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Abstract: This article is the first of two concerned with the development of the
theory of equations of KdV type from the point of view of twistor theory and the
self-dual Yang-Mills equations. A hierarchy on the self-dual Yang-Mills equations
is introduced and it is shown that a certain reduction of this hierarchy is equivalent
to the ^-generalized KdV-hierarchy. It also emerges that each flow of the «-KdV
hierarchy is a reduction of the self-dual Yang-Mills equations with gauge group
SLW. It is further shown that solutions of the self-dual Yang-Mills hierarchy and
their reductions arise via a generalized Ward transform from holomorphic vector
bundles over a twistor space. Explicit examples of such bundles are given and the
Ward transform is implemented to yield a large class of explicit solutions of the
«-KdV equations. It is also shown that the construction of Segal and Wilson of
solutions of the n-KdV equations from loop groups is contained in our approach as
an ansatz for the construction of a class of holomorphic bundles on twistor space.

A summary of the results of the second part of this work appears in the Intro-
duction.

1. Introduction

In the subject "Integrable systems and self-duality" - which has seen much recent
activity [Wa, MS, M, MW] - one can identify two clear goals. First, to relate as
many integrable systems as possible to the self-duality equations; and secondly, to
understand the many techniques for generating solutions of integrable systems in
terms of the twistor description of the self-duality equations.

This paper and its sequel are devoted to integrable systems of Korteweg de Vries
(KdV) type. As for the first of the above goals, we relate the n-generalized KdV
hierarchy to a self-dual Yang-Mills (SDYM) hierarchy and give the corresponding
twistor description. As for the second goal, we describe how the twistor descrip-
tion bears on many of the methods associated with these hierarchies: the solutions
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constructed by Segal and Wilson from loop groups, the Krichever construction of
solutions from Riemann surfaces, and the τ-function. The reader is referred to [SW]
for a convenient account of this standard material.

LI. Outline of Results. After a rapid review in Sect. 2 of the basic definitions
and facts about the «-KdV hierarchy, we define in Sect. 3 a SDYM hierarchy for
each pair of integers (m,K) and Lie group G. This is a system of non-linear partial
differential equations on a G-connection and a system of Higgs fields on a trivial
bundle over <C(/W+1>*. When (m,K) = (1,2) the self-dual Yang-Mills equations are
recovered and when K = 1, the system reduces to the Bogomolny hierarchy (with
m levels) of [MS]. Our first main result is Theorem 3.1: a certain reduction (by
a group of (n - 1) translations of C<W+I><Λ-I>) of the SLn(C)-SDYM hierarchy of
order K = n — 1 is essentially equivalent to the «-KdV hierarchy. We also show
that any of the integrable equations in 2 variables that is obtainable from the «-KdV
hierarchy is a reduction of the (standard) SDYM equations.

In Sect. 4, we show that the SDYM hierarchy (and the reduction relevant to
w-KdV) has a twistor description via a generalization of the Ward transform. In
outline, for each (m,K), there is a twistor space Z of complex dimension (K + 1),
which has the structure of the vector bundle p : Z = (Cκ ® Θ(m) —> CP1 where
Θ(m) —» CP1 is the complex line bundle on (DP1 of Chern class m; the associ-
ated "space-time" X, being the space of holomorphic sections of p9 is C(mH~1^:.
The Ward transform gives a 1 ̂ -correspondence between (generic) holomorphic
SLn(C)-bundles over regions in Z and local holomorphic solutions of the first
(m + 1) levels of the SLπ-self-dual Yang-Mills hierarchy of order K over X. Ap-
plying this to the appropriate reduction of the SDYM hierarchy, we obtain our
second main theorem (Theorem 4.2): the notation of the present paragraph being
retained, take K = n — 1. Then there is a 1 ̂ -correspondence between (generic) in-
variant holomorphic SLw(C)-bundles over Z and holomorphic solutions of the first
m(n — 1) flows of the w-KdV hierarchy. The term "invariant" is defined precisely
in Sect. 4.

In Sect. 5, we explain the intimate relation between the solutions of «-KdV
constructed from loop groups by Segal and Wilson and the twistor description of
Sect. 4. We also give an explicit treatment of some interesting examples of the
construction and a characterization of the class of solutions that arise from loop
groups in this way.

It is worth stressing, however, that the twistor construction is strictly more gen-
eral than that of Segal and Wilson. What is proved in Sect. 5 is that the restriction
of the Ward transform to a class of bundles associated to the loop group coincides
with the construction of Segal and Wilson.

1.2. Summary of Part II. In a future publication, the twistor description developed
here will be used to investigate other aspects of the theory of equations of KdV
type. We include here a summary of this work.

1.2.1. The τ-function. The τ-function (cf. Sect. 2.1.2) is a potential for the solution
u of the KdV equations,

w = 23^1ogτ. (1.1)

It plays a basic role in Sato theory and in [SW] where it measures the action of
Γ+ on the canonical section of the determinant line bundle over the Grassmannian
Gr of Hubert space.
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We give a description of the τ-function that arises out of the twistor geometry.
The main idea is to use the determinant bundle over the space of d-operators defined
by Quillen rather than the determinant line bundle over Gr.

Recall that the space of δ-operators on a vector bundle E over (DIP1 (or indeed
any Riemann surface) can be identified with the complex Hermitian affine space $#
of unitary connections on E. Thus stf has a natural symplectic structure Ω. Quillen
showed how to define a complex line-bundle Det over si and also how to equip it
with a natural connection whose curvature is Ω. Defined in this way, Det also has
a canonical section σ whose value at a € jtf is to be thought of as the determinant
of the δ-operator corresponding to a.

Now this theory has relevance to the twistor description of n-KdV, because the
bundle E —> Z may be characterized by its δ-operator relative to a fixed smooth
trivialization. On pulling back to the correspondence space Y = X x CP1 we ob-
tain a family of 3-operators on a vector bundle E over CP1 parametrized by X.
According to the general theory alluded to in the previous paragraph, this family
defines a determinant bundle over X. The action of translations of X is symplectic,
so one can lift it to Det using the standard geometric quantization formula. The
τ-function measures the action of the translations on σ. It is defined by

σ(x) = τ(x)V(x - *oM*o),

where V(x) is the action of the translation along x on Det and XQ is a basepoint in
X. We show that τ defined in this way satisfies (1.1).

7.2.2. Connections with Quantum Field Theory. The τ-function has been expressed
as a vacuum expectation value of certain operators in a free Fermionic quantum field
theory [JM]. We show that this quantum field theory is naturally identified with the
quantum field theory of holomorphic sections of the twistor vector bundle restricted
to each sphere in CP1.

7.2.3. Spectral Curves and the Krichever Construction. The Krichever construction
is a method for constructing solutions of n-KάV that are invariant under one of the
higher flows of the hierarchy. Given such an invariant solution one constructs, in a
natural way, a spectral curve Σ. Then one defines a natural map from "space-time"
to the Jacobian of Σ9

X -> Jac(Γ) . (1.2)

The importance of the Krichever construction lies in the fact that (1.2) is affine
linear, so the flows of the «-KdV hierarchy go over to linear flows on the Jacobian.

The Krichever construction should be thought of as the transformation of «-KdV
to action-angle variables: the action variables are the moduli of Σ, and the angle
variables are the linear coordinates on Jac(Z).

We show how the Krichever construction arises out of the twistor construction.
The key point is that if the holomorphic bundle E —> Z corresponds to an invariant
solution of w-KdV, then one can construct, in a natural way, a global section Φ of
End(£) that is invariant.

The spectral curve Σ is then given by the equation det(Φ — v) = 0 and is thus a
branched cover of CP1. Now pull back the twistor space Z to Σ, to get a branched
covering Z of Z. The dual of the bundle E on Z is determined as the pushdown
from Z of the dual of the line bundle L = ker(Φ — v). Thus E* is determined by
the line bundle L on Z. (This is the idea of "abelianization" of Nigel Hitchin.)
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To describe the map (1.2), note that each point c e X determines a copy Σx of
Σ inside Z. Then we claim that the assignment x\-*L\Σx induces (1.2): viewed in
this way, the linearity of this map is immediate.

2. Equations of KdV Type

The standard KdV equation for the height u(x,t) of water waves in a shallow
channel

dtu = ΰ\u + 6udxu ,

is the first in a family of equations of "KdV type." This section gives an account
of this family of equations. We begin with the Gelfand-Dikii description in terms
of ordinary differential operators. Then we describe how the KdV equations fit into
the framework of Drinfeld-Sokolov, and give a very brief account of the more
general integrable systems constructed by these authors. The reader is referred to
[GD, SW] for the Gelfand-Dikii theory and to [DS, W] for Drinfeld-Sokolov. These
are convenient sources: this is by no means a complete list of references on this
subject.

2.1. Gelfand-Dikii Theory

2.1.1. Definition of the Hierarchies. Consider the space M of ordinary differential
operators of the form

L = Dn + un.2D
n-2 + - - - + wo (D = d/dx) , (2.1 )

where WQ, . . . , w«-2 are functions of x. A flow of the π-KdV hierarchy is by definition
an evolution equation of the form

Tt = [P'L] ' (2'2)

where P is any differential operator of the form Dm + ι;m_2/)w~2 H ----- h VQ. It is
known that for each integer m ^ 2, there exists an operator, Pm say, of this form,
such that [P,L] is a differential operator of order n - 2, and hence such that (2.2)
makes sense. Pm is determined essentially uniquely by L: the only freedom in Pm

is that of adding on linear combinations, with constant coefficients, of the Pk with
k ^ m — 2. We shall always assume that the Pm are chosen so that Prn = U for
each r — 1,2,.... The corresponding evolution equations are trivial: it is sometimes
convenient to retain them, and sometimes better to throw them away.

As an illustration, let us find P = D2 + v when n = 3. Since

[P,L] = (2u\ - l'υ)D2 + (u'{ + 2u% - 3v")D + (u% - uλv
r - ι/") (2.3)

one must have υ — 2u\β and then (2.2) yields:

ιίι = 2«ό - u" ,

WQ can be eliminated by differentiating the first with respect to t and twice with
respect to jc, and the second with respect to x. Then u\ satisfies the Boussinesq
equation
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It is convenient to work with all evolution equations of the form (2.2) simulta-
neously; to do so, introduce a sequence t\ = x, t^ . . . of flow parameters or "times,"
denoted collectively by t, and consider the n-KάV hierarchy of evolution equations:

dr = [Pr,L] r = 2,3,... . (2.4)

It is known (and will re-emerge below) that

[dr - Pr, ds -P5] = 0 for all r and s . (2.5)

This fact implies that it is indeed consistent to consider all flows simultaneously as
in (2.4). It is sometimes convenient to refer to the set of evolution equations (2.5)
also as the «-KdV hierarchy: notice that (2.2) arises when r = n and s = m (recall
that everything in sight is independent of tn). We shall also often refer to the
collection of operators dr — Pr as the «-KdV hierarchy; no confusion appears to
result from this practice.

2.7.2. Baker and τ. The Baker function ψ and the τ-function are important parts
of the general theory. The former is a (formal) solution of the equations

drψ = Prψ (2.6)

of the form ψ — gψ, where

and ψ = 1 + f>z~r . (2.7)

Then ψ is unique up to multiplication by a formal power series 1 + c\z~l H ----
with constant coefficients.

In (2.7), the ar are functions only of t and the sums are best treated formally;
only for a restricted (but interesting) class of solutions will iff exist as a holomorphic
function in a neighbourhood of z = oo. Its asymptotic expansion is well-defined,
however, and since one is usually only interested in the expansion to finite order,
convergence is not of great importance at present.

We shall always assume that the ar are chosen to be independent of trn for each
r\ then (2.6) with r = n is equivalent to the equations

Lψ = znψ or L(z}ψ = znψ . (2.8)

In the latter, L^ is the operator obtained by replacing D by D -f z in L. From either
of these equations one sees that \j/ determines L in the sense that if it is known that
there exists an operator of the form (2.1) for which (2.8) holds, then the w's can
be found from the α's. For example,

un-2 = -na{ (2.9)

wrt_3 = -n(n - l)a"/2 - na'2 + na\a\ (2.10)

and more generally, a\,...,an-\ determine ww_2,...,«o
The τ-ίunction is a "generating function" for the power-series part $ of the

Baker function: there is an equality of formal series

,ί3-(3z3Γ1,...). (2.11)
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<H = -τ-'a.τ; (2.12)

a2 = —(2τ)~λ(d2τ — d^τ). (2.13)

Combining with (2.9) and (2.10), we obtain expressions for the w's in terms of τ:

(2.14)

2wπ_3 = nd2dx log τ - ndx((S%τ)/τ)

(S,logτ). (2.15)

2.2. Drinfeld-Sokolov Theory. Elegant as the previous description of w-KdV is, we
shall find an alternative, due to Drinfeld and Sokolov [DS], in terms of first-order
matrix-valued operators, better suited to our purpose. The relation between the two
descriptions corresponds roughly to the familiar relation between scalar ODEs of
«-th order and systems of n ODEs of first order. Drinfeld and Sokolov do much
more in [DS]. They associate to each Kac-Moody algebra (plus certain other data)
an integrable system; applied to the loop algebra of SLW, their construction yields
«-KdV. The association of integrable systems to Kac-Moody algebras has been
generalized still further, cf. [KW, GHM], We shall not give a complete discussion
of the theory of [DS]. We shall however give brief indications of the modifications
that are needed to treat the systems that arise from other Kac-Moody algebras.

2.2.7. Definitions. The space of dependent variables M is the space of TV-gauge
equivalence classes of connections L\ on the line, of the form

where

Λ =

LI = dx + a - A ,

ΓO 1 0 ... 0

0 0 1 ... 0

0 0 1

λ 0 0 ... 0

(2.16)

(2.17)

a is lower triangular and trace-free, and N is the group of strictly (i.e. with Is on
the diagonal) lower triangular matrices depending only on x. We always consider
LI to act on w-component column-vectors v on the line.

In every Λf-orbit there is a unique element with

a =

0 0 0

0 ... 0 0

MO ... w/z-2 0

(2.18)
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Consider the equation L\v = 0 in this gauge. If the top component of v is ψ,
then this is equivalent to (2.8) with λ = zn. This observation is the essence of
the identification between the present description of M and the one given in the
previous section.

In every N-orbit there is also a unique element with a diagonal. This choice iden-
tifies M with the space of dependent variables of the so-called "modified" w-KdV
hierarchy. From the present point of view it is unnatural to make any distinction
between these hierarchies.

We shall be interested in flows on M defined by the condition

(2.19)

where

Lr = dr-br,r = 2939... , (2.20)

can be regarded as another component of the connection and br is trace-free and
has entries that are polynomial in A. Such flows correspond to evolution equations
like (2.2).

2.2.2. The Formal Dressing Transformation. The main technical tool that we use
in our study of the w-KdV hierarchy is the formal dressing transformation. This is
an SLΛ((C[A~1])-valued function of (in the first instance) Λ:, i.e. an n x n matrix,
each of whose entries is a formal power series in A"1, with coefficients that are
functions of x, and unit determinant. The key fact is that given any L\ in M, there
exists a formal dressing transformation g £ SLrt(C[A-1]) such that

Li =g(dx-Λ)g-1, g(λ

Moreover, if g\ and #2 both satisfy (2.21), then

(2.21)

0ι = 92$, where 5=
7=1

(2.22)

and the Sj are constants. See [DS, Sect. 3] for a derivation of this. They prove a
slightly different result; but a farther dressing of their form with 1 -f Σi<^fi^ will
give (2.21).

The dressing transformation is closely related to the Baker function ψ. Begin
by noting that Eq. (2.8)

holds for each of the «-th roots, z\,...9zn say, of A:

L(ψ(x,zι ),..., ψ(x,zn)) = λ(ψ(x,zι ),..., ψ(x,zn)) .

Multiplying on the right by

A(λ) =

i

*?-'

1 1

zn

*»-!

,A(λ)~=n

Ύ\-n

(2.23)
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(2.24)

where, analogously to (2.7), φ — φ G with

G(x9λ) = exρ(Λ*) and φ(x9λ)

!) (2.25)

The standard way to reduce an equation like (2.24) to a system of first-order equa-
tions is to replace φ by

Φ =

Γ Φ
φ'

,(«-i)

Then
(2.26)

where U is the matrix of (2.18). But calculation of φ from (2.25) gives a unique
factorization

φ = N(x)g(x, λ) Qxp(Λx),

where N is strictly upper-triangular,

Γl

(2.27)

N = a2 + 2a{ (2.28)

and g has the form g = 1 + g\λ~l + O(/l~2). In fact,

#2

Set L{ = N (Z) + U - A) N~\ Then from (2.26) we have

L\(g) = -gΛ ,

(2.29)

(2.30)

and this is equivalent to (2.21). The uniqueness statement (2.22) can be derived
from the uniqueness properties of ψ.

From now on, unless the contrary is explicitly stated, we shall use the N-gauge
freedom in L\ to put #(oo) = 1. The above calculations show explicitly how this
can be achieved and, incidentally, that this choice is different from both of those
mentioned previously (the choices which led to w-KdV in Gelfand-Dikii form, or
to modified «-KdV).
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In this gauge, since L\ contains no non-negative powers of λ, (2.21) gives the
formula

where the subscript + on any function of λ and λ~l denotes the part which involves
the non-negative powers of λ. If, as before, the expansion of g in powers of λ~l

is g = 1 + g\λ~l + O(λ~2) then we find

Li=dx + [el90l]-A9 (2.31)

where e\ is the coefficient of λ in Λ. It follows that a is "L-shaped" (its only
non-zero entries appear in the first column and the last row).

The dependent variables «o> - , un-2 can be recovered from g\ by using (2.28,
2.29), and the relations between the w's and the α's. The simplest formula of this
kind is

a\ =

From this and (2.9), we find

un-2 = -ndx\ι(eιgι). (2.32)

We can use an equation analogous to (2.21) to define Lr:

Lr = g(dr - Ar}g~l = dr - (gArg~l)+ . (2.33)

Notice that the equality of these two expressions for Lr implies a specific dependence
of g on tr, and is equivalent to the r-th evolution equation (2.6) satisfied by ψ.

From (2.33), we can read off a number of important properties of the Lr. For
example, we see that

br = (gΛrg~l)+ = Ar + O(λr~l) (2.34)

in (2.20). Moreover, the Lr commute among themselves:

[Lr9Ls] = g[dr - Λr, ds - As]g~l = 0 . (2.35)

Also, if r is a multiple of «, then the corresponding flow is trivial (for An = λl).
Finally, the uniqueness statement about the dressing transformation (2.22) yields the
essential uniqueness of the «-KdV hierarchy. To give a precise statement, let Lr be
as in (2.34) and suppose that we have an operator L' = dt — b' such that the equation
[L\9L'] = 0 makes sense. The "essential uniqueness" of the «-KdV hierarchy is the
statement that L1 is a constant linear combination of a finite number of the Lr and
follows from Eq. (2.34) and the fact that any differential operator that commutes
with dx — A has the form dt minus a constant linear combination of the As.

It should be stressed that although the radius of convergence about λ = oo of g
is in general equal to 0, the br are perfectly well defined, since the definition of br

involves only the first r terms in the formal expansion of g. In fact, if N > 0 and
gx is the N-th partial sum of g, we refer to g^ as a truncation of g. Then

if one is concerned with only the first k < N flows of the «-KdV hierarchy, then
gx can be used instead of g throughout.

2.2.3. The General Drinfeld-Sokolov Systems. Drinfeld and Sokolov associate a
completely integrable system to the following data:
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1. a Kac-Moody algebra ^
2. a representation of 0 as a subalgebra of a Loop algebra (this is referred

to in [DS] as a choice of a "standard gradation" and these in turn correspond
to the choice of a vertex of the Dynkin diagram of ^).

In this scheme, the w-KdV hierarchy corresponds to the loop algebra of SLW in its
standard representation (the vertex associated to this gradation is then the "special
vertex" of the Dynkin diagram of the loop algebra of SLW).

The given representation enables one to expand each element of ^ in powers
of λ and hence defines a grading ^ = φ^_00 0, . In this set-up,

LI = dx + a — A ,

where now a is to lie in the intersection of ^o with the Borel subalgebra (i.e. the
subalgebra generated by the Cartan subalgebra and the negative roots), A is taken to
be the sum of the positive roots of 9 in this representation and the gauge freedom
is taken to be generated by the intersection of ^o with the nilpotent subalgebra
generated by the negative roots.

The matrix A again has the property that it is linear in λ (the chosen root has
grade 1 and thus is multiplied by λ whereas the others have grade 0 and so are
multiplied by λ°). The elements of the Lie algebra that commute with A form an
abelian subalgebra 3ί . The flows are again constructed by dressing, where the role of
the A1 is now played by the generators of the intersection of 31 with ^+ = 0Z >0 0, .
(In the above a good system of such generators was provided by A',i ^ 1.)

This framework has been generalized still further by [KW] and [GHM].

3. The Self-Dual Yang-Mills Hierarchy

In the previous section, we showed how for each choice of time fy, the condition
[L\,Lj] = 0 determines a system of partial differential equations for u^...,un-ι as
functions of (jc = t\,tj). We will see that each such equation can be realized as a
reduction of the self-dual Yang-Mills equations. However, it turns out that to deal
with the hierarchy as a whole, one requires a corresponding self-dual Yang-Mills
hierarchy. This is not surprising, in that there are only four independent variables
for the self-dual Yang-Mills equations, whereas there are arbitrarily many for the
w-KdV hierarchy!

The formulation of the w-KdV hierarchy as a reduction of the self-dual Yang-
Mills hierarchy is also a key step in giving a twistor description of the n-KdV
equations. For the twistor description, we shall have to fix the number of flows
with which we are working at any given time. The definition of the n-KdV hier-
archy makes it natural to discard the trivial flows (those corresponding to the times
tnihn,--) and to group the non-trivial flows into levels each with n—l flows.
The first n — l flows will be referred to as the first level, and subsequent levels
will be labeled consecutively. A convenient way to truncate the hierarchy is to
consider an arbitrary but fixed number m of levels. These considerations provide
some motivation for the following

Definition. We work on R^O"*1) with coordinates XAJ(A = l , . . . ,AΓ,z = 0,...,w)
for a pair of positive integers (m,K). Let (P^/, QAΪ-I) far A — 1, . . . ,K, i = 1, . . . m
be a system of Lie (G)-valued functions on RA'(W+1) for some Lie group G. The
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first m levels of the SDYM hierarchy of order K and gauge group G are defined
to be the system of non-linear partial differential equations generated by insisting
that the differential operators

XAI = SAί - PAI - λ(dAi.l - &,-_!) (1 g / £ m) (3.1)

all commute. (Here dAi = d/dxAi. )

The SDYM hierarchy is invariant under the action of elements g of the gauge
group of G-valued functions on ]R^(W+1):

(PAi,QAj) -> (gPAίg~l - gSAig-\gQAjg~l - gdAjg-1) .

We shall always regard 2 solutions of the SDYM hierarchy as equivalent if they
are related by a gauge transformation.

Geometrically we should think of the operators XAi as acting on sections of
a bundle E over the domain in R^(m+1) on which the solution is defined. The
operators can be thought of as being constructed out of a G-connection on E,

(3.2)
xAj m m

and a collection φAj = PAj — QAj J = 1, . . . , w — 1 of Ήiggs fields," i.e. sections of
the adjoint bundle.

Notice that in the limit m —> oo, the connection V becomes Σy dxAj (d/dxAj —
QAj). One consequence of the field equations is that this connection is flat.

Remarks

1) For m = 1, there are no Higgs fields and these are simply equations on a con-
nection alone. The SDYM equations arise for K — 2 and m = 1. The (complexified)
hyper-complex equations on a vector bundle with connection arise when K is even
and m = 1 . For general K, m = 1 , the equations are the condition that the connection
be compatible with a paraconformal structure [BE], i.e. flat along all the jK-planes
spanned by the vector-field parts of the XA\. See [Wa84] for a treatment of gauge
fields in this context.
2) The Bogomolny hierarchy of [MS] up to level m is, in the present notation, the
SDYM hierarchy with K = 1. Indeed, one can think of the system of order K > 1
as being a system ofK "interleaved" Bogomolny hierarchies. For each fixed value of
A9(PAi,QAi-\)9i = l,...,w satisfy the equations of the Bogomolny hierarchy up to
level m\{XAi,i = l,...,m} all commute. Alternatively one can think of this system
as a hierarchy over the hypercomplex equations.
3) Given a solution of the SDYM hierarchy, for any pair (Ai,Bj) we can consider
the potentials (PAi,QAi-\,Pβj^QBj-\} as functions of the four variables (xAi,xAi-ι,
XBJ,XBJ-I) alone. Then the fact that [XAi,XBj] = 0 means that (PAi,QAi-\,PBjι
QBJ-I) is a solution of the self-dual Yang-Mills equations as a function of
(xAi,XAi-ι,XBj,XBj-ι) If A = B and i=j±I then there are only three indepen-
dent coordinates among (xAi9xAi-ι,xBj9xBj-ι) and (PA^QAΪ-\^BJ^QEJ-\) solve the
Bogomolny equations (the SDYM equations with one symmetry).
4) The full symmetry group for these equations for m > 1 is SL(AΓ,C)x SL(2,C)
together with translations. To see this, we consider λ as a coordinate on the Riemann
sphere, CP1 and introduce homogeneous coordinates πAι = (πy,π\ι) so that λ =
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A1 A1

πι//π0/. We can then write the coordinates for space-time as XA'"
 m, symmetric

over all the primed indices, related to the coordinates above by

A' A' m .
X? m«A'..-*A'm=(«tfr'D<AlX.

/=o

The dependent variables (PAhQAt-i) can be assembled into an object

(symmetric over the first (m-l) primed indices only). In this notation, (3.1)
becomes

where r4 = (— πι/,πo>) has had its index raised by the skew form εAB on (C2.
The XAi are retrieved by setting ί of the A^.^A^^ to l f and the rest to 0'.
The connection V is just given by <3^/ Aι — ΦA(Aι A> ), and the Higgs fields by

ΦAA' A' A'£A'm~lA'm-AAΓ"Λm-lΛ'"
It is thus clear that the system is invariant under SL(2) acting on the primed

indices, and SL(A^) acting on the unprimed indices. When m = 1 the system is in
fact SL#+2 invariant and space-time can be thought of as an open dense subset of

The symmetry will be broken in the next section when we impose translational
invariance on the system.

3.1. Reduction to «-KdV. We shall now show that the SDYM hierarchy that we
have just introduced reduces to the n-KdV hierarchy when: G = SLn(<C);K = n - 1;
symmetry is imposed along the 3 0̂; and certain of the Higgs fields have a specified
normal form.

The lift of each translation is generated by a Lie derivative operator J% acting
on sections of E satisfying the Leibnitz rule

whenever / is a smooth function and s is a smooth section of E. Since they give the
infinitesimal action of an abelian group, the operators commute among themselves:

An invariant solution of the SDYM hierarchy is by definition one for which each
of the operators of (3.1) also commutes with each of the J%:

[&AM = o .

Two invariant solutions are regarded as equivalent if they are related by a "re-
stricted" or "invariant" gauge transformation g, i.e. one which satisfies <£Ag = 0 for
each A.

It is often helpful to study a bundle with a symmetry of this type by use of
an invariant gauge in which each of the J% acts by coordinate differentiation. In
an invariant gauge, the data (P, Q) an invariant solution of the SDYM hierarchy
is indeed independent of the coordinates XAQ for A = 1, . . . ,K, and each of the QAQ
becomes a Higgs field, in the sense that it transforms under the adjoint representation
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of the restricted gauge group. To be completely explicit, the operators XAi defining
an invariant solution of the SDYM hierarchy, acting on invariant sections of E, and
written in an invariant gauge, take the following form:

XAi=dAι-PAi+λQAo; (3.3)

XAI = SAi-PAi - λ(dAi., - QAi_l) (i > 1) . (3.4)

For brevity, we shall often refer to the system of differential equations generated
by the condition that these operators all commute as the reduced SDYM hierarchy.

We can now state and prove the reduction theorem.

Theorem 3.1. There is a natural (\Ά)-correspondence between the following:

(i) solutions of the n-KdV hierarchy,
(ii) (gauge-equivalence classes of} solutions (P,Q) of the SLn-SDYM hierarchy
of order K = n — 1 which are invariant under the group of translations generated
by the vector fields d/dxAQ and which satisfy.

(a) the QAQ are linearly independent and one of them, Qκo, say, is nilpotent
of maximal rank in an invariant gauge',

(b) a genericity condition on P\\ to be given precisely below.

Remarks. The field equations imply that the Q^o commute with each other and are
constant in an invariant gauge. Thus K = n — 1 is forced by condition (a).

We prove this theorem under the assumption that m = oo. If m < oo, the same
method of proof shows, going in one direction, that a solution of the first m levels
of the «-KdV hierarchy yields an invariant solution of the first m levels of the
SDYM hierarchy defined in (ii). In the other direction, we obtain a solution of the
first m levels of the w-KdV hierarchy from any solution of the first (m + 1 ) levels of
the SDYM hierarchy satisfying the conditions in (ii). Since we shall subsequently
be able to take m as large as we like, this discrepancy is of minor importance.

Proof of Theorem 3.1. We begin by showing how to go from a solution of «-KdV
to a solution of the self-dual Yang-Mills hierarchy that satisfies the conditions of
(ii), Theorem 3.1. We suppose given L\ as in (2.16) and let g be the formal dressing
transformation of Sect. 2.2.2. Thus we may suppose that for each rή=n,2n,...,

~)+. (3.5)

With the gauge chosen so that the formal expansion of g in powers of λ~l is
0 = 1 + g\λ~l + g2λ~2 + , (2.33) gives, for r < n,

Lr = dr- ((1 + gιλ~l)Λr(l - g,λ-l))+ (3.6)

= dr-fr-[gl,er}-λer, (3.7)

where we define er and fr from the equation

Λr = λer + fr. (3.8)

Thus the first n — 1 operators defining the «-KdV hierarchy are of the form of the
operators (3.3) of the reduced SDYM hierarchy, with XA\ = tA and

XA\ = SAI ~ PA\ + λβω = dλ\ - ( f A + [flfi,^]) - λeA .

For the higher operators, we compute:
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Lr - λLr-n = dr- (gΛrg'l)+ - λ(dr_n - (gΛr-ng-l)+) (3.9)

- dr - λdr_n - (λgΛr-ng~l)+ + λ(gΛr-ng-l)+ . (3,10)

However, if f(λ) = £)*/M1', then λ(f(λ))+ - (λf(λ))+ = -f-ι so we see that

Lr - λLr-n = dr-φr- λdr.n , (3.11)

where φr is the coefficient of λ~l in the power-series expansion of gΛr~ng~l. We
note that φr is trace-free because this is true of gΛrg~l.

Equation (3.11) matches up with the higher operators (3.4), / > 1, of the re-
duced SDYM hierarchy with

XAJ = tjn+A, PAJ = ΦΠJ+A and QAj = 0 (/ > 0)

so that

XAJ = ̂ nj+A — λLnj+A-l = ^Aj ~ Φjn+A ~ ̂ Aj-l

Notice that there is no analogue in the SDYM hierarchy of the trivial flows tn, fciu ••
Note finally that the fact that the Lj all commute implies that all the XAJ com-

mute. In other words, these operators give a solution of the reduced SDYM hierarchy
as in (ii).

To go in the other direction, we begin by trivializing the bundle E in such a
way that QAJ = 0 for all A and for all j > 0. This is possible because the λ2 part of
[XAi,XBj] = 0(ί,7 > 0) implies that the connection ^AidxAi(d/dxAi - QAί) is flat.

We may also choose this trivialization to be invariant, so that for each A, J%
acts as d/dxAQ. We cannot, however, assume this trivialization to be chosen so that
QAO = 0. This is precisely because QAQ transforms under the adjoint representation
of the restricted gauge group (cf. the discussion immediately before the statement
of Theorem 3.1). Instead, the λ2 part of the other commutator equations imply
that in this gauge, each QAQ is constant and that these matrices commute among
themselves.

Assumption (a) of the theorem now says that there is a constant gauge trans-
formation of our invariant gauge after which we have

QAO = ~eA (0£A£K-l). (3.12)

(Recall the definition of er in (3.8).)

Remark. We could get away with less than this. If we suppose that the QAQ generate
an algebra conjugate to that generated by the er, then (3.12) will hold after a linear
change of coordinates. This would follow, for example, from the condition that they
be linearly independent with one of them conjugate to en-\. This is because the
centralizer of en-\ is just the algebra of the e/s. The condition that they should be
linearly independent forces K = n— I.

With these steps complete, our differential operators take the following form:

XAi=8Aι-PAl-λeA (l£A£K = n-l) (3.13)

and

XAJ = dAJ - PAJ - λdAJ-ι α>0, l ^A ^ * = *-!); (3.14)

all the information of the A2-part of the field equations has now been taken into
account.



Twistor Theory of Equations of KdV Type: I 205

Our next task is to show that X\\ is of the form of L\ in (2.16); that is, that
PU is forced by the equations of the SDYM hierarchy to be the sum of a lower
triangular matrix and f\ (whose definition appears in (3.8)). But the Λ^-part of
[Xiι,JCίi] = 0 yields

in other words, \P\\>βA\ is "L-shaped": its only non-zero entries are in the first
column and the last row. It is a direct calculation that this forces

0

0

0

Pu =

' q\
12

q*

qn-\

. qn

Pl

P2

P3

Pn-l

qn+\

0

Pi

P2

Pn-2

<ln+2

0

0

Pl

Pi

(3.15)

for certain /?'s and #'s. Now the A-term of the other commutators involving X\\
yield that each derivative of PU is also L-shaped; so the j^'s are forced to be
constants.

This is the point at which the assumption (b) of genericity enters. We assume
that p\ φO. Then by multiplying x\\ by a constant, we may suppose that p\ = 1 so
that X\\ = LI is a representative of a point in the orbit space M. By the uniqueness
of the n-KdV hierarchy (Sect. 2.2.2), it is now sufficient to prove that the field
equations [XAi,XBj] = 0 imply evolution equations of the form [L\9Lr] = 0, where
Lr is of the form (2.20). But that is trivial; put

Lr =XAJ + JJfcy-i + λ2*Aj-2 + ,

where again r = jn -f A.

Remark. This proof is a higher-dimensional version of the corresponding result in
the Appendix of [MS].

As a corollary we obtain:

Theorem 3.2. For any positive integers r,s not divisible by «, the equation [dr —
Pr,Ss — PS] = 0 (cf. (2.5)), considered as an evolution equation in the 2 variables
tr and ts, is a reduction of the SDYM equations.

Proof. Use Theorem 3.1 to embed the given equation (which is equivalent to (2.35))
in the SDYM hierarchy. Now apply Remark 3 after the definition of the SDYM
hierarchy.

It is clear that other choices of gauge group (together with appropriate modifi-
cations of conditions (a) and (b) of the Theorem) will give rise to the Drinfeld-
Sokolov hierarchies described in Sect. 2.2.3.

It is also clear that for a fixed choice of gauge group, one can make different
ansatze for the algebra generated by the QAQ and that these will yield other systems
of differential equations. For example, if G = SLn and the QAQ are chosen to be
generic and diagonal, one will obtain the standard Zakharov-Shabat framework
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as described in Sect.l of [DS]. For π = 2 this gives the non-linear Schrόdinger
equation. More elaborate variations are presumably those of [GHM] and [KW].

3.2. Summary, Dressing the SDYM Hierarchy. An enlightening and useful re-
interpretation of some of the calculations of the present section is as follows. Con-
sider the "vacuum" reduced SDYM hierarchy in invariant gauge:

UAι=dAi-λdAQ-ΛA, (3.16)

VM = SAi - λdAi-λ , (3.17)

action given by dAo (3.18)

Then if g is a dressing transformation for «-KdV, with g(x,oo) = 1 (as usual), the
operators

XAI = 9 UM g-1 (3.19)

give the reduced SDYM hierarchy corresponding to the «-KdV hierarchy determined
by g. If we write

XAI = SAi - PAi - WΛ-I - QAi-l) , (3.20)

then we obtain explicit formulae

PAi-λQAθ = (gΛAg-l)+ so QAQ = -eA (3.21)

and, for i > 1,

PM ~ λQAi-ι = (gλl-lΛAg-l)+ - (gtf-2AAg-l)+ so QAi^ = 0 . (3.22)

Conversely if g satisfies (3.19, 3.21, 3.22) then it is a dressing transformation for
«-KdV.

Notice that g satisfies the differential equations

JCίi(ff) = -9ΛA , (3.23)

Λi/(ί) = 0 , ι > 0 . (3.24)

We can avoid the distinction between / = 1 and / > 1 by changing to a certain
non-invariant gauge. Put

ff/ = flfexp(-Σ^oA-1^) . (3.25)

Then from (3.23) and (3.24),

-ίϋ(^) = 0 f o r i = l,2,... . (3.26)

We shall refer to g1 as the modified dressing transformation. Notice that like g, g' G
SLn(C[λ~1]), but

g'(xAi,oo) = exp(-£)ΛUoέU) (3.27)

The modified dressing transformation is so called because the operators XAi of (3.19)
are obtained by dressing the "vacuum" reduced SDYM hierarchy

VM = SAi - λdAi-ι i = 1,2,... , (3.28)

with
action given by dAo — λ~lΛA , (3.29)
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thus: XAi = gf VAi g'-\dAO = gf (dAO - λ~lΛA} g'~l . (3.30)

Various of these formulae will be useful later on. The following observation will
prove to be of surprising importance in Sect. 5. Suppose we have a matrix #', such
that the XAi defined from (3.30) comprise the linear system of the reduced SDYM
hierarchy in invariant gauge; that is, such that the only powers of λ which appear in
XAi are the zeroth and first. Then this reduced SDYM hierarchy corresponds to the
solution of «-KdV with modified dressing transformation = gf. This observation is
immediate from the previous discussion.

4. The Twistor Correspondence

In this section, we first describe the twistor correspondence between holomorphic
solutions of the first m levels of the self-dual Yang-Mills hierarchy of order K and
holomorphic G-bundles over an open subset of an appropriate twistor space. This
twistor space will be a rank-^Γ vector bundle over the Riemann sphere.

We then describe the specialization to holomorphic solutions of «-KdV.

4.1. The Underlying Geometry. The twistor space, Z, is the rank K vector bundle
over the Riemann sphere CP1 obtained by tensoring the trivial bundle with &(m).

Z = Θ(m) Θ Θ Q(m) (K terms in the sum) . (4.1)

The associated "space-time" (i.e., the space of independent variables of the so-
lution of the SDYM hierarchy) is defined to be the space of sections of this bundle
which, as a manifold, is

We will denote the holomorphically embedded CIP1 in Z corresponding to the point
x E X by Lx.

Introduce homogeneous coordinates (u,v) on CIP1 and homogeneous coordinates
μA,A = l,...,K on the fibres of Z so that (u,v,μA) ~ (αw,αt;,αmμ^),α G <C*. The
general section of Z is then given by

A point z £ Z is represented by the subset of X consisting of those x G X such
that Lx contains z. This is the affine codimension-A' hyperplane Σz in X given by
holding (μA,u,v) fixed in the above equation and letting the jc-variables vary.

The correspondence between X and Z is conveniently studied in terms of the
"correspondence space"

Y = {(jc,z) G X x Z : z G Lx} . (4.2)

The restrictions to Y of the projections on the two factors of X x Z define a double
fibration

(4.3)
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where for each x in X, $)~^l(x) is a copy of Lx = <CPl while for each z E Z, ̂ ^(z)
is ΣZ9 the space of x such that Lx passes through z. To understand these maps more
explicitly, it will be convenient to introduce coordinates XAJ on X so that coordinates
on Y are

(XAJ,U:V) (4.4)

with

p\(xAj9u : v)=xAj (4.5)

and

m

j , u \ υ ) = (μA\u\ v), where μA(x, u : v) = £ xAJu
jvm~j . (4.6)

4.2. 7%e Ψαrrf Transform for the Self-Dual Yang-Mills Hierarchy. In this section
we prove:

Theorem 4.1. There is a natural one-one correspondence (the Ward transform)
between (biholomorphic equivalence classes of) holomorphίc G-bundles E such that
E\LX is trivial for all x and (gauge equivalence classes of) holomorphίc solutions
of the first m levels of the G-SDYM hierarchy of order K.

Remark. The apparently strong condition that E be trivial for each Lx actually holds
generically for an open dense subset U of X provided that E is topologically trivial
- this is a consequence of Birkhoff factorization, [PS, Ch. 8]. For the generic bundle,
one will obtain a solution of the SDYM hierarchy on U with rational singularities
(mX-U.

Proof The first step in the Ward transform is to pull E back to Y and to define
a bundle E' on X by E'\x = Γ ( f a l ( x ) 9 pffi = Γ(LX9E). For brevity, we write E
for (pKE).

From its definition, E possesses a canonical flat holomorphic relative connection

V : £ - + £ < S > f l J , 2 . (4.7)

Here Ω^2 denotes the bundle of p2-relative holomorphic one-forms (i.e. the bundle
dual to the bundle of holomorphic vector fields which are tangent to the fibres
of p2) In a frame for E that is pulled back from one for E on Z,V is just the
restriction dp2 of the standard exterior derivative on Y to Ω^2, (so that only the
contraction of vector fields tangent to the fibres of p2 into d^2/ is defined).

The second step of the Ward transform is to show how the relative connection
V induces data on E'. To do this, one notes that E is holomorphically trivial. Thus
there is a gauge transformation that identifies E with Y x <CW. In such a gauge, our
relative connection (4.7) takes the form

V = d p 2 -α, (4.8)

where a is an n x n matrix of holomorphic ^-relative one-forms global on 7. It
is a that defines data on E'; and the field equations come from the relative flatness
of V:

V2 = 0 (as a section of End(£) <8> flj,2) . (4.9)
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To analyze α, note that in the coordinates (XAJ,U : v) of (4.4), d#,2 may be
identified with the operator

F(x,u : υ) *-+ {(vdAj - udAj-\)F(x9u : f>)}{isΛsjζ \^j^m} . (4.10)

Accordingly, each entry in a can be identified with a collection of mK holomorphic
Lie(G)-valued functions which are homogeneous of degree 1 in (u : v). Thus each
entry of a is actually linear in (u : v) because it is globally defined over the Riemann
sphere of (u : v). When this is taken into account, (4.8) may be identified with the
collection of operators

{XAJ} = {v(dAj-PAj) - u(SAj^ - QAJ-I)}{I*A*K, ι*j*m} , (4.11)

where the P's and ζ)'s are matrix functions on X. Since the condition (4.9) of
relative flatness is gauge invariant, [XA^XBJ] = 0 for all values of (u : v); these
are the field equations. If we use the affine coordinate λ = u/v9 we see that this
collection of operators is precisely the linear system of the SDYM hierarchy.

Note that the globality that is used in this construction is in the direction of
the fibres of Y over X. The Ward transform can be restricted to give a (1:1)-
correspondence between holomorphic solutions of the SDYM hierarchy on any con-
vex Stein open set U C X and holomorphic bundles on

4.3. Specialization to «-KdV. To obtain the twistor description of «-KdV, we must
encode the K symmetries and the associated Higgs fields (QAQ etc.; cf. Theorem 3.1)
into the structure of the Ward bundle on Z. For consistency with the notation of the
present section, it is necessary to change slightly the notation for the symmetries
adopted in Sect. 3. Let E be our holomorphic bundle over twistor space, let E1 — > X
be the Ward transform of E and let E = £?!(£) ~ P*(^0 be the pull-back of E over
the correspondence space Y. We assume that the solution of the SDYM hierarchy
on E' that arises from the Ward transform (Theorem 4.1) is invariant in the sense
of Theorem 3.1, the action being generated by Lie derivative operators &Ά.

There is a natural lift &A to Γ(E) of the action of &Ά on Γ(E'). This is because
translations preserve the canonical product structure Y = X x (DP1 and E = p *(£').
To be quite explicit, if / is a smooth function of (u : v) and s is a smooth local
section of E', the formula

serves to define J%.
To see that &A induces an action on T(E\ it is sufficient to check that if s

is a local section of E such that Vs = 0, then also V&As = 0, since then &As
will define a section of E. But this is an immediate consequence of the assumed
invariance of our solution of the SDYM hierarchy, which, on 7, can be expressed
as

If Vs = 0, this gives

VJ&s - -% Vj - [J%, VJs = 0 .

Let us denote by J% the induced action on sections of E.
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To bring the operator 5fA into sharper focus, we may start with the observation
that this procedure, applied to the action of dAQ

 on functions on Y pulled back from
X, yields the action of the vector field

ζA = vmd/dμA

on functions on Z. This corresponds to the fact that the translation XAQ -» XAQ + ^Uo
is induced by the biholomorphic map μA — > μA + vmaA of Z. Accordingly, we have
the Leibnitz rule

Ά(fs) = &(/> + f&AS (4.12)

(when / is a local function and 5- is a local section of E). It follows from (4.12)
that at the zeros of ξA, the 5fA act linearly on the fibre Ez. In fact, since the zeros
of ξA at λ = oo have order m, SBA acts linearly on Ez to order m in λ~l.

To compute this linear action, recall the formulae of Sect. 3.2:

i g w) ,

By multiplying XAi by λ~* and summing, we find

m-lA-l&A = -Σrtk/ + λ-m(dAm - (gλm-lAAg-l}+) .
i=\

But, as we have already observed, a local section s of E corresponds to a local
section of E that is annihilated by each of the XAi, so the previous formula yields:

- ξA(s) - λ-m(gλm-lΛAg-l)+s (4.13)

~l) . (4.14)

Thus at the zeros (λ~l = 0) of ξA, the action of 3?A on the fibre Ez is conjugate
to λ~lΛA + 0(λ-m).

This argument is clearly reversible, so that we have:

Theorem 4.2. The Ward transform defines a one-one correspondence between so-
lutions of the n-KdV hierarchy on (C(w~1)m and (biholomorphic equivalence classes
of) holomorphic SLn(<C)-bundles E over Z that are trivial over each Lx such that:
(i) the C""1 -action on Z generated by the ξA lifts to an action on E, generated
by the operators &A\
(ii) at a fixed point z of the action of ξA, the action of the 3?A on Ez generates
an algebra conjugate to that generated by the ΛA.
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5. The Segal-Wilson Ansatz

In this section, we describe an ansatz for the construction of holomorphic vector
bundles over twistor space which satisfy the hypotheses of Theorem 4.2. The input
is a holomorphic map y(λ\

y:Aχ>^GU(C),y(oo)=l, (5.1)

where D^ is some open neighbourhood of λ = oo in <CP\ . The output of the
ansatz is a holomorphic vector bundle Ey over Z which satisfies the conditions of
Theorem 4.2, and so a solution of w-KdV. We refer to the construction as the Segal-
Wilson ansatz because we shall see at the end of this section that the solution of
w-KdV that corresponds to Ey is identical to that associated to γ by the construction
in [SW, Sect. 5]. The rest of this section is devoted to setting up the ansatz and
to performing the Ward transform explicitly in the case that 7 extends to a rational
map from CPi to GLW(C).

5.7. Description of the Ansatz. Cover twistor space Z by open sets UQ = {/Iφoo}
and C/oo = the part of Z that lies above Ax), where DQO is a small disc in CPi,
centred on λ = oo. (Recall from Sect. 4 that Z has the structure of a bundle over
CΛ.)

Let FO and FOO be holomorphic frames over UQ and C/oo respectively and define
Eγ via the patching relation

FOO - G yF0 , (5.2)

where y is holomorphic as in (5.1) and G is the matrix function

) . (5.3)

The (Cw-1 -action on Z is lifted to Ey by decreeing that FQ be an invariant frame,
so that J% acts as ξA = d/dμA relative to the frame FQ and

&A acts by ξA -λ~lΛA relative to F^ . (5.4)

(The formula for the action in F^ follows from (5.2).)
Bundles of the form Ey are characterized by the existence of a frame F^ with

this property:

Proposition 5.1. A bundle E which satisfies the conditions of Theorem 4.2 is an
Ey iff there exists a frame F^ for E which is holomorphic on some neighbourhood
ofλ = oo and satisfies (5.4).

Proof. Given the bundle E and the frame F ,̂ we construct an appropriate FQ as
follows. Let L be the line in Z which corresponds to xAi = 0. Since E\L is trivial,
choose a frame FL for E\L and extend to a frame FQ over UQ by solving

Then on UQ Π C/oo we have 2 frames FQ and G(μ, λ)Fσo that are invariant: relative
to each, J% acts as ξA. Thus these frames are related by a function of λ only, y(λ\
say. This yields Eq. (5.2), so E = Ey. With this construction, y(λ) is just the value
of the patching matrix between F^ and FL on C/oo Π L.

We remark that (5.2) does not quite define an SLw(<C)-bundle. However, since
y(oo) = 1, a simple rescaling of γ could be used to make the transition function have



212 L.J. Mason, M.A. Singer

determinant = 1. It turns out to be more convenient to work with the normalization
y(oo) = 1 than with the condition det (G y) = 1.

5.2. Implementation of the Ward Transform. As in Sect. 4.2, start by pulling Ey

back to Y to get EΊ\ this has the explicit description

(5.5)

where FQ and FOO are the pull-backs of F0 and F^ and G(x,/ί) is the pull-back
of G(μ,A):

G(x,Λ) = exp (ΣxAiλ*-lΛA) = exp ̂ xA^'lAA) G0 . (5.6)

In this frame, the components of the relative connection are just VAΪ — SAΪ — Afl^/_ι,
while the action is given by J% = SAG — λ~lΛA.

The second step is to transform to a global holomorphic frame. This is achieved
by Birkhoff factorization of G y:

G(x,λ)y(A) = fl'ooίMΓW'U) , (5.7)

where g'^ : X x DOO — > GLn(C) and g$ : X x {/Iφoo} — » GLW((C) are holomorphic
maps. We can and shall assume further that

flkίx,*) - 0oo(M)exp (-Σ^oλ-1^) , (5.8)

where

0oo is independent of XΛo,0oo(x,°°) = 1 - (5.9)

Then a global holomorphic frame F on 7 is given by

F = g'00 F00=gQ F0 (5.10)

and relative to this frame, the components of the relative connection are

*Ai = 0'oc VAi g'-1 = go VAi gjl . (5.11)

Moreover, our choice of dependence of g'^ upon XAQ means that F is an invariant
frame.

The Ward transform guarantees that the XAi generate a solution of the reduced
SDYM hierarchy; comparison with the formulae in Sect. 3.2 and use of the ob-
servation made at the end of that section shows that g1^ is the modified dressing
transformation for the corresponding w-KdV solution. Thus we have here an exam-
ple of a solution of w-KdV for which the dressing transformation converges to a
holomorphic function in some neighbourhood of λ = oo.

As in Proposition 5.1, the converse is also true:

Proposition 5.2. A (holomorphic) solution of w-KdV has a convergent dressing
transformation g iff it is the Ward transform of an Eτ

Proof. This follows from the formulae in Sect. 3.2 and the discussion above.

5.3. The Trivial Solution. The simplest example of the Segal-Wilson ansatz arises
by taking y(λ) = 1 and corresponds to the trivial solution of n-KdV. Note that
the bundle E\ is a non-trivial holomorphic vector bundle over Z. In this case, the
Birkhoff factorization of GO γ is given simply by go = GO, goo = 1? so (5.11)
yields the vacuum reduced SDYM hierarchy in invariant gauge:
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XA\ — UAI — λdAQ — ΛA and XAi = dAi — λdAi-\ for i ^ 2

(cf. (3.16) and (3.17)). This indeed corresponds to the trivial solution of n-KdV.

5.4. Rational Soliton Solutions. Let us consider the Segal-Wilson ansatz with y
a rational matrix function of λ satisfying 7(00) = 1. For such y it is possible to
perform the Birkhoff factorization (5.7) explicitly. We deal first with the generic
case. Thus we assume that

dety(λ) = Π ~ ~ (5.12)
i λ- λr

for 2k points λ\9...9λk9λ\9...λk such that

1. the λr and the λs are distinct points of C;
2. res^(y) is of rank 1 with image spanned by vr;
3. Im(y(>lr)) is of codimension 1 and is annihilated by the functional αr;
4. the A: x A: matrix M with entries as(vr)/(λr — λs) is invertible.

If condition 4 is satisfied, then the data consisting of the k quadruples {λs, [θy],
AS, [vs]} G C x CP""1 x C x CFW-1 uniquely determines a loop satisfying condi-
tions 1-3 and Eq. (5.12). Indeed we claim that γ(λ) has a simple partial-fraction
expansion

1 y g j ( 8 )ft (513)
1 λ-λs

where the βr are linear functionals to be determined. (Throughout the discussion,
we use u9v9 etc. for vectors in Cw and α,β, etc. for functionals on <Cn.) The RHS
of (5.13) has the correct residue at each of the poles λr. Substituting condition 3
into (5.13), we obtain

0 - *r(v(*r)u) = xr(u) + Σ '̂̂ ^ (5.14)

for any u in <CW; and this can be solved uniquely for βs given condition 4.
We now turn to the explicit Birkhoff factorization of Go(x,Λ)y(/l). We assume

that goo in (5.8) has the form

0oo(x,Λ) - 1 + E^T1 ' (5 15)

where the x-dependent vectors vs and functionals βs are determined by the condition
that 0oo GO y be holomorphic in the finite complex Λ-plane. Now the residue of
goo at λr is of rank 1; this will be cancelled by GO(X, λr )y(λr) precisely if Go(x,Λr)βr

annihilates Im(y(/lr)), i.e.

j8r = σ^(xΛ)«r (5.16)

(cf. condition 3 above). On the other hand, at the point λr, the residue ΰr (g) αr of 7
will be cancelled iff 0oo(x?Λr) annihilates Go(\9λr)vr. This condition is equivalent
to the equation

, (5 17)
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where

\f r^ _ «XG0-\xΛ)G0(xΛ)0r) r - 1 R ,
Mrs(X) — - 5 - - - . (5.18)

λr λs

Note that Mrs (0) = the matrix M whose invertibility was assumed in Condition 4
above. Thus M(\) will be invertible for sufficiently small - in fact, for almost all -
values of x. Equations (5.15-5.18) thus determine g^ since this can be interpreted
as the dressing transformation, we can now, in principle, compute (MO> >Un-2) of
i-KdV.

Formula (2.32) offers a short-cut to an expression for u = un-2 in terms of
M(x). Recall that (2.32) says that

u = -n

where x =#1,1,;! = λe\ + f\ (as usual), and g\ is the coefficient of λ~l in the
expansion of g^ about λ = oo. In the present case, we obtain from (5.15-5.18):

1 s,t

SO

From (5.18), however,

dxMrs = ^[Ggl^)Gg(JLr)eiOr] ,

and finally

u = ndxtr(M-ldxM) = n%log det M . (5.19)

Thus we have identified the τ-function of Sect. 2.1.2, in this case, with det M.
It is possible to relax the conditions 1-4 above at the cost of greater complication

in the formulae for υs and βs in (5.15). We give a brief treatment of one other
interesting case, corresponding to the example on pp. 20-22 of [SW].

We replace (5.12) by

dety(A) = λ~k(λ - A! ) . . . (λ - λk ) , (5.20)

where λ\9...9λk are distinct points of C, none equal to 0, and assume further that

γ(λ) = Λ-k P(λ)9γ(oo)=l9 (5.21)

where P(λ) is polynomial in λ. Then P is completely determined by (5.20),
(5.21), and the annihilator αr of lm(y(λr))(r = !,...,&), at least if the latter are
appropriately generic. For the Birkhoff factorization of G 7, we assume g^ to
be given by (5.15), and parallel reasoning (the zeros of dety are still distinct)
once again leads to Eq. (5.16) for βs in terms of as. To deal with the multiple
pole at 0 in dety, first write k = in+A, where / ^ 0 and 0 ^ A ^ n — 1. Then
A~k = λ~lA~A = λ~len-A + λ'^fn-A As P is polynomial, g^ will cancel the
pole at λ = 0 iff

ί/oohas a zero of order i at 0 and g*£ί>l\x9Q)fn-A — 0 .
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This condition yields the following system of equations for the vs:

As

Σ^

With (5.16), these determine #00 uniquely. These considerations lead to an identi-
fication of the τ-function as the determinant of a k x k matrix, as in the previous
case; explicit formulae appear on p. 21 of [SW].

5.5. The Ward Transform and the Construction of Segal-Wilson. In this section
we shall establish the equivalence of the construction of Segal-Wilson and the
restriction of the Ward transform to bundles of the form Ey.

We begin with a brief account of the Segal-Wilson construction. This begins
with the Grassmannian Gr of the Hubert space H = L2(Sl) and the abelian group

= {exp

where the sum is assumed convergent in {\z\ ^ 1}'-Γ+ acts by multiplication on
Gr. To a subspace W C H of virtual dimension zero in Gr is associated the Baker
function ψw which is characterized by:

(a) for all t,(/r(t,z) lies in W\
(b) \l/ has an expansion of the form ψ(t9z) = exp(]Γ} tiZl)(l + a\z~l + ...)•

(Compare with the formal Baker function in Sect. 2.1.2. As there, we write t for the
collection of all the "time" variables f, .) A more geometric version of condition (b)
is: for all t,g(t9z)~l\l/(t,z) lies in 1 -f H-- (Here H± are the positive and negative
parts of the standard polarization of H.) Then \jι exists for almost all values of t
because W is of virtual dimension zero, and for almost all t9W Π g(t)H- = 0.

The significance of ψ is that it satisfies a family of linear differential equations,
derived as follows. With dr standing for differentiation with respect to tr and t\ = x9

note that

and

Thus

where D = dx. One can proceed to eliminate the non-negative powers of z on the
RHS by subtraction of appropriate multiples of D*\l/ for / = r — 2, r — 1, . . . , 0. The
result is a polynomial differential operator Pr = Dr +qir D

r~2 -f . . . such that
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Now one argues that the LHS lies in W by definition of ψ (the f-derivatives also
lie in ψ because W is a closed subspace of H) whereas the RHS lies in g(t,z)H-.
For almost all t9WΓ\ g(i)H- = 0 so both sides of this equation must vanish. Thus
ψ satisfies the equation

drψ - Prψ = 0

for each r = 2,3,...; the compatibility conditions for these equations constitute the
equations of the KP-hierarchy.

The «-KdV hierarchy arises from this construction when the subspace W satisfies
the condition znW C W. Indeed, for such W,

and by the same argument using the transversality of W and #//_, it follows that

in addition to the evolution equations found before. Putting Pn = Dn + un-2^n~2 +
---- h wo, and using the essential uniqueness of the n-KdV hierarchy, we see that
we have indeed recovered the Gelfand-Dikii form of that hierarchy (cf. Sect. 2.1).
Note again the important principle that the Baker function determines the solution.

To make contact with the twistor construction, some more of the general theory
of Gr is needed. The key point is that the submanifold Gr(n) of subspaces W which
satisfy znW C W is intimately related to the loop groups Z,GLn((C) and LUn and
that, roughly speaking, the transversality argument that we used above corresponds
to Birkhoff factorization in LGLn((C).

This theory begins with the identification of H with /f(w) =L2(51,CΛ). Indeed,
given a function of z, we obtain a row-vector-valued function of λ by means of

/(z) H-+ (FK/l),... ,Fn(λ)) = (f(zι),..., f(zn))A(λΓ , (5.22)

where z\9...9zn are the «th roots of λ and

r i --1 -1-"-1

^(AΓ'-n-1

-̂

(5.23)

The inverse is given more simply by

/(z) =Fl(zn)+zF2(zn}

(These formulae have a geometric interpretation in terms of the w-fold covering
map from the z-plane to the A-plane. Cf. also Sect. 2.2.2. Because we made our
connections act on column-vector-valued functions throughout Sects. 2-4, we are
forced into the above identification in which we think of H^ as row- vector- valued
functions on Sl . In [SW], the opposite convention is adopted. This is relevant when
comparing the formulae at the end of Sect. 5 of their paper with those of the present
section.)

If now y is in Z,GLn(<C), then WΊ = H^γ~l lies in Gτ(H^). Moreover, λW C
W so W lies in Gr(1)(#(w)). It is easy to check that under the correspondence
between H and H(n\ G^l\H(n^ corresponds to Gr^; so the assignment

γ*->Wy (5.24)
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defines a map LGLn(C) — » Gr(w). In fact, this map is onto and WΊ = W§ iff y~lδ G
Z+GLn((C). Thus (5.24) induces a map

ZGLn(<C)/£+GLn(C) -> Gr(w)

(where on the LHS, L+GLrt(C) acts according to (g+,y) *-> 70+1). In natural topo-
logies on the two sets involved, this map is a diffeomorphism of infinite-dimensional
manifolds. Moreover, the connected component of the identity on the LHS is
mapped onto the submanifold of virtual-dimension-zero points of Gr(n). We note
that Birkhoff factorization identifies a dense open subset of this identity-component
with L~GLM((C) (and as we indicated before, this identification with Gr(π) can be
used to prove the Birkhoff factorization theorem [PS, Ch. 8]).

To bring this general theory to bear upon the «-KdV hierarchy, we must first
identify the action on LGLn(C) that is induced by the multiplication action of Γ+
on Gr. From (5.22) and (5.23) (cf. also (2.24) and (2.25)), this is given by

(Fl9...9Fn)»(Fl9...9Fn)A(λ) diag (g(z ,),..., g(zn))A(λΓl (5.25)

= (Fl9...9Fn) expQ>/T) . (5.26)

Now fix W = Wy in Gr(n). One calculates, as in Sect. 2.2.2, that the Baker func-
tion ψ of W goes over to the "Baker matrix" Ψ of γ which has the following
characterization :

(a)' for all t, Ψ(t,λ)~l lies in the orbit y L+GLn in LGLn;
(b)x Ψ has a factorization of the form Ψ(t9λ) = g00(t9λ)GQ(t9λ) with

0oo(t,oo)= 1.

(Here G0 = exρ(ΣtrΛ
r).)

In terms of these quantities, the construction of Segal and Wilson associates to
γ the w-KdV solution with dressing transformation^ g^.

One can see that g^ is a dressing transformation in 2 ways. The first is to note
that ψ is the Baker function of an n-KdV solution and that g^ is related to ψ
exactly as were the formal dressing transformation g and the formal Baker function
ψ in Sect. 2.2.2. The second is to use the two expressions for Ψ,

Ψ(i,λ) = 9o(t,λ)γ(λΓl = 0oo(α)(?o(U) , (5.27)

which follow from (a)' and (Z?y, to derive evolution equations of the type LrΨ — 0,
where Lr is as in (2.33) with g = g^.

The solution of the «-KdV equation that comes from the Ward transform of Ey

also has dressing transformation^ g^, for eliminating Ψ from (5.27) gives

^oo(t)'1 00(t) - Go(t) J -

To recover (5.7), just pre-multiply both sides by exp(]T^ao^~l^)> replacing g^
by flk and G0(t) by G(x).

Hence the Ward transform, restricted to bundles generated by the Segal-Wilson
ansatz, coincides with the Segal-Wilson construction.

Acknowledgement. The authors are grateful to Nicholas Woodhouse for a number of helpful
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