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Abstract: We shall give a certain trigonometric R-matrix associated with each root
system by using affine Hecke algebras. From this R-matrix, we derive a quantum
Knizhnik—Zamolodchikov equation after Cherednik, and show that the solutions of
this KZ equation yield eigenfunctions of Macdonald’s difference operators.

In this paper, we shall construct the trigonometric R-matrix from affine Hecke al-
gebras. Our R-matrix, which is obtained for each finite or affine root system, satis-
fies the Yang—Baxter equations in a generalized sense [C2] (see Theorem 2.4 and
Proposition 3.6 below). As an application, we define a kind of quantum Knizhnik—
Zamolodchikov equations (QKZ) following [C4]. Moreover, by using these equa-
tions, we shall show that Macdonald’s difference operators (MDO) [Mac3] enter
in the context of affine Hecke algebras through our R-matrix (Theorem 4.6). This
result may be viewed as a certain g-analogue of Matsuo’s correspondence [Mato]
between “classical” Knizhnik—Zamolodchikov equations and zonal spherical systems
(see also [C3]).

The contents of this paper is as follows. For a finite root system, we consider
the affine Weyl group and its Hecke algebra simultaneously in End¢(?) of some
vector space V and give the affine Weyl group actions in two ways on V™, a
certain extension of ¥, in Sect. 1. Then we define our R-matrix for the root system
as a “difference” of these two actions (see 2.1), and show that they satisfy the
Yang-Baxter equations (Theorem 2.4). Moreover, after the idea of Cherednik [C4],
we extend our R-matrix to the affine root system by using g-shift operators in Sect.
3. As a result, we get the Heisenberg—Weyl group (an extension of the affine Weyl
group) action on V™ in two ways (see 3.10), and obtain QKZ. In Sect. 4, we review
the definition of MDO, and show how the solutions to our QKZ give eigenfunctions
of these MDO in Theorem 4.6. Section 5 is devoted to the proof of this theorem.

It should be noted that Cherednik announced similar results on QKZ and MDO
[C5] which overlap with ours in Sects. 3—4 in part. There essentially the same QKZ
is given, and more general eigenvalue problems than ours are discussed. Actually
he gave an equivallence between QKZ and certain eigenvalue problems. Then he
showed that Macdonald’s original operators arise in his theory for the case of type
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A, but left open the other cases.! Since we handle each MDO in an explicit way,
our results on MDO (Theorem 4.6) may be viewed as an answer to this problem.
It is also noted that the notion of admissible pairs of root systems in [Mac3] fits
naturally in our formulation (see 4.3). Our way to derive QKZ is along Cherednik’s
method in [C4] using the R-matrix. But we hope the publication of this article will
be a help to the understanding of this subject since we employ a somewhat different
formulation from Cherednik’s.

1. Affine Weyl Groups and Affine Hecke Algebras

In this section, we shall realize affine Weyl groups and their Hecke algebras in
some endomorphism algebras. See [B, Matm, K and L] for basic references on root
systems, affine Weyl groups and their Hecke algebras.

1.1. Let 4 be a reduced root system in a finite dimensional real Euclidean space £
with the inner product (,). We choose and fix the set of positive roots 4™ relative
to some order and the set of simple roots IT in A*.

Let P be the weight lattice, P = {1 € E|(4,a") € Z(Va € 4)} and Q the root
lattice of A. Here «¥ = 2a/(a, ), the coroot corresponding to o € 4. Let W = W(4)
be the Weyl group of 4. The group W acts on both P and Q. We fix L a sublattice
of P containing Q. Since the induced action of W on P/Q is trivial, W also acts
on L.

Set A = C[L], the group algebra of L over €. We denote by e* the element of 4
corresponding to A € L as usual. The Weyl group W acts on 4 as w(e?) = e"*(w €
W,A€L). Let V be the left A-module of rank |W| with free basis A (w € W).
Each element F' of V' can be written uniquely as F = EweW Swhy(fw € A4).

Now we define several operators in Endg(V) as follows.

1.2. The operator f (f € A): Every element f of 4 acts on V by left multiplication
F— fF((FeV).
We often regard 4 as a subalgebra of End¢(V) under this correspondence.

1.3. The operator r,, (w € W): The Weyl group W acts on V by

rw (S hy) =w(hwy (f €AW,y €W).

We note that the above r,(w € W) and 4 generate a subalgebra of Endg¢(V),
which is isomorphic to the group algebra €[] of the extended affine Weyl group
Wi, = W <L (the semidirect product of L and #). We identify this subalgebra
with C[W;] and regard V' as a C[W]-module. Note also that the action of C[I;]
on ¥V can be naturally identified with the left regular action of C[W,].

1.4. We introduce a set of positive real parameters ¢ = {¢,, }oca satisfying
tn=1tg ty=ty for a,pecd with Wa=Wp;
and

tw=t, if (W, L)y=1Z.

1 After we submitted this paper, we learned that Cherednik announced the solution of this
remaining problem in his paper “The Macdonald constant term conjecture” (Internat. Math. Res.
Notices No. 6, 165-177, 1993). See also his preprint “Induced representations of double affine
Hecke algebras and applications.”
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Let s, be the reflection in W corresponding to « € 4. Set S = {sy(a € II)}, the
set of simple reflections. We set a(s) = o if s =5, for s € S and « € II.

1.5. The operator Ts(s € S): The operator T is defined by the following formulas:
Ty(hy) = hgy if yla>0
=(ty — Dhy + t;hs, if yla <0, (1.52)
where « = a(s) and

TS hy) = SOOThy) = 6~ DEZ), if (aV,L) = Z;

={(ts— D)+ e t2(}? -t~ 1/2)} /= s(_fa) if («V,L) =2Z; (1.5b)
for ye W and f € 4. (See [L]; cf. [Matm].) The formula (1.5b) in the case
(aV,L) = 2Z is also valid for o € IT with («V,L) =Z by our assumption on 7,
in 1.4. It is easily seen that the right-hand side of (1.5b) is actually in V.
Now we recall the definition of the affine Hecke algebra H;. The affine Hecke
algebra Hj is the C-algebra generated by elements #,, (w € W) and 6,;(A € L) with
respect to the following relations:

fs'fy:/sy if y_loc>0
:(toc—l)jy+tajsy if y—la <0
(s=sa,oz€Hy€W), (1.5a")
Fs =050y« Is=(ta — 1) : :gsm if («V,L)=12Z
= {(t— D) 0_2( 2 — ey — 0"‘”) if (aV,L) =2Z
(s =spa€,AeL)) (1.5b")
and
0, - 0# = 9,1_,_” (Auel). (1.5¢)

It is known that the set {6; - £, (A € L,w € W)} is a basis of H;. Since ¢, =
s Fs, if w=s1...5, is a reduced expression of w € W by (1.5a’), the cor-

respondence #; — Ty(s € ) and 0, — e*(1 € L) extends to an injective algebra
homomorphism from Hj to Endg(V). We shall hereafter identify H; with its image
in Ende(V). Thus we have Hy =) 4 - T,y (a free A4-module of rank |W]).
Here we write Ty, = Ty, ... T, if w = s1...5.(s; € §) is a reduced decomposition of
w € W. Note also that the action of H;, on V can be identified with the left regular
action of Hj.

1.6. Let A™ be the quotient field of 4. Set V™~ = A~ ®4 V. Then the formulas 1.3,
(1.5a) and (1.5b) for f € A~ define an action of the algebra H> =4~ - H, =
A~ ®4 Hp on V™. Define an element I(s = sy, € II) of H” by
ty — 1
l—e @
(ty — 1)+e‘°‘t1/2(t”/2 /- 1/2)
1 —e 2

I, =T -

if (aV,L)=1Z;

-7, — if (aV,L)=2Z.
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Then the relation (1.5b) implies that

Ii- f=s(f)-L (fed7).
Now we define ¢, € 4~ (a € 4) by

1=t

=T if (aV,L)=1Z;
— e
12,0172 _gney 12,0172 4
_ U TN TR ) e vy oz (161)
1 — e
Then
L=T +(cou—1,). (1.62)

for o = o(s) and it can be easily seen that I? = c,c_,. This element I; appeared
(implicitly) as an intertwining operator in [Matm]. See also [K] and [L].

1.7. Now we set J; = c:;(s)ls € H” for s € S. (The results which follow are es-
sentially the same if we choose ca‘(sl)ls instead.) We get J? = 1. Moreover we can
see that the element J,, € H for w € W given by J,, = J;, ...J;, is independent
of the choice of the (not necessarily reduced) decomposition w = s;...5.(s; € S).
(This fact is essentially due to Matsumoto [Matm], see also [L].) Hence the map
J:we J,(w € W) is a group isomorphism. Therefore we have obtained an action
of Wi on V™~ through this J. Note that this action is different from the one in 1.3.
Since J,, reduces to r(w € W) if t,,, — 1(o € 4), we may regard {J,(w € W)}
as a t-deformation of {r,(w € W)}.

Incidentally, since J,, - f = w(f) « J,, for f € A, we see that H;~ is isomorphic
to the algebra A™ ®, C[W,] (twisted tensor product) by using the following lemma
proved by the induction on the length of w € W.

Lemma 1.8. For any w € W, we have

-1
JW€< IT c_a) Ty+ > A~ -T,.

a>0,w—la<0 y<w

Now we show the relationship between the Wp-action (through r) and the Hj-
action on V.

Proposition 1.9. Suppose that wo. = f§ for w € W and o, € II. Then we have
Tw * Tsaszﬂ < Py
in Endg (V).
Proof. We must prove
(rw » TYF) = (Ty - 1 )(F) (s =548 = sp)
for any F € V. First we consider the case F = hy,(y € W). Since

Ty (hy) = h, if y o) >0
=(ty — Dhy + t,hs, if y7'(a) <0, (1.52)
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we have
] Py if y~1(a) >0
(ry - Te)(hy) = { (to = Dhyy + tuhysy  if y71(2) < 0
={ hs’wy if (Wy)_l(ﬁ) >0
(tx — Dhyy + tahgy if (wy)~Y(B) < 0.

:(Ts’ * rw) * hya

noting that y~'a = (wy)~'B and t, = t5. Next we put F = fh,, for f € 4. Assume
that («V,L) = Z. Then

(rw + Ts)(fhy) =rw (S(f)TShJ’ + (t“ - 1){%5;(—#}1}’)
() Ty + (15— 1)L,

=(Ty « rw)(fhy) .

The case where («V,L) = 2Z is similar. Thus we have completed the proof of the
lemma, since the elements f4,(f € 4,y € W) span V over C.

By the proposition above, we easily have the following corollary, which tells
us the relation between the two kinds of Wi-actions on ¥~ (through » and J).

Corollary 1.10. Under the same assumption as above, we have
T Jgy =Jsﬂ © Fy

in Endg(V7™).

1.11. Let U be an A-module. We call U a (W, H)-module if the following three
conditions are satisfied:

The module U has both C[W,]-and Hy-module structures . (1.11a)
The action of 4 = C[L] on U is compatible with the above module

structures . (1.11d)
For o, § € IT with w(a) = p(w € W),w - T, = Ty - w. (1.11¢)

Our V is an example of (Wi,H)-modules by 1.9. Other examples of (Wy,H)-
modules are obtained by taking subquotients of V' (see below).

1.12. Let X and Y be (W, Hy)-submodules of V' with X D Y. Then the subquotient
of V, X/Y is also a (W, Hr)-module.

We may proceed as follows to construct such X and Y explicitly (cf. the
Lusztig-Lascoux—Schiitzenberger operators in [C2]). Let U be the C-vector space
spanned by A,(w € W). Let H (resp. C[W]) be the subalgebra of Endg(V) gen-
erated by Ts(s € S) (resp. rn(w € W)). Then H (resp. C[W]) is isomorphic to
the Hecke algebra of W (resp. the group algebra of W). This U has a (W, H)-
module structure. Namely, U satisfies (1.11a) (for C[#] and H) and (1.11c).
Let Xy and Yy be (W, H)-submodules of U with Xy D Y. Since 4 ®¢ Xp and
A®c Yy are (W, Hp)-submodules of V, we get the subquotient 4 Q¢ (Xo/Yp) =~
(4 ®¢ X)/(4 ®¢ Yy) of V, where Xy/Yy is a (W, H)-subquotient of U.

For example, let 7 be a subset of S and W, the corresponding parabolic subgroup
of W; W; = (s(s €I)) C W. Then the C-subspace U of U spanned by all the



538 S. Kato

elements of the form }°,y hy.(y € W) is a (W, H)-submodule of U. Note that as

W -modules, UTY ~ Ind%(l), the W-module induced from the trivial representation
of W;.

Similarly, for I C § above, we define U;*" to be the C-subspace of U spanned
by all the elements of the form A, + h,(w € W,s € I). Then we can easily see
that this U;®" is a (W, H )-submodule of U, and obtain a (W, H )-module U/U;*".

Note that as W-modules, U/U;®" ~ Ind%l(sgn), the W-module induced from the
sign representation of Wj.

Generally, by combining the above two ways, we can produce many (W, Hp)-
modules. Especially in the case where 4 is of type 4, we can have (W, H; )-modules
for each irreducible representation of W (or of H).

2. R-Matrix Associated with Root Systems

2.1. Now we define the R-matrix as follows. We set
Ry =7y « Jy, € Ende(V"™)

for a € II. Note that R, is actually in Endy~ (¥~ ). Namely, R, can be represented
by a |W| x |W| matrix with coefficients in A~. More generally we define R €
Endy~ (V™) for an arbitrary root f € 4 by

R,gzrw~Rmor;1

for w € W and « € IT with w(ax) = B. The definition above is independent of the

choice of w and a. Indeed, if y(«') = B for y € W and o € II, then (y~'w)a = o'.

This implies 7, « R, - 7, =ry « Ry « r;! by 110.

w
From the definition, we have R_, = J;, « 75, = R, ! for « € II. This shows the
next proposition.

Proposition 2.2. R_g =Ry for any f € 4.

2.3. We have the formula
Rohy = ¢ 'hy + (1 — tyey gy, if yla >0
= 1,6, hy + (1 —¢; gy, if y'a<0 (23.1)
fora € 4 and y € W. (If o € I1, this formula is deduced immediately from (1.6.1),
1.7, and the definition of R,. The general case follows from this.)

Theorem 2.4. Our R-matrix {R,(x € A)} satisfies the following Yang-Baxter
equations for each rank 2 root subsystem A’ of A with simple roots o and B,
where o is long and B is short if |a|=+|B) :
Ay X Az RyRg = RyRy
A2 : RaRaH_ﬂRﬁ = RﬁRa.HgRu .
By RuRuypRas2pRp = RpRor2pRorpRs
G, Ry Ry pRou13pRu125Ru13pRE = RﬁRa+3ﬂRa+2ﬂR2a+3ﬁRa+ﬂRa >

respectively in the case where A’ is of type Ay X Ay,43,B, or G,.
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Proof. In the case 4, x A4, the statement follows from (2.3.1) and the fact y~la =
(sﬁy)_loc. Now we consider the other cases. Fix z € W. Since Ry, Rg,Rytp, ... Sta-
bilize the A™~-submodule of V™ spanned by h,,,y € W(4’) (the Weyl group of
4"), (2.3.1) shows that we can reduce the problem to the case 4’ = A. Assume, for
example, that 4 is of type 4. Then we see that

RaRoz+ﬂRﬂ =(rgrsrgJg¥sty YrgrsJgrg YreJy)

=rarstgJgJJg = rWOJWO "
where s = s,,5" = sp, and wy is the longest element in W(A4,). Similarly we get
RgRyi Ry = rsrgrsJsJoJs = rygduy .

Other cases also follow from the fact that there are two ways for giving the reduced
expression of the longest element of the Weyl group of rank 2 root systems.

We remark here that besides 1.10 only the braid relations (e.g., rs#y#s = FyFsry
and JJyJ; = JoJJy) are sufficient to establish the Yang—Baxter equations in the
argument above. (The conditions > = J? = 1 are not essential here.) Therefore we
can state the theorem in a more abstract way (cf. 2.7 below).

It should be noted that if the root system is of type A, our R-matrix given
above is strongly connected with the one in [J] produced from a Hecke algebra
(See also [C2] for other types; our I also appeared there in connection with the
R-matrix.) But the use of the W -action through » here seems to be new, although
some W-actions are incorporated in the study of the R-matrix in [C2, C4]. See also
Subsect. 2.6 below. Theorem 2.4 together with Proposition 2.2 reads as follows: Our
{R4(ox € A)} is a closed, W-invariant quantum R-matrix in the sense of Cherednik
[C4].

Remark 2.5. For we W, we set R, =71, - J,, € Endy~(V"™). Then for any de-
composition of w, w = s)...5, (not necessary reduced) with s; € S,a(sy) = o € I1,
we see that

—1 —1 ~1
Ry = (rs(.‘.sszxl Fsp..sn )(rs;‘..sg,Rotzrs,...g ). (rs;Roz{_l s, )Ra/

=R51Rﬂz.‘.Rﬁ( (,Bk =S/...Sk+1(0tk) for 1§k§/).

Note that w™! =sp ...sp, and that £(sp, ...sp,) — £(sp,,, ...5p,) = l(resp. — 1) if
Bi > 0 (resp. f; < 0). By definition, we have

Ry, =(@r,-1 R, - )R,
for any y, z € W (cf. [C1]).

2.6. The discussion given above shows that we can get the R-matrix on 4™~ @4 U
if U is a (W, Hy)-module. Particularly, we have the R-matrix for each (W, Hp)-
subquotient of V. (See 1.12 for the construction of these subquotients.)
Set Vo = A4 ®c U™ (~ A4) (see 1.12). This is a (W, Hy)-module. But if we regard
this ¥V as a (W, H)-module, then we get (Wy,Hy)-module V = 4 ®¢ V. Therefore
we have an R-matrix on V™~ = 4"~ ®¢ Vo, the one which appeared in Cherednik
[C4; Proposition 3.8]. Thus his R-matrix is essentially the same as ours in 2.1.
But we think that our formulation given in this paper makes the meaning of the
Yang—Baxter equations clearer.
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2.7. We can define some variant of our R-matrix. Set
R} =7, - Ty, € Endc(V)

for « € IT and put R =r, - R} - r,,;! for arbitrary f € 4 by using w € W and
a € IT with wa = 8 as in 2.1. By 1.9, we see that this R-matrix {R}(x € 4)} is
well-defined and satisfies the YBE as in 2.4. Note that R} is neither 4-linear nor
satisfying 2.2 in this case. The subquotients of this R-matrix for the 1-dimensional
representations of W appear in [C2].

3. R-Matrix Associated with Affine Root Systems

In this section, we extend our R-matrix to affine root systems following Cherednik
[C4]. By using this extension, we define the quantum Knizhnik—Zamolodchikov
equations. The basic idea and formalism employed here are due to Cherednik. But
we include some of the arguments in [C4] here for our later use.

3.1. Let M be a W-invariant lattice in E. Then for each o € 4, we have a lattice
(2,M) in R. Obviously (a,M) = (f,M) if o and B are W-conjugate. For o € 4
and m € (o, M), let o + m be the affine function on E defined to be (o + m)(x) =
(x,0) + m(x € E). We put

A~ =AM~ = {a+m;o € A,m € (o, M)}

and call this the affine root system corresponding to 4 and M (cf. [Macl]). The
affine root system 4™ contains 4 in an obvious manner. Let H,.,, be the hyperplane
in E given by

Hyym = {x € E; (¢ + m)(x) = 0}

for o« +m € 4~. The set of these hyperplanes are invariant under the action of
W on E; wW(Hyym) = Hyyrm for w € W. We define the action of W on A~ by
w(a + m) = wo + m. Define the translation action of M on E by 7,(x) =x + u(x €
E,n € M). We easily see that 7,(Hy1m) = Hyt(m—(ua))» We define the action of M
on A~ by tu(a+m) = o+ (m— (u,a)).

Let W), be the subgroup of the affine transformation group of E defined to be
the semidirect product of M and W. This W), acts on 4™, since both W and M
act on 4™ compatibly. It is known that W), acts, as an affine transformation group,
transitively on alcoves, i.e., the set of connected components of E\UJ,, e s~Husm,
and that

C={x€E;0< (x,0) < ny(ax€ 4}

is an alcove, where n, is the generator of (o, M) with n, > 0. We call an affine
root o + m positive if (¢ + m)(C) > 0. Note that all elements of A are positive,
and that either « + m or —a — m is positive.

3.2. For w € Wy, we can choose a sequence of alcoves
wolCc =0, 0,...,Cr=C,

so that there is only one hyperplane H, . separating C;_; and C;. We assume
that (o; + m;)(Ci—1) < 0 and (o; + m;)(C;) > 0. We call these ordered affine roots,
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oy +my,...,as + my, a root sequence from w~! C (to C). If we denote by Sa;4m, €
Wy the reflection with respect to the hyperplane H,, im;, then we have

Ci = Suypm; - Sapim,C (1SiS).

Especially
wlC = Soy4my -+ Saptmy C
(cf. 2.5). Let Q be the stabilizer of C in W),,. The equality above implies that

Wl =S4 4my - Sap4m,y for some y € Q.

3.3. Now we extend our R-matrix in Sect. 2, defined for « € 4 to each affine root
a+me A~
We fix ¢, a real positive number. Let L, be the g-shift operator on 4~ defined
by
Lx(el) — q(x,l)el

for x € E and A € L. We regard this L, as also acting on V™ by

Lx(z fwhW) = ZLx(fw)hw .

Note that L_, =L ! and r, + Ly - 1y = Ly, for we W.
Next we denote by P¥(u,x € E) the element of Endy~(V"™) given by

PXhy) =g h, (we W),

cf. [FR]. Note that P* = (P*)"' =P “and r, - P* - r,' =P forwe W.

X w

The operators Ly(x € E) and P¥(u,x € E) commute each other.

Lemma 34. If (x,a) =0 for x €E and o € A, then the both L. and P*(u
arbitrary) commute with R,.

This is clear from 2.2.

3.5. Now we fix u € E hereafter and put P, = P¥ for simplicity. Set 7, = P,L_, €
Endg(V™). We note that r,,(w € W) in 1.4 and these r,(u € M) generate a sub-
group of Auteg(V™) naturally isomorphic to W). Since r,, - e* - ro! = " (w € W)
and r, - e* - ry! = g¢*Mel(u e M) in Endg(V™) for A €L, W)y, stabilizes 4~ C
End¢(¥V ™) under this action. For an affine root o +m € 4™, we set

—1
Royrm =7, *Ry + 1,

provided that x € E satisfies (x,a) = m. This Ry, is well defined thanks to 3.4.
Thus if we denote by 7, for w € W), the corresponding element in Autg(V"™)
above, we have

Rw(a+m) =71y * Rom * r;l
(cf. 2.1). (Note that r;, = r, for u € M). Incidentally we have the explicit formula
of Ryim from (2.3.1) as follows:

Rupmhy = Cluhy + @™ (1 — et by, if y~'a >0

= tyeg) by + " (1 — e e, i yTla < 0. (35.0)
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Here we put €yim = Ly(Cy), (2, x) = m. (Since r;! - e* « rp = L(e*) = q"e*, Coim
is obtained from ¢, by replacing e* in (1.6.1) by g™e*.)

Proposition 3.6. For a +m,§ +n € A™, we suppose that o, B € A satisfy the con-
dition as in Theorem 2.4. Then we have the same formulas of type A, X Ay,A42,B,
or Gy in Theorem 2.4, if we replace o, € A by o+ m, f + n respectively.

This is obvious, because there is an element x € E satisfying (x,a) = m and

(x,B) = n.

3.7. We put

Ry = Ryytmy -+ Rayim, € Endy~(V"™)
for w € Wy (cf. 2.5). Here we choose a root sequence from w™'C,o; +my,..., 0, +
ms € A~ as in 3.1. Proposition 3.6 and the property R_,_, = R, (cf. 2.2) show
that this R,, is independent of the choice of the root sequence a; + my,...,a, + my

above. We note that, in the affine case we still have the following relation.

Proposition 3.8. We have
Ry =(r,' - Ry - rW)Ry
for any w,y € Wy,

Proof. We see easily that w™!(B; +ny),... ,w™ (B, + 1), 01 +my,... 00 +my is
a root sequence from (yw)~'C if o) +my,... a0, + m, (resp. By +ny,...,Br +n,)
is a one from w~!C (resp. y~!C).

Proposition 3.9. Set J,=r, - R, for we Wy. Then we have J,J, =
Sy, w € Wir).

Proof. This is obvious from 3.8 above, since
Jydw = (ry « Ry)(rw * Ry) = "yW('”»;1 “Ry - ry)Ry =Ty« Ry =Jp .

Remark 3.10. Define a group structure on H(E, E) =E X E x R by
(ua) - (& u,d)=@x+x,u+d,a+d + (ux')— (xu)),

where x, x', u, ¥ €E and a, o’ € R. This is a Heisenberg group. We de-
note by H(L, M) the subgroup of H(E, E) generated by L x {0} x {0} ~ L and
{0} x M x {0} ~ M. Since W acts on H(E, E) as a group automorphism by
w(x, u, a)= (wx, wu, a), and stabilizes H(L, M), we can define the semidirect
product Wy » = Wo<H(L, M). We call this group the Heisenberg-Weyl group
(for W-invariant lattices L and M). Then it is easily seen that both of the following
two subgroups of Autg(V™) containing (e*(A € L)) ~ L, (e*(A € L), r,(w € Wy))
and (e*(A € L),J,,(w € Wyy)) are naturally isomorphic to this Heisenberg-Weyl
group Wy . We may regard the latter as a ¢-deformation of the former.

Now we have come to the position to define quantum Knizhnik—Zamolodchikov
equations by using our R-matrix after Cherednik [C4] (cf. [FR]). We may replace
the coeflicient of ¥~(4™ in this case) by larger ones. Let 4* be a commutative
A-algebra with W) -action that is compatible on 4 (see 3.5). We assume that coﬁ_‘m
belongs to A* for each o + m € A4™. (Of course we may take 4™, for example.) Then
we can work with our R-matrix, etc. on V* = 4* ®, V instead of V™ = A~ Q4 V.
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Definition 3.11. The quantum Knizhnik—Zamolodchikov equation (QKZ) of type
u € E is a system of linear g-difference equations on V* given by

L,F =P R, F (YueM). (3.11.1)

In other words,
Jo F=F (VueM). (3.11.2)

This system is a g-analogue of the system of differential equations given
by Cherednik and Matsuo [C2, C3, Mato]. In fact, we recover their system (in
Matsuo’s form) if we set 1, = ¢*, . = g*(k,, k. € R) and let ¢ — 1. We note that
this system of difference equations is also obtained by Cherednik [C5] in somewhat
different formulations (cf. 3.13 below).

3.12. After [C4], we see that Proposition 3.9 implies the following two facts about
our QKZ.

The compatibility condition of QKZ: This condition is equivalent to the com-
mutativity of J;, and J;, for any u,ve M . (3.12a)

The W-action on the solution space of QKZ: If F € V* is a solution of QKZ,
then J,F is also a solution since Jy, JuF = JyJs,~1,F = JuF . (3.12b)
3.13. We remark that we can get a QKZ on U* = 4* ®, U for a (W, Hr)-module
U. But in this case, we may have a restriction on u € E (a parameter used in
P, = P"). For example, if we take U = U™ in 1.12, we are forced to set zu = u for
all z € W;. Actually, we can formulate a QKZ on 4* ®, C[Wy, )], where C[Wp, ]
is the group algebra of Wy 5 (note that C[W; ] D A = C[L]). This equation co-
incides with the one in [C5]. Then we see that our QKZ in 3.11 is given on the
induced module 4* ®,4 C[W, y] D¢y Cu, Where €, is a 1-dimensional representa-
tion of M defined by u — ¢%** . This explains why the restriction above on u € E
is necessary.

Incidentally, Cherednik used a specialization of the QKZ above (i.e. his QKZ
[CS; 3.9]) under certain induced representations of the affine Hecke algebra (#y
in [C5]), so as to apply to eigenvalue problems. It is easily seen that our Eq. 3.11
is also a specialization under another kind of induced representations of the Hecke
algebra Ay, principal series representations. The relation between these two kinds
of representations is given by the ‘“Poisson integrals”. (See [K2] for the counter-
part in the case of p-adic groups. The general affine Hecke algebra case can be
handled similarly, cf. [K3].) Especially, for generic parameters, these two kinds of
representations are isomorphic.

4. Macdonald’s Difference Operators

Macdonald [Mac3] introduced some difference operators with coefficients in 4™,
invariant under the action of W, in order to show the existence of certain symmetric
polynomials. (See 4.2 below.) We show a relation between these operators and our
QKZ (3.11).

In the rest of this paper, we assume that the root system 4 is irreducible.

4.1. Let M be the W-invariant lattice in 3.1. Set
M* ={ue€E;{ua) € {o,M) for any o € 4} .
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Then M* is also a W-invariant lattice of E. By the irreducibility of 4, it can be
easily seen that this M™* is similar to either

(a) the weight lattice P;
or

(b) The coweight lattice PV.

Note that M* D M and (o, M*) = (o, M) for any « € 4. Hence the affine root sys-
tem corresponding to 4 and M™* is the same as A™.

From now on, we shall assume that M = M*, and that M* is normalized so
that M = (2|B|~2)P (B is a short root of A) in the case (a) or M = PV in the case
(b). Then n,, the positive generator of (a, M) (see 3.1), is given by

(a) ny = |af?/|BP
or
) ny =1

respectively (cf. [Mac3]). Following Macdonald [Mac3], we use the notation
we=n'a (x€4).

Thus the set 4, = {a. € E|a € 4} is also a root system in E, which has the same
Weyl group W as 4, and M* is identical to the coweight lattice P} of A.. We
also set
9=9q" (x€4).
Therefore we have
Lye*) = g*™e* (ne M€ 4).

4.2. Now we give Macdonald’s difference operators. For a dominant coweight
nEM =P, we let W, be the stabilizer of = in W, and W™ the set of coset
representatives for W/W, consisting of the elements with minimal length. Recall
that the c-functions for affine roots are defined by the formula

Corm =Ly(cy) (a+med™,peM,(uo)=m).

We treat the following two cases separately:

(a) Assume that the root system A4, admits a minuscule coweight 7. Namely 4 is
(hence 4, is also) a root system of type 4,B,C,D,E¢ or E; and = is a fundamental
coweight of 4, with the condition (m, o) =0 or 1 (a € IT). Then the operator D,

is given by
D,= Y ( I cwa> Ly . (4.2a)
wEW™ \ a>0,(max)=1

Generally, there may be several choices for minuscule 7, hence several operators
D, arise.

(b) Assume that the root system 4 is of type Eg, F4 or G,. Then we let © be
the short dominant coroot of 4, and put

D= ) (cwaocwoﬂao IT cwa> Lyr—1). (4.2b)

wewn o>0,(mox)=1
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Here (o), is the maximal root of A4,(ag € 4) so that = (ag)Y = 2(0t0)«/|(2%0 )« |*.
Note that (m,a,) <2 for & > 0 and the equality holds only when a = o.

4.3. Here we shall give some remark since the notation used in [Mac3] is slightly
different from ours. Let us put

Ad={a,0€Ela€ 4, a, = +1((a",L) = Z) ;
a, = +1,£2({a",L) = 2Z)} .

This 4 is possibly a non-reduced root system in £ with the same Weyl group W.
The pair (4, 4.) is admissible in the sense of [Mac3]. For a € 4, set

M =4 ((@¥,L) = Z)

and
M = ()Y, B =4 ((«Y,L) =2Z).

o

Then we can see easily that the difference operators E; [Mac3; 5-6] (with para-
meters %, o € A) coincide with our D.

4.4. According to Macdonald [Mac3], the operators in 4.2 stabilize 47, the subalge-
bra of 4 consisting of W-invariant elements, and give an eigenspace decomposition
of A", 4" =3"C - P; (sum over L., the set of dominant weights in L). The
eigenfunction P;(4 € L, ), called the Macdonald symmetric polynomial, is charac-
terized by the following properties (i) and (ii) (see [Mac3]):

(1) DnP/l = Cn,/lp/l

where the eigenvalue ¢, ; € R is given by

Cra=q P Y g iten (4.42)
weEWT
or
Cri = q<7v,pk) N (q<wn,l+pk) — q<WTE’Pk>) , (4.4b)
wEWT

respectively for the case (4.2a) or (4.2b) above. Here we choose k, € R so that
ty = qf* and set py = 13" _ ko € E.

(ii) Prem+ > R-my,,
HEL4 4, p<A

where m, =) . €”¥, the monomial symmetric polynomial.

4.5. We make a comment on the eigenvalues that appear in (4.4a) and (4.4b). For
w € W with a reduced decomposition w = s;...s,, We set

ty = to(sy) -"tu(s;) .

This #, is well-defined (see [B]) and is equal to [[,.¢,~14<0 % = [1,50pm<ofe:
Note that
tén,ag — qka(n,oz) .
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On the other hand, since s,pr = px — kyo, We have

Wpr = pg — > ko

a>0,w—la<0
Hence we have for w € W,

q(W">Pk)+(7‘yPk>= 1 qk.x(n,m)= I tén,a*),

a>0,wa>0 a>0,wa>0

which is equal to #,yw, in the case (4.2a) since (7,a,) <1 and w € W". Here w,
and w, are the longest elements of W and W, respectively. In the case (4.2b),
similarly we have

q<wn’pk)+<n’pk> = bwgwwy bag if wop >0

= bygwwn if woy < 0.
Therefore we get
Cn, ) = Z twowwnq<wrc’/I> = Z twq(w()wn’i) (4.5a)
wEWT weWwT
or
Cmi = Z {tWOWWnt“Oq(wnyl) + tWOWSaownq_(wn’l) - tWOWWnt“O - tWOWSaOWn}
WEWT ag >0
— Z {twtuoq—(wn,l) + than(Wn,l) — tylyy — tWSao} R (4.5b)
weWT wag <0

respectively in the case (4.4a) or (4.4b), since woww, € W7 if and only if w € W™,
We note that the formulas (4.5a) and (4.5b) above make sense even for 4 in
E, not in L.
Now we can state the following theorem, which may be viewed as a g-analogue
of a part of [Mato] (and [C3]).

Theorem 4.6 Assume F =3, fuwhy, € V* to be a solution of QKZ for u € E.
Then the sum F° =Y,y t, fw € A* is an eigenfunction of Macdonald’s difference
operator D, with the eigenvalue cy ..

We prove this theorem in the next section.

A similar statement can be found in [C5] for the case of type A. (In [C5],
more general eigenvalue problems are considered; but explicit forms of difference
operators which appear in [C5] do not seem to be known for the other types.)

5. Proof of Theorem 4.6
In this section we shall give a proof of Theorem 4.6. We may (and shall) assume
that 4* = 4™, since all the arguments given below are formal and based on the

algebraic relations like (1.5b), etc. We put H~ = Hy~ for simplicity.

5.1. First we show some preliminary lemmas on Hecke algebras. We consider

(H™Y' ={G = (Gy,...,G)|G; e H~(i = 1,...,n)}
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as an H™~-bimodule under the natural left and right actions of H~. The group
GL(n,C) acts on (H™)" from the right-hand side. Note that this action commutes
with both the left and right actions of H~. Every element G =(Gy,...,G,) of
(H™)" can be written as

G=3g,-T,

for some g, = (giw,--- »Gnw) € (A4~)' C (H™)" (cf. 1.5).
Let p : W — GL(n,C) be a representation of W and let

c= []ecx-

a>0

Lemma 5.2. An element G € (H™ )" satisfies the condition
Jy - G=G-pw) (YweW) (5.2.1)
if and only if there exists § = (g1,...,9n) € (4™)" such that

G= S Jye- G- pw). (522)
wew

Proof. The “if” part is trivial. To prove the “only if” part, we note that G can be
decomposed as G = Zyewg'g,/y for some g, € (4™)"(w € W), see 1.8. Thus

G=w|"' L,Gp(w)™!
wew
=W X g yp(w)”!
yWEW

= LW vy @)e)ke)
YEW

zEW

Here we denote by y~'(g”,) the image of §’, under the natural action of y~' € W
on (4~)". This shows the lemma.

Now we set x=2w€WTw. Then we have T - x = tys)x for s €S. Hence
Js(gx) = s(g)x(s € S), which implies J,,(gx) = w(g)y for g € A™.

Lemma 5.3. Suppose that G = Y wewdw + Tw € (H™)' satisfies the condition
(5.2.1) above. Then we have

G-y= gy 2(e)(zwo )(G,, )1 + plzwo) ™!

forany weW.
Proof. We proceed by downward induction on the length /(w). First we consider
the case w = wy. Since

Jug " CETyy+ LA™+ T,

y<wp
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and
Jyre€ Y A~ - T, (y < wp)

y<wp

by 1.10, we see that
Frp = wo(@) + p(wo) ™!
from the expression (5.2.2). Therefore

G-x= 3 Jeewo(d,) p(wo) ™ p(z)™!
z€

= 3 2(e)(@Wo) (G )1 + plewo) " .
ZEW

Suppose that the statement of the lemma is valid for all w' with Z(w') > £(w)
(and for any G € (H™)" satisfying (5.2.1)). We choose s = sy, € II, so that
£(ws) > {(w). Set G’ = G - T;. This G’ also satisfies the condition (5.2.1). Since
G'=3g,T,T; =>4, Ty, we have g, = g, + (t: — 1)g,s(« = «(s)). By the in-
duction hypothesis on ws for G’, we see that

tGyx=G-Tyy=G" -y
= gyz(c)(zwo)(ﬁivs)% + plzwo) ™!

=3 2(e)(zwo ) G,)x + plzwo)~!
zEW

+ (- 1) ;,VZ(C)(ZWo)(Q’WS)X - plzwo) ™"

Hence we get

G- 1= 3 z(c)zwo )@, + plzwo) ™"
zeW

by the hypothesis on ws for G.
5.4. Let y =) T, be as above. Since G + x = >, pguwtwy for G=3 .g,T, €
H™, we see that the map H™~ — A~ given by > g, T}, — Y guwtw gives a (left) H~-
homomorphism. Here the action of H™ on A™ is given by the formulas

T(9) = tu5(9) + (c—a — 1 )(s(9) —9) (s =500 € II;g € A7)

and
f@)=rg (f,ged™).
Note that J,,(g) = w(g) for w € W.

5.5. Now we turn our attention to V~. The H"~-homomorphism corresponding to
the one H~ — A~ in 5.4 is the map °: V™~ — 4™ given by F— FU(F € V™)
in 4.5. (Note that ™~ and H"™ are naturally isomorphic as left H~-modules.) In
particular, we have (J,,F)° = w(F°) for w € W. We regard

(VY ={F =(Fy,... ,F)|Fie V™G =1,...,n)}

as a left H~-module (cf. 5.1). Then we can reformulate Lemma 5.4 in terms
of V™.
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Lemma 5.6 Suppose that F = (Fy,...,F,) € (V™) satisfies the condition
JoJF =F - pw) (weW). (5.6.1)

Then we have .
FO=(FY,....F%

= Y z(e)zwo)(f,,) * plzwo) ™!
zEW
for any w € W. Here
Fo = twreeer fraw) EA™Y (wE W)

is given by the expression

Fi=Y fihw €V~ (i=1,..,n).
wew

Now we are in a position to prove Theorem 4.6.

5.7. Proof of 4.6 in the case (4.2a). Let F € V™ be a solution of QKZ for u € E;
L.,F =P'R,F (YpeM). (57.1)

Let n be one of the minuscule coweights of 4, as in 4.2. We set ¢ = wyw, (see
4.4). We note that 1_, = ¢~ 'y for some y € Q [B; Chap. 6, Sect. 2]. By 3.7 and
2.5, we have R,, =R, =r, 1. J,. Since JIF is also a solution of the above
Eq. (5.7.1) for w € W (see 3.11), we have the identity (for u = 7) in 4™,

(S JeLiJ ' FY = (X JueP R, F) . (5.7.2)
wew wew

We shall calculate both sides of (5.7.2) separately. As for the left-hand side, we
have

(X Jwel ' FY = 3 Juel J ) FO = 3 JueLlw™ (FO)
wew wew wew

= 3 Juew  (LymyF®) = 3 w(e©)LwmyF® = Wa(t) - DF°, (57.3)
wew wew

noting that F — F° is an H~-homomorphism (see 5.5). Here we set Wy(t)

= Y t, the Poincaré polynomial of W, and applied the identity in [Mac2],
wew

Z < H cw(a)) = Wn(t) .
weWn \ a>0,(a,7)=0
Next we prove that

The right-hand side of (5.7.2) = Wa(t)cnwoul 0 (5.74)

(see 4.2 and 4.3 for the definition of cpy,,). We may assume that there exist
F =(F,,...,F,) € V~(F; = F) with the property

JJF=F . p(w) (Ywe W) (5.6.1)
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for some representation p : W — GL(n,C) (see 3.11). Especially we have J,,F =
>k Pki(W)Fy. Let us put Fy =3 o frwhw(fiw € A™). Then

0
(2 chPj’,RaJw‘lF> = 3 Jee(Pir;J, —1F)°

weWw wew

ZJWCme(Gw_l)(P“ ;' Fr)°

wew k=1
Zchzpkl(o-W 1) Z q(n zu)t Z o 1(fkayz)ty
wew k=1 zEMY YEWR

= Z W(C)Zpkl(aw 1) Z q (mau) L Z (WO' )(fkayz)ty
wew zEny YEWn

Here "W denotes the set of coset representatives for #;\W with minimal length.
Since ZZGW gy, = Crwou DY 4.4, it is sufficient to show that

Zw(c)zpkl(aw D S W) fhape)ty = Walt) - F° (5.1.5)

we YEWR

for any z €™ W in order to get (5.7.4).

Set 7 = —om = —won. Then 7 is also a minuscule coweight since (7,a.) =
—(n,_wo(oz*)). Therefore we see oW,0 ! = W; and that z €W if and only if
oz €*W. We can rewrite (5.7.5) as

> W(C)Xnﬁpkl(dw—l) > woT Y Sk ooty = Wilt) - F°, (5.7.6)
k=1 yEW;

wew

since t, = t; for j = ayo~' € Wa(w € Wy). Now we note that J; € >~ ;0 A~ - T
for x € W3, which implies that

2 X fr g0ty = Jz ( > Sk yazty> = ipjk(i) (Z S 5oz ty') .
YEW; YEW; j=1 JEW;
Thus we have
2 (wo™ Y fkg0:)t5 = ZP}k(Wn) ( > (wwo)(f j,y‘az)fy'>
JEW; yEW:

by using the expression 6~ = wyw;z, where w; = wowzw is the longest element
of Wj. Substituting this in the left-hand side of (5.7.6), we finally see that (5.7.5)
is equivalent to

n
> w(©) Y pwow™") > (wwo)(Sigez )ty = Walt) - F°,
wew k=1 FEW;
which is a consequence of Lemma 5.6. Thus we have shown that

0 0
D F” = cryyul’
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in the case (a).

5.8. Proof of 4.6 in the case (4.2b). Let 7 be the short dominant coweight of 4.
as in (4.2b). Since 1, = Sag—nog Sags W have

an = (rsao - R ‘ r—l)Rsao

Sao _nlxo Sao

1

= (rsao . R-u0+nuo . rs"‘o )Rs"‘o

= Rdo+na0 Ro(()
by 3.7. (Note that Hy,—n,, is the only hyperplane separating C and s4,—n,,C and
that (o — 714, )(C) < 0.) We remark that ¢ = s,, and 7 = 7 in this case if we set

0 = wow, and T = —wy(n) as in 5.7. (This comes from the fact wy = —1.)
Let FF € V™ be the solution of QKZ for u € E,

L.F =P'R.,F (YpeM). (5.8.1)

As in the proof of the case (a) in 5.7, we have the identity (for y = n) in 47,

0 0
( > chcao-l-ﬂoco(Lﬂ - 1)Jw_1F) = ( b chca0+na0(P;Ra - I)JW—IF) . (582)

wew wew

Exactly as in 5.7, we can see that the left-hand side of (5.8.2) is equal to
Wi(t) « D,F° (see (4.2b) for the definition of D, in this case).

Now let us calculate the right-hand side of (5.8.2). We assume as in 5.7 that
the condition J,F = F - p(w)(Yw € W) holds for F = (Fy,...,F,) with F} =F.
By 3.5, we have

ca0+na0 Rao-!-nao hy
=h, +q(n,yu)(cao+na0 — tyy gy if ylay > 0
= toyhy + q 7 (Cagingy — Doy if y7 a0 < 0.

Since

n
ReJJ'F =70y F =35 3 pralow o™ (frow ) »
weW k=1

we have
Cogtrag PiR.J,'F
= Coytnoy ;:Rag+nao R.J'F
> palow™) B L)+ Gty ~ Vi)
+ 07 (e ™ taghay + (Cagrng — Dy} .

Hence, if we put
n

Gy =Y pri(ow™) S a7 (fi )y
k=1 wew
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for w € W, we have

Cop+n, (P;‘:RWJ;IF - Gy)

n
= ZPkl(O'W-l) E [U—I(fk,ay){q<n’yu)hy - taohay}
k=1 yeW,y~1ag)>0

+ o—l(fk,y){q_(n’yu>ta0hay - hy}] .
Note that

{yew|yNap) > 0} = {xz € W| x € Wy,z €W,z (ap) > 0},

and that gz €W if and only if z €*W. Therefore the same argument as in 5.7
using Lemma 5.6 shows that

0

( %}Wchanao (P4R.J,;'F — G, ))

w

= X {478, — tytoy + g~ @5 b5, — 1, }FO
YEW,y~lan>0

= Wn(t)cn,wouFO
(see 4.4 for the expression of cy,, ). But
Gy, = 07 (Jp1 F)° = (JuF)’

by 5.5. Thus we finally have

0
< ZWchca0+”°‘0 (PzR‘t” - I)JW—IF) = Wn(t)cn,wouFO ’
we

and complete the proof of Theorem 4.6.
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