
commun. Math. Phys. 165,533-553 (1994) Communications in

Mathematical
Physics

© Springer-Verlag 1994

R-Matrix Arising from Affine Hecke Algebras and its
Application to Macdonald's Difference Operators

Shin-ichi Kato
Division of Mathematics, Department of Fundamental Sciences, Faculty of Integrated Human Stud-
ies, Kyoto University, Kyoto, 606-01, Japan, e-mail address: kato@platon.kula.kyoto-u.ac.jp

Received: 25 May 1993 /in revised form: 7 January 1994

Abstract: We shall give a certain trigonometric R-matrix associated with each root
system by using affine Hecke algebras. From this R-matrix, we derive a quantum
Knizhnik-Zamolodchikov equation after Cherednik, and show that the solutions of
this KZ equation yield eigenfunctions of Macdonald's difference operators.

In this paper, we shall construct the trigonometric R-matrix from affine Hecke al-
gebras. Our R-matrix, which is obtained for each finite or affine root system, satis-
fies the Yang-Baxter equations in a generalized sense [C2] (see Theorem 2.4 and
Proposition 3.6 below). As an application, we define a kind of quantum Knizhnik-
Zamolodchikov equations (QKZ) following [C4]. Moreover, by using these equa-
tions, we shall show that Macdonald's difference operators (MDO) [Mac3] enter
in the context of affine Hecke algebras through our R-matrix (Theorem 4.6). This
result may be viewed as a certain ^-analogue of Matsuo's correspondence [Mato]
between "classical" Knizhnik-Zamolodchikov equations and zonal spherical systems
(see also [C3]).

The contents of this paper is as follows. For a finite root system, we consider
the affine Weyl group and its Hecke algebra simultaneously in End<c(F) of some
vector space V and give the affine Weyl group actions in two ways on F~, a
certain extension of V, in Sect. 1. Then we define our R-matrix for the root system
as a "difference" of these two actions (see 2.1), and show that they satisfy the
Yang-Baxter equations (Theorem 2.4). Moreover, after the idea of Cherednik [C4],
we extend our R-matrix to the affine root system by using g-shift operators in Sect.
3. As a result, we get the Heisenberg-Weyl group (an extension of the affine Weyl
group) action on F~ in two ways (see 3.10), and obtain QKZ. In Sect. 4, we review
the definition of MDO, and show how the solutions to our QKZ give eigenfunctions
of these MDO in Theorem 4.6. Section 5 is devoted to the proof of this theorem.

It should be noted that Cherednik announced similar results on QKZ and MDO
[C5] which overlap with ours in Sects. 3-4 in part. There essentially the same QKZ
is given, and more general eigenvalue problems than ours are discussed. Actually
he gave an equivalence between QKZ and certain eigenvalue problems. Then he
showed that Macdonald's original operators arise in his theory for the case of type
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A, but left open the other cases.1 Since we handle each MDO in an explicit way,
our results on MDO (Theorem 4.6) may be viewed as an answer to this problem.
It is also noted that the notion of admissible pairs of root systems in [Mac3] fits
naturally in our formulation (see 4.3). Our way to derive QKZ is along Cherednik's
method in [C4] using the R-matrix. But we hope the publication of this article will
be a help to the understanding of this subject since we employ a somewhat different
formulation from Cherednik's.

1. Affine Weyl Groups and Affine Hecke Algebras

In this section, we shall realize affine Weyl groups and their Hecke algebras in
some endomorphism algebras. See [B, Matm, K and L] for basic references on root
systems, affine Weyl groups and their Hecke algebras.

1.1. Let A be a reduced root system in a finite dimensional real Euclidean space E
with the inner product (,). We choose and fix the set of positive roots A+ relative
to some order and the set of simple roots Π in A+.

Let P be the weight lattice, P = {λ G £|(/l,α v) G Z(Vα G A)} and Q the root
lattice of A. Here α v = 2α/(α,α), the coroot corresponding to α G A. Let W = W(A)
be the Weyl group of A. The group W acts on both P and Q. We fix L a sublattice
of P containing Q. Since the induced action of W on P/Q is trivial, W also acts
on L.

Set A = C[L], the group algebra of L over C We denote by eλ the element of A
corresponding to λ G L as usual. The Weyl group W acts on A as w(eλ) = ewλ(w G
W.λeL). Let V be the left ^-module of rank \W\ with free basis hw(w G W).
Each element F of V can be written uniquely as F = ΣweW fw hw (fw G A).

Now we define several operators in End<c(F) as follows.

1.2. The operator j\f G A): Every element / of A acts on V by left multiplication
F->/F (Fe V).

We often regard A as a subalgebra of Endc(^) under this correspondence.

1.3. The operator rw (w G W): The Weyl group W acts on V by

rw(fhy) = w(f)hwy (f G A9w,y G W).

We note that the above rw(w G W) and A generate a subalgebra of End<c(F),
which is isomorphic to the group algebra C [ ^ ] of the extended affine Weyl group
WL = WxL (the semidirect product of L and W). We identify this subalgebra
with <E[WL] and regard V as a C[PFi:]-module. Note also that the action of <C[WL]
on V can be naturally identified with the left regular action of

1.4. We introduce a set of positive real parameters t = {t<x9t
f

a}aeA satisfying

ta = tβ ζ = t'β for oc,β€A with Woe = Wβ

and

*« = *£ if (α v ,L)=Z.
1 After we submitted this paper, we learned that Cherednik announced the solution of this

remaining problem in his paper "The Macdonald constant term conjecture" (Internal Math. Res.
Notices No. 6, 165-177, 1993). See also his preprint "Induced representations of double affine
Hecke algebras and applications."
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Let 5 α be the reflection in W corresponding to α G Δ. Set S = {sa((x G 77)}, the
set of simple reflections. We set oι(s) = α if s — s^ for s G S and α G Π.

1.5. The operator Ts(s G S): The operator Γ5 is defined by the following formulas:

Ts(hy) = hsy if y~ιcc > 0

= (tΛ - \)hy + tjftsy if # y ~ 1 α < 0 , (1.5a)

where α = α(s) and

I - S(f)TS(hy) = (ί« - 1)4 % Γ ^ ^ ( α V ' L ) =

if(a\L)=2Z; (1.5b)

for y e W and f e A. (See [L]; cf. [Matm].) The formula (1.5b) in the case
(αv,Z) = 2Έ is also valid for oc £ Π with (αv,Z) = Z by our assumption on t'a
in 1.4. It is easily seen that the right-hand side of (1.5b) is actually in V.

Now we recall the definition of the affine Hecke algebra HL. The affine Hecke
algebra HL is the C-algebra generated by elements /w (w e W) and θχ(λ eL) with
respect to the following relations:

A fy=fsy if y~lK > 0

(5 = 5α,αGi7,j;G^), (1.5a')

fs θχ- θs(λ) > / , - fa ~ 1 ) ^ " θnSiλ) if (0CV,L)=Z

and

βλ 0n = 0λ+μ α μ € l ) . (1.5c)

It is known that the set {θχ fw(λ e L,w e W)} is a basis of HL. Since ^ =
Ai --fst if w = s\ ...sj is a reduced expression of w € fΓ by (1.5a'), the cor-
respondence ^ —> Γ5(^ G iS) and θ^ —»> eA(/l G L) extends to an injective algebra
homomorphism from HL to Endc(^). We shall hereafter identify HL with its image
in Endc(^) Thus we have HL = ΣweψA Γw (a free A -module of rank \W\).
Here we write Tw = TSι ... Γ5/ if w = s\.. . ^ ( ^ G 5) is a reduced decomposition of
w e W. Note also that the action of HL on V can be identified with the left regular
action of Hi.

1.6. Let A~ be the quotient field of A. Set V~ = Λ~ <g)̂  F. Then the formulas 1.3,
(1.5a) and (1.5b) for / G A~ define an action of the algebra H? = A~ HL =
A~ ®A HL on F~. Define an element ΛCs = %o(G 17) of H£* by

, f
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Then the relation (1.5b) implies that

Is f=s(f)Ίs (f£A~).

Now we define cα G A~(oι G Δ) by

cα = \ ^ i f (*\L)=E;

^ ^ < , *„ β ) . f ( α v I ) = 2 Z ( 1 6 1 )

Then

J, = Γ, + ( c _ β - ί , ) . (1.6.2)

for α = a(s) and it can be easily seen that l£ = cαc_α. This element /y appeared
(implicitly) as an intertwining operator in [Matm]. See also [K] and [L].

L 7. Now we set Js = cZφJs £ H£ for s G S. (The results which follow are es-

sentially the same if we choose c~Λ/5 instead.) We get J} — 1. Moreover we can

see that the element Jw E H£* for w e W given by Jw = JSχ 1S( is independent
of the choice of the (not necessarily reduced) decomposition w = s\ . . . ^ ( ^ e S).
(This fact is essentially due to Matsumoto [Matm], see also [L].) Hence the map
/ : w i—> Jw(w G W) is a group isomorphism. Therefore we have obtained an action
of WL on V~ through this </. Note that this action is different from the one in 1.3.
Since Jw reduces to rw(w G W) if taj'a —> l(α G A), we may regard {Jw(w G PΓ)}
as a ί-deformation of {rw(w E W)}.

Incidentally, since Jw / = w(/) J w for / G ̂ 4, we see that //^ is isomoφhic
to the algebra A~ ®A &[WL] (twisted tensor product) by using the following lemma
proved by the induction on the length of w G W.

Lemma 1.8. For any w G W, we have

Jweί Π c_α) τw+Σ*~ τy.
\α>0,w~1α<0 / y<w

Now we show the relationship between the ^-action (through r) and the /fr-
action on V.

Proposition 1.9. Suppose that woe = β for w G W and α, β G Π. Then we have

in

Proof. We must prove

(rw TS)(F) = (Γy rw)(F) (s = j ^ / = sβ)

for any F e V. First we consider the case F = Λ̂ (jμ G FT). Since

Ts(hy) = hsy if >;-1(α)>0

(1.5a)
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we have

(rw • Ts)(hy)
I "wsy

_ / K,wy if {wy)-\β) > 0

if y~ι(oc) > 0

tuhwsy if y~ι(oL) <0

— (Tst rw) /̂ y ,

noting that y~ιoc = (wy)~ιβ and ία = fy. Next we put F = fhy for f £ A. Assume
that (αv,L) = Έ. Then

(rw Ts)(fhy) =rw (s(f)Tshy + (ίβ - 1 ) ^

=(TS, . rw)(fhy) .

The case where (αv,L) = 2Z is similar. Thus we have completed the proof of the
lemma, since the elements fhy(f £ A,y £ W) span V over C

By the proposition above, we easily have the following corollary, which tells
us the relation between the two kinds of ^-actions on V~ (through r and J).

Corollary 1.10. Under the same assumption as above, we have

in End(c(Ύ~).

1.11. Let U be an ^4-module. We call U a (PFz,,//£,)-module if the following three
conditions are satisfied:

The module U has both (C[^]-and Hi -module structures . (1.11a)
The action of A = C[Z] on U is compatible with the above module
structures. (1.116)
For ocj eΠ with w(α) = β(w eW\w TSa = TSβ w . (1.11c)

Our V is an example of (WL,Hι)-modu\QS by 1.9. Other examples of (WL,HI)-
modules are obtained by taking subquotients of V (see below).

1.12. Let X and Y be (^L,#L)-submodules of V with X D Y. Then the subquotient
of V, XIY is also a (ϊ^,# z)-module.

We may proceed as follows to construct such X and Y explicitly (cf. the
Lusztig-Lascoux-Schϋtzenberger operators in [C2]). Let U be the (C-vector space
spanned by hw(w e W). Let H (resp. C[ίf]) be the subalgebra of End<c(F) gen-
erated by 7Xs £ S) (resp. rw(w £ W)). Then H (resp. <C[JF]) is isomorphic to
the Hecke algebra of W (resp. the group algebra of W). This U has a (W, H)-
module structure. Namely, U satisfies (1.11a) (for <£[W] and H) and (1.11c).
Let Xo and 70 be (W, //)-submodules of U with XQΌYQ. Since A^^XQ and
i4 <g><c ίo are (JFL>//L)-submodules o f V, we get the subquotient A (g>c (Xo/^o) —
(^ (g)CX0)/(^ <8)c ^o) of V9 where Xo/^o is a (fF, //)-subquotient of U.

For example, let / be a subset of S and Wj the corresponding parabolic subgroup
of W\ Wι = (s(s £ /)) C W. Then the C-subspace U}ήy of U spanned by all the
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elements of the form ΣzeWlhyz(y £ W) is a (W, i/)-submodule of U. Note that as

fF-modules, Uψv ~ Ind^ (1), the fF-module induced from the trivial representation
of WL

Similarly, for / c S above, we define £/7

sgn to be the C-subspace of U spanned
by all the elements of the form hw + hws(w eW.se I). Then we can easily see
that this £/7

sgn is a (PF,#)-submodule of U9 and obtain a (FF,#)-module U/Uj^.
Note that as JF-modules, U/Ujm ~ Ind^(sgn), the JF-module induced from the
sign representation of Wj.

Generally, by combining the above two ways, we can produce many (WUHL)-
modules. Especially in the case where A is of type A, we can have (JΓ^,/^-modules
for each irreducible representation of W (or of H).

2. R-Matrix Associated with Root Systems

2.1. Now we define the R-matrix as follows. We set

for a e Π. Note that Ra is actually in End^~ ( F ~ ). Namely, i?α can be represented
by a \W\ x \W\ matrix with coefficients in A~. More generally we define Rβ £

(V~ ) for an arbitrary root β £ A by

Rβ = rw - Ra - r " 1

for w £ W and oc £ Π with w(α) = β. The definition above is independent of the
choice of w and α. Indeed, if y(a!) = β for y £ W and α' £ 77, then (y~ιw)oc = af.
This implies rw R^ r~ι = ry Raf r~ι by 1.10.

From the definition, we have R-a = JSu rSa = R~λ for α £ Π. This shows the
next proposition.

Proposition 2.2. R_β = Rjι for any β £ A.

2.3. We have the formula

R*hy = c-lhy + (l-tac-l)hsy% if y~la>0

= tac-ιhy^(l-c~ι)hsya if y-ιoc<O (2.3.1)

for α £ A and y £ W. (If α G 77, this formula is deduced immediately from (1.6.1),
1.7, and the definition of Ra. The general case follows from this.)

Theorem 2.4. Our R-matrix {Ra(oi £ A)} satisfies the following Yang-Baxter
equations for each rank 2 root subsystem A1 of A with simple roots α and β,
where α is long and β is short if |α| φ |j8| :

Aι xAι:RaRβ=RaRβ,

G2 : R<xRιχ+

respectively in the case where A' is of type A\ x Aι,A2,B2 or
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Proof. In the case A\ x A\9 the statement follows from (2.3.1) and the fact y~ιoc =
(sβy)~ιa. Now we consider the other cases. Fix z G W. Since Ra,Rβ,Ra+β,... sta-
bilize the ,4~-submodule of F~ spanned by hyz,y G W(Af) (the Weyl group of
A'), (2.3.1) shows that we can reduce the problem to the case A' = A. Assume, for
example, that A is of type A2. Then we see that

srsf )(rs,rsjsrsr )(rsrjsr)

where s = sa,s
f = Sβ, and w0 is the longest element in W(A2). Similarly we get

s = rWQJWQ .

Other cases also follow from the fact that there are two ways for giving the reduced
expression of the longest element of the Weyl group of rank 2 root systems.

We remark here that besides 1.10 only the braid relations (e.g., rsrsιrs — rsιrsrs>
and JsJsrJs = JsιJsJs') a r e sufficient to establish the Yang-Baxter equations in the
argument above. (The conditions r2

s = J2 = 1 are not essential here.) Therefore we
can state the theorem in a more abstract way (cf. 2.7 below).

It should be noted that if the root system is of type A9 our R-matrix given
above is strongly connected with the one in [J] produced from a Hecke algebra
(See also [C2] for other types; our Is also appeared there in connection with the
R-matrix.) But the use of the JF-action through r here seems to be new, although
some JF-actions are incorporated in the study of the R-matrix in [C2, C4]. See also
Subsect. 2.6 below. Theorem 2.4 together with Proposition 2.2 reads as follows: Our
{R(x(ot G A)} is a closed, JF-invariant quantum R-matrix in the sense of Cherednik
[C4].

Remark 2.5. For w G W, we set Rw = r~ι Jw G End^~(F~). Then for any de-
composition of w, w = s\.. .5/ (not necessary reduced) with s^ G S, α ( ^ ) = α# G Π,
we see that

Rw = (rs^^R^r~ 5 2)(rv...5 3i?α 2r~ 5 3)...(r s^R^_ {r~ )R^

= RβιRβ2...Rβ^ (βk=s,...sk+1(*k)foτ l g A ^ O

Note that w" 1 = ̂ 2 . . . ^ and that ί(sβ. ...sβ^)~ φβi+, . . . % ) = l(resp. - 1) if
βi > 0 (resp. βi < 0). By definition, we have

#yz = (rz-i Ry rz)i?z

for any y, z e W (cf. [Cl]).

2.(5. The discussion given above shows that we can get the R-matrix on A~ ®A U
if U is a (fFL,//jr/)-module. Particularly, we have the R-matrix for each (WL,HL)-
subquotient of V. (See 1.12 for the construction of these subquotients.)
Set Vo =A (g)C Ufy(~A) (see 1.12). This is a (fFL,#L)-module. But if we regard
this Vo as a (W,H)-mod\x\e, then we get (JFz,,//z:)-module F =^4 (g)(c VQ. Therefore
we have an R-matrix on V~ = ̂ 4" <g)<rj Fo, the one which appeared in Cherednik
[C4; Proposition 3.8]. Thus his R-matrix is essentially the same as ours in 2.1.
But we think that our formulation given in this paper makes the meaning of the
Yang-Baxter equations clearer.



540 S. Kato

2.7. We can define some variant of our R-matrix. Set

« ί = rSa TSu G Endc(K)

for α G i l and put Rt — rw * R^ * r~ι for arbitrary β G A by using w £ W and
α G i7 with wα = jS as in 2.1. By 1.9, we see that this R-matrix {i?+(α G A)} is
well-defined and satisfies the YBE as in 2.4. Note that R+ is neither ^-linear nor
satisfying 2.2 in this case. The subquotients of this R-matrix for the 1-dimensional
representations of W appear in [C2].

3. R-Matrix Associated with Affine Root Systems

In this section, we extend our R-matrix to affine root systems following Cherednik
[C4]. By using this extension, we define the quantum Knizhnik-Zamolodchikov
equations. The basic idea and formalism employed here are due to Cherednik. But
we include some of the arguments in [C4] here for our later use.

3.1. Let M be a JF-invariant lattice in E. Then for each α G A9 we have a lattice
(<x9M) in 1R. Obviously (α,M) = (β,M) if α and β are JF-conjugate. For α G A
and m G (α,Af), let oc + m be the affine function on E defined to be (α + m)(x) =
(x9 α) + w(x G £ ) . We put

zΓ = A{M)~ = {α + m ; α e J , /w€ (α,M»

and call this the affine root system corresponding to A and M (cf. [Macl]). The
affine root system A~ contains A in an obvious manner. Let Ha+m be the hyperplane
in E given by

for α + m E z l " . The set of these hyperplanes are invariant under the action of
W on E; w(Ha+m) = Hw(X+m for w G W. We define the action of W on 4 " by
w(oc -f m) = wα -f m. Define the translation action of M on ^ by τμ(x) = x -f- μ(x G
^ μ G M). We easily see that τμ(Ha+m) = //«+(,«_(μ,α})? We define the action of M
on Δ~ by τμ(α -f m) = α + (m — (μ,α)).

Let WΛ/ be the subgroup of the affine transformation group of E defined to be
the semidirect product of M and W. This WM acts on Δ~9 since both W and M
act on Δ~ compatibly. It is known that WM acts, as an affine transformation group,
transitively on alcoves, i.e., the set of connected components of E\\JOί+meΛ^HOί+m,
and that

C = {x G E O < (x,α) < /ια(α G A+)}

is an alcove, where na is the generator of (α,M) with «α > 0. We call an affine
root a + m positive if (α + rn){C) > 0. Note that all elements of A+ are positive,
and that either α - F m o r - α - m i s positive.

3.2. For w G WM, we can choose a sequence of alcoves

w C = Co, C\,..., C/ = C ,

so that there is only one hyperplane //α/+m/ separating C, _i and C, . We assume
that (α, + WίXCf-i) < 0 and (α^ 4- /w, )(Ci) > 0. We call these ordered affine roots,
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αi + mi,.. ., α<? + »v, a root sequence from w~ι C (to C). If we denote by .sα.+mί G
# M the reflection with respect to the hypeφlane #α i+mP then we have

C, = Λrα/+W/..

Especially

(cf. 2.5). Let Ω be the stabilizer of C in JFM The equality above implies that
w~ι = saι+mι ... s^+m^ for some y e Ω.

3.3. Now we extend our R-matrix in Sect. 2, defined for α G A to each affine root
α + w E /4~.

We fix #, a real positive number. Let Lx be the g-shift operator on A~ defined
by

for x G E and I G L We regard this Lx as also acting on V~ by

) = Σ,Lx(fw)hw .

Note that L_x = L~ι and rw Lx r " 1 = L m for w £ f f .
Next we denote by Px(u,x £ £ ) the element of End^~(F~) given by

cf. [FR]. Note that Pu_x = (P^)" 1 = Px~
w and rw - Pu

x - r~ι = P^x for w G ί Γ .
The operators Zx(x G £ ) and Px(u,x e E) commute each other.

Lemma 3.4. If (JC, a) =0 for x e E and a £ A, then the both Lx and Pu

x{u
arbitrary} commute with R^

This is clear from 2.2.

3.5. Now we fix u e E hereafter and put Px = P% for simplicity. Set rx = PXL-X e
Endc(F~). We note that rw(w e W) in 1.4 and these rμ(μ e M) generate a sub-
group of Aut(c(F~) naturally isomorphic to WM. Since rw - eλ r " 1 = ewλ(w e W)
and rμ eλ r " 1 = q<μ^eλ(μ G M) in End c (F~) for A G £, ^FM stabilizes A~ C

) under this action. For an affine root α -h m G A~, we set

F /vα

provided that x G E satisfies (jc,α) = m. This i?α4.m is well defined thanks to 3.4.
Thus if we denote by rw for w G WM the corresponding element in Autc(T~)
above, we have

(cf. 2.1). (Note that rτμ = rM for μ G AT). Incidentally we have the explicit formula
of RaL+m from (2.3.1) as follows:

^ ^ tac^m)hs^ if y~ιa > 0

-c-H!)I,)Aίβ, if y-ι*<0. (3.5.1)
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Here we put c α + m = Zx(cα), (α,x) = m. (Since r~ι e" - rx = Lx(e«) = qmea,ca+m

is obtained from cα by replacing ea in (1.6.1) by qmeOί.)

Proposition 3.6. For ot-\- m,β + n G Δ~9 we suppose that a,β £ Δ satisfy the con-
dition as in Theorem 2.4. Then we have the same formulas of type A\ x A\,A2,B2
or G2 in Theorem 2.4, if we replace α, β G Δ by oc + m, β + n respectively.

This is obvious, because there is an element x e E satisfying (JC, oc) = m and

(x,β)=*.

3.7. We put

for w G WM (cf. 2.5). Here we choose a root sequence from w~ιC9oc\ +/ni,. . . ,α/ +
#V G J ~ as in 3.1. Proposition 3.6 and the property i?_α_w = R^+m (cf. 2.2) show
that this Rw is independent of the choice of the root sequence oc\ + m\9..., α/ + /ŵ
above. We note that, in the affine case we still have the following relation.

Proposition 3.8. We have

Ryw — iXw * Ry * rw)R\v

for any w,ye WM-

Proof We see easily that w~ι(β\ +ri\)9... ,w~ι(βr + w r ) , α i + w i , . . . ,α^ + m^ is

a root sequence from ( j w ) - 1 C if αi + τ w i , . . . , α / + % (resp. jβi + « i , . . . ,βr

is a one from w - 1 C (resp. 7 " ^ ) .

Proposition 3.9. Set Jw = rw i?w /or w G ^ M 7%en we have JyJw —
Jyw(y,we WM).

Proof This is obvious from 3.8 above, since

JyJw ~ v y ' •KyJyJ'w * f^w) z= ^ywvw ' *^y ' ^wj^-w = fyw * ^yw =i Jyw

Remark 3.10. Define a group structure on H(E, E) = E x E x 1R by

(x,w,fl) (x',u',a') = (x+x',u + u'9a + af + (u,xf) - (x,uf)),

where x, JC', w, u' e E and α, α' G R. This is a Heisenberg group. We de-
note by H(L, M) the subgroup of H(E9 E) generated by L x {0} x {0} ~ L and
{0} x M x {0} ~ M. Since W acts on //(.£, E) as a group automorphism by
w(x, w, α) = (wx9 wu, a\ and stabilizes H(L, M), we can define the semidirect
product WL, M = WxH(L, M). We call this group the Heisenberg-Weyl group
(for PF-invariant lattices L and M). Then it is easily seen that both of the following
two subgroups of Aut<c(F~) containing (eλ(λ G L)) ~ L, (eλ(λ G L)9rw(w G WM))
and (eλ(λ G L)9Jw(w G WM)) are naturally isomorphic to this Heisenberg-Weyl
group WL,M- We may regard the latter as a ί-deformation of the former.

Now we have come to the position to define quantum Knizhnik-Zamolodchikov
equations by using our R-matrix after Cherednik [C4] (cf. [FR]). We may replace
the coefficient of V~(A~ in this case) by larger ones. Let A* be a commutative
vί-algebra with ^/-action that is compatible on A (see 3.5). We assume that c^!m

belongs to A* for each α + m G Δ~. (Of course we may take A~, for example.) Then
we can work with our R-matrix, etc. on V* =A*<g>AV instead of V~ = A~ ®A V.
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Definition 3.11. The quantum Knizhnik-Zamolodchikov equation (QKZ) of type
u E E is a system of linear q-dijference equations on V* given by

LμF = Pu

μ RτμF (VμCΞM). (3.11.1)

In other words,
JτμF = F Q/μeλf). (3.11.2)

This system is a ^-analogue of the system of differential equations given
by Cherednik and Matsuo [C2, C3, Mato]. In fact, we recover their system (in
Matsuo's form) if we set ta = qka,tf

a = g*«(*«,££ 6 IR) and let q -* 1. We note that
this system of difference equations is also obtained by Cherednik [C5] in somewhat
different formulations (cf. 3.13 below).

3.12. After [C4], we see that Proposition 3.9 implies the following two facts about
our QKZ.

The compatibility condition of QKZ: This condition is equivalent to the com-
mutativity of Jtμ and Jίv for any μ,v E M . (3.12a)

The W-action on the solution space of QKZ: If F E V* is a solution of QKZ,
then JWF is also a solution since JtμJwF = JwJtw-\μF = JWF . (3.126)

3.13. We remark that we can get a QKZ on U* =A*®AU for a (^r

L,//L)-module
U. But in this case, we may have a restriction on u E E (a parameter used in
Px = P%). For example, if we take U = U}nv in 1.12, we are forced to set zu — u for
all z E Wι. Actually, we can formulate a QKZ on A* ®A <E[WL>M], where <C[WL9M\
is the group algebra of WL,M (note that <C[WL,M] D A — <C|Z]). This equation co-
incides with the one in [C5]. Then we see that our QKZ in 3.11 is given on the
induced module A* <%>A &[WL,M] <8>C[M] £ W ? where CM is a 1-dimensional representa-
tion of M defined by μ —> q^u\ This explains why the restriction above on u E E
is necessary.

Incidentally, Cherednik used a specialization of the QKZ above (i.e. his QKZ
[C5; 3.9]) under certain induced representations of the affine Hecke algebra (J f y
in [C5]), so as to apply to eigenvalue problems. It is easily seen that our Eq. 3.11
is also a specialization under another kind of induced representations of the Hecke
algebra Jfγ9 principal series representations. The relation between these two kinds
of representations is given by the "Poisson integrals". (See [K2] for the counter-
part in the case of />-adic groups. The general affine Hecke algebra case can be
handled similarly, cf. [K3].) Especially, for generic parameters, these two kinds of
representations are isomorphic.

4. Macdonald's Difference Operators

Macdonald [Mac3] introduced some difference operators with coefficients in A~,
invariant under the action of W, in order to show the existence of certain symmetric
polynomials. (See 4.2 below.) We show a relation between these operators and our
QKZ (3.11).

In the rest of this paper, we assume that the root system Δ is irreducible.

4.1. Let M be the fF-invariant lattice in 3.1. Set

M* = {μe E; (μ,ot) E (α,M) for any α E A) .
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Then M* is also a ^Γ-invariant lattice of E. By the irreducibility of A, it can be
easily seen that this M* is similar to either

(a) the weight lattice P;
or

(b) The coweight lattice Py.

Note that M* D M and (α,M*) = (α,M) for any ot e A. Hence the affine root sys-
tem corresponding to A and M* is the same as A~.

From now on, we shall assume that M = M*, and that M* is normalized so
that M = (2\β\~2)P (β is a short root of A) in the case (a) or M = Pv in the case
(b). Then «α, the positive generator of (α,M) (see 3.1), is given by

(a) nα = \a\2/\β\2

or
(b) na = 1

respectively (cf. [Mac3]). Following Macdonald [Mac3], we use the notation

α* =n~ι α (α G A) .

Thus the set zl* = {α* G £|α G zl} is also a root system in £, which has the same
Weyl group W as A, and M* is identical to the coweight lattice P^ of zl*. We
also set

q* = qna (oceA).

Therefore we have

Lμ{e*) = q<r*>ea ( μ G M , α G Z ί ) .

4.2. Now we give Macdonald's difference operators. For a dominant coweight
πeM = Py, we let Wπ be the stabilizer of π in W, and fΓπ the set of coset
representatives for WjW% consisting of the elements with minimal length. Recall
that the c-functions for affine roots are defined by the formula

A~,μeM, (μ, α) = m) .

We treat the following two cases separately:

(a) Assume that the root system A* admits a minuscule coweight π. Namely A is
(hence A* is also) a root system of type A,B, C,D,E6 or EΊ and π is a fundamental
coweight of A* with the condition (π,α*) = 0 or 1 (α G Π). Then the operator Dn

is given by

Dπ= Σ ( Π c w α ) Z w π . (4.2a)
\α>0,(π,α*) = l /

Generally, there may be several choices for minuscule π, hence several operators
Dn arise.

(b) Assume that the root system A is of type E%, F4 or G2. Then we let π be
the short dominant coroot of A% and put

Dn = Σ ( CwαoCM;αo+«αo Π C*>α I (^wπ - 1) (4.2b)
\ α>0,<π,α*) = l /
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Here (αo)* is the maximal root of zJ*(αo G A) so that π = (αo)* = 2(αo)*/|(αo)*|2

Note that (π,α*) ^ 2 for α > 0 and the equality holds only when α = α0.

4.3. Here we shall give some remark since the notation used in [Mac3] is slightly
different from ours. Let us put

A = {aaa E E\a € Δ, aa = ± l « α v , L ) = Έ)

βα = ± l , ± 2 ( ( α v , Z , ) = 2 Z ) } .

This A is possibly a non-reduced root system in E with the same Weyl group W.
The pair (Δ,Δ*) is admissible in the sense of [Mac3]. For oc € Δ, set

and

^ = ̂ ( 0 ^ 4 ^ = 4 ((αv,L}
Then we can see easily that the difference operators Eπ [Mac3; 5-6] (with para-
meters ί^a c,α G A) coincide with our Dπ.

4.4. According to Macdonald [Mac3], the operators in 4.2 stabilize Aw, the subalge-
bra of A consisting of PF-invariant elements, and give an eigenspace decomposition
of AW,AW = ]Γ}C Pχ (sum over L++, the set of dominant weights in L). The
eigenfunction Pχ{λ G L++), called the Macdonald symmetric polynomial, is charac-
terized by the following properties (i) and (ii) (see [Mac3]):

(i) DπPλ = cπ,λPλ

where the eigenvalue cUiχ G R is given by

cn,x = q{π'Pk) Σ 1{wπ'λ+Pk) (4 4a)
wewπ

or
cπ,λ = q{π'Pk) Σ ( ^ < w π ' A + ^ } - q{wπ>Pk)), (4.4b)

respectively for the case (4.2a) or (4.2b) above. Here we choose ka G 1R so that
tΛ = ^ and set pk = \Σa>Qhκ G ̂ .

(ii) Pχemλ+ Σ R ™μ >
μeL++,μ<λ

where mμ = Σwewv eWμ> ^ e monomial symmetric polynomial.

4.5. We make a comment on the eigenvalues that appear in (4.4a) and (4.4b). For
w G W with a reduced decomposition w = s\.. .5/, we set

*w ~ *a{s\) ^α(.sy ) '

This ίw is well-defined (see [B]) and is equal to Πα>θw-iα<o ^ = Πα>o**«>'«•
Note that

t{π,cc*) _ ka(π,a) ^
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On the other hand, since sapk = Pk ~ kaoί, we have

α>0,w"1α<0

Hence we have for w e W,

q(wπ,pk) + (π,pk) _ TT ^α(π,α) _ TΎ ^(π,α*)

α > 0, wα > 0 α > 0, wα > 0

which is equal to tWoWWπ in the case (4.2a) since ( π , α * ) ^ l and w eWπ. Here wo
and wπ are the longest elements of W and Wπ respectively. In the case (4.2b),
similarly we have

Therefore

or

Cπ,λ —

we

wew

get

Cn,λ

π,wtxo>O

Σ {tw

(wπ,p

= tWQWWπ i f w α 0 < 0 .

(wowπ,λ)

(wπ,λ) \

respectively in the case (4.4a) or (4.4b), since wowwπ G Wπ if and only if w G Wπ.
We note that the formulas (4.5a) and (4.5b) above make sense even for λ in

E9 not in L.
Now we can state the following theorem, which may be viewed as a ̂ -analogue

of a part of [Mato] (and [C3]).

Theorem 4.6 Assume F — ΣweWfwhw £ V* to be a solution of QKZ for u G E.
Then the sum F° = ΣweWtwfw G A* is an eigenfunction of Macdonald"s difference
operator Dπ with the eigenvalue cπ,WQU.

We prove this theorem in the next section.
A similar statement can be found in [C5] for the case of type A. (In [C5],

more general eigenvalue problems are considered; but explicit forms of difference
operators which appear in [C5] do not seem to be known for the other types.)

5. Proof of Theorem 4.6

In this section we shall give a proof of Theorem 4.6. We may (and shall) assume
that A* =A~9 since all the arguments given below are formal and based on the
algebraic relations like (1.5b), etc. We put H~ = H£* for simplicity.

5.1. First we show some preliminary lemmas on Hecke algebras. We consider

(H~γ = {G = (Gi,... ,Gn)\GieH~(i = 1,... ,*)}
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as an //~-bimodule under the natural left and right actions of H~. The group
GL(n, (C) acts on (H~)n from the right-hand side. Note that this action commutes
with both the left and right actions of H~. Every element G = (G\,...,Gn) of
(H~Y can be written as

G = Σ gw τw

wew

for some gw = (gΪW9... ,gnw) G (A~f c (H~)n (cf. 1.5).
Let p : W —> GL(n,(D) be a representation of W and let

c= Πc
α>0

Lemma 5.2. v4« element G G (H~)n satisfies the condition

Jw G = G-p(w) QiweW) (5.2.1)

//and only if there exists g = (gu...,gn) € (A~)n such that

= z^Jwt g- p(yv) (5.2.2)

Proof The "if" part is trivial. To prove the "only if" part, we note that G can be

decomposed as G = ΣyewQyJy f° r s o m e g'y £ (^")w(w G fΓ), see 1.8. Thus

G=\W\~ι Σ
wew

\~ι Σ
y,wEW

y
zEW yeW

Σ y-\g'y)p(y)}p(zΓι.

Here we denote by y~ι{g'y) the image of g'y under the natural action of y~ι e W
on (A~)n. This shows the lemma.

Now we set χ = Σw€WTw. Then we have Ts χ = tψ)X ^ov s G S. Hence
) ( ) ( ^ £), which implies /w(^x) = w(gf)χ for gf G ^ ^ .

Lemma 5.3. Suppose that G = ΣweWgw Twe(H~)n satisfies the condition
(5.2.1) above. Then we have

# Λ# \ " π i £\ \ i FTΛ A ?_ \ / yΠί \ n/ - f\l TΛ A >-. 1

/or α/7̂  w £ W.

Proof. We proceed by downward induction on the length ί(w). First we consider
the case w — wo. Since

«/>VQ C G i W Q ~l~ 2_^ A 1 y
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and
Jy c G Σ,A~ Ty (y < w0)

y<w0

by 1.10, we see that

dw0 =wo(g) P(WO)" 1

from the expression (5.2.2). Therefore

G - χ = ΣΛcw o (^ o ) p(w0Γ
ιp(zΓι

zew

= Σ^X^oXίL,)* PO^OΓ1 .
zew

Suppose that the statement of the lemma is valid for all w1 with S(wf) > £{w)

(and for any G e (H~)n satisfying (5.2.1)). We choose s = sa,oi G Π, so that

ί(ws) > ί(w). Set G' = G Ts. This G' also satisfies the condition (5.2.1). Since

& = ΣθyTyTs = Σ ^ ? V , wejiave gf

ws = gw + (ία - l ) # w > = α(^)). By the in-

duction hypothesis on ws for G\ we see that

φ χ =G Tsχ = G1 χ

zew
+ (ίβ - l)

z

Hence we get

G χ = Σz

zew

by the hypothesis on ws for G.

5.4. Let χ = Σ^w be as above. Since G χ = ΣweWgwtwχ for G = ^ 6 ^ / w G
i f , we see that the map H~ -> ̂ ^ given by ΣβwTw -> Σ ^ w ^ gives a (left) # ~ -
homomorphism. Here the action of H~ on A~ is given by the formulas

Ts(g) = ί«Jte) 4- (c_α - /α)(j(^) - ^) (s = sa,oceΠ;ge A~)

and

fg (f,geA~).
Note that Jw(^f) = w(gf) for w eW.

5.5. Now we turn our attention to F~. The i/^ -homomorphism corresponding to
the one H~ -* ̂ ^ in 5.4 is the map ° : V~ -> Λ~ given by F ι-> F°(F G F~)
in 4.5. (Note that V~ and / / " are naturally isomoφhic as left //^-modules.) In
particular, we have (JWF)° = w(F°) for w G W. We regard

(F~) Λ = {F = ( F 1 ? . . . ,F π ) |F f G F~(i = 1,... ,*)}

as a left /ί^-module (cf. 5.1). Then we can reformulate Lemma 5.4 in terms
of F~.
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Lemma 5.6 Suppose that F = (F\9...9Fn) e(V~)n satisfies the condition

JwF = F p(w) (weW). (5.6.1)

Then we have

zew

for any w G W. Here

Λ = (/iw,...,/«w)G(^r (weW)

is given by the expression

Fi= Σf™hweV~ (i = l, . . . ,/ i) .

wew

Now we are in a position to prove Theorem 4.6.

5.7. Proof of 4.6 in the case (4.2a). Let F G V~ be a solution of QKZ for u G E;

LμF=Pu

μRτμF ( V μ G M ) . (5.7.1)

Let π be one of the minuscule coweights of Δ* as in 4.2. We set σ = WQWK (see
4.4). We note that τ_ π = σ~ιy for some y e Ω [B; Chap. 6, Sect. 2]. By 3.7 and
2.5, we have Rτπ = Rσ = r~ι Jσ. Since J ^ F is also a solution of the above
Eq. (5.7.1) for w E W (see 3.11), we have the identity (for μ = π) in v4~,

( Σ JwcLπJ~ιFf = ( Σ JwcPu

πRσJ-ιF)° . (5.7.2)

We shall calculate both sides of (5.7.2) separately. As for the left-hand side, we
have

( Σ JwcLπJ-ιF)° = Σ JwCLπJ~ιF° = Σ JwcLπw-\F°)
wew wew wew

= Σ Jwcw-\Lw(π)F
0) = Σ w(c)Lw(π)F° = Wπ(t) DπF° , (5.7.3)

wew wew

noting that F —• F° is an i/~-homomorphism (see 5.5). Here we set Wπ(t)
— Σ *w> t n e Poincare polynomial of Wn and applied the identity in [Mac2],

wew

Σ ( Π c w ( α ) ) = ί r π ( 0 .

wGίΓπ \α>0,(α,π)=0 /

Next we prove that

The right-hand side of (5.7.2) = Wπ(t)cπ,WoUF° (5.7.4)

(see 4.2 and 4.3 for the definition of cπ,W()M). We may assume that there exist

F = (Fi , . . . ,Fn) e K~(Fi = F ) with the property

JWF = F p(w) (Vw G fΓ) (5.6.1)
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for some representation p : W —> GL(n, <C) (see 3.11). Especially we have JWF =
Ί2k PkiiwWk- Let us put Fk = Σwewfk,whw(fk,w £ A~). Then

) = Σ
wew J wew

- 1 ) Σ ?<«•»> ί2 Σ σ-\fKσyz)ty .
k=\ zEπw y£Wπ

- Σ w(c)ΣPkι(σW-1) Σ q(π'zu)tz Σ y y
weW k=l z£πw yeWn

Here πW denotes the set of coset representatives for Wπ\W with minimal length.

Since Σzeπ q^π'zu^tz = cπyWou by 4.4, it is sufficient to show that

Σ Hc)tpkι(σw-1) Σ (wσ-ι)(fk,σyz)ty = Wπ{t) . F° (5.7.5)
wew k=\ yewπ

for any z eπW in order to get (5.7.4).

Set π = —σπ = — w^n. Then π is also a minuscule coweight since (π,α*) =
— (π,wo(α*)). Therefore we see σWπσ~ι = Wa and that z £πW if and only if
σz G7" FT. We can rewrite (5.7.5) as

t - - Wa(t) F°, (5.7.6)

since ^ = tp for j ; = σjμσ"1 G ^ ( w G ίFπ). Now we note that Jf G

for x £ Wji, which implies that

Σ X(fk,yσz)ty=jχ I Σ fkjσzty I = Σpjk(*) I Σ / / , ^
yewή \yewt J j=\ \yewt

Thus we have

Σ (M-l)(fk,yaz)ty = ΣPjkiWπ) ( Σ (Wθ)(fj,yσz)ty
yew a j=\ w

by using the expression σ ι = woWa, where wa = wowπwo is the longest element
of Wa. Substituting this in the left-hand side of (5.7.6), we finally see that (5.7.5)
is equivalent to

n -l o

wew k=ι yξWϋ

which is a consequence of Lemma 5.6. Thus we have shown that
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in the case (a).

5.8. Proof of 4.6 in the case (4.2b). Let π be the short dominant coweight of J*
as in (4.2b). Since τπ = sαo_Wα()sαo, we have

by 3.7. (Note that Hao-na is the only hyperplane separating C and sαo-«α C a n d
that (αo — πα o)(C) < 0.) We remark that σ = sαo and π = π in this case if we set
σ = WQ\vπ and π = — wo(π) as in 5.7. (This comes from the fact w$ = — 1.)

Let F G F ^ be the solution of QKZ for ueE,

μ μ M). (5.8.1)

As in the proof of the case (a) in 5.7, we have the identity (for μ = π) in v4~,

( . (5.8.2)

Exactly as in 5.7, we can see that the left-hand side of (5.8.2) is equal to
Wπ(t) DπF° (see (4.2b) for the definition of Dπ in this case).

Now let us calculate the right-hand side of (5.8.2). We assume as in 5.7 that
the condition JWF = F p(w)(Vw G W) holds for F = (Fu...,Fn) with F\ — F.
By 3.5, we have

c α 0 +«α0 ^ α o +«αo y

<> - tao)hσy if y-ιoco > 0

l)Affy if ^ - ^ o < 0 .

Since

we have

r-JF
- 1 ]

+ σ'KfKyKq-^t^Ky + (cαo+rtαo

Hence, if we put
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for w e W, we have

DU

πRτμJ~ιF~Gw)

Note that

{j; € W\y~\(Xo) > 0} = {xz £ W\ x e Wπ,z eπW9z'ι((Xo) > 0} ,

and that σz eπW if and only if z eπW. Therefore the same argument as in 5.7

using Lemma 5.6 shows that

o n (Pu

πRτμJ~ιF - Gw)
w€W

— λ^ \H τy ιu.§ισy^<i ιctQlσy lyjr
yeW,y-ιoίQ>0

= Wπ(t)cπ>WQUF°

(see 4.4 for the expression of cπ,WQU). But

by 5.5. Thus we finally have

Λ,cc α o + Λ (Pu

πRτμ - 1)J-1F) = Wπ(t)cπ>W0UF° ,
wew J

and complete the proof of Theorem 4.6.
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