0 is the initial value of the Yε

process, and assume that for any sequence xneD0 such that I(xn) -> y0>
there exist x^e D0 such that 7(xM) = y0 and |xn — xw | -> 0. Note that under
(A6), Mo =

Our first result describes the behavior of the Yε(t) processes on c"4/3 time
scales. Let CA[0, oo ) denote the space of continuous functions on [0, oo ) to IR*
with supremum norm.

Let

Ve(τ):=ε-l'3(Yε(ε-«*τ)-yo). (1.12)

Theorem 1.1. If assumptions (Al) through (A4) hold then the processes { t/

ε(τ)} t^0

are relatively compact in £^[0, oo ) as c -> 0. //, moreover, (A5) and either (A 6) or
(A6') hold, then asε -» 0, Kβ(τ) converges weakly to the Wiener process K0(τ) having
the representation

(1.13)

where B(τ) is standard p-dimensional Brownian motion.

Remark. In [3] we show that Yε(τ/ε2) converges weakly to y0(τ), where
dY0 = μ( y0)dτ + (̂ y0)

1/2 dB(τ). An heuristic perturbation argument at the ε~4/3

time scale is consistent with (1.13).

Note. Here and in what follows, for a symmetric positive semidefinite (psd)
matrix M, (M)1/2 denotes its psd square root. Of course, the matrices f , $, $,
$ are psd.
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Theorem 1.2. If assumptions (Al) through (A4) hold then the processes { Wε(τ)}τ ^ 0

defined in (0.11) are relatively compact in C^[0, GO) as ε — > 0. //, moreover, (A5) and
either (A6) or (A6') hold, then as c ->0, H^(τ) converges weakly to the Gaussian
Markov process W0(τ) = jj$(yo)(3(yo))l/2 loB(s)ds, where B(s) is standard p-di-
mensional Brownian motion. This q-dimensional process has continuous sample
functions, zero mean and covariance for 0 ̂  τ\ g τ2,

= (3ι2 ~ t!)^)!^)^) 7 (1.14)

When fKy0) ^(.VcOfίKyo)7 is positive definite, it follows that W Q ( τ ) has a Gaus-
sian distribution with large dispersion when τ is large, and this implies that
Zε(τε~4 / 3)(modC) is approximately uniform. In fact this "phase randomization"
applies even without the mean stationarity and ergodic assumptions of (A5) and
(A 6) provided a minimal amount of stochastic perturbation is present, and this is
the content of our third result.

For psd matrices A, B we write A^B when A — B is psd. We need:

(A7) Assume there is a q x q psd matrix function Δ ( x ) , x e £>0, with M II i < °°
and that there is a constant positive definite matrix zJ0 and finite 7\ and T2

such that

t + Tldv ^ dv
J — (yo)$(x9s)—(y<>)τds^Δ(x) (1.15)

for all t ^ 0, and

τ2

$ Δ(x(t,x))dt^A0 (1.16)
o

for all x e DQ. Note that the time scales in (1.15) and (1.16) are different.

Theorem 1.3. If assumptions (Al) through (A4) and (A 7) hold, then in the iterated
limit as ε ->0 followed by τ -+ oo, Z ε(τε~4 / 3)(modζ) converges in distribution to
a uniform distribution on the rectangle {z: 0 ̂  zk < ζk, k = 1, . . ., q}, where ζ is an
arbitrary element o/IR9 such that ζk > 0, k = 1, . . ., q.

Remarks. 1. The three theorems apply to the situation that Xε(0) = x0 fixed. If
Xε(0) = XQ is a random variable and is 3P% measurable, then Theorems 1.1 and 1.2
provide the conditional distributions of F0 and W0 given X0 = x0> provided the
appropriate regularity conditions hold for the given value of XQ, since (A4) implies
asymptotic independence of {Xε(t\ t ^ δ} from X0 as ε -> 0 for each fixed δ > 0.
Marginal distributions for the K0 and W0 processes are then obtained by integra-
ting the conditional distributions with respect to the distribution of X(Q). In similar
fashion Theorem 1.3 implies that the limit distribution of Zε(τε~4 / 3)(modC) is still
uniform.
2. Theorem 1.3 implies that an integrable Hamiltonian system with minimal
stochastic perturbation (condition (A 7)) asymptotically has a kind of ergodic
averaging on constant energy surfaces, with this averaging taking place on time
scales of order c~4/3. This result allows the extension of the adiabatic invariance
results of [3] to this case under (A7), whether the unperturbed system is ergodic or
not. We plan to provide the details in a subsequent paper.
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2. Examples

In this section we discuss examples which illustrate the theory.

Example A. In this example we will consider perturbations of the one degree of
freedom nonlinear oscillator defined by the Hamiltonian

H0(x):=lχl + U(Xl)9 (2.1)

where U ( x { ) is a symmetric bowl type potential so that all solutions are periodic.
We write our example as

^=f(x) + p(x,-} + FL9-c,ω\ x(0) = x 0 , (2.2)

/ x \
where f ( x ) — ( 2 I, p(x, ί) has zero ί-mean and EF — 0. If we let x(ι>, x0)\ — U(xι)J
denote the solution of the unperturbed problem, then the transformation,
(xι,x 2) -» (Θ,I), to the action angle variables of the unperturbed problem can be
written

where v(/) is the frequency as a function of action associated with H0 and ζ(I) is an
appropriately chosen initial condition, on the closed integral curve for H0 asso-
ciated with /. If we let y ( t ) = I(x(t)) and z ( t ) = 0 ( x ( t ) ) , then

y = c/'(x)[p(x,ί) + F(x,ί,ω)], y ( 0 ) = y0 = I ( x 0 ) ,

z = εlv(y) + D θ ( x ) { p ( x 9 t ) + F(x,ί,ω)}], z(0) = z0 = 0(*o) . (2.3)

We let D! be an open interval about y0 = /(x0) and thus D0 = I ~ ί ( D l ) is an
energy shell about the initial energy oval, {x: H0(x) = HQ(XO)}. We assume the
smoothness and almost periodicity conditions of (Al). For U smooth, (A2) and (1.3)
of (A3) are satisfied. To apply the theorems, we need to calculate 2f(x, t) and for
illustration we assume

F(x9t9ω) = Q(x)ξ(t9ω)9 (2.4)

where ξ is a scalar such that Eξ = 0 and that (A3) is satisfied. We define
J^s = σ(ξ(τ\ t ^ τ :g s) and assume the mixing condition of (A4) is satisfied. Now
recall that

and at this point we know from Theorems 1.1 and 1.2 that {Vε} and {Wε} are
relatively compact in their C-spaces. Condition (A 6) is satisfied, so to proceed we
have two options, depending on whether (A5) is satisfied or not. We look first at
(A5).

Let K ( s 9 t ) = E(ξ(s)ξ(t)\ then we have \K(s + ί,s| g 2 \ \ ξ ( t ) \ \ 2 p ( t ) = 0(l/ί2),
where the inequality follows from Proposition 2.2, p. 346 of Ref. [6] and the
equality is as ί -» oo and follows from (A4).
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Clearly

and since K ( s , t ) = K(ί,s),

$(x,t) = 2Γ(x)Q(x)Qτ(x)Γ(x) ] K(τ,t)dτ ,
ί

which clearly exists because of our mixing condition. If

ι t + l x

lim- J J K(τ,s)dτds
/->x ' t s

converges uniformly to a ί-independent limit ^C, then (A5) is satisfied with
%(x) = C/'(x)β(x)βΓ(x)//(x)Γ. A sufficient condition for this is the stationary of
ξ(t) in which case C = 2j^ K(s,Q)ds. (A6) is automatically satisfied because H0 is
ergodic and

- J
2 -a

- Xl9 - 72^ - £/(*,))] - i— , (2.5)

where ft = /?(y) and a = a(y) are the energy and oscillation amplitude as a function
of action, respectively, for the unperturbed motion.

Theorems 1.1 and 1.2 now yield

Vε => Ko , where K0(τ) = ϊ(y0)
l'2B(τ) ,

where B(τ) is standard Brownian motion, and

Wε^W0, where W0(τ) = v'(yo)1/2ί(yo)1/2 J B(s)ds .
o

Thus, WQ is Gauss-Markov with zero-mean and cpvariance given by (1.14).
Thus we obtain the phase randomization when $(yo) > 0, which requires noise,

and v'(y0) Φ 0, which requires H0 to be a nonlinear oscillator. This type of phase
randomization can also occur, in a coarse grained sense, without noise when the
initial condition y0 is not concentrated at a point [6].

In this case condition (A6) is automatic and (A5) holds, so there is no need to
resort to condition (A7); nevertheless we discuss this condition to illustrate its use.
Example B will illustrate its power.

Now assume there exists a 7\ such that

Γj x

inf J J K(τ + z + ί,z + t)dτdz ^ α > 0 ,
0 0

then we can choose

A ( x ) = 2aΓ(x)Q(x)Q(x)TΓ(x)T = 2av(yΓ2(U'(xl)Qί + x2Q2)
2 ^ 0 .

The second assumption in (A 7) then amounts to f(y) =
)=h(y)\U ' ( x ι ) Q ι ( x ) + ^262(^)1 bounded away from zero on Dj which is
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hardly any restriction at all. Theorem 1.3 then yields the phase randomization
result.

Example B. Let x = β), where y e D j cz IRP, z e IR* and d = p + q. Consider the
IVP

dv

= e( V(y) + fc(χ, ί ) + H(x, ί, ω)) x(0) = x0 , (2.6)

where D! is an open neighborhood of y0 and all functions are 2π periodic in z, # and
h have zero ί-mean and EG = E/f = 0. These equations fit our general framework

with /(x, ί) = ( f **' ί} Y /(x) = ( ° A ί1 = (£\ Λ = 0 and the invari-
\v(y) + h(x9t)J \v(y)J \H J

ant

/(x) = ( x 1 , . . . , x p ) Γ . (2.7)

We assume the smoothness and almost periodicity conditions of (Al) and (A3). The
fact that DO = D{ x 1R9 is unbounded is not a problem since all functions are 2π
periodic in z. (A2) is trivially satisfied and we assume the measureability and mixing
conditions of (A4). It is easy to check that

$(x,t) = ] E(G(x,s)GT(x,t))Qdt , (2.8)
S

and thus we see that our results are independent of whether H = 0 or not. That is, it
is the noise in y that moves the system away from y0 and allows the phase
randomization due to the v(y) term. In fact g and h do not affect the result either. If
we assume that G is stationary with E(G(x,s)GT(x,t)) = :C(x,s — ί), then

|(x,ί)= ί C(x,s)ds=:^(x), (2.9)
- oc

and (A5) is satisfied.
In this example x is particularly simple,

and thus ^(x(ί,x0)) is quasi-periodic in t since 2[(x) is a 2π periodic function of z.
For q ^ 2, (A6) is too restrictive since it will not be satisfied unless v is a constant
with rationally independent components, in whic case v' = 0 and there will be no
phase randomization, however (A6') may be satisfied. Now /" * (y0) = {(*>) |z e IR^|
and the limit in (1.11) will exist uniformly in I ~ l ( y o ) if the components oϊv(y0) are
rationally independent (i.e. the rate of ergodization on the g-torus is independent of
initial position on the torus). Let xn = (£) with yn -»y0 and XΛ = (?;), then
I ( x n ) = yo and |xn — xn| = \yn — yol -» 0. Thus (A6') is satisfied for y0 such that the
components of v(yQ) are rationally independent and we can apply Theorems (1.1)
and (1.2) to obtain the weak convergence of { Kε} and { Wε}. The phase randomiz-
ation follows if v'(y0)$(y0)v'(y0)

τ is positive definite (pd) and this is true if
v'(yo)3(yo)v'(yQ)τ is pd. The latter is true if $(x) is positive definite, and the
columns of v (y0)

τ are linearly independent (which requires q ̂  p).
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However, since v is non-constant and continuous we generally expect /s
arbitrarily close to y0 such that the components of v(y) are rationally dependent
and yet it seems that the phase randomization should not be so sensitive to y0

particularly in the presence of noise. If we take T{ = 1 and Δ(x)
(XO)V /(JΌ)Γ and assume as before that this is positive definite, then the left-hand
side of (1.16) is positive definite for all T2 > 0 and Theorem 1.3 entails the phase
randomization without (A5) and (A6')

Example C. Here we simply point out an important special case of Example B,
namely a perturbation of an integral Hamiltonian system, H0,

H( J, 0, ί ) = c(H0( J) + Hd(J9 0, ί) + Hr( J, 0, ί, ω)) ,

where JelR", ΘG T", Hd has zero time mean and Hr zero expected value. The
Hamiltonian equations of motion are now in the form of (2.6) with y = J, z = θ,

8H . . dH
y= - -57r and z = T7 -dO dJ

3. Preliminary Estimates

We assume (Al) through (A4) hold in all that follows. When (A5), (A6), (A6') or (A 7) is
used, this will be explicitly stated.

The following standard mixing result (e.g., see [10]) is needed:

Lemma 3.1. Let Ξ(x,ω) be an ^f+t measurable random variable with values in IRP

and be Borel measurable in xfor each ω. Let \\Ξ\\ < oo and let ξ(x) = EΞ(x). Then
for any ̂ S

0 measurable random variable Z with values in Rp,

\ \ E ^ Ξ ( Z ) - ξ ( Z ) \ \ ^ 2 \ \ Ξ \ \ p ( t ) . (3.1)

In addition we need the following result (see Proposition 3.1 of [3]) where it is
stated for a different time scaling):

Lemma 3.2. For each c0 > 0 there isaC < oo such that for all 0 < c ̂  ε0 and t ^ 0,

f-(dχ(

0

^ Cε(εt + 1)

Lemma 3.3. For t > ε 1/2 there is a C < oo such that

]h(Xε(s\s)ds < Ctεί/2 .

Proof. By (A3), \\h\\, < oo, and by (Al),

\XE(r)-Xε(s)\^C0ε\r-s\

for some C0 < oo . Hence

h(Xε(s\s)ds= f
0 ε-1 / 2

J

0 maxjr.ε-"2}

by (1.4).

(3.2)

(3.3)

(3.4)
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Now let L = L(ε) be chosen so L(c) = o(ε~ 1 / 3) and ρ(L(ε)) = o(c2/3). This is
possible since p ( t ) = o(t~2) by (A4).

Lemma 3.4. For 0 rg t{ < t2 ^ τε~4/3 and each fixed τ, as ε -> 0,

L)dt

Z£(ί2) - Z.(ί.) = c J v(y ε(t))Λ + eJ
Ί Ί

Froo/ Taking Lemma 3.2 into account, we have from (0.6) that

Yf,(t2) - y«(f,) = e

and

(3.5)

(3.6)

^ c Jr , + L

- L),ί) - G(Xt(t),t)dt + 0(εL) = o(εl/3)

by (3.4) and since || G || { < oo . This proves (3.5) and (3.6) follows by Lemma 3.3 and
a similar argument, the 0(1) term arising from the defining Z equation (0.7). Π

Since | | E ( t ) G ( X ε ( t \ t + L)|| < | |G| |p(L) - 0(c2/3) by Lemma 3.1, an immediate
consequence of (3.5) is

Lemma 3.5. For 0 ̂  tt < t2 ^ τc~4/3 and each fixed τ,

and, for 0 ̂  τ^ < τ2 ^ τ0 and each fixed τ0,

l|£ ( τ ι β"4 / 3 )(I /

β(τ2)-K e(τ1))| | ^0 (3.8)

as c -> 0.

Formula (3.5) also implies that Kε(τ) = Kε(τ) 4- 0(1), where

K£(T):=£

2 '3 t £J G(Xt(t\t + L)dt, (3.9)
0

and we will establish Theorem 1.1 for Vε(τ\ since the necessary estimates can be
provided directly for this quantity.

To simplify notation in what follows we will use the following special symbols:
for a vector or matrix M, MQ: = MMT and for a square matrix M, Ms: = M + Mτ.
Note that if M has m rows and n columns then \MQ\ ^ |M|2 ^ mn\MQ\.

Lemma 3.6. For 0 ̂  ί! < ί2 ̂  τc~4/3 «πί/ any fixed τ, is a C < oo swc/?

t i ) (3.10)
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and

Proof. Let

mε(ί) = max

We use the decomposition

Applying Lemma 3.1,

and

< 2
ί2 + L

ί,+L

'p(L)
ί,-fL

(
s-L

ί

R. Cogburn, J.A. Ellison

(3.11)

ί + L \S

I G(Xε(s),s + L)τ

ί

(3.12)

'ί G(*ε(t),ί
Ί

1/2

ds

ds

(3-13)

Thus

and for ί ̂  τc~4/3 it follows that m εt ^ Ct.
The second inequality is established by a similar argument. Π

Proposition 3.1. For 0 ̂  t\ < t2 ^ τε"4/3 and any fixed τ, as ε -> 0,

v Q '
L)dt\ -£<' L)dt = (t2-t,)o(l)

(3.14)

anrf

= o(ε2/3). (3.15)
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Moreover, ϊ/(A5) holds then

<'•>( y.(ί2)-

329

= o(c2'3). (3.16)

Proof. Apply the decomposition in (3.12). The term I2 i s( f 2 — t]) 0(1) by (3.13), and
applying Lemma 3.1,

(t2-tί)0(εL2)

J!^(J 81
),t + L,s + L)s—(Xε(t))τdsdt

ί),t + L)dt + (ί, - ί2)o(l)
ί,

proving (3.14). It follows from (3.5) and (3.7) that

£<''>( Yε(t2) - y.

and (3.15) follows from this, (3.14) and since

\$(Xε(t + L),ί + L)) -

For (3.16) note that

ί2 1 ί +

ι2 1 *

' i fί.+L^s-L

by(A5). Π

Lemma 3.7. For each fixed τ, as c -> 0,

E< max

L)dt]Q

/

εCL

0 ^ ί ̂  τε-4/3

By (3.6), it suffices to show that

max
0 < r ̂  τε~4/3

Zε(t)-z0-ε$v(Yε(s))ds (3.17)
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as c -> 0. Let λ = c~8/9. By (Al) and (A3), \\H\\λ < oo and, with k an integer,

+Bε^E< max

^ """£

kλ

«ί
0

Λ Λ

« ί
(Λ - 1 )Λ

+

E[ J
( f c - l ) A

by (3.11). D

Lemma 3.8. For each fixed τ, as c -»0,

1/2

max ε v(

Proo/. By Taylor's theorem,

•0.

(3.18)

v( dv

- JO)) - - y0) .

Integrating this over [0,ί] and using (1.3) gives that the left-hand side of (3.18) is at
most

E\(Yε(s) -

for some constant C. However, there exists a constant CΊ > 0 such that \EMQ\
^ CιE\MQ\9 and thus using (3.15) and the boundedness of $ gives that the last

quantity is at most

An immediate consequence of Lemma 3.7 and 3.8 is

Proposition 3.2. For each fixed τ0, as c -> 0,

max
0 ̂  τ g τo

(YM-y0)dt •0.

Based on this result and (3.9) it suffices to consider

(3.19)

(3.20)

In what follows we establish Theorem 1.2 for Wf{τ).
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Lemma 3.9. For 0 ^ τ < τ + ^^τ 0 and any fixed τ0> there is a constant C depend-
ing only on τ0 such that, as ε -»0,

and

Proof. 1. By (3.9),

Let

and

ί G(Xε(t\t

(3.21)

(3.22)

(3.23)

t + l

,,,(/) = J G(Xε(s),s

β(l)= sup
0 ^s^ I,0<ε^ε0,t ^ 0

To simplify notation we treat U = UEj as one dimensional. Improvising on
a method of Borodin [2],

t + l

= 4

where

For s ̂  /,

|£/o(s)| = \EU2(s -

and for k = 1,2, 3,

t+l 3
3(s)ds = 4 J j) EIk(s)ds ,

t k = 0

),t + s + L ) ( U ( s ) - U(s - L))"U3-k(s - L) .

s),ί + s + L)| ^ C0β
3l4(l)ε2'3 ,

) '}' d a , . . . 7' ̂
ί + s-L ί + s-L

3-"(s - L) Π G(Xε(Uj),Uj + L)E(u'+L}G(Xc(t + s),t + s + L)

Combining these estimates yields

β(l) ^ C4/(jS3/4(/)ε2/3 + β l / 2 ( l ) + β ί / 4 ( l ) ε ί / 3 + ε2'

Now suppose 1 ̂  / ̂  τ0c~4/3 and set β = B(l) = B(l)/l2. Then

It follows that B(l) ^ C6 < oo , and applying this estimate to (3.23) yields the first
assertion.
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2. For the second assertion use

E\Wε(τ
τ + δ

In [3] we use the following variation on the first order stochastic averaging result
of Khas'minskii (see [9, 8]):

Proposition 3.3. For each fixed /,

sup
ί

E(t) max sε-l)-x(s,Xε(t))\ •o, (3.24)

as ε —> 0.

The result in [3] is stated for times scaled by 1/ε2. As noted there, the uniformity in
t and the use of £(ί) in place of E are justified by uniformity of conditions (Al), (A2)
and (A4).

Lemma 3.10. Let (A5) hold and let (A6) or (A 6') hold. Then for each δ>Q,asε -> 0,

l|£(τε~4'3)(^(τ + δ) - Fε(τ))2 - δ%(y0) || ->0 . (3.25)

(To simplify notation we use $(yo) for M0 under (A6') as well as (A6) since as noted
under (A6 ), M0 and ^(y0) coincide when (A6) and (A6') both hold.

Pr00/ For fixed τ and /, using Proposition 3.3 at the second equality,

£<«-*»> J_T +r"%(x (sε-^})ds=-\E^'^
ε I τ I o

-Ij^
1 0

Under (A6) the last integral js £(τε"4/3)|(yε(τc"4/3)) + 0(1) in the iterated limit as
ε -> 0 then / -» oo, which is §(y0) + 0(1) since \\ £<τε~4/3>( 7ε(τc~4/3) - y0)

Q \\ ̂  0 as
ε -> 0 by (3.15) and since \\$\\\ ^ \\3\\i < oo.

Under (A6'), the above convergence of yε(τε~4/3) implies there exist Xε such
that I ( X ε ) = y0 and Xε(τε~4/3) -Xε ^Q uniformly in P(τε"4/3) probability. Using
the continuous dependence of x(r, x) on x and the dominated convergence the-
orem, it again follows that

0(1))

as ε -> 0 then / -> oo .
Applying (1.12), (3.7), (3.16) and a change of the integration variable,

δ) - 0(1)

τ + δ
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o(ί)

as c -> 0 then / -> αo . Π

Proof of Theorem 7.7. By (3.9) it suffices to prove the asserted limit for the
processes { Fε(τ),τ §; 0} as c ->0. Lemma 3.9 implies that these processes are
relatively compact in Cp[0, τ0) for each τ0, and this implies relative compactness in
Cp[0, oo ) ([1] [7]). Moreover fourth moments are bounded on each [0, τ0), so the
Vε(τ) are uniformly integrable as ε -» 0.

To prove the asserted weak convergence when (A5) and (A6) hold, it suffices
to show that for any weakly convergent sequence VEa -> F0 the limit process
has the asserted distribution. Using the Skorohod representation theorem,
we can assume without loss of generality that VEa -> K0 a.s. Now let
T! < τ2 < <τk^τ<τ + δ and η: IR* -> IR1 be bounded and continuous.
Then, using (3.25) at the third equality below,

+ δ) - F0

= lim E [iK^ίt!), . . ., Vεa(τk))(VEn(τ + δ) - K
n— * oo

= lim

Letting j/τ = σ(F0(s), 5 < τ), it follows that

E((V0(τ + δ)- K0(τ))Q|^τ) = δ^(y0) a.s.,

and a similar argument using (3.8) in place of (3.25) shows that K0(τ) is a martingle.
It then follows that K 0(τ) = (^(3;0))1/2B(τ), where B(τ) is standard Browninan
motion in IR9. (The essential ideas are in [4] and a modern treatment of the
multivariate case can be found in [7] .) Π

Proof of Theorem 7.2. The relative compactness in Cg[0,τ0] for each τ0 follows
from (3.22).

Now assume (A5) and (A6), so Vε -̂  K0 weakly as ε -> 0. Since b^ (3.20), each
Wε(τ) is a continuous functional of { Vε(s): s ^ τ}, it follows that Wε converges
weakly to WQ, where the process { W Q ( τ ) : τ ̂  0} has the distribution of

τ>Q. (3.26)
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Since F0 is Gaussian, it follows that W0 is Gaussian, too, and the independence of
the increments of K0 implies W0 is a Markov process. Moreover

and for 0 ̂  τ^ ^ τ2

0 0
dv Tl *2

^(yo)Γίί

^ 0 0

D
Proof of Theorem 1.3. Let

Since ||^||< oo, {^ε(τ,ω)}0< ίgεo is a weakly sequentially compact set in
^ι([0,τ0] xΩ, w x P ) for each τ0, where m is Lebesgue measure [5]. Using
a diagonalization argument, given any sequence of the Ψεs, there exists a subse-
quence that converges weakly in L!([0,τ]xί2, m x F ) for every finite τ. By
Theorem 1.1, the VE processes are relatively compact, and from any weakly
convergent sequence of Vε we can extract an LI -weakly convergent subsequence
VEn such that Ψεn -> Ψ0 for some Ψ 0, the convergence holding for ^([0,-r] x Ω,
mxP) and each τ < oo . It suffices to establish that the asserted uniform limit
distribution of Zε(τε~4/3)(mod<^) is approached by all such sequences in the
iterated limit as cn -> 0 then τ -> oo .

Using the Skorohod representation theorem, letting τ\ < τ2 < <
τk ^ τ < τ + δ and 77 : IRfc -» IR1 be bounded and continuous,

= lim
H-+OC

τ + δ

= lim E J
«-> oo τ

τ-f <5

= lim E f ^(^(T!), . . ., K0(τk)) ΨEn(s)ds

, . . . , V Q ( τ k ) ) Ψ 0 ( s ) d s 9 (3.27)
τ

where at the second equality we use (3.15) and at the third equality we use the a.e.
convergence of V8it(ij) to VQ(τj\ which implies

τ + δ

E ί MPj*i), , ^n(τ f c))-/7(Fo(τι), . . ., Vo^^Ψ^ds}
τ

τ + <5
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as n -> oo by the dominated convergence theorem. Again we set stfτ =
σ(F0(s),s ^ τ). Then (3.27) implies

E((V0(τ + δ) - V0(τ))<*\s/τ) = E(* J* Ψ0(s)ds\s/τ] a.s. .
\ τ /

Let «P(τ) = £( Ψ0(τ) \ J/τ). Then

and

as.

As in Theorem 1.1, ^(y0)V0(τ) is a martingale in C^O.TQ] with §(y0)V0(Q) = 0.
By [4] ^(yo)^Ό(τ) has the representation

θv τ /3v 3v V / 2

(3.28)

where B(s) is a Brownian motion process in IR9 with J5(τ + δ) — B(τ) independent
of j3/τ for each τ.

Next we establish a lower bound on fj(}>o) ^^(^o)7 using (A7). Let A e^ and
τ, <5^0 and let K = Γ^:

τ + ^ <^vJ J -(yo)^(s)

τ + δ 1 Γl /^v

= ί ί ̂ Γ!^A τ 1 1 o °y
τ + δ 1 Tl flv

= J ί ^ί^^ r 1 1 0 ̂

A τ 1

ε'/3 1
= ί ί ί -^^(^ε(5£"4/3))^srfίrfP + 0(ε1/3)

vl 0 τ + /ε1/3 ^

= ί I2'}
0 τ

= f f ί^zl^τ 0

ι

= ί ί l^
A τ 0 A

A τ

where Proposition 3.3 is applied at the next to last line.
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Thus

f ί ^(y0)Ψt.(s)-(y0)
TdSdP^ J -A0dsdP,

and it follows that ^(yo)^/o^ (yo)T ^ K~l A0 a.e. and, since conditional expecta-
tion is a positive operator, j^.(yo)Ψ dj>(yo)τ ^ K~1A0 a.e. Let B(l} be Brownian
motion in IR* with £(1)(τ + δ) - £( l )(τ) independent of «s/t, for each τ, and let £(2)

be a second Brownian motion in 1R9 independent of #(1) and σ(u £/τ). Then

/2 / I Y / 2

is a martingale with respect to «^t:= σ(j^tuσ(M(s), 0 ̂  s ̂  τ)) and satisfies

E((M(τ + δ)- M(τ))Q\Mτ) = EΓ}" ( y Q ) Ψ ( s ) ( y Q ) T ds\^τ\ a.s.

But then M(τ) has a representation like that in (3.28) with j/τ replaced by J*τ, so
this process is equal in distribution to the process ^(yo)Vo(τ). Using (3.26), WQ(τ)
is equal in distribution to

Q0

The second term is independent of the first and Gaussian with covarlance matrix
(τ3/3K)^0 - The density for WQ(τ) is the convolution of this Gaussian density with
that of the first term, and has derivative bounded by the derivative of the Gaussian
density. It follows that W0(τ) (modζ) is approximately uniform for large τ. Π
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