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Abstract. We develop techniques to compute higher loop string amplitudes for twisted
N = 2 theories with c = 3 (i.e. the critical case). An important ingredient is the dis-
covery of an anomaly at every genus in decoupling of BRST trivial states, captured
to all orders by a master anomaly equation. In a particular realization of the N = 2
theories, the resulting string field theory is equivalent to a topological theory in six
dimensions, the Kodaira-Spencer theory, which may be viewed as the closed string
analog of the Chern-Simons theory. Using the mirror map this leads to computation
of the 'number' of holomorphic curves of higher genus curves in Calabi-Yau mani-
folds. It is shown that topological amplitudes can also be reinterpreted as computing
corrections to superpotential terms appearing in the effective 4d theory resulting from
compactification of standard lOd superstrings on the corresponding N = 2 theory.
Relations with c= I strings are also pointed out.
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1. Introduction

Despite the fact that string theory has been investigated very intensively in particular in
the past decade, many of its fundamental principles and symmetries remain as elusive
as ever. This lack of understanding of the fundamental principles renders questions
of selection of vacua and non-perturbative aspects of string theory out of reach.
Actually the problem runs deeper: Not only the problem has to do with understanding
the underpinnings of string theory, but also not even many perturbative computations
are practical, even though in principle many should be computable.

There are some exceptions to the above: First of all, thanks to the matrix mod-
els and topological theories, for non-critical strings with dimension d < 2 one can
compute the partition function of the string theory to all order in perturbation theory
summarized as solutions to interesting equations belonging to integrable hierarchies.
Nevertheless such computations are usually viewed as toy models, not necessarily
of relevance to more realistic critical string theories. One of the more useful results
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coming from these theories was the realization that there is an alternative topological
string reformulation of bosonic strings. The word topological signifies the fact that in
these theories, before coupling to gravity, the correlation functions are independent
of the worldsheet metric. Actually the topological framework is more general than
the conventional view of bosonic strings as there are some topological string theories
which do not correspond to bosonic strings formulated as matter coupled to gravity. To
see this, one has to note that the most interesting subclass of topological theories can
be obtained by twisting an TV = 2 superconformal theory, and in such case, the string
BRST operator will correspond to the supercharge Q = G+ and the b operator will
correspond to the supercharge G~. That this is more general than the usual bosonic
string set up is easy to see from the fact that for the standard formulation of bosonic
string the 6-cohomology is trivial but for the TV = 2 theory the G~ cohomology is
generally non-trivial. The question naturally arises as to whether the non-triviality of
the 6-cohomology introduces new phenomena for bosonic strings. We will see in this
paper that the non-triviality of the 6-cohomology has dramatic consequences in string
theory. The 6-cohomology elements can be used to form Q-trivial perturbations of
the theory, that nevertheless do not decouple. In other words, we shall find an anomaly
in decoupling of BRST trivial states from the physical amplitudes.

Anomalies of various kinds have played a key role in the development of quantum
field theories and string theory. The existence of anomalies means that a computation
that on formal grounds would be expected to be zero turns out to be non-zero due
to subtleties of the quantum field theory (QFT) in question. For example, the famous
£7(1) chiral anomaly, explains why the mass of the meson singlet in massless QCD is
non-vanishing, and the existence of conformal anomalies in 2d QFT's leads to the fact
that the critical dimension of string theory is 26 (or 10) rather than 0. The anomalies
are in one way or another related to topological aspects of the theory in question
and have been one of the most fruitful areas of interaction between physics and
mathematics. All these anomalies can be related to index computations in mathematics
which can in turn be effectively understood in the physical set up in terms of Id
supersymmetric sigma-models. The topological strings obtained from twisting the
supersymmetric sigma-model may be viewed as a more fancy 2d version of these
index theorems which combine the geometry of moduli of Riemann surfaces with the
geometry of target space. Viewed in this way, it is perhaps ironic that the very object
usually employed to compute anomalies has itself anomalies!

Topological string theories that are obtained from twisting an TV = 2 superconfor-
mal theory have a central charge c which can be viewed as the complex dimension
of these theories. It turns out that topological string partition functions vanish for all
genus (except g = 1) unless the critical dimension c = 3 is achieved. As far as topo-
logical theories obtained from twisting unitary N = 2 theories are concerned there are
very few other cases of interest. In particular for unitary twisted theories with c > 3
(with integral charges) not only the partition function, but all the correlation functions
vanish as well. For c < 3 one must make special choices of operator insertions to have
non-vanishing amplitudes. It is thus clear that the most interesting case is the case of
c = 3.

There are two other reasons to be interested in this particular value of c. One reason
is that perhaps the most interesting case of non-critical bosonic string corresponds to
strings propagating in 2 dimensions, which is the lower critical dimension of bosonic
strings, and this turns out to be related to a topological theory with c = 3. The other
reason to be interested in this particular value of c is that in constructing more or
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less realistic superstring models compactifying from 10 dimensions down to 4, one
has to introduce a 6 dimensional internal theory with c = 3 such as is the case for
a Calabi-Yau 3-fold. It is thus exciting that the critical topological theory may be
related to more or less realistic string compactifications and indeed we will see that
the topological amplitudes of c = 3 topological string theories effectively compute
superpotential terms in the effective low energy field theory of ^-dimensional theories
obtained by compactifying the superstring on the corresponding internal theory. This
is an exciting link which thus makes the computation of topological amplitudes more
than just an academic exercise.

As if these are not enough reasons to consider critical topological string theories
there are many more: In a particular realization of the critical topological strings, the
classical limit of the string field theory turns out to describe the classical deforma-
tion of the complex structure of Calabi-Yau manifolds (and the related variation of
Hodge structure), i.e. the Kodaira-Spencer theory. This relation can be summarized
by writing an action whose classical solution correspond to all possible deformation
of the complex structure of the Calabi-Yau manifold. This field theory we call the
Kodaira-Spencer (KS) theory of gravity. It is a gravitational theory in 6 real dimen-
sions with vacua being Calabi-Yau 3-fblds and which gauges the complex structure
of the manifold. The Kodaira-Spencer theory can be viewed as the closed string field
theory for the critical topological string on a Calabi-Yau. This is thus a rather simple
realization of a closed string field theory which may be helpful for further under-
standing of closed string field theory in more general cases. One can also consider
the quantum Kodaira-Spencer theory, i.e. the higher loops on it which are the same as
the partition function at higher genus of topological strings. In particular at one-loop
the partition function can be related to an appropriate combination of determinants
of various operators which turns out to be related to the Ray-Singer holomorphic
torsion. In this context the anomaly in decoupling of BRST-trivial states at one-loop
becomes identical to the Quillen anomaly. Thus the higher genus anomaly that we
have found in the string set up may be viewed as a generalization of the holomorphic
Quillen anomaly for the Kodaira-Spencer theory to higher loops. As far as we know
no analog of Quillen type anomaly was previously known for higher loops, and our
derivation of the anomaly relies heavily on string theory techniques.

The partition function of the critical topological strings in another realization,
which is the mirror transformed version of the KS theory, at the classical level 'counts'
the number of holomorphic maps from sphere to the Calabi-Yau manifold. The count-
ing of holomorphic maps from Riemann surfaces of genus g gets 'mirror mapped' to
the g-th loop computation in the quantum Kodaira-Spencer theory.

The open string version of the critical topological string theories is also rather
interesting. In particular, in one version of these theories (the Ά' version) the string
field theory one obtains is the ordinary Chern-Simons theory in 3 real dimensions. By
mirror map these should be related (in certain cases) to computation of open strings
on 3-complex-dimensional Calabi-Yau manifolds.

In this paper we develop techniques for computations of correlation functions of
twisted N = 2 theories coupled to gravity with c = 3. The fact that one can actually
compute the integral of certain realistic string amplitudes over the moduli space and
write the answer in a closed form is a pleasant surprise. In particular in more or
less realistic string theories there are no known computations beyond the tree and
one-loop level that can be done in the string theory. For example the bosonic string
theories do not make sense beyond tree level (the amplitudes diverge due to tachyons).
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Superstring theories have vanishing partition function (due to supersymmetry) to all
orders in perturbation theory, and there is a general method to formulate the com-
putations of scattering amplitudes (modulo subtleties with the question of integration
over supermoduli space). But no method to explicitly carry them out exists in these
theories. In fact there is no reason why they should be simple at all given the pre-
sumption that essentially all infinitely many stringy modes should be relevant for such
computations, and thus probably it is too much to expect an exact solution.

The idea which leads to the computation of these amplitudes is as follows: For-
mally the partition function at genus g of these theories would depend holomorphically
on parameters tl which characterize moduli of the theory. However we will find that,
even though the conjugate fields, which are in the 6-cohomology, are Q trivial, they
do not decouple, and so we end up with dτFg =/0. The fact that the integrand of this
dependence is a total derivative on moduli space allows us to go to the boundary to
pick up the contributions which will thus involve lower genus computations. In this

way we get a recursive equation which we solve for the ? dependence of Fg. The
holomorphic dependence cannot be fixed from the anomaly equation alone, however
from the fact that they are modular forms of appropriate weight, and making heavy
use of the properties of Fg at the boundary of the moduli space (making use of the
KS theory) they can be determined up to a few constants. In explicit examples, in
particular the quintic 3-fold, for low genus we fix these constants using the mirror
map by using the interpretation of leading terms as counting holomorphic maps.

The organization of this paper is as follows: In Sect. 2 we review aspects of TV = 2
theories and their twisting. This is a basic section for review of old material but some
of it from a new light. This includes a review of the geometry of vacua captured
by tt* equations (which in a special case corresponds to special geometry). We also
discuss examples of N = 2 theories obtained from sigma-models on Calabi-Yau
manifolds. These theories admit two different ways to twist, depending on whether
the physical fields correspond to deformation of Kahler classes (A-model) or complex
structure (jB-model). We also discuss coupling of these theories to gravity, i.e. how
to get string theories from them, and the notion of the critical dimension. We also
point out why the topological partition functions are sections of line bundles and why
inserting physical fields corresponds to taking covariant derivatives. Also we show
how one can choose topological coordinates for moduli (as well as a trivialization
for the line bundle) so that as far as topological observables are concerned we can
replace covariant derivatives with ordinary ones. This turns out to explain the ansatz
used in construction of mirror map.

In Sect. 3 we derive the basic anomaly equation. This includes the anomaly both
for partition function as well as correlation functions. It is shown how this equation
can be rewritten as a master equation for the full partition function (i.e. summed over
all g) of the theory. We will see that the integrability of the master equation is true
but non-trivial and is a consequence of tt* equations.

In Sect. 4 some aspects of open string theory are discussed. This includes discussion
of tt* equation in this context, as well as derivation of anomaly equation at one-loop
and aspects of the anomaly equation at higher loops.

In Sect. 5 we discuss what topological strings compute for the A- and B-models.
In particular for the .B-model we derive the Kodaira-Spencer theory as the string
field theory for topological strings. This includes discussion of the symmetries of KS
theory as well as the background (in)dependence of it with respect to a choice of base
point for complex structure of the manifold. We use the Batalin-Vilkovisky (BY)
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formalism to quantize the KS theory. We also discuss the one-loop computation
of the KS theory and show how the computation is equivalent to computation of a
particular combination of the Ray-Singer torsion for the Calabi-Yau manifold. Also
discussed there is the behaviour of the partition function of the KS theory near the
boundary of moduli space of complex structures — a result which will imply that there
are only a finite number of coefficients needed to determine the purely holomorphic
dependence of Fg on moduli parameters. In the context of A-model we show that
the topological partition function in a particular limit (t —> oo) computes the number
of holomorphic maps (or more generally the Euler class of a particular bundle on the
moduli space of holomorphic maps). A particularly important case discussed there is
the contribution of constant maps to the topological string amplitude.

In Sect. 6 we discuss how to solve the recursive anomaly equation by introducing
an auxiliary space consisting of the massless modes of the conformal theory. We
show that certain Feynman graph rules involving fields corresponding to this auxiliary
space can be used to solve the anomaly equation recursively. The vertices of this
theory involve n-point functions of lower genus topological theory, and the propagator
involves a covariantly defined prepotential and its first two derivatives. These rules
can be summarized as a path-integral (which in our case is just a finite dimensional
integral) over the auxiliary space. The emergence of this way to solve the anomaly
equation is somewhat mysterious, but we try to understand it in the context of the
Kodaira-Spencer theory.

Section 7 is the experimental verification of the paper. In that section we give
examples of computation of topological amplitudes, including orbifolds and the quin-
tic 3-fold. In particular for the quintic we compute the genus 2 partition function
explicitly and use the mirror map to translate it to the 'counting' of holomorphic
maps from genus 2 to the quintic.

Section 8 is where topological strings meet realistic string models. We show how
the partition function of topological strings can be reinterpreted as particular computa-
tions in conventional type II and open superstrings compactified on the corresponding
internal theory. In particular we show that the closed and open string versions of the
topological theory compute the dependence of the coefficients of particular terms in
the superpotential on the moduli of the internal theory. In the context of open strings
in particular this term will have a bearing on the question of gaugino condensates
and is worth further investigation for its phenomenological implications for super-
symmetry breaking. Also in this section we show that the one-loop computation of
threshold corrections for heterotic strings in the context of (2,2) compactifications can
be directly related to the one-loop amplitude of topological strings. Using properties
established for this amplitude we show that quite independently of which Calabi-Yau
manifold one chooses the effective unification scale is rather sensitive to the change
of volume of the manifold and the dependence is such as to push the unification scale
up as we increase the volume of Calabi-Yau from Planck scale. The sign is fixed by
the fact that 02 > 0 for any Calabi-Yau manifold.

Finally in Sect. 9 we discuss open problems and prospects for future work.

In appendix A we discuss computation of contribution of bubblings of sphere to
topological amplitudes. In appendix B we present some preliminary analysis on the
master anomaly equation.

Perhaps it is useful to summarize the organization of this paper with the following
flow chart.
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2. Review of Twisted N=2 Theories

In this section we review aspects of twisted N - 2 theories. This section will also
serve to set some of the notation we will later use, as well as motivate some of
the issues which are discussed later in the paper. In Subsection 2.1 we discuss the
topological nature of N = 2 theories by reviewing the structure of its vacua and chiral
rings. We then discuss the geometry of vacuum bundle as a function of moduli of
N = 2 theories (tt* equations). We then consider examples of TV = 2 theories in the
context of sigma-models. Next we specialize some of the discussions to the Calabi-
Yau 3-folds and review special geometry. In Subsection 2.4 we discuss how to make a
string theory out of twisted TV = 2 theories, which is known as 'coupling to topological
gravity.' Also discussed there is why Calabi-Yau 3-folds enjoy a special status among
such string models (i.e. why dimension 3 is critical). We will also discuss how the
partition function of these theories are not numbers but rather sections of bundles, and
how inserting chiral fields is equivalent to taking covariant derivatives of the partition
function; a fact which will be heavily used in the rest of the paper. Also discussed
there is the fundamentally important notion of 'canonical coordinates' which turns
out to explain the ansatz used in the construction of mirror maps. We will then give
a formal argument for the decoupling of anti-chiral fields from correlation functions,
but argue why this formal argument cannot be correct by showing its inconsistency
with special geometry, which leads us to the notion of anomalies discussed in Sect. 3.

2.7 Vacuum geometry and twisting of N = 2 theories. N = 2 supersymmetric theories
in 2 dimensions have a very rich structure. We will restrict our attention below to
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superconformal ones even though most of what we say can be easily generalized to
massive N = 2 theories (we will use the notations and the results of [1], [2] which
the reader may consult for more detail).

Superconformal N = 2 theories have four supercharges: Two conjugate left-

movers (G±) and two conjugate right-movers (G ), and two U(\) currents, one
left-moving (J) and one right-moving (J). The ± sign over G"s signifies their U(\)
charge with respect to the corresponding current. Among the important commutation
relations of the TV = 2 algebra are the zero-mode commutators, which we denote by
the same label as the fields:

where HL denotes the left-moving hamiltonian, and similarly for the right-movers.
Also all left-moving operators (anti-)commute with the right-moving ones. From the
nilpotency of the G's it follows that we can define the notion of G cohomologies
both for the fields and for the states. If we wish to get a finite dimensional space for
cohomology group we need to consider suitable addition of left- and right-moving
G's. There are two inequivalent choices, up to conjugation, and they are given by

Q2 = G+ + G~ .

As far as the cohomology states are concerned Q\ and Qi and their conjugates all give
rise to the same space, spanned by the supersymmetric ground states of the theory
(HL = HR = 0). However as far as the cohomology of the fields are concerned, i.e.,
fields which satisfy

[Q,0] = 0 φ~φ + [Q,Λ\

even though they can be set into 1-1 correspondence with ground states of the theory,
they are not equivalent with each other as operators. The cohomology operators for Q\
are called (c, c), i.e., (chiral, chiral) fields and those of Qi are called (c, α), i.e., (chiral,
anti-chiral) fields (where the two entries correspond to the cohomology condition for

left- and right-moving charges respectively). Those of Q\ and Q\ are the conjugate
fields and are called (α,o) and (α, c) fields respectively. Since the discussion for
the two choices of Q's is_essentially identical, as they differ only by a convention
dependent choice of sign ( J — > - J), we will restrict ourselves to Q\ and its conjugate.
We will also drop the subscript from Qi and denote it simply by Q. Also, to simplify
terminology we will call the (c, c) fields simply chiral fields and the (α, α) fields the
anti-chiral fields.

Let us choose a basis for chiral fields representing the Q-cohomology by φ^ and
denote the conjugate anti-chiral fields by ^ . The N = 2 algebra implies that the
(left,right) dimension of φτ, (hτ, hl) is half its charge fe, <^)

(hi,hi) = -fe,5i)

and that the range for the ̂  are bounded by the central charge c of the N = 2 algebra:

0 < qiiQ < c .
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The dimensions of the anti-chiral fields φi are the same as φi but their C/(l) charge
is minus that of φi.

The chiral fields form a ring, the chiral ring, defined by

Φ^Φ3 = CΪjφk + [Q, •] .

Using the N - 2 algebra it is easy to see that this definition of the ring is independent
of the points of insertion of the fields on the worldsheet. Sometimes we will view C^

as a matrix Ci with component (Ci)j. The corresponding ring for anti-chiral fields

differs only by complex conjugation of C^ = (C^ )*
As is well known, viewing chiral fields as the first component of a superfield, we

can modify the action by perturbing with them:

/

— ί - ί
l~ J z l + J

t*

where φ(2} = {G~, [G , φi]} and ^ are complex parameters. If we wish to have a

unitary theory we need ? = (t1)* (later in the paper we will relax this condition). It
is known [3] that the only criterion needed for preserving the conformal invariance
is that (h^hτ) = (1/2,1/2), i.e. that the charge of φi be (1,1).

As mentioned before there is a 1 -1 correspondence between the chiral fields and the
supersymmetric ground states of the theory, which follows by general considerations
of QFT relating operators to states. However it is more useful to do this rather
explicitly, which along the way leads to the notion of defining a topological theory.
If we consider a hemisphere (see Fig. 1) with the field φl inserted on it then one
is tempted to identify the state obtained at the boundary of this region by the path
integral, as the cohomologically non-trivial state representing the supersymmetric
ground state corresponding to φif

However this is not correct: One reason for this is that the state we get at the
boundary is in the wrong Hubert space, i.e. the NS sector. For the supersymmetric
vacuum we need to be in the Ramond sector. Another difficulty is that we need to
argue that the state we get is annihilated by Q and to do this we have to make
sure that Q is a scalar charge (especially when we have more non-trivial Riemann
surfaces). To solve both these problems one twists the supersymmetric theory to obtain
a topological theory, by introducing a background gauge field A which couples to the
U(\) current [4]

S-+S + I JA + JA

and one sets A = ω/2, A = ΰ /2, where ω is the spin connection. Introducing this
gauge field has the effect of shifting the spin of charged fields by half their charge.

Fig. 1. Inserting the chiral field φτ on the hemisphere and doing the twisted path integral on it will result
in a state \i) at the boundary. This state is BRST equivalent to a ground state and can be made an exact
ground state by pulling the neck infinitely long.
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Thus Q becomes a scalar charge. At the same time G~(z) and G (z) become spin
(2,0) and (0,2) currents respectively. Introducing this twisting, on the hemisphere of
Fig.l, has the effect of converting the state obtained at the boundary to a state in the
Ramond sector, which is annihilated by Q (where we use the fact that φτ commutes
with Q). Also the dimensions of all the fields will shift by h — > h — |, thus φi
becomes dimension zero and φi becomes dimension (1, 1) for marginal directions.
We could obtain the exact ground state, not just a state cohomologically equivalent to
a ground state, simply by doing the path integral on the hemisphere with the neck
pulled infinitely long. We denote the corresponding ground state by i). There is a
canonical vacuum which is obtained by not inserting any field at all. This we will
denote by |0). Note that we can write

by using the fact that moving φi to the boundary is a Q-trivial operation. Also note
that

We can consider also the conjugate twist (the antί-topological theory) in which Qt
becomes a scalar. In this case we can parametrize the same vacua using the anti-chiral
fields, which we denote by \i). We must thus have a change of basis transformation
relating the two:

which by CPT satisfies MM* = 1. Note that we have thus two natural inner products,
the topological one η and the hermitian one g defined respectively by

which satisfy

Also note that in the topological theory

(Φiφjφk) = (0\φiφjφk\0) = (ilφilk) = C l

j k ( ί \ l ) = Cl

jkηil = Cjkl

which implies that djk is totally symmetric in indices (for indices of even fermion
number).

We are interested in seeing how the structure of vacua and chiral fields deform as
we perturb the theory by marginal chiral fields. As discussed the parameter space is

locally given by (tl,t ). We would like to study the geometry of the vacuum bundle, i.e.
how the collection of vacuum states {\i(t,t)}} varies as a function of the parameters

and in particular find the dependence of Cljk, g and η on (t\tτ). These are studied in
[2] with the following results: First, using the fact that insertion of anti-chiral fields
in the action modifies the theory by Q-trivial terms, it follows that

dιCijk=0 (2.1)

i.e., djk is a symmetric holomorphic function of moduli. One introduces a connection
on the vacuum bundle so that A|j) = (d/dtl — Ai)\j) and D^\j) are orthogonal to



Kodaira-Spencer Theory of Gravity and Exact Results for Quantum String Amplitudes 321

all the vacua. Then the following equations, the tt* equations, hold

[D^Dj] = [D^D,] = [Di.Cj] = [A,C, ] = 0 ,

[Di,D3] = -[Cl,C3]. (2.2)

One can also arrange, by a judicious choice of coordinates, for η to be constant [5]. It
is also possible to choose the holomorphic (or topological) gauge 1 , in which Ar = Q
and in which

Ai = -gdtg~l . (2.3)

In this gauge, which is the natural gauge chosen by the twisted path-integral, the
chiral vacuum states \i(t)) depend holomorphically on the moduli. In this gauge the
third line of Eq. (2.2) can be written as

d,(9dig-
1) = [C^g&tfg-1] . (2.4)

We would like to digress slightly to discuss some ambiguities in the twisted
path-integral. Ambiguities arise in the normalization of path-integral when there are
zero modes to be absorbed. When we twist a topological theory by coupling the
[7(1 ) current to a background gauge field, the axial [7(1) current (J + J) becomes
anomalous, and so there are fermion zero modes to absorb. In fact to be precise, using
the fact that the OPE of J's have a central term

in genus g the twisting will give rise to a charge violation of

) = c(g- 1,0-1). (2.5)

This ambiguity in how to absorb the zero mode translates to the ambiguity in defining
the normalization of the chiral states i ) . Since they are all related by applying the
operators φi on |0) it suffices to discuss ambiguities for |0). We can choose the
absorption of fermion zero modes to be consistent with the holomorphic dependence
of |0) on moduli. But we cannot completely fix the ambiguity. Consider the line
bundle C over the moduli space, generated by the vacuum state |0). Then what we
are saying is that a holomorphic choice of normalization of the twisted path-integral
is equivalent to a choice of holomorphic section of C. Two different normalizations
of the path-integral give differently normalized vacua as:

ιo> - f(tιm .
Note that this freedom in redefining the normalization of |0) holomorphically translates
to a change in the connection A®Q — > A®Q + dτf. Since we have chosen a holomorphic
gauge

(0|0)

This choice of gauge is implicit in Eq. (2.1).
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where
exp(-K) = (0|0) .

The fact that |0) is a section of C translates to the statement that the genus zero parti-
tion function ZQ (with operators inserted to avoid vanishing by charge conservation)
will be a section of £2 (in addition to having properties induced from insertion of
operators). Similarly by sewing axioms of topological theory it follows that Zg is

a section of £2~2d. Needless to say, all physically interesting quantities should be
independent of how we choose to fix this normalization ambiguity.

2.2 Examples. Even though our discussions in the paper will be for the general case
we will occasionally specialize the results to some interesting classes of N = 2 SCFT.
Those which we will use most in this paper are the supersymmetric sigma-models.
It is known that the sigma-model on a Kahler manifold M gives rise to an N = 2
QFT [6]. The action is given by

+ Fermionic terms,

where ω^ denotes a complexified Kahler class. If we denote an integral basis for

#(1'l)(M,Z)byα;,, we have
ω = tlωi

and thus tl parametrize the moduli of this theory. The fermionic terms in the action are
there to make the above supersymmetric. Apart from the kinetic term, the fermionic
terms include the four fermion interaction term

which will prove crucial for us later on.
One can twist the fermion number, as discussed in the previous section, to obtain

a topological theory [4]. The effect on the action is only to modify the spin of the
fermions, making the χ's scalar, the ψi is a (1,0) form and ψj is a (0,1) form. To
obtain the observables of this theory it is convenient to go to the large volume limit

first £%? — > oo. In this limit the Hubert space of the theory can be represented
by differential forms on M where the (left, right) Ϊ7(l) charge of the state can be
identified with (holomorphic, anti-holomorphic) degree of the form. Moreover on this
Hubert space we get the following dictionary

and so Q\ = G+ + G = d and thus the observables φτ in this theory are in 1-1
correspondence with the cohomology elements of M represented by

The chiral ring for t,t — > oo is the same as the cohomology ring, but for finite £'s
it is in general a deformation of the cohomology ring of M, taking into account the
holomorphic instantons from sphere to M, i.e., rational curves on M. This deformed
ring is called the quantum cohomology ring of M. The precise form of how the
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instantons contribute to this ring will very much depend on the first Chern class of
M. The most interesting case is when c\(M) = 0, i.e., the Calabi-Yau case. In this
case, which is also the case needed to obtain a conformal theory out of the sigma-
model, the instanton of arbitrary large degree affect the chiral ring. In particular if
one is interested in the quantum cohomology ring for a 3-fold Calabi-Yau, if we let
i, j, k denote three (1,1) classes, then the ring structure coefficients are given by

qr\ qΓn

* "

where n = dim JiΓ^'^ίM), qr = exp(— tr), and cfrι...Γn are the number of primitive
holomorphic instantons of degree (ri, ...,rn). The denominator is the contribution of
multi-coverings of primitive instantons [7, 8]. Note that the structure constants of this
ring depend on the choice of the Kahler class, but are independent of the complex
structure of M.

Now, as discussed in the previous section, superconformal theories have two
natural rings [1], the (c, c) and (α, c) and thus also there exists two ways to twist the
theory. In particular in the Calabi-Yau case for which both the fermion number and
the axial fermion number are conserved, we can twist in two different ways, depending
on which of these rings we wish to be the physical ring. The choice discussed above
corresponds to twisting the fermion number current and gives rise to (say) the (c, c)
ring as being the topological one. The other choice of twisting, corresponding to axial
fermion number twisting has also been studied [9, 10]. Again it turns out to be easier
to study the model in the large volume limit. In this limit again the Hubert space can
be identified with anti-holomorphic forms wedged with holomorphic vectors, i.e.,

(2.6)

where in here and in the following TM,TM denote the holomorphic and anti-

holomorphic tangent bundles respectively and Tjj^ , TM denote the holomorphic and
anti-holomorphic cotangent bundles. We can obtain from this Hubert space the Hubert
space of forms simply by contracting the vector indices with holomorphic n-form
which always exists for a Calabi-Yau n-fold. This converts the (q,p) sector above to
a differential form of degree (n — q,p). On this Hubert space Ή,' the dictionary for
the supercharges turn out to be

G- = (δ-0t). (2.7)

Note that Q^ - G+ + G «-> d and so again the observables can be identified with
the cohomology elements of M. For later use in the paper we need also expression
for left- and right-moving fermion numbers. Unlike the previous case, the fact that
(2.7) mixes the holomorphic and anti-holomorphic degrees in this non-trivial way,
implies that the fermion numbers in this case are not simply identified as the left and
right degrees of form, as that would lead to a wrong commutation relation with G+.
To fix this, we should recall [11] that for Kahler manifolds there is an sl(2) action on
the forms, generated by wedging with the Kahler class k, contracting with k which
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we represent by fcτ and the shifted total degree of the form (p + q — n)/2. Also we
have _

Using this we can write FL,R as

The reader can check that the right-hand side (r.h.s.) is CPT odd and has the correct
commutation properties with the G's.

Even though the chiral fields are again in 1-1 correspondence with the cohomology
elements, the chiral ring for this twisting is very different from the previous one. Let
Ω denote the holomorphic n—form. For example if the Calabi-Yau is a 3-fold, then
the structure constants for the marginal directions, which are parametrized by elements
of H(2Λ\M) can be written as

Cijk = - I Ω ̂ ^i^j^kΩ .
JM

Note that these structure constants are independent of the Kahler class so they continue
to hold for finite volume as well. But they do depend on the complex structure of M,
which is parametrized by elements of H^2:l\M) as will be discussed in great detail
later in this paper.

So to summarize, we see that in the first case of twisting, i.e. the (c, c) twisting, the
topological correlation functions are sensitive to the Kahler class of the manifold and
compute the rational curves in the Calabi-Yau. This twisting is called the A-twistίng
or the Kahler twisting. On the other hand, in the case of (α, c) twisting we see that
the topological correlation functions are only sensitive to the complex structure of the
manifold which is encoded in how the holomorphic three form varies (or the variation
of Hodge structure). This twisting is called the B-twisting or the complex twisting.

NOTE: For convenience of keeping the same notation in the rest of the paper when

we deal with the B- or A-model we denote the supercharge always by Q = G+ + G
by a trivial change of conventions on the right-moving 17(1) charge if necessary. This
will not cause confusion as we rarely talk about both models at the same time.

2.3 Special geometry and Calabi-Yau 3-folds. In a unitary superconformal theory there
is only one chiral primary with q = 0, namely the identity operator 1. We consider
the normalized metric2

(2.9)

(here and in the following the indices z, j are Restricted to the marginal directions
in coupling constant space whereas indices α, b go through all chiral primaries). It
is easy to see that Gτj is equal to the usual Zamolodchikov metric [12]. Indeed the
definition of the tt* metric can be written as

(b\a)β = (

2 Here β is the perimeter of the circle used to define the states \i) (cf. Fig. 1).
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where Ra is the operator creating the Ramond vacuum α) out of the 5L(2, C)-
invariant vacuum. Now, the topological map α) —> φa differs only for the overall
normalization from the unitary spectral flow operator U which maps the R sector into
the TVS' one. Since the unitary operator U preserves inner products, we have

(2.10)

where we used that the correct (unitary) normalization of U is just the one for which
(l)sphere = l Equation (2.10) is true for any chiral primary fields. In the particular
case in which φτ has charge 1 (and dimensions (1/2, 1/2)) from (2.9) we get

{^(^.(O))^^-^. (2.11)zz

Let Φτ(z, θ) be the N = 2 chiral superfield whose first component is φτ. From (2.11)
and N = 2 supersymmetry we get3

0 Φ,(^2))sphere = Γ l
z\1

Then, if φf^ = J d2ΘΦi is the marginal operator multiplying the coupling tl in the
action, one has

which is the original definition of the Zamolodchikov metric [12].
The Zamolodchikov metric Gτj has remarkable geometric properties. The most

interesting situation is when c = 3. In this case the metric G- satisfies a set of
constraints which define the so-called special (Kάhler) geometry. A hermitian metric
Gτ-j is said to be special Kάhler if:

ί) It is a restricted Kahler metric, i.e. a Kahler metric such that the corresponding
Kahler form is 2π times the Chern class of a line bundle C. Locally this means

Gi3=d3dtK,

with - ' (2'12)

where 1 is a local holomorphic section trivializing C.
U) There is a holomorphic symmetric tensor Ci3k with coefficients in £2 satisfying4

BtCjkl=0 DiCjkι = DjCM, (2.13)

such that the Riemann curvature of Gz- reads

Rτ k

l = -djΓl = Gk]δτ

l + Gt-δk

l - e2KCtknG
nΛC^ΛG

M . (2. 14)

It follows from the it* equations that the condition i) is satisfied by the Zamolod-
chikov metric G ̂  of any critical N = 2 theory , with the bundle C identified with

3 We use the shorthand notation θf2 = 0f - 0^ and zu = z\ - z2 - Θ\Θ2 - θl 0+.
4 Here D% is covariant both with respect the Christoffel connection of G^ and the canonical connection

on the bundle £, i.e. Aτ = -dτK.
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the vacuum line bundle defined by the identity operator. Moreover, if c = 3 the
condition ii) holds as well with

Cijk = {0|<Woo)0χi)0fc(0)|0)top. . (2.15)

c - 3 is crucial here because only in this case C^k is non-vanishing for marginal
fields (1+1+1=3).
In view of Eq. (2.12), the first assertion is equivalent to saying that G^ is Kahler

with potential
tf = -log(0|0) . (2.16)

Let us show this. The index 0 will denote the identity operator, while i,j, ... =
l , . . . , m denote the marginal directions (i.e. chiral primary fields with charge 1).
Then E7(l) charge conservation gives

= <7feo = 0 (gCίg-l)* = 0.
*

Let us project the tt* equation in the identity sector

log

where we used the definition of the identity operator i.e.

Qo = <?(>.* = «, *• (2 17)

This shows i). To show ii) let us notice that, if c = 3, the tensor defined by Eq. (2.15)
has all the required properties: From (2.15) we see that it is a section5 of Sym3T*®£2:
Indeed φi is an operator valued section of T while |0) and (0| are Hubert space-valued
sections of C. C^k is holomorphic because, as we saw in Sect. 2.1, the topological
3-point function has this property. Finally, it satisfies the first condition in (2.13) as
a consequence of Eq. (2.1). It also satisfies the second condition in (2.13) because
it differs from the corresponding equation in (2.2) only by the fact that in DiCj the
derivative should also act on the j index by the Christoffel connection but that is
clearly symmetric in its indices. Here it is crucial that the tt* connection is equal to
the Zamolodchikov connection plus the canonical connection for the bundle C as it
follows from the equation (compare eqs. (2.9), (2.16))

gi-J=e-κGί-j, (2.18)

the definition of the tt* connection (2.3), and the definitions of the Zamolodchikov
and line bundle connections which are given by Γl

ki = GkrhdιGml and —d^K, re-
spectively.

Now we are ready to show the main identity, Eq. (2.14). Using the well-known
formula for the Riemann curvature in Kahler geometry, we have

_ -2K s- e

Here and below T denotes the (1,0) tangent bundle of the coupling constant (moduli) space.



Kodaira-Spencer Theory of Gravity and Exact Results for Quantum String Amplitudes 327

where we used (2.18), (2.17) and the tt* equations together with the CPT constraint

η~lg = (g~l)tfr]*'
Special geometry originally was discovered in two seemingly unrelated contexts:

The geometry of periods on a Calabi-Yau 3-fold [13] and N = 2 supergravity in
four dimensions [14]. The ground state geometry of c - 3 superconformal theories
combines these two topics together in a natural way. In the present paper we shall
use quite heavily the relationship of special geometry with the complex geometry of
Calabi-Yau 3-folds. In order to be self-contained, we recall the basic facts about this
connection.

Before doing this, it is convenient to formulate the above special geometry in a
slightly more abstract way. Since special geometry is equivalent to the tt* geometry
for a family of c = 3 superconformal theories, we shall use the terminology arising
in this last context.6

Consider the 'improved' connection

Vi = A-α, V j = £ > j . - C 3 , (2.20)

acting on the vector bundle V of ground states of equal left-right charge. The it*
equations are equivalent to the statement that the 'improved' connection is flat. Hence
we can identify all fibers of V with the one at a given base point by parallel transport
with respect to this improved connection. In this way (apart for aspects related to
global monodromies) we can see V as a product bundle with fiber the fixed ground
state vector space V. In this gauge, the 'improved' derivatives Vz and Vj reduce

to the ordinary ones dτ and δj . To the fibers of V we can give a real structure by
declaring real the ground states which are mapped into themselves by CPT. Since

the real structure is invariant under parallel transport, i.e. the fixed vector space V has
a natural real structure. We fix once and for all a basis of V whose elements |α) (α =
1 , . . . , 2ra+2) are real vectors. In this basis CPT acts by the usual complex conjugation.
The tt* metric is not invariant under parallel transport by the V-connection; however,
if q is the C/(l) charge operator, the following real skew-symmetric (symplectic)
metric

is invariant because the matrix CZQ is skew-symmetric. In the gauge in which the
'improved' connection vanishes, this symplectic form is just a constant matrix; we
can choose our real basis {|α)} so that it is the standard symplectic unit E.

At a given point in coupling space, the ground state space V admits a decomposi-
tion into subspaces corresponding to states having definite U(l) charges. However, as
we change the couplings t\ this charge decomposition changes, since parallel trans-
port by the V-connection does not preserve charge. This is obvious from (2.20) since
the matrix C19 representing multiplication by the field φl9 increases the charge by 1.
Special geometry just describes how the states of given charge rotate in the fixed
space V as we vary the couplings.

Without losing any real generality, we can also assume that all the chiral primary fields have integral
[/(I) charges. This assumption will be implicit throughout the paper. For a discussion of 'special
geometry' in presence of fractional charges, see Ref. [15]



328 M. Bershadsky, S. Cecotti, H. Ooguri, C. Vafa

At a given point in coupling constant space V decomposes into a one-dimensional
subspace corresponding to |0) having degree7 0, an m-dimensional subspace spanned
by the vectors φi\0) having degree 1, and their dual subspaces (with respect to the
symplectic form Q) having degrees 3 and 2, respectively. As we vary t, the states of
degree 0 form a line subbundle of the trivial vector bundle with fiber the fixed space
V. This line subbundle is just our vacuum bundle £. In the same way, the states of
degree 1, {</>z|0)}, span the fibers of the vector bundle (T® £), those of degree 2 the
dual space (T ® £)*, and finally those of degree 3 the dual line bundle £*. Thus we
have the charge decomposition

V = C Θ (T (g> £) 0 (T <g> £)* Θ £* . (2.21)

This decomposition satisfies four main properties. Let ξ and ζ be two sections of V
with definite degrees; then
1. ξ*Eζ = 0 unless l(ξ) + l(ζ) = 3.
2. (—l)l^ξ^Eξ > 0. Indeed, comparing with the definition of g, we see that this is

just the squared norm of the vacuum state corresponding to ξ.
3. diξ is a sum of two pieces, one with I = l(ξ) and one with / = l(ξ) + 1. This

property is evident from (2.20) which also gives

. (2.22)

4. £ is a holomorphίc line subbundle of V. Indeed, V j acting on a degree 0 state

produces a pure degree 0 state; hence the flat connection Vj induces a holomorphic
structure on £. Since in the present gauge the V-connection is trivial, this is just
the canonical holomorphic structure for a subbundle of V.
Working in the symplectic basis, the only non-trivial datum is how the original

ground states \φa) are written in terms of the symplectic ones α), i.e. we must know
the coefficients of the expansion

\Φa) = Va

a\a) . (2.23)

From these coefficients we can easily recover the tt* metric

9at = (-l)laVJEVa, (2.24)

while the matrices d can be extracted from (2.22) which can be rewritten as

diV? = -(Ci)a

bVb

a + terms with lower charge .

Giving Va

a is equivalent to giving the decomposition in Eq. (2.21). The matrix V£ is
restricted by the above four conditions. Conversely, given any decomposition (2.21)
satisfying these conditions we can construct a metric g satisfying the tt* equations
with respect to the Cτ defined by Eq. (2.22) and having all the properties discussed
above. Indeed the tt* equations are equivalent to the flatness of the connection V,
which is automatic in such a construction.

7 For later convenience, we define the 'degree' I of a ground state to be the C7(l) charge of the
corresponding NS state, i.e. / = q + 3/2.
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In fact, it is enough to know Va = V% i.e. how the vacuum line bundle C sits
in V. Indeed from (2.17) one has

d,Va = -C^V^ + . . . = -Vτ

a mod. Va ,

so we can read V * (i.e. the degree 1 subbundle) from the derivatives of Va. The
degree 2 and 3 subbundles then can be recovered by duality. Acting V on both sides
of Eq. (2.23), we see that Va should be a holomorphic function of the t's; this is
property 4. above. Then the above four conditions are automatically satisfied if and
only if Va is holomorphic and satisfies8

V*EV = V*E diV = 0, V1EV > 0 . (2.25)

So given any holomorphic function Va(t) satisfying (2.25) we construct a special
geometry. In particular, from (2.24) we see that the Kahler potential is

(2.26)

Consider dld:)dkVa. The component of top degree is given9 by —(Cτ

Hence
V1 EdidjdkV = -(dCjCiάn = -Cljk , (2.27)

which is the most convenient way to define C^k-
The above discussion applies to any N = 2 conformal model with c = 3. Now

we specialize to the 5-model based on a Calabi-Yau 3-fold M (which we assume
to be simply-connected). In this case the chiral primary fields of 17(1) charge q are
in one-to-one correspondence with the elements of H3~~q^q(M). This follows from
Eq. (2.8) and the fact that for a simply connected Calabi-Yau 3-fold the relevant
vacua correspond to primitive cohomology classes in degree 3, which are annihilated
both by k and fcΐ. All these spaces are subspaces of the ordinary de Rham group
H3(M, C); since the de Rham cohomology depends only on the topology of M, this
group is independent of the couplings tl (which control the complex structure of M).
H3(M, C) can be seen as a fixed space while the definite charge subspaces H3~q>q(M)
do move as we move the ίl's. Then the constant space H3(M, C) is easily identified
with the space V of the abstract N = 2 theory. Notice that this space has a natural
real structure, namely a class in H3(M, C) is real iff it belongs to H3(M, R); this
structure coincides with the one defined by CPT in the S-model. Then the charge
decomposition is identified with the Hodge decomposition H3(M) = (&qH

3~q'q(M).
On H3(M) there is a natural symplectic form given by

M

which is also independent of tτ and real since it is topologically defined. With respect
to this pairing and real structure, the Hodge decomposition satisfies 1. and 2. (the
Riemann bilinear relations). That the Hodge decomposition also satisfies conditions
3. and 4. is a consequence of the Kodaira-Spencer theory of complex deformations.

8 In particular, any special manifold is a Legendre submanifold of a complex contact manifold.
9 The index p labels the unique chiral primary field of charge 3, normalized so that (p) = 1.
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Let μτ be the element10 of Hl(M,TM) associated with an infinitesimal variation δtl

of the complex structure, and let ω be any harmonic (3 — g, q) form. Then

θiω = μl Λ ω + A , (2.28)

where βι is a closed (3 — q,q) form, and μ^ acts on forms as contraction for the vector
index and exterior multiplication for the form index. Thus μi /\ω is a (2 — #,</+!)
form. Equation (2.28) is nothing else than condition 3. The same argument applied
to d j(jj implies condition 4.

According to our previous discussion, we can recover the ground state geometry
for the J5-model provided we know how the space ίf3'°(M) (which we identified
with the line subbundle C) sits in H3(M, C), i.e. if we know for each point in moduli
space which de Rham class corresponds to the (3,0) form Ω. Choosing Ω to depend
holomorphically on t% we can rewrite Eqs. (2.26) and (2.27) in the form

e~κ = /
J

Cijk = - ί Ω/\did3dkΩ .
JM

M (2.29)

As a symplectic basis of vacua we can take the states associated to the (real)
3-forms which are dual to a canonical set of 3-cycles, i.e. a set of cycles 7α (a =
1 , . . . , 2m + 2) such that their intersection pairing has the canonical form

#(7cn Ίβ) = δβ,a+m+i ~ δβ+m+l,a -

Then our basic vector Va becomes

Va = ί Ω , (2.30)

7α

so that Va is just given by the periods of the holomorphic (3,0) form. Equations
(2.26) and (2.27) allow to write all the relevant geometric quantities in terms of
these periods. One can also show that the metric G- = didjK is equal to the Weil-
Petersson metric on the Calai-Yau moduli space. To see this, consider Eq. (2.28) with
ω replaced by β. Since #3'°(M) is one-dimensional, βι is cohomologous to faΩ,
where fa is some holomorphic function of the moduli tl. Using the first of eqs. (2.29),
we have

Gi3 = = ~di~d-3 log / β Λ Ω
J M

(2.31)

IΩ/\Ω

Now, Eq. (2.28) together with type considerations give

/ Ω/\diΩ = fa βΛβ,
JM JM

ί d Ω Λ diΩ = ί (μ3 Λ β) Λ (μ< Λ β) + fafj /
JM JM J

denotes the holomoφhic tangent bundle (sheaf) of the Calabi-Yau manifold M.
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Inserting these back into (2.31) we get

Gi = - f ^ / (βj Λ β) Λ (μ, Λ β) = (μ3 , μi) , (2.32)
J J / Λ J /

i

where ( , ) is the inner product on the bundle β°?1 ® TM induced by (any) Calabi-
Yau metric on M. (The last equality in (2.32) is most easily seen by writing down
the explicit index structure of the various tensors involved.) By definition, the r.h.s.
of (2.32) is the Weil-Petersson metric on the Calabi-Yau moduli space. Comparing
this result with Eq. (2.9), we also see that

_
(μ-j Λ β) Λ (μi Λ β) .

M

We stress that β is well defined by the above conditions only up to multiplication
by a holomorphic function of the £*'s. Clearly, two β's differing for such a factor
define the same Hodge decomposition; therefore this ambiguity is immaterial in all the
above discussion and has no physical consequence (in particular the Zamolodchikov
metric is independent of these choices). Instead the tensor Cijk gets multiplied by

/(t)2 when Ω -* f(t)Ω. This behaviour reflects the basic fact that CZJk is a tensor
with coefficients in the line bundle £2.

For future reference, we give an alternative expression for the J3-model 3-point
functions Cυk- As before, we start from the basic identity

.. , (2.33)

where the dots stand for a closed form of type (3,0). Taking a second derivative

dtdjΩ = μi Λ μά Λ Ω + . . . , (2.34)

where now the dots denote closed forms of type (2, 1) and (3,0). From (2.34) and
considerations of type we see that

M

Taking the derivative of this identity, we get

(2.35)
M

Note that replacing the derivatives in the l.h.s. of (2.35) by their explicit expressions
(2.33) and (2.34) the omitted terms do not contribute because of type considerations.
So for our present purposes we can ignore them.

We introduce the following notation: A prime ' means contraction of the vector
indices with the holomorphic 3-form β, while a superscript v means contraction of
the form indices with the unique holomorphic 3-vector dual to β. Obviously these
two operations are each others inverse (A')v = A, and (Bv)' = B. In this notation
(2.33) and (2.34) read v _

didjΩ = (μτ Λ μtf + . . . = [(^β)v Λ (djΩ)v}' + . . . .
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Replacing the second equation in (2.35) we get the formula we are looking for11

Cijk = ί diΩ Λ [(djΩ)v Λ (dkΩ)v}' = ί d^Ω Λ (djΩ)v Λ dkΩ . (2.36)

M M

The case of a Calabi-Yau n-fold (n > 3) is rather similar. As we saw,_ the
Zamolodchikov metric G^ is Kahler also in this case, again with potential — log(0|0).
On the other hand the basic identity for its curvature, Eq. (2.14) is going to change.
To get the corresponding identity for an n-fold, we have to go through the same
steps as in (2.19). All the steps are unchanged, except for the last one. Then the
following formula is valid for all n (we use capital latin letters to denote charge 2
chiral primaries)

—Rijk - e Cik g j j C-.^G™ — Gkjδl — Gτ~jδk .

2.4 Coupling twisted N = 2 theory to gravity. Bosonic string theory is in many ways
like a twisted N = 2 theory [16, 17, 18]. It has a scalar supercharge QBRST = Q + Q,
which is the usual BRST operator. It has anti-ghosts, 6, b of spin (2,0) and (0,2), with
the property

Q2 = &2 = 0 ,

and it has two C7(l)'s, G, G corresponding to the left and right ghost numbers. Iden-
tifying

2JBRST +-> G+ ,

be <-> J ,

and similarly for right-movers. Thus the notion of a physical state in the bosonic
string becomes exactly the same as that of a chiral state in the twisted theory. Thus
we can define coupling of twisted N = 2 theory to gravity by integrating correlation
functions of chiral fields over moduli space of Riemann surface, with the insertion of
G~'s folded with 3# — 3 Beltrami differentials. In particular the partition function of
the twisted N = 2 theory coupled to gravity at genus g > 1, Fg, can be defined by12

3<7-3

\ Π (

M9 k=\

where μ^ denote the Beltrami differentials, and A4g denotes the moduli space of
genus g Riemann surfaces. For F\ the answer can be written using the corresponding
analysis of the bosonic string case [19]. To do this note that in bosonic string one
inserts bcbc to absorb the ghost zero modes. This is translated in the twisted theory to
the insertion of left and right fermion number currents. Also, to fix the normalization it

11 Recall that Λ means exterior product with respect to the form indices and contraction with respect to
the vector indices.

12 For the case of g = 2 one has to put a factor of 1/2 in front because all the g = 2 curves have a Z2
symmetry.
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is best to write the answer in the operator formulation which is particularly convenient
for the torus: « ,2

FI = - / — Tr \(-l)FFLFRqHLqHR] , (2.37)
2 J TΊ

where the factor of 1/2 in front takes care of the fact that there is a Z2 reflection
symmetry for all tori (this normalization is different from the one used in [20]). For
genus 0, the 0,1, and 2 point functions are zero, as is the case in bosonic string, and
the three point functions can be written as

In other words the chiral fields φi which after twisting have dimension zero play the

same role as ccVi in the usual bosonic strings, and φf^ plays the same role as V$.
It is a rather nice property of twisted unitary N = 2 theories that Fg thus defined

is finite and thus well defined. The only potential divergence would have come from
the regions near the boundary of moduli space of Riemann surfaces. But in such
cases, the fact that the propagator on a long tube is given by G$ L

 l

+L GQ and that

it annihilates the massless modes, implies that only the massive modes propagate and
thus the integrand in Fg is exponentially small in these regions (the coefficient of

exponent being fixed by the first non-vanishing eigenvalue of L0 = I/0).

Despite an almost complete parallel between bosonic string and twisted N = 2
theories coupled to gravity, there are two notable differences. The first one is that
the ghost number violation in bosonic string at genus g is universal and is given
by 3g — 3, whereas for twisted N = 2 theories it is given by (2.5) as c(g — 1). In
particular we see that c = 3 is a critical case in that it gives the same degree of charge
violation as bosonic string. So in particular this suggests that Calabi-Yau 3-folds are
a specially interesting class to consider [21]. Note that only for c - 3 the Fg has
a chance to be non-zero for g > 1, by U(V) charge conservation. For all the other
values of c, the only way to get a non-zero result is by introducing other correlators.
The correlators involving chiral fields may be used to prevent vanishing of correlation

functions only for 1 < c; For c < I the charges of all φ\ ^ are negative (the maximum

being c — 1) and so cannot be used to balance charges. In these cases, which happen
to be intensively studied in connection with matrix models, one needs to include
the full topological gravity multiplet and construct gravitational descendants which
give rise to non-vanishing correlation functions [21, 22, 23]. Also for c > 3 one
needs fractional chiral fields φτ with charges between 0 < q < 1 in order to have a
chance of balancing the charges (gravitational descendants do not help in this case
as they contribute +N to the charge violation condition). In particular for Calabi-Yau
manifolds, which have no fractional chiral states, with dimension bigger than 3 all
the correlations vanish, and thus the theory is not very interesting (except possibly
for three point functions on the sphere with ]Γ) qτ = n and FI which is computable
and non-zero in general). For a Calabi-Yau 2-fold, which is either K3 or T4, the
situation is hardly more interesting: all the correlation functions vanish in the case of
T4 due to too many fermion zero modes and on K3 because of charge conservation13.

Finally for the case of one-dimensional Calabi-Yau manifolds only FI is non-zero

13 In the case of K3 in principle there was a chance that the genus g correlation function for g > 1 with
g — I insertions of the highest charge chiral field which balances the charge lead to non-vanishing of
the amplitude. But in fact using the techniques in this paper, i.e. the holomorphic anomaly equation
in this case, one can show the amplitude still vanishes even with this insertion.
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(as studied in [20]), due to charge conservation unless one introduces gravitational
descendants.

So clearly as far as the twisted sigma-models coupled to gravity are concerned,
the most interesting case is the 3-fold Calabi-Yau case which will be the focus of our
examples. Actually we will consider the more general possibility of a unitary SCFT
with c = 3 with integral U(l) charges for chiral fields. Many of the results we will
discuss can be easily generalized to other similar cases and would be interesting to
study.

The other major difference between the bosonic string and critical topological
strings, even if we choose c - 3, is that in the case of topological strings obtained
by twisting unitary N = 2 theories, the G~ cohomology is generically non-trivial
whereas absolute 5-cohomology is always trivial in the bosonic strings. This, as we
will see in the rest of the paper is a crucial difference, and it leads to the anomaly
discussed in detail in the next section.

The case of Calabi-Yau 3-fold as a string theory has already been studied in [24]
for both open and closed strings. In particular it was discovered there that in the case
of the open string theory, the target space physics is equivalent to three dimensional
Chern-Simons theory. In the case of closed strings there were some puzzles raised
which we resolve in connection with our discussion on the Kodaira-Spencer theory
in Sect. 5.

2.5 Properties of n-point functions and the holomorphicίty paradox. Consider the
n-point functions of the N = 2 twisted theory coupled to gravity at genus g

(2.38)
( i ΦZ i c; ι κ / cr^x; v-μk)).

Ma

We would like to relate this to F0. At first sight one may think that C? , can be
if *-> •* (,lt2...tn

written simply as g _ on /?
O — (s -L n

iιi2 ..in ΊI 2*2 Ή y

However this formula cannot possibly be true since, as it is evident from its definition
(2.38) (and discussed in Sect. 2.1), Fg is a section of £2~2g and Cf^ in is a section of

the non-trivial vector bundle SymnT* (&C2~2g sitting over coupling space. Therefore
acting with dik 's on Fg makes no sense at all. Geometrically it is clear that the correct
relation should have the form

C9 = Ί)τ ... T>τ F , (2.39)

where Ί)ι is some suitable connection compatible with the transition functions for the
appropriate bundles. On SymnT* 0 C2~2g there is a natural connection Di, i.e. the
one induced by the Zamolodckikov connection on T plus the canonical connection
on £, see Section 2.3. It is natural to guess that (2.39) holds with Ί)τ replaced by this
natural connection Di. This is what we will presently argue. This will imply that the
following recursion relation (for 2g + n — 3 > 0) holds

(2.40)
= r)u
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To show this, there are two things that we will have to argue: One is covariantiza-
tion with respect to the Zamolodchikov metric and the other is covariantization with
respect to the natural connection on C. Both will arise from contact terms. First let
us discuss how the covariantization with respect to the Zamolodchikov metric arises.
This actually has been done in full generality for marginal operators of conformal
theory in [25] leading to the following contact term in our case:

where Γ^ is defined in Sect. 2.3 and is the connection for the Zamolodchikov metric.
This amounts to the first thing we wished to show. However we would also like to
rederive this result using the it* machinery: In defining the amplitude in (2.38) we
have to be careful to regularize the computation by making sure that two operators do
not get closer to each other than distance e. However, when we take the derivative of
Fg with respect to tl this region is not excluded. Therefore the difference between the
explicit meaning of the correlation and the derivative with respect to tl will include

the regularization of the integration of φ\ in a small neighborhood of φ for all j's.
Since this is a local computation we may as well do it on a hemisphere, where we can

apply tt* equations. In such a case the integral of φ[ over the hemisphere including

the field φ(^ in it minus the one with <//2) outside of the hemisphere, is equal to, as
far as the topological states are concerned [2]

^φf - (A08 Φf

Therefore we see that the insertion of φ[ ^ in the correlation is equivalent to

as was to be shown.
Now we turn to the second covariantization, i.e., with respect to the line bundle

connection on £. This arises from the hidden contact term between the term we added
to the action to twist the supersymmetric theory

1 f 1 f- I Jω + c.c. = - I Rψ + total derivatives

/α\
and the operator φ\ , as J has a contact term with it. Here ω is the spin connection
and ψ is the scalar which bosonizes the U(\) current. To study this term, again we
use the fact that it is local, and that we can thus first study the case of the hemisphere
to which we can apply tt* considerations. The same argument as above leads to the
contact term

(Ai)§ - 1 = -diK 1 .

More generally, since the contribution due to this term is proportional to / R, and
the above computation was done on hemisphere with net f R = 2π, we can write the
above term more generally as
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On genus g surface this leads to an integrated contact term

- 2g) ,

and so insertion of f φ[ in the correlation amount to covariantization also with
respect to the line bundle C2~2g which leads us to our final answer for the operator
insertion,

[2) -*di-Γl-(2-2g)diK . (2.41)

Note that this is consistent with the fact that the insertion of / φ(2) should not lead to
any further ambiguities in fixing the normalization of the path integral. In particular
exp[(2# — 2)K] - Fg is independent of such ambiguity as far as holomorphic deriva-
tives are concerned as the K varies precisely to compensate the ambiguity of Fg as

discussed in Sect. 2.1. Note in particular that the symmetry in exchange of φf^ is
consistent with the above relation with covariantization since

is symmetric in all its n indices. This is a consequence of [Di,Dj] = 0 (i.e. the
curvature of the natural connection has type (1,1)) (for the case of genus 0 we also
need the fact that DτC3ki is totally symmetric in its four indices, see Eq. (2.13)).

Now that we have understood how covariantizations arise we are going to present

a formal argument for decoupling of anti-chiral operators φ- ' from the correlation
functions. Let us consider the correlations on the sphere:

Ci^..Λn = (0^(0)^(1)^(00) jφ™ - - - j φty . (2.42)

If the BRST-trivial states do decouple from the physical amplitudes, then the n-point
functions C^...^ should depend holomorphically on the couplings tl. Indeed,one has

= ί

J C z

(2.43)
where Cz and C'z are small contours enclosing the point z. Now we can deform the
C'z countour around the other operator insertions. Since

we get
n Γ Γ

— TT—>, I 9 / / / ;(2)

k=4 **

j? 11formally
= 0 ,

X
'4

<2 44)
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since / dφf^ = 0. This formal manipulation can be extended to the n-point func-
tions at genus g (2.38). Since the BRST variation of (f G~ μk) produces the energy
momentum tensor folded in the Beltrami differential, the additional terms arising from
the deformation of the contour have the form of the derivative of some correlation
function with respect to the moduli of the complex surface just as it happens in the
bosonic string theory; hence they are also expected to vanish upon integration over
the (compactified) moduli space of genus g Riemann surfaces Mg.

However, this consequence of the decoupling of BRST-trivial states is in contra-
diction with what we know from it* geometry as we will now see. This contradiction
leads to a paradox that will be resolved by the discovery of a new 'holomorphic'
anomaly, which will be discussed in the next section. The point is that holomorphicity
of the n-point functions (for n > 3) is not consistent with the recursion relation (2.39).
Indeed, 9j does not commute with DI\ Rather [δj , DJ is the non-vanishing curvature
of the natural connection. For instance, consider the 4-point function Cijki = AQjfc
Since dCik = 0, we have

= 2GiτfιCljk - (RirhinCnjk + 2 permutations) ,

where Rimin is the curvature of the Zamolodchikov metric. To see that the r.h.s.
is indeed not zero, replace this curvature by its explicit expression given by special
geometry.

As we shall see in the next section, in higher genus the situation is even worse,
since there the partition function Fg is also not holomorphic.

What is the way out of this paradox, i.e. where is the loop-hole in the naive
argument around Eq. (2.44)? The point is that although it is true that we remain

with a sum of terms each with an operator f dφ[ ' inserted (cf. (2.44)), these terms
do not vanish upon integration over the Riemann surface, because the corresponding
integral gets a non-trivial boundary term when the field φf'1^ approaches a point
where some other operator is inserted. Indeed the n-point function on the sphere
should be written more invariantly as an integral over the moduli space Λίo,π of a

sphere with n punctures. The configurations where two points get close together make
the boundary of this space. Then, taking 9j of the n-point function and deforming
contours as in Eq. (2.44) we get the integral over M^n of an exact top form. But,
since the boundary of Λ"ίo,n is not empty (for n > 3), this does not mean that the
integral itself vanishes. However, djC^...^ may get a contribution only from the
boundary of Λ4o,n Since the boundary corresponds to two operators colliding, we
see that the n-point function may fail to be holomorphic only because of contact
terms. This is precisely what we found by the explicit computation above.

In the next section we shall see how this holomorphic anomaly appears in higher
genus. There again we shall find that 9jCf in gets contribution only from the bound-
ary of the moduli space of genus g surfaces with n punctures M.g^n. However, since in
this case the boundary has more components, new interesting phenomena will appear.

2.6 Canonical coordinates and special coordinates. Before turning to the next section
we would like to make one comment about covariantization which will be both useful
for us later as well as clarifying the relation to some work already in the literature:
In topological theories it is well known that the insertion of chiral fields can be
represented by ordinary derivatives [26]. This is also implicitly used in the discussion
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of counting of holomorphic curves using the topological sigma-models [4]. What we
have said so far seems to be at odds with these works. In fact not only is there no
contradiction but actually clarifying the relation of our work to these will explain
some of the ansatz made in the study of the mirror map [7]. The point is that if we
start from a unitary N = 2 theory which we denote by SQ, twist it and then perturb
only by topological fields

d2zd2θδtiφl ,

there are no infinities and one could be naive in taking field insertions on the world
sheet. In other words we do not have to prevent points approaching each other by
cutting out small discs around each field insertion. In fact as we mentioned it was
rather important in the derivation of various properties of the topological correlations
to take ordinary derivatives of the partition function to obtain topological correlations.
It turns out that this is possible as long as we are only interested in topological

correlations and for a fixed ΪQ. This is possible because of (2.2), in other words, the
fact that

means that for a fixed base point (£o??o)» shifting t alone can be accomplished by
ordinary derivative, i.e., we can choose a gauge in which Di —> e^. This being true
means that we are taking a choice of coordinates on the moduli space as well as a
gauge for the line bundle on the moduli space so that

(*o>*o) (*o,*o)
(2.45)

It turns out that these conditions fix the choice of coordinates and line bundle section
JO) up to linear transformation, and can be done for arbitrary Kahler manifolds with
arbitrary line bundles on it having real analytic metrics.

Let us first talk about the line bundle. Consider a local section near ί0 and let
the norm of this section be e~κ. In arbitrary coordinate system K has the following
expansion K(z, z) - KQ(Z) + zmFm(z} + o(z2\ where we take the to to correspond
to z = 0. By redefining the choice of the local holomorphic section we can get rid of
KQ which is purely holomorphic. With this choice of local section all holomorphic
derivatives of K are equal to zero at the origin. So such a section exists. Moreover it
is unique up to multiplication by a constant because any z dependence will give rise to
a non-constant KQ which will thus violate the condition that holomorphic derivatives
of diK vanish at the origin.

Now we show that the same can be done for the Christoffel connection. On a
Kahler manifold there is locally a Kahler potential, which we again denote by K, and
which can be expanded as above, and with a choice of gauge KQ can be chosen to be
zero. The expansion for the metric follows from the expansion for Kahler potential
Gk7fl = dkFγn(z) + o(z). Making the holomorphic change of variables z1 — » tτ such
that

dzk

z) = Cιrh = const , (2.46)

or, explicitly, tτ - Cτ7flFrn(z), one reduces metric to the form Gkm = Qm + o(z).
The ambiguity in ί-coordinates is in the choice of constant matrix ClΊfι and it is
parametrized by GL(ri). In ί-coordinates holomorphic Christoffel symbols vanish at
the origin (z = 0) together with all holomorphic derivatives as was to be shown. We
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shall call the coordinates tl and the choice of local trivialization of the line bundle in
which (2.45) holds canonical coordinates with respect to the base-point ίo

To relate to some comments made in the literature, we would like to draw attention
to a natural base point in the case of A-model, and that is infinite volume ΪQ = oo.

In this case the gauge choice (2.45) implies that we must have vanish
-

which explains the gauge choice made in finding the mirror map in [7] (in particular
the normalization of the holomoφhic three form one needs is in the gauge where

dτK = -di log{0|0) = 0). It is in this gauge that the path integral for the A-
ί— »oo

model is given by a sum over holomoφhic maps and thus this is the right gauge in
order to count these maps. We will now discuss this in more detail.

The crucial property of the canonical coordinates with base point at infinity14 is
that, for an appropriate choice of the matrix (7 ,̂ they coincide with the special coor-
dinates (in the sense of special geometry). Since Eq. (2.45) completely characterizes
the canonical coordinates, it is enough to show that the special coordinates satisfy this
equation with to = oo. For convenience, we show this in the context of the 5-model,
using the periods of the holomoφhic 3-form. The argument can be easily extended
to the general case using the more abstract methods of Sect. 2.3. The key formula is
(2.26)

e~κ = w^Ew , (2.47)

where τua are the periods in a symplectic basis, w depends holomoφhically on the
moduli. Let s1 (i = 1, 2, . . . , ra) be the 'special coordinates' and put Xι = XQS^ where
XQ is a holomorphic coordinate along the fiber of C. Then the periods take the form

where JΓ is a holomoφhic function of XQ, Xi homogeneous of degree 2. We have
introduced the homogeneous coordinates Xj (I = 0, 1, . . . , m) because τu takes value
in the line bundle £; then XQ corresponds to the freedom in the choice of trivialization
of C. The condition that w is a section of C also explains the homogeneity condition
on F . We want to take the limit s3 —> oo in Eq. (2.47) while keeping sτ generic. We
need the behaviour of the periods w*(s) as s — » oo. This behaviour is described by
the Schmid orbit theorems [27]: As s — » oo one has

for some non-degenerate numbers dl3k Given the 'factorized' form of Eq. (2.47),
taking the limit s3 — > oo wjiile keeping s_* fixed is a well defined procedure. More
precisely, we make sz — >• Xs'1 and send λ to infinity. In this limit one has (up to
exponentially small terms)

Therefore r^ .Λ, _
e~κ = ΣχrAr>

r=0
14 By 'point at infinity' we mean the following. For the .A-model a point where the volume of the Calabi-

Yau manifold is infinite, i.e. the weak coupling limit. For the £?-model we mean a degeneration point
in the complex moduli space around which the nilpotent part of the monodromy is maximal. As it is
well known, this is 'infinite volume' from the mirror viewpoint.
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with
A3 = |Xoi 2aijfesVs*,
A2 = -3\X0

A{ = Xo&di

Notice that in the special coordinates A^ and AΊ take a universal form (that is, they
are independent of T). From (2.47), (2.48) one has

K = - log^o - ϊogXo - log[X3dΓjks
is:>sk - 3X2dΓfks

ίsjsk] + O(λ~l) ,Ίj

and then the Zamolodchikov metric reads

where L-(s) is a non-degenerate anti-holomorphic matrix. On the other hand,

K = - log XQ + (antiholomorphic) + O(X~l) . (2.50)

Thus, taking the base point ΪQ to be at infinity, the canonical gauge for £ defined by
the second of (2.45) is just XQ = 1, which is the standard gauge in special geometry.
Moreover as λ —» oo the (1,0) part of the Christoffel connection Di becomes the
trivial one. Indeed using (2.49),

which shows that the special coordinates s*1 satisfy (2.45) at infinity and hence can
be identified with the canonical coordinates tτ with respect to this base point.

3. Holomorphic Anomaly

In the topological theory, the BRST invariance would imply that partition functions
and correlation functions are holomorphic on the moduli space of the theory since
variation with respect to the anti-holomorphic moduli P inserts the BRST trivial

operator φ(? = {G+, [G+, φι\}. This indeed is the case for the Yukawa coupling.
However we saw in the previous section that the holomorphicity is, in general, not
consistent with the covariance on the moduli space. This means that there is something
wrong with the assumption on the BRST invariance. What we saw there is reminiscent
of the chiral anomaly in the Yang-Mills theory where one finds that it is not possible
to preserve both the vector and the chiral gauge invariances of the theory. Thus we
call this phenomenon the holomorphic anomaly. In this section, we will uncover a
subtle breakdown of the BRST invariance in the twisted N = 2 model coupled to the
gravity, and rederive the non-holomorphicity we found in the previous section as a
special case.

3.1 Homolorphic anomalies of partition functions. Let us first examine the partition
function Fg for g > 2. The naive BRST invariance would imply d^Fg = 0. We are
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going to show that this is not the case._The derivative with respect to F is generated
by an insertion of the anti-chiral field φ- as

A
UL *J JVlg _

3#-3 r r r r r
[dm] £ { / & I 2μbT I 2μ-bTl[[ \ μaG~ [J / μάG~

7 1 Γ " " d -Ll. ** / T "6,6=1 CLfb άγ b

d Γ ί o f ί —+- T-T- Γ f —
— Fg = I [dm] / d2z(φ G+ φ G φ-^z) Γf / μaG~ \ μaG
>ίl JMn J Jθz JC' ΓT J J

In the first line of this equation, the contours Cz and C'z are around the point z where
the anti-chiral φ- is inserted. We then moved these contours around the Riemann

surface Σg, and picked up the commutators, §c G+ - G~(w) - 2T(w) and §c G

G (w) = 2T(w). The insertions of T and T are then converted into the derivatives
with respect to the moduli m, m of Σg. Using the Cauchy theorem, we can reduce
the r.h.s. to an integral on the boundary of the moduli space Mg.

The boundary of λ4g consists of ([\g] + 1) irreducible components Ί)r

g (r =

0,1,..., [^g]) each of which consists of surfaces with nodes. Surfaces belonging to

T>® are such that they become connected surfaces of genus (g — 1) with two punctures
upon removal of the nodes. On the other hand, Vr

g (r > 1) consists of surfaces which
become, upon removal of the nodes, two disconnected surfaces, one of genus r and
one of genus (g — r), each with one puncture.

A surface which sits in the neighbourhood of Ί^g has a long tube which becomes

a node as the surface approaches D^. Thus we can choose coordinates near T>Q

g as
4-tuple (r, r?τ/, z, w), where r is the length and the twist of the tube and it serves as a
transverse coordinate to T>Q

g (the surface approaches U®g as r —> oo), while (m7, z, w)
are moduli of a genus-(# — 1) surface with two punctures (where z and w denote the
moduli corresponding to the two punctures) which is obtained by removing the node
from the surface. _

The contribution of the boundary component VQ

g to d^Fg is given as follows.
Because of the second-order derivative in r.h.s. with respect to m^ and m^, at the
boundary we will be left with a derivative in the direction normal to T^. In the

coordinates (τ,mf,z,w\ the normal derivative is expressed as d^τ In the limit

r —> cxo, the Beltrami-differentials μ^ and μ(w) associated to the moduli z and w
become localized near the punctures, i.e.

r
G",

while those associated to the moduli m' reduces to the Beltrami-differentials μr on
the genus-(# - 1) surface Σg-\. Thus the contribution of V® is given by

(3.2)

/ [dm',dz,dw]— {/ fa i G~ i G / G~ / G x
Jv« dlmτ JΣO Jcz Jc> Jcw JcL

3g-6

x J

α=l J*g-\
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-JΦΓ

Fig.2. Contributions from the boundary of moduli space where φ^ is outside the long tube vanishes.

Let us examine the integrand of (3.2). Since the operator φi is integrated over the
entire surface Σg it either sits on the tube which will be stretched out in the limit
r —> oo or lies outside of the tube which becomes the genus-(# — 1) surface Σg-\

in this limit. When φ- sits outside of the tube (see Fig. 2), states which propagate on
the tube are projected onto the ground states in the limit r —» oo. Since the ground
states are generated by the chiral fields, the effect of a node on the degenerate surface
can be represented by insertions of φj(z) and φk(w) on the points z and w where the
node is attached, and the node itself is replaced by the ground state metric rfk. In
the coordinates (r, m, z, w), the integrand becomes

9 rfk( <£ G- (f G~φj(z) J> G- J> G~φk(w)x
\ In I r1' In In'" ^Z " ̂  z ^"W *-/?ί;

dim

-l α=l

This turns out to be zero since the correlation function in the^above is defined on
Σg-\ and does not depend on the coordinate τ. Thus, when φi lies outside of the

tube, there is no contribution from the component VQ

g to d^Fg.

Let us turn to the case when φ- sits on the tube (see Fig. 3). Suppose φ- is away
from both ends of the tube. In this case, states on both sides of φ- on the tube are
projected onto the ground states. Thus the effect of the node is represented by an
insertion o f . / / " _ /

Φ3(z)ηj3 (j'\ I φϊ\k'}ηkkφk(w)

on Σg-\. Here the integral / φ- is over the tube away from both ends. Since

a\Φι\k) =
is independent of the position of φ-9 we can replace the integral by the multiplication
of the volume of the domain of the integral which can be approximated by the volume
Imr of the tube when r —» oo. When φ- is close to one of the ends of the tube,
the amplitude does not scale like the volume Imr, and such a configuration can be
neglected in this approximation. The integrand of (3.2) then becomes

G~φk(w)x

39-6 » Λ (3.3)

χ Γ I
α=l
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Fig. 3. The contribution from the boundary of moduli space comes from the configuration where φ- is on
the long tube of length Imr as r — * oo.

where the volume factor Im r is cancelled by the normal derivative ^— — . This remains
finite in the limit r —> oo.

We need to integrate (3.3) over the boundary component T>® which is parametrized

by m' G Mg-\ and z,w G Σg-\. Since the interchange of the two points z and w
does not change the complex structure of the punctured surface, we should include a
factor of (1/2) if we are to integrate z and w over the entire surface Σg-\ without a

constraint. The contribution of the boundary component T>® to d^Fg is then expressed
as

f
a=l

(3.4)
The^expression (3.4) can be further simplified by the condition c - 3. In general,

when C-j jξ. φ 0, the left and the right ί/(l) charges of the three chiral fields φϊ9 φj
and φk should sum up to be c,

Qj + Qk + qτ = Tj + Ok + qϊ = c .

In the present situation, c = 3 and qτ = ~qτ - 1. Therefore we must have qj + qk =

-q. +qk =2 . Furthermore, if qj = 0 or ̂  = 0, <^2) = {G~ , [G , <^-]} = 0 since a

chiral state with q = 0 is annihilated by both G+ and G~ . Therefore we can restrict
j and k in (3.3) to those with (q3,q3) = (qkΉk) = (1> ^) These are the ones which
correspond to the marginal deformations of the twisted N = 2 model, and we can

replace the insertions of / φ^ in (3.4) by covariant derivatives D. The contribution

(3.4) of the boundary component 2^ ^o d-Fg is then expressed as

(3.5)

Let us turn to the other boundary components Vr

g (r = 1, ..., [ \ g ] ) A surface in
the neighborhood of Z>£, has a long tube which connects two disconnected surfaces
Σr and Σg-r of genus r and genus (g — r). Thus we can choose coordinates near
Vg as 5-tuple (τ,ra',z,ra",w) where r characterizes the tube connecting the two

surfaces, and (m', z) G Λir,ι and (m" ,w) G Mg-r,i* As in the case of P^ discussed

in the above, a non- vanishing contribution to d^Fg comes from the region where the

amplitude scales like Im r. This is the case when the operator φ- is on the tube (see
Fig. 4). The factor Imr is cancelled by the derivative operator dl^τ and the effect
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Fig. 4. Another component of the boundary of moduli space where the Riemann surface splits to two
Riemann surfaces connected by a long tube; to get a nonvanishing contribution φ^ is inserted on the tube.

of the tube is represented by the operator

^ ,

where φj(z) is inserted on Σr and φk(z) is on Σg-r. The contribution of Ί)r

g to
is then given by

3r— 3r—

G^Gk~k I [dm'}(fφf JJ ί μ'aG
J Mr J α=1 J

r r 3(<7-r)-3

[dm"]( φ<? Π W T*ar

J λΛn-r J __ 1 J J

Extra care is required when g is even and r = \g. In this case there is a Z2
symmetry between the two surfaces Σr and Σg-r, and we must include a factor (1/2)
to take into account this symmetry. The contributions of the boundary components
£ > f c ( f c = l , . . . , [ 0 ] ) are then

r=\

if g is odd and

ι_

if # is even. They can be summarized in a single equation as

1 ί?~1_
2 Σ Cιrke™G"GkkD3FrDkFg^r .

r=\

By combining this with (3.5), we obtain the holomorphic anomaly of the genus-#
partition function as

(3.6)
r=l
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This gives a recursion relation for Fg with respect to the genus g. In fact, it is possible
to solve this equation iteratively, and we will present a systematic method to do so
in Sect. 6.

The holomorphic anomaly equations of Fg's for all g > 2 can be combined into
a single equation by introducing a formal sum of Fg's as

00

9=1

Since each Fg is a section of a line-bundle C2~2g over the moduli space of the
topological theory, JΓ(λ; t, t) should be regarded as a function on the total space of £,
with λ being a coordinate on the fiber of C. We then consider the following equation:

= ^-C ^G^G^DjDk exp(^), (3.8)

where

- (2g-2)djK)Fg

By expanding both-hand sides of (3.8) in power series of λ and by comparing each
term in the expansion, we recover the holomorphic anomaly equation (3.6). We call
this the master anomaly equation of the topological string theory. It is satisfying
to see that the holomorphic anomalies for all g > 2 are summarized in a single
equation. Later we will further improve this equation to incorporate the genus- 1
anomaly equation.

As we will solve the holomorphic anomaly equation (3.6) later, it is instructive
to check the integrability of the equation here. Since the holomorphic anomaly is
summarized in the master equation (3.8), it is sufficient to prove

By using the special geometry relation

[0ϊ, D,}l

k = -G /ί - Gϊkδ
l

3 + CjkmCΓl^e2κGmΛG11 (3.9)

and the properties of the Yukawa coupling

we find the commutator to be

[d-,d-] = X2Cme2KGk~kGll(dkd]Fί - ±
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That the r.h.s. of this equation is zero is the consequence of the holomorphic anomaly
equation15 of F\

dld-JFl = TrGiGj - ^j , (3.10)

where χ = Tr(— 1)F. Substituting this into the above, we obtain

[d?, d ] = lkleGGlΎτ(DkCι)C3 - (i ̂  ] ) = 0 .

Here we also used DiCjki = DjCiki It is curious to see that both the special geom-
etry relation and the genus- 1 anomaly equation play important roles in proving the
consistency of the holomorphic anomaly at g > 2. This in fact is not without a reason.
We will see later that the special geometry relation can be regarded as a holomorphic
anomaly equation at genus-0, and the anomalies at all genera including g = 0 and 1
can be described in a single framework.

Now that we found the BRST-trivial operator {G+, [G , φ-J} does not decouple
from Fg, one might wonder whether Fg is sensitive to still other types of BRST-trivial
deformations of the topological theory. The (c, c) field φτ which generate the truly
marginal deformation of the topological theory satisfies

and the (α, α) field φ- which is complex conjugate to φi obeys

However the topological theory realized by the twisted N = 2 model may also contain

a (α, c) field φ subject to

and its conjugate (c, α) field. Thus we would like to know if Fg is sensitive to a
deformation generated by these operators. We show here that, in fact, the operator

{G+, [G ,</>]} and its conjugate decouple from Fg.
If we insert such an operator on Σg, we can deform the contour of G+ surrounding

the operator φ and pick up the commutator of G+ with / μaG~ (a = 1,..., 3g — 3)
inserted on Σg. The commutator produces the energy-momentum tensor T which is
then converted into a derivative with respect to the moduli m,

/ [dm] ί d 2 z ( ( f G+ (f G~φ(z)H ίμaG~ fμaG~) =
JMn J JCz JC' ~T J J

Due to the derivative with respect to mb, this becomes an integral on the boundary
of Mg. It turns out that the boundary term vanishes for the following reason. So far

15 The holomorphic anomaly equation for FI here differs by a factor (1/2) to the one presented in [20]
due to the different normalization of F! .
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we have not touched J~βaG in the right-moving sector, and there are still (3g - 3)

of them on Σg. In the neighbourhood of Ί)r

g (r = 0, 1, ..., [\g}\ one of them becomes

a contour integral of G around the tube which becomes a node on Όr

g. Namely we

have the G charge inserted on the tube. As the surface approaches the boundary,
states which propagate on the tube are projected onto the ground states, all of which

are annihilated by G .It does not matter whether the operator [G , φ] is on or off

the tube since it anti-commutes with G . In this way, the boundary term vanishes

due to the G charge which comes from one of / ~βaG . Since there is no boundary

term, the operator {G+, [G ,φ]} decouples from Fg. Similarly Fg is invariant under
the deformation generated by (c, α) fields.

In the case of the topological sigma-model of A-type described in Sect. 2, the
(c, c) and (α, α) fields generate deformations of the Kahler class on the Calabi-Yau
manifold M while the (α, c) and (c, α) fields correspond to deformations of the com-
plex structure. The result here suggests that Fg in this case is independent of the com-
plex structure of M, but depends on the Kahler class on M. The anti-holomorphic
dependence of Fg on the Kahler moduli is determined by the holomorphic anomaly
equation (3.6). The situation is opposite in the case of the B-model. In this case, Fg

does not depend on the Kahler moduli of M. Especially Fg is independent of the
volume of M. This fact becomes important in Sect. 5.

3.2 Holomophic anomalies of correlation functions. So far, we have studied the holo-
morphic anomaly of partition functions. Let us now turn to correlation functions

of the chiral fields given by

o=l

D,nFg

As in the case of the partition function Fg, the derivative <9- brings down the BRST

trivial operator {G+, [G , <fo]}, and the commutators of G+ and G+ with G~ and

G in C(^ ^in generate second-order derivatives with respect to (m,m) G Mg and
(zr,zr) e Σg, where zr (r = 1, ...,n) are the positions of the chiral fields φir. We
can then apply the Cauchy theorem to reduce the computation to a boundary integral.
The boundary in this case consists of two types; one is the boundary of the moduli
space Mg,n of a genus-g surface with n-punctures. Another contribution arises in a
limit when one of the chiral fields φir approaches φ^.

The computation on the boundary of the first-type is a straightforward general-
ization of the one for d^Fg we did in the above. The boundary of the moduli space

Mg,n consists of irreducible components ^fgn^ and ̂ '̂  each of which consists

of surfaces with punctures and nodes. Here, for T^3^ r and s run from 0 to g and

from 0 to n respectively, Vf^ and ̂ '̂  are empty, and T>^8^ is identified with

^~^'n~S) Surfaces belonging to ^fgn^ become connected surfaces of genus (g — 1)
with (n + 2) punctures upon removal Of the nodes (see Fig. 5). On the other hand,

T^(g3n) consists of surfaces which become, upon removal of the nodes, two discon-
nected surfaces, one of genus r with (s + 1) punctures and another of genus (g — r)
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Fig. 5. One of the boundary components of moduli space with fields inserted. The contribution again comes
from the insertion of the φ- on the tube.

Fig. 6. The contribution from another component of moduli space where again the operator φ^ is inserted
on the tube.

with (n — s + 1) punctures (see Fig. 6). As in the case of the partition function Fg,

contributions of these boundary components to dϊC^.,in come from the region where

the operator φι sits on the tube which becomes the node at the boundary of Mg,n,
and are expressed as

ϊC~i]ke

k

+ 2Cϊ]ke

where

9 n

r=0 s=0

(3.11)

The boundary of the second type arises since there is a singularity in the operator
product of φj (j = iι,..., in) and fa,

\z -w\
(3.12)

How we regularize this divergence is a part of the definition of the theory. In the

perturbed N = 2 theory given by the action S = 50(t0, to) + £ί* / φf} + δf / φf\
we assume that the original theory with the action So has the TV = 2 superconformal
invariance, which in particular means that the theory is finite. In order to perturb the
theory while maintaining the superconformal symmetry, we must specify how to deal
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with the short distance singularity between <//2) and φ- ,

(2) -(2) - - 4GJΪ

3 l ~ * * J l ~~ \Z -W\4

This divergence which arises from this short distance singularity is power in z — w\
and is not universal. Thus we can simply subtract it away (one can renormalize
the divergence into the cosmological constant if one_wishes). Once we subtract the
singularity in the operator product between φj and </>-, the boundary of the second

type does not contribute to d^C-9 .•J r t ι\ - in

This is the case when the world-sheet is a flat infinite plane. When the world-
sheet is compact, there are subleading divergences in (3.12) and (3.13) which generate
non-vanishing contributions for the boundary of the second type. The subleading
divergences depend linearly on the curvature of Σ, and they can be derived from the
short distance expansion of the Green's function on Σ. We can also understand this
effect from the topological field theoretical point of view as follows. Let us choose
a metric on Σ as |z/(^)|4, where v is a meromorphic |-differential on Σ with a pole
and g-zeros at the Riemann divisor. Since the theory is conformally invariant, we are
free to use any metric we like. In this metric, the curvature has delta-function like
singularities each of which carries / R = ±4π (+4π at the pole of v and —4π at the

zeros of v(z)}. When the operators φj(z) and φι(w) are away from the support of the
curvature, there is no contribution from the boundary of the second type since the
computation is the same as in the case of the flat infinite plane. On the other hand, near
the curvature singularity, we must take into account the fact that, due to the twisting,
there is an operator e±φ inserted there where ψ is the bosonized U(l) current. The
operator eφ is the chiral field of the maximum charge (3,3) (corresponding to the
holomorphic 3-form on the Calabi-Yau 3-fold), and e~φ is its conjugate anti-chiral
field. Thus we can evaluate the boundary term as in the case of the boundary of the

first type discussed in the above. We then obtain ±2]Γ™=1

 (^ϊisCίf)..is_1is+r..tn fr°m

each of the curvature singularities. We should also take into account the effect of the
punctures on the surface. This can be done most easily by noting that the final result
should be linear in the integral of the curvature / R = —2π(2g — 2 + n — 1) on the
genus-g surface with (n — l)-punctures. The contribution from the boundary of the
second type is then

s=l

By combining (3.11) and (3.14), we obtain

9 n Λ

r Mn) (3.15)
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Especially when n = 0, this equation reduces to the anomaly equation (3.6) of Fg.
The derivation of this equation is valid also for g = 0 (n > 4) and g - 1 (n > 2).
The anomaly equation in the case of g = l ,n = 1 is given by (3.10) and is slightly
different from the above16.

To understand the structure of this equation better, let us take a look at the simplest
case of g = 0, n = 4. In this case, the equation becomes

d~C i i ^C-e G G CliCkii+

We can rederive this equation by computing the ΐ -derivative of C 2̂̂ 4 = D^C^^

directly by using the holomorphicity of the Yukawa coupling d^C^k = 0 and the

special geometry relation (3.9) for the commutator [<9-, Dj]. In general, at g = 0, one
can deduce the anomaly equation (3.15) n > 4 from the special geometry relation and
the holomorphicity of Cijk by mathematical induction in n. Similarly the anomaly
equation (3.15) for g > 1 is a consequence of the special geometry and the holomor-
phic anomaly (3.6) of Fg. Thus we come to view that the special geometry is also
one of the aspects of the holomorphic anomaly in the topological string theory.

Previously we found that the holomorphic anomalies of the partition functions Fg

(9 > 2) can be summarized in the form of the master anomaly equation (3.8). It is
also possible to combine them with the anomalies of the correlation functions (3.15)
into a single set of equations. It turns out that the equations also contain the genus- 1
anomaly equation (3.10). For this purpose, we introduce the following object:

oo oo

W(X,χ t , t ) = χ29~2c) *χil •• χin + ~l Io8λ ' (3 16)

where C^,in = 0 for (2g — 2 + n) < 0. This may be regarded as a generating function

for the correlation functions. Because of the log λ term in r.h.s., exp(W) transforms

like a section of £(24-1). Let us consider the following equation:

J- exp(WO =

[ \2 £)2 ί) Q Ί \ -'•-*•'/

-Cιrke
2KG"Gk~k-^— - G-χ^<X~+xk^τ} exp(PF) .

2 ljk dχidxk l3 v d\ dxk)\ F

Substituting (3.16) into the above and expanding it in powers of λ and x*'s, one
recovers the anomaly equation (3.15) for the correlation functions. One also finds that
the genus-1 equation (3.10), which in the case of c = 3 can be written as

0ΦF, - \CiklCWle
2KGk~kG11 -

is also contained in this equation. Here the sums over k and I are over those with

16 The genus-1 one-point function may be included in the above equation if we allow the substitution
(20 - 2)C^) -> (χ/24 - 1) for g -> 1.
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Equation (3.17) will prove to be crucial in Sect. 6 when we solve the anomaly
equation (3.6) and derive explicit expressions for F<r

Since the anomaly equation is summarized in (3.17), one may try to solve it
directly. However we must also remember that W has the structure of (3.16) with

τι - Dtn_3Cin_2in_lin for g = 0

and
...ln =0 for 2g-2 + n<0 .

This property of W can also be summarized in a single equation as

exp(WO (3.18)

The two Eq.s (3.17) and (3.18) combined, are equivalent to all the holomorphic
anomaly equations. In Appendix B, we analyse the two equations directly to all order
in g. The order-by-order solution of the anomaly equation is presented in Sect. 6.

Recently Witten [28] discussed the implication of the holomorphic anomaly, which
we had previously announced in [20], to the background (in)dependence of the string
theory. There he also derived two equations, one involving d^ and the other involving
dtz, for some finite dimensional quantum system associated to the Calabi-Yau manifold
which resemble the two equations (3.17) and (3.18), derived in the above. It would
be interesting to understand the precise connection between them.

4. Comments on the Open String Version

The topological field theories obtained by twisting N = 2 supersymmetry can also
be defined on Riemann surfaces Σ having boundaries. In order to preserve topo-
logical invariance, one has to impose appropriate Q-invariant boundary conditions.
Generally speaking, in the open string case the methods of Sects. 2 and 3 are much
less powerful than in the closed one: The reason being that all our arguments rest
on manipulations involving the two scalar supercharges of the twisted theory. In the

open case the boundary condition is chosen so that the combination Q = G+ + G

is preserved; however the other combination G+ - G does not leave the boundary
condition invariant and hence is not conserved any longer. Then some of the ma-
neuvers do not extend to the open case. In particular in the open case the curvature
of the Zamolodchikov metric does not satisfy the special geometry relation. This is
related to the fact, that while closed strings compactified on a Calabi-Yau 3-fold lead
to N = 2 space-time supergravity, in the open case they lead to TV = 1. In the first
case special geometry is implied by space-time supersymmetry [14], while the only
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requirement from TV = 1 supersymmetry is that the Zamolodchikov metric should be
Kahler.

A particular realization of open strings satisfying the appropriate boundary con-
ditions can be described in the context of the sigma-models. The corresponding
boundary conditions, with either A- or J3-twisting, were described in ref. [24]. In
the .Λ-model one picks a Lagrangian submanifold Li C M for each component d
of dΣ. Let TLi and NLi be the tangent and normal bundles of Li in M. Then one
requires that the boundary d is mapped into the submanifold LI, at the boundary
the normal derivative of the bosonic field X takes values in X*(NLl)\ instead χ and
the pullback of Ψ to Lτ take value in X*(TLl). For the J5-model one requires that
the normal derivative of X to vanish on dΣ, and that θ vanishes on the boundary as
well as the pullback of *p to dΣ.

Just as the topological field theory on surfaces without boundaries defines a closed
string theory, if we allow boundaries the topological model will define an open string
theory. We can also couple to this string theory target-space gauge fields by intro-
ducing Chan-Paton factors as usual, i.e. coupling the gauge fields to charges which
propagate along the boundary. In the B-model this results in a coupling of the open
string to a rank N holomorphic bundle E over the Calabi-Yau 3-fold M having
structure group U(N).

Given the deep analogy between the open and closed cases, it may be appropriate
to pause a while to discuss how the results of Sections 2 and 3 get modified in the
open case.

4.1 tt* in the open string case. Let us start with the open analog of the tt* equation.
We consider the following geometry (see Fig. 7): a flat strip of width π and length
L with a half-disk attached at one end. On the boundary, except for the segment /
at the opposite end, we impose the appropriate open string boundary condition, as
discussed above. On the circle arc we insert the open string topological observable
Oa.

The topological path integral in this geometry — viewed as a functional of the
boundary values of the fields on the segment / — defines a state in the open string
Hubert space which we call a). Notice that this state is automatically in the Ramond
sector. To see this, observe that the twisting introduces an extra holonomy factor for
the fermions equal to

Γ i
exp ±- (4.1)

where ω is the spin-connection. Given that the boundary in Fig. 7 has a geodesic
deviation of π, (4.1) gives an additional factor (—1) which transforms the NS sector
into the R one. Just as in the closed case, for each topological state |α) we can find
a representative which is an actual vacuum for the untwisted theory defined in the

Fig. 7. By inserting the topological observable Oa on the circle arc of the open string world sheet and
doing the twisted path integral on the half-disk we get a state α) at the boundary. If we take L —> oo
the state thus obtained is a ground state in the open string Ramond sector.
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<β|α>=

Fig. 8. Open string topological metric ηaβ can be defined by gluing the two topological path-integrals on
the two half-discs with the chiral operators inserted at the two end boundaries.

Fig. 9. The computation of the curvature of the tt* metric in the path integral formulation involves the
difference of the two path-integrals shown here.

strip. This vacuum is obtained simply by letting L — » oo in the definition of |α). If
θ is the CPT operation for the untwisted theory, |ά) ΞΞ θ\a] is also a vacuum. This
allows us to introduce in the open case a real structure matrix Mgα analogous to that
for the closed case, and then a hermitian tt* metric

where ηaΊ is the open case topological metric, defined by the topological path integral
performed in the geometry of Fig. 8.

Going through the same argument used in the closed case, we introduce the natural
metric connection

), A-aβ = (β\d-j\a) .

Again topological invariance implies that Ajaβ = 0 and hence17

We wish to compute the curvature of this connection. Repeating word-for-word
the closed case analysis [2], we see that the curvature can be represented by the
L —> oo limit of the difference of the two contributions represented in Fig. 9.

In both cases we perform the path-integral with the twisted action on a long strip
with half disks attached to the two ends on whose boundaries we insert the topological

observables Oa and Oβ, respectively. In the first term the integral of φf} over the

right half of the 'rounded strip' D is also inserted while the insertion18 of {Q, ~φj } is
integrated over the left half. In the second term the two halves interchange their role.
Let us consider the first contribution. By topological invariance, we can deform the

17 Notice that this equation is consistent with the fact that the combined Zamolodchikov metric for open
and closed string operators should be Kahler. As mentioned in the text, this is the only condition on
the Zamolodchikov metric which is expected for the open case.
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contours such that Q acts on φf\ giving dφ[l\ Then the integral in the right half of

D gives just the line integral Jj φ^ where I is the segment separating the two halves

of Fig. 919. The second term can be handled in the same way. But this time we get

— Jj φ[^ because the orientation is the opposite one. Then the difference is just

M f d2zφf(z)0a(-^)) ,
J I strip

I D

where φj is integrated over the full 'rounded strip' D, and the limit L —> oo is
implied. Then the open version of the tt* equations read

. (4.2)
strip

D

Equation (4.2) is much less useful than its closed counterpart (2.4) because it is
not in the form of a closed differential equation for the metric gaβ. However, Eq. (4.2)
can be used to relate the holomorphic anomaly for the open case to the tt* metric
gaβ much in the same spirit as we did in Sect. 3 for the closed case.

4.2 Holomorphic anomaly at one-loop. In the open case the one-loop partition func-
tion for the topological theory coupled to gravity is given by the following quantity:

/Ό

=
JO

(4.3)

which is represented by a path integral (see Fig. 10) over a flat cylinder of length π
and perimeter L with the Fermi current integrated along a generator /.

Taking the derivative of F\ with respect to the complex modulus tl and going
through the standard manipulations, we get

/

OO Λ __ Γ £

dL( (G-+G ) φ?) . (4.4)
\ J J I cylinder

I I'

By definition the r.h.s. of (4.4) is the one 'point' function

l-loop

for the (open) topological theory coupled to gravity. This quantity, being topological,
is a holomorphic function of the tl's except possibly for anomalies associated to
failure in the decoupling of Q-exact states. Thus djdiFi measures the holomorphic
anomaly at one-loop for the open case.

18 Here and below φ^] is defined to be equal to \[(G+ - G+), <^].
19 The integral J φ[) along the other components of the boundary vanishes because of the boundary

conditions.
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Fig. 10. Open one-loop partition function, is represented by a cylinder with perimeter L. The integration
over moduli involves integration over L with the Fermion number current inserted on the line I

Let us compute djdiF\. We have

ί
J cylinder

cylinder

where . . . stands for the contribution from the contact term between and
-rll]

In the next section we shall introduce much more powerful techniques to deal with
such contact terms in one-loop stringy computations. For this reason we defer the
discussion of such terms until we have developed the right tools.

The insertion of the operator J^(T + T) = H is equivalent to taking the derivative
with respect L. Then we have

= - / d2z lim Tr
L— »oo

cylinder

cylinder

(4.5)

L— > oo

(-I

where the contact-like contribution from the boundary at L = 0 is absorbed in the
dots to be discussed in the next section.

As L — > oo only the vacuum contributions survive in (4.5), and the trace in the
Hubert space can be replaced by a trace over the open string vacua. Then

<χβ strip L-^oo

(4.6)
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where in the last step we used the open if, Eq. (4.2). This is the anomaly equation
we are looking for. It can be rewritten as

d$3 (Fi - tr[(- 1)F log g]) = . . . , (4.7)

where . . . again denotes the short distance contributions that will be described from
a more geometrical perspective in the next section.

4.3 The holomorphic anomaly at higher loops. At higher loops the situation with
anomaly is similar to the one-loop case, although more complicated. Consider, for
instance, the case of a surface Σ with h + 1 boundaries and genus 0 (see Fig. 11).

In this case we have 3ft - 6 real moduli, and F® is given by

/

3h—6 * Q

(Π μk(G-+G~)\ (4.8)
Zr - 1 J

where Λί^ is the moduli space of genus zero surfaces with h + 1 boundaries and μ^
are the corresponding Beltrami differentials. Taking the derivative djF® inserts in the

r.h.s. of Eq. (4.8) the operator / d2z {Q, φj }. Integrating Q by parts we get a sum

of terms in which Q acts on / μk(G~ + G ) resulting in an insertion of / μ&(T + T),
which is then replaced by a derivative with respect to the corresponding modulus mk.

Then the r.h.s. of Eq. (4.8) is reduced to a sum of contributions from the boundary
of the moduli space M\. This boundary has many components. There are components
like those in Fig. 12 which corresponds to open surfaces with a smaller number of
boundaries and involving a sum over intermediate open string vacua |α), but also
components as the one in Fig. 13 in which the degeneration of the surface involves a
sum over the closed string vacua \ι). Collecting all contributions we get the anomaly
formula for the open case which will involve the derivative of the lower ft, g partition

function with respect to open or closed string couplings with the operator f φj

o o o o
"̂ —^̂ -̂̂ ^̂

Fig. 11. An open string diagram with no handles g = 0 and h = 5 boundaries.

oϊo o o
v^xv^^^^^^

Fig. 12. The boundary of open string worldsheet may involve degeneration of the surface connected by

long strips, represented here conformally by a black dot. The intermediate state on the long strip is an open

string state. These contributions lead to insertion of open string vertices on the lower h Riemann surfaces.
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Fig. 13. The degeneration may also include contributions where the intermediate state is a closed string
state.

inserted in the lower genus amplitude (cf. Eq. (4.6)). Because of this operator insertion,
in the open string case the holomorphic anomaly is a much less powerful tool than
in the closed string case, and the anomaly equation has not the form of a recursion
relation for the Fj^'s.

This additional operator insertion in the anomaly equation is problematic in the
sense that it is not topological, and hence it seems that the result of its insertion for a
general model cannot be computed by TFT methods. The tt* methods are somehow
more powerful: e.g. on the strip they allow to compute such a correlation in terms
of the derivatives of the metric gaβ, see Eq. (4.2). It is plausible that all the lower h

and g correlations arising in the computation of d^F^ can be computed in a similar
fashion by an extension of the tt* idea to geometries other than the strip.

5. What are the Topological Amplitudes Computing?

In Sect. 2 we discussed two classes of examples of twisted N = 2 theories coupled to
gravity, the A- and the B-model and discussed what they compute at the tree level. In
this section we give an interpretation of what the topological amplitudes are computing
in these two cases after coupling to 2d gravity, i.e. the higher genus interpretation of
the amplitudes for these theories. We will first discuss the case of the 5-model, where
we will see that the target space field theory interpretation of the model is related
to a theory of gravity on Calabi-Yau 3-folds which for reasons to be explained we
will call the Kodaira-Spencer theory of gravity. The tree level amplitudes in this case
are related to the classical theory of variation of Hodge structures, i.e. the special
geometry that we discussed in Section 2. The one-loop amplitude of this theory is
related to the holomorphic Ray-Singer torsion. The geometric meaning of higher-
loop amplitudes is less clear, though can be formally defined and may be viewed as
quantum corrections to special geometry. In the case of the A-model, the target space
field theory interpretation is far more difficult. It should be again a theory of gravity
on Calabi-Yau manifolds, but a very non-standard one, which requires the loop space
of Calabi-Yau even for the formulation of the theory. However the interpretation of
what the A-model is computing is rather simple for any genus g. In fact the A—
model, in the limit t —> oo, computes the number (or the appropriate Euler character)
of holomorphic maps from a genus g surface to the Calabi-Yau. In this sense the A-
and B- models have complementary virtues. The meaning of the computations are
more clear in the A-model but the formulation of the target space theory is very clear
for the 5-model. We will use both models, in conjunction with mirror symmetry,
later in the paper to solve explicit examples at higher loops.

In Subsections 5.1-5.9 we discuss the case of £?-model and KS gravity, and in
Subsections 5.10-5.13 we discuss the case of the A-model.
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5. 1 Kodaira-Spencer Theory as a String Field Theory of the B-Model. The computa-
tions of the topological J3-model before coupling to gravity, can be related to classical
questions in variation of Hodge structure, i.e. the complex structure of Calabi-Yau and
how it varies. In the language of sigma models this is related to the fact that the B-
model topological theory is independent of the volume of the manifold. Rescaling the
volume to infinity implies that in the topological 5-theory, not coupled to gravity, the
path-integral configurations are dominated by constant maps, thus leading to classical
geometry questions, and in particular the questions of variation of Hodge structure
of Calabi-Yau 3-folds. As we will discuss later in the section this is essentially true
(modulo a crucial subtlety) even after we couple to 2d-gravity, where we discuss
the closed string field theory of the B-model. Before doing this we wish to discuss
some mathematical aspects of the Kodaira-Spencer theory of deformations of com-
plex structure which turn out to correspond to target space physics of the B-model.
In other words we will argue why the #-th loop correction for the Kodaira-Spencer
theory is the same as Fg(tl^tl) defined in Sect. 2. We will explicitly check this cor-
respondence at genus zero and one, and also show that in the case of genus one our
anomaly coincides with the Quillen anomaly for the Ray-Singer torsion.

5.2 Deformations of complex structure. As it was discussed in Sect. (2.1) the observ-
ables in the jB-model are in one to one correspondence with cohomology elements
Hp(/\qTM\ where TM is the holomorphic tangent bundle. The two forms φ(^ are

possible perturbations of the Lagrangian. In case p = 1, q = 1 operators φ(^ for
A £ H^>I\TM) correspond to marginal deformations of the J5-model and are in one
to one correspondence with deformations of complex structure of Calabi-Yau 3-fold
M. In the spirit of string theory one expects that A e Ω®>l\TM) should be the
basic field in the field theory in question. This field theory is closely related to the
mathematical theory of deformations of complex structures. Before proceeding further
we first review some elements of this theory.

The complex structure on manifold M is determined by the d operator. To the
first order the change of complex structure is described by deformation of d operator
d — > d + Aldι [29]. This is a deformation of d operator acting on functions. One
can describe not only the infinitesimal deformations of complex structure but a finite
one. The new complex structure is described by requiring that functions satisfying
the condition

i ) f = 0, (5.1)

are holomorphic in the new complex structure. In other words the kernel of the
deformed d coincides with kernel of (5.1). The integrability condition

dφf + A*dif) = φA> + A^iA^djf = 0

is equivalent to the Kodaira-Spencer (KS) equation [29]

(5.2)

Once again A is (0, 1) form with coefficients in (1,0) vector fields and the brack-
ets [,] mean the commutator of two vector fields and wedging. Two solutions of (5.2)
correspond to the same complex structure if they differ by a diffeomorphism. In the
linear approximation the Kodaira Spencer equation reduces to dA = 0. The solu-
tion is defined modulo diffeomorphisms generated by vector fields A — > A + <9e, and
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thus A has to be a cohomology element. The ambiguity in the choice of cohomol-
ogy representative is promoted to the ambiguity in the solution of Kodaira Spencer
equation.

Before fixing the ambiguity in question let us mention that for any Calabi-Yau
manifold there is an isomorphism

' : Ω(^p\/\qTM) -> Ω(3~q>p\M) (5.3)

given by the product with the holomorphic (3, 0) form. Sometimes we use the notation
(A Ω) = Af . Without lack of generality we impose the constraint

<9A' = 0 . (5.4)

To fix the ambiguity, A — > A + <9e, we impose the gauge condition

&A1 = 0 . (5.5)

This gauge condition requires the choice of metric on the Calabi-Yau manifold. It
will be clear later that these conditions fix the solution uniquely.

Let A, B be (0, 1) forms with the coefficients in vector fields which satisfy the
gauge condition dA' — dB' — 0. It was proven by Tian [30] (see also [31]) that

[A, B}' = d(A Λ B)1 . (5.6)

Later we will need the generalization of this lemma where A, B belong to Ωp(f\qTM)
[32]. Using this lemma we can rewrite the KS equation in Tian form

The tangent space to the moduli space of complex structures is given by
H(0'l\TM). Let AI be an infinitesimal deformation of complex structure satisfying
conditions (5.5), (5.4). Then for any A\ one can "exponentiate" the deformation of
complex structure by constructing the solution to the KS equation

where e is a formal expansion parameter (we put e = 1 later). We will show that it is
possible to get a unique solution of the KS equation satisfying the gauge condition
d^ A' = 0 such that A'n is <9-exact for n > 1. Note that this latter condition automat-
ically implies that we can use Tian's form of the KS equation. This choice means
that A[ is a harmonic form, which we will call massless, and Af

n for n > 1 can be
written as a linear combination of eigenstates of Laplacian with positive eigenvalue.
We will call these states the massive states.

Let us see how we can construct the solution recursively (following the work of
[30, 33]) making sure that at each stage dA'n = 0 and that A'n is 9-exact f or n > 1.
Let AI satisfy the gauge condition (5.5) together with constraint (5.4). Thanks to
Tian's Lemma the equation for Af

2 becomes

f\Al}' = 0.
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Fig. 14. The first order perturbation computation for solving the KS equation in Tian's gauge. Two massless
modes represented by wavy lines join to give a massive mode whose propagator is represented by a solid

line.

Note that the solution to this equation for A'2 is unique up to addition of dv. In order
to get rid of this ambiguity we will consider the gauge condition d^A2 = 0. Then the
solution can be written as

' "t 1

2 ~ ~ Z
where

is the Laplacian. To see that the above is a solution, first note that it is well de-
fined,^ because d annihilates the kernej of Δ. Then_ acting by 5 and using the fact
that d(Aγ Λ Aj)' = 0 (because Al is 5 closed and d commutes with the operation '
since Ω is holomorphic) one checks that it is a solution to the equation. It also satisfies
the conditions of being 9-exact (because d and c?t anticommute for a Kahler manifold)
and 9t close_d. The fact that there is always a solution to the above equation is also
known as 9<5-Lemma [II]20. This in particular means that with the gauge condition
we have chosen

g^-^> (5.8)

and it can be viewed as a propagator for massive modes. Equation (5.7) describes in-
teraction between two massless modes and a massive one and then further propagation
of the massive state. It can be represented as the diagram of Fig. 14.

The equation for the next iteration becomes dA'3+d(A2/\A\)f = 0. The second term
in this equation is d closed dd(A2 Λ AI)' ~ d([Aι,A\] Λ Aγ)f ~ [[Aι,A\\, A{] = 0,
and therefore one may use the above propagator again,

Af, = 2δtl0(A! Λ (9tl0(A! Λ AOT)' ,

where (A')v = A. Note that this solution satisfies the required conditions. Again this
contribution has a clear interpretation. Two massless states go to a massive one (as
before), but now the propagator receives corrections due to the coupling with the
massless state in the background. This contribution corresponds to the diagram of
Fig. 15.

20 The dd-Lemma reads: if ω is any d closed form and ω is also d exact, then ω -
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AI -. , A T

\

Fig. 15. Second order perturbation computation for solving the KS equation. Here two massless modes join
to give a massive mode, emit a massless mode which finally gives rise to the massive mode A^. Note that
the only propagators involve massive modes, and the massless modes are like the background fields.

It is already clear that dd^/Δ is a propagator for the massive states for the field
theory in question. The massless modes play the role of the background. It is quite
remarkable that the KS equation reproduces the perturbation series of a φ3 theory.

At the n-th iteration step all Aι,...An_ι satisfy the conditions dA\ = ••• =
dAf

n_ j = 0 and the KS equation becomes

The second term of this equation is d closed. This follows from the equations
satisfied for dA( dictated by induction and the Jacobi identity for the (0, 1) forms
with coefficients in vector fields and Tian's lemma

d([A, B] Λ cy + <9([C, A] Λ By + <9([J3, C] Λ A)1 = 0 . (5.10)

It follows from the above arguments therefore that Eq. (5.9) has a solution and it
is 9-exact. The perturbation theory described above is convergent in some open
neighborhood of the origin [30].

We just proved that for any x G H^I\TM) there is a map x —> A[x] given by the
solution of the KS equation, with A\ = x. This choice of terminology is consistent
with the definition of x% given in Sect. 3, and can basically be viewed as shifting the
complex structure of the Calabi-Yau labeled by (£, ΐ) —> (t+x, ΐ). For later convenience
we will write A[x] = x + A(x). Decomposition into x and A(x) is quite natural. A
cohomology element x represents a massless mode while A(x) = X^2 ̂  contains
the massive modes of the field.

Under the deformation of complex structure the holomorphic (3,0) form gets
changed. For an infinitesimal deformation the deformed holomorphic form is equal
to ΩQ + x'. For the finite deformations the holomorphic (3,0) form mixes with (2,1),
(1,2) and (0, 3) and it satisfies the equation

dΩ+^θ(Ωv /\A)' = 0 ,

where prime and check are defined with respect to the fixed holomorphic three form
ί?o It follows from Tian's lemma that the deformed holomorphic (3,0) form is given
as follows [33]

Ω = Ωo + A'+ (A/\A)'+ (A/\A/\A)' . (5.11)
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Coordinates in H®'I\TM), denoted by x, may serve as affine coordinates on some
open neighborhood of the moduli space of complex structures (see also [34]) thanks
to Tian's mapping. These coordinates are in fact very special (not to be confused with
special coordinates except for the particular case of base point at infinity, as discussed
in Sect. 2.6) and corresponds to the canonical coordinates discussed in full generality
in Sect. 2.6. In this coordinate the Kahler potential is given as follows:

e-K(x,x) = / ΩQ Λ ΩQ + / A1 Λ A1 + / (A Λ A)' Λ (A Λ A)'+
JM JM JM /<- j2\

/ (4 Λ A Λ ^X Λ (Ά Λ A Λ A)7 ,
JMIM

where A[x] = x + ̂ L(x). Taking into account that A(x) = O(x2) and x and A(x) are
orthogonal to each other we get the expansion

6 — 1 + X X (jr^ + Cy^X X j .

It immediately follows from this expansion that in these coordinates dτK = 0 = Γ^
vanishes at the origin together with all holomorphic derivatives. Therefore in these
coordinates the covariant holomorphic derivatives at the origin coincide with the
ordinary derivatives

This property is very important and was the defining property of canonical coordi-
nates discussed in full generality in Sect. 2.6. Let us clearly state that the canonical
coordinates are uniquely determined by the point in the moduli space (the origin of
the coordinate system) and the choice of the basis in H®'{\TM)

It is instructive to consider the example of canonical coordinates in the case
T2 x T2 x T2, where T2 is a two dimensional torus. The complex structure of each
torus is described by one complex parameter r^. One can carry out the construction of
canonical coordinates for each torus separately. Let us parametrize each torus using
coordinates (σι,σ2), where (σι,σ2) runs over unit square. In this parametrization <9,
d are given as follows:

d=
λ , .

(T -T) (r- r)

Now, let us choose the base point _(α,ά). The holomorphic flat coordinate x around
(α, δ) is defined as follows d(τ) = d(a) + xd(a). It implies the relation x(r)

r — a
x — — ,

T - a

i.e. the upper-half plane gets mapped into the open unit disk. The Kahler potential in
this coordinate is equal to

/
11 Λ (dzτ — Xidzi) —

(5.13)

*>=Π<τ
— a,
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The x dependence is quite remarkable. It is clear that all derivatives with respect to x
are proportional to x and therefore identically equal to zero at the origin. The factor
inside the absolute value is the gauge factor /(α;) = — i Πi(α* ~~ άi)/(ri — <^)

5.3 Kodaira-Spencer theory as the string field theory. So far we have discussed what
seems to be a perturbative field theory which describes the perturbation of complex
structure of Calabi-Yau manifolds starting from a base-point. Since the 5-model
describes the deformation of the complex structure, the effective string field theory of
the 5-models must be this underlying field theory, which we shall call the Kodaira-
Spencer theory of gravity. We have two options in writing this field theory: We can
either use the Kodaira-Spencer equation in the Tian gauge to write the action giving
rise to these equations, or directly use the rules for constructing closed string field
theory along general lines discussed in the literature (see [35] for a thorough review
of the literature). We will follow the first line and see why it is the same as the second.

To write an action21 we first need to fix some data: the point P (which we some-
times denote also by (t^ΪQ)) in the moduli space of complex structures (background)
and a cohomology element x G H®^(TM\ The physical field A in the KS theory
is a (0, 1) form with coefficients in vector fields which is also constrained to satisfy
condition dA — 0. For reasons that will be clear in a moment we assume that A
includes only massive modes. This means that A lies in the subspace H C J?(0'1)(TM)

orthogonal to HQ ' (TM), or in other words

/ A'Λz' = 0
JM

for any z G fί^'0)(T*). Thanks to constraint (5.4), this definition is independent of
the choice of representative in cohomologies.

The Kodaira-Spencer action is given as follows:

X2S(A,x\P) = - ί A'l-dA' + l- ί ((x + A) Λ (x + A))'(x + A)1 , (5.14)
2 JM o 6 JM

where λ2 is the coupling constant. In spite of the non-local kinetic term this action
is well defined. Indeed, it follows from the <9<9-Lemma that dA = ddv and therefore
d~ldAf - dυ + dp + z, where p and z summarize the ambiguities and z G Hg'°\T*).
The condition that A' is massive together with the constraint it satisfies implies that
p and z do not contribute to the action which therefore is well defined. Note that to
define the action we did not use the metric on Calabi-Yau manifold. We just used its
complex structure22. This is just like the Chern-Simons theory. Thus the KS theory
is a topological theory (or more properly it could be called a holomorphic topological
theory in the sense that it does depend on the complex structure of the Calabi-Yau).
Varying the KS action with respect to A we recover the Kodaira-Spencer equation in
Tian's form

dA + ̂ d((x + A) Λ (x + A)}' = 0 . (5.15)

21 For an example of string field theory for topological theories see [36].
22 To see that the action is well defined and independent of the choice of metric on M, we can also use

the d constraint to write A' = dφ and substitute it in the action to get a local action for φ.
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The existence of this action explains the fact that in the perturbation expansion for
A(x) discussed before one naturally gets Feynman rules of some field theory. In fact
they are nothing but the tree level diagrams of KS theory. Note that the propagator

for KS action d d is given by (5.8) in the appropriate gauge.
We now wish to see why the action (5.14) is the same as what we would have

gotten from the target space theory of the .B-model. For this, we employ the arguments
of Witten [24]. He used the fact that volume perturbation for the Calabi-Yau is BRST
trivial in the 5-model set up, to take the infinite volume limit. In this case the
worldsheet configurations for a fixed worldsheet modulus is dominated by constant
maps. But as noted in [24] this is not the full story. The reason is that we are
discussing a theory of 2d gravity which means we are integrating over the moduli of
Riemann surfaces. No matter how large a volume of Calabi-Yau we choose if we go
close enough to the boundary of the moduli space we can get finite action. In other
words the worldsheets which will have finite action are the ones concentrated in long
thin tubes, which means that we are going to end up with an ordinary field theory as
an exact field theory of string model (i.e. all the stringy massive modes are irrelevant
because of topological triviality of these modes). Indeed this argument applies even
taking into account potential anomalies, because as discussed in Sect. 3 there is no
anomaly for the decoupling of the Kahler-moduli in the j9-model.

So to fix the string field we have to recall that the field in question should have
charge (1,1) which in our case translates to the fact that A should belong to T^ /\TM.
Let us also recall the dictionary developed in Sect. 2: In the large volume limit operator
d is identified with BRST operator d = Q = G^ + G$, while d = G^ - GQ = b^. The
string field A1 should satisfy two constraints

dA' = bQA' = Q and (L0 - LQ)A' = (A - A)Af = 0 . (5.16)

In case of the KS theory the second constraint is a trivial consequence of Kahlerian
geometry and amazingly the first condition is precisely Tian's condition which led to
the simplification and proof of integrability of the KS equation in the case of Calabi-
Yau 3-fold. In order to borrow the machinery of closed string field theory we need
to find an expression for CQ = CQ — CQ. However there is no such object just because
the 6-cohomology is not trivial. What is true instead is that on the massive states of
the theory, we can in fact define a

--1-^1
C° ~ 3 " Δ

which satisfies

KA~} = ι ,
and we are thus forced to write down the action only for the massive modes. Therefore,
the kinetic piece of the KS action coincides with the free part of the standard string
field theory action

l-JA>
l-dA'=l-(A',c-QA').

The gauge cfi A1 = 0 is nothing else but the Siegel gauge in which both b$ = d and

&o = 9^ annihilates the physical fields. In this gauge the propagator takes the familiar
form
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Magically enough this is identical with the Kodaira-Spencer kinetic term and the
propagator. The cubic interaction term is quite standard and gives rise to the interaction
term of the Kodaira-Spencer action.

Thus the KS action is nothing else but the closed string field theory action at
least up to cubic order. One of the main difficulties of the closed string theory is
the absence of a decomposition of the moduli space of Riemann surfaces compatible
with Feynman rules. To avoid this problem one should introduce higher string vertices
and as a result the closed string field theory becomes non-polynomial (see [35] and
references there). The contribution to these higher string vertices comes entirely from
the internal domains of the moduli space of Riemann surfaces. Quantized KS theory
is defined as the large volume limit of topological sigma-model and as a topological
theory it gets contribution entirely from the boundary of moduli space of Riemann
surfaces. Therefore, the higher vertices should be absent in quantized KS theory. It
is quite satisfactory that we thus end up with precisely the KS theory as the string
field theory of the 5-model23. This is further confirmed in Sect. 5.4 where we will
find that the KS theory, with the ghost fields added, already satisfies the BV master
equation and needs no further corrections.

Let us now discuss the gauge symmetries of Kodaira-Spencer theory. As a string
field theory we certainly expect it to have such symmetries. Being a theory of gravity
the Kodaira-Spencer theory should be invariant under diffeomorphisms (we will make
this statement precise in a moment). Put differently, the fact that the variation of
d can also be affected by diffeomorphisms, and we do not wish to take this as a
physical variation, we need to consider the theory as a gauge theory with respect to
the diffeomorphism group. The kinetic part of the action is clearly invariant under
the shift of A by δ-exact term which means δA = de = Qe. This linearized gauge
transformation can be extended to a full non-linear gauge transformation which turns
out to be nothing else but an Ω-preservίng diffeomorphism

The condition that e is a Ω preserving diffeomorphism means that it satisfies the
constraint de' = 0. The full gauge transformation of the Kodaira-Spencer field A,
which can be deduced from the variation of d under the diffeomorphism, is given as
follows

6A = de- [e, (x + A)] ,

and using Tian's lemma it can be rewritten in a more familiar form δA1 = de' - d(e Λ
(x + A)Y. One can verify that this transformation is a symmetry of the action. Indeed
the variation of the action is equal to

/

I f
Afd((x + A) Λ e)' + - / ((x + A) Λ (x + A))1 de'

4 2 JM

- - ί ((x + A) Λ (x + A))'d((x + A) Λ e)' .
2 JM

23 It is amusing to note that the closed string field theory of TV = 2 strings [37] also has a cubic action, the
4-real-dimensional action for the Plebanski equation describing Ricci-flat Kahler metric in 2 complex
dimensions, which is very similar to the KS action given above.
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The first two terms cancel each other as can be seen by integrating by parts. The
vanishing of the third term follows from the Jacobi identity. Indeed, the last term can
be rewritten as follows:

f ([(x + A), e]Λ(x + A))'(x + A)' = i { ([(x + A), (x + A)] Λ e)'(x + A)' =
JM L JM

l- I ([(x + A), (x + A)} Λ (x + A))V = 0 .
λ JM

(5.18)
To formulate the KS theory we fixed some data: a point in the moduli space

P and the cohomology element x. Note that the fact that x cannot be written as
part of the kinetic term is because of the d~l in the kinetic term, which renders the
appearance of x meaningless. So the KS theory does not have the degree of freedom
to shift the complex structure as a dynamical field in the theory. Instead the existence
of the coupling with x as a background field in the interaction term is there to take
care of this. One may ask how the theory changes if we choose a different base
point P. We parametrize the position of the base point P in canonical coordinates
P = P(t, ΐ). Ignoring the holomorphic anomaly the KS action depends only on t and
is independent of t. The shift in t coordinate can be achieved by shifting the field A
by the solution of the KS equation (let A0(x) be the solution of KS equation). Then,
consider the following identity:

X2S(A + Ao(x), x|t, t) = / Afλ- (dA'Q + \d(x + AO) Λ (x + AO))') +
JM v V 2 /

l- I A'^BA'z + \ ί ((x + AO) Λ (x + A0))'(x + A0)'+ (5.19)
2 JM o 6 JM

l- I Af I \M + d((x + AO) Λ A)'} + i / (A Λ A)'A' .
2JM dl J 6JM

The first term vanishes due to the equation of motion. The second and the third
terms are naturally combined into the classical KS action evaluated on the solution of
KS equation. The two remaining terms have an interpretation as the KS action around
the new background. Indeed the combination in the square brackets coincides with
the deformed d operator around the new background. There is still one subtlety, the
prime operation is defined with respect to the old background. In the new background
the prime operation should be defined by contraction with the deformed holomorphic
3-form given by (5.11). Noticing, that only projection on (3,0)-forms contributes
to the action one can replace the prime operation around the old background by the
prime operation around the new background. As a result of this formal manipulation
we obtain the relation

S(A + AO(X), x|t, ΐ) = S(A)(x), x\t, ΐ) + S(A, 0|ί + x, ϊ) . (5.20)

In the original definition of the KS theory t and t are complex conjugate to each
other. Without the holomorphic anomaly, the KS action is independent of t and
one can replace S( \t + x,t) by 5( \t + x,t + x). If such arguments were true they
imply the background independence of the KS theory or background independence
of the corresponding closed string field theory. The dependence of the KS action on t
destroys background independence. In other words the holomorphic anomaly governs
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the background dependence of the KS action (see also discussion in [28]). In the
presence of the holomorphic anomaly relation (5.19) may serve as the definition of
the KS action where the condition t = t* is relaxed.

We now come to a puzzle raised by Witten in his study of this theory [24]. It was
pointed out in [24] that the fact that the three point function Cijk is not zero seems
to be at odds with the fact that there is no obstruction to deforming by the marginal
operators. The resolution of this puzzle in the context of the KS theory is simply that
the massless fields, i.e. the string modes, are not dynamical fields and so there is no
reason that the classical value of action is independent of their expectation value (as
we will discuss in more detail below). Thus the fact that the kinetic term cannot be
defined unless we delete the massless modes means in particular that C%3k

 maY be
non-zero even if the massless modes can be given arbitrary expectation value.

Since KS theory is a field theory in six dimensions, it is not easy to explicitly
compute higher loop amplitudes. In particular this 6-dimensional field theory looks
highly non-renormalizable from the simple power counting argument. It is quite
remarkable that topological string theory of the E-model provides a prescription
to quantize the Kodaira-Spencer theory. The properly regularized Kodaira-Spencer
theory should satisfy

'•*> = Λ
where the effective action W(X,x t,ί) was defined in Sect. 3. We also introduce the
notation x = xlμτ, where μι is some basis in H(0>l\T). Even though the r.h.s. of this
equation is to be properly defined at higher loops it is well defined as it stands for
the tree level. Let us prove this relation at least at the tree level. Later in this section
we will see that it also continues to hold at one-loop.

At the tree level, the contribution of the path-integral simply gives rise to the clas-
sical action evaluated for solutions to the field equations. Let us denote this action by
SQ(X, AQ\L, ?), where A^x) is such that AQ(X) + X satisfies the KS equation (expanded
about the base point (t, ϊ)). Thus we need to show

Wo(x|t,t) = λ SQ(X, Ao(x)|ί, ΐ) , (5.21)

where WQ is the tree level contribution to W (i.e. the coefficient of λ~2). Note that in
the x-coordinate which is a canonical one, WQ of Sect. 3 is defined by the condition

oo 1

n=Q

and also WQ has no linear or quadratic dependence on x. We see simply from the
definition of SO that up to O(x3) they are thus equal. We need to show that it holds
to all orders. Let us compare the third derivatives of both sides of (5.21). The third
derivative of the classical action is given as follows:

[(63

AS)diAdjAdkA+3(62

AdiS)d:i

AdkA + Wtd&ftdjA + dtd}dkS] , (5.22)

where δA is the variational derivative with respect to A and di - d/dx* and sym-
metrization with respect to ijk is implicit. The first two terms vanish: the first one
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perm.

Fig. 16. Tree level computations in the KS theory as a function of the background fields (the wavy lines
which represent the massless modes). As argued in the text the n-point functions at the tree level can also
be computed by taking appropriate number of derivatives of the Yukawa coupling. Here the four point
function (a), five point function (b), and six point function (c), are represented and can be most easily
computed by taking the first, second and third derivative of Yukawa couplings respectively.

vanishes because 648 = 0 by the equations of motion which is the definition of
AQ(X). The second term vanishes by taking the derivative of OA^, along the classical
solution, with respect to Xi and expanding to the third order term. Finally the last
term can be rewritten as

= I Λ (μj + djAo))' Λ (μk + dkA0)' = Cijk(x) ,

where the last equality follows from the alternative definition of Yukawa coupling
discussed in Sect. 2 (see (2.36)). This proves Eq. (5.21).

Wo(x\t, ΐ) may be viewed as the effective action for the massless modes x having
integrated out the massive modes. It is quite amazing that integrating the massive
modes has only the effect of taking derivatives of the Yukawa coupling. For example
(see Fig. 16) the four point function gives rise to diCijk, the five point function to
ds9ιCijk and the six point function to drdsdιCijk

In fact we will now use this fact to estimate the behavior of the partition function
at genus g of the KS theory to all loops, as we approach the boundary of moduli
space. This will be needed in conjunction with the anomaly equation to constrain the
global properties of the partition function of the topological string theory and will be
heavily used in the context of solving explicit examples.

This is done by estimating the leading divergence of each diagram as we approach
the boundary of moduli space. To do this we need the estimate of the propagator and
the three point interaction of the massive modes (the massless modes do not propagate
in loops). Let us denote the leading divergence of the propagator by P, of the massive
vertex by VMMM> and of the vertex with two massless and one massive mode as
VUM Using the topology of ψ? graphs at g loops we estimate the Kodaira-Spencer
partition function Fg to behave as

Fg ~ P39-\VMMM)2g'2 . (5.23)
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We want to express this in terms of Cut, the leading divergence in the Yukawa
coupling for the massless modes written in the canonical coordinate t. The n-point
functions at tree level, are given by d^Cttt Using the tree-level KS perturbation
theory, we learn that the four point function of the massless modes behaves as

while the six point function goes like

dlCm~

Eliminating VUM from these two equations and using (5.23) we learn that

...(5 24)

Note that the estimate (5.24) is independent of the definition of the canonical coordi-
nate t or the gauge for the line bundle C as it should be.

5.4 BV formalism and closed string field theory. In this section we quantize the KS
action using the BV formalism which is particularly well suited to string theory. The
interpretation of the KS theory as string field theory turns out to be very useful. In
this interpretation the KS field A is identified with the string field. But in string theory
there are 'ghost' states, which mean that we are not restricted to ghost number (1,1).
Translated to the geometry of Calabi-Yau, this means that we should broaden the
range of A so that A e /2(0'p)(A9TM); the ghost counting coincides with the fermion
counting and is equal to FL + FR = (p + q - 3). The original KS field Af has ghost
number 2.

The consistent scheme for quantization string field theory is given by the Batalin-
Vilkovisky (BV) formalism [38], [39]. In the Batalin-Vilkovisky formalism one has to
relax the condition for the ghost numbers of string field and include all possible fields
with arbitrary ghost numbers. The fields A with ghost numbers q(A) < 2 are called
fields, while the fields A* with ghost numbers q(A) > 2 are called antifields. The
space of functionals of fields-antifields is equipped with an odd antibracket { , }.
The BRST symmetry is a canonical transformation in the antibracket. The BRST
variations of the fields are given as follows:

SBRSTA = {A, S} .

The original action is replaced by full action which depends on both fields and an-
tifields. The full action satisfies two conditions. When all antifields are set to zero
the full action reduces to the original one. The full action also satisfies the Batalin-
Vilkovisky master equation

^{S,S} = HΔS , (5.25)

where A is the natural Laplacian on the space of fields-antifields. The r.h.s. of (5.25)
is a contribution coming from the path integral measure. At the classical level (h = 0)
the Batalin-Vilkovisky equation is nothing else but the condition that full action is
gauge invariant. The gauged fixed action is determined by an odd functional \P(A)
and is given by S*(A) = S(A, A* = 6Φ/6A).
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In the case of the KS theory the full space of fields is a subspace Ή of
satisfying the constraints (5.16). The space

is the space of fields, while

is the space of antifields. Note that not all (p, q) are allowed, and the projection of Ή
on θΏ(0'p)(Λ3TM) is empty. Taking into account that both fields and antifields satisfy
constraints (5.16) we get exactly the same number of fields and antifields. Fields and
antifields are paired with each other

A e β(0'p)(Λ9ΓM) < — > A" e Ω(^-p\f\(2-q}TM) ,

and obey opposite statistics. The odd bracket structure on the space of field-antifields
is given by

{A«(z), Af(w)} = δp+p,3δq+q,2Ω~ldδ(z,w)Ω ,

where #(2, w) is the delta function on the Calabi-Yau manifold, defined as follows:

/ ό(x, y)Ω(x) Λ Ω(x) = 1 .
JM

This structure is promoted to a canonical antibracket on the space of functionals and
formally may be written as follows:

It is quite remarkable that the full KS action is given by the same expression as the
original KS action, but without any restrictions on the ghost numbers. Indeed, the
ghost number conservation requires that either all fields in the action are elements of
β(0>1)C?M)» °r at least one field has ghost number greater than 2 and therefore this
field is an antifield. When all antifields are put to zero the only contribution to the
action comes from the original field A G β(°5l)(TM). It is a tedious but straightforward
check that the full action is invariant under the nonlinear gauge transformation. The
proof is based on a generalized Tian Lemma (5.6) for arbitrary (p, q) forms and the
generalized Jacobi identity (5.10).

The naive definition of the Laplacian turns out to be the correct one:

To verify that this definition is indeed covariant one has to take into account that
δAq

p(x)/δAs

r(y) = δp,rδqjSδ(x,y)Ω Λ Ω. Now we can check whether the full Kodaira
Spencer action 5(A, A*) satisfies the master equation (5.25). The gauge invariance
of the full action implies that l.h.s of (5.25) is equal to zero. The r.h.s. can be easily
computed and it is equal to

ΔS ~ ί d(ΩAlo)/\Ω = 0 .



Kodaira-Spencer Theory of Gravity and Exact Results for Quantum String Amplitudes 371

Indeed, d(ΩA^) = d(Al^)f = 0 due to constraint (5.16). The above discussion implies
that quantum corrections are not needed for maintaining the gauge invariance of the
KS theory.

5.5 Open string field theory. In the case of the open string, the resulting string field
theories were studied in detail by [24]. There it is shown that the space-time physics
of the A-model, defined on the non-compact Calabi-Yau 3-fold T*L (where L is
any real 3-fold), is equivalent to the usual Chern-Simons field theory on the real
three-manifold L. Instead the 5-model is classically equivalent to the following field
theory on the original Calabi-Yau manifold M:

S= - I ίMTr (β/\dB + -B/\B/\B j , (5.26)

M

where the field B is a one-form on M of type (0,1) taking values in End(E") and
Ω is the holomorphic (3,0) form. The classical solutions of (5.26) are the possible
inequivalent holomorphic structures we can put on the bundle E. We thus see the
space-time interpretation of the closed B-model string, i.e. the Kodaira-Spencer the-
ory is very reminiscent of (5.26); in particular, the classical solutions will correspond
to the possible inequivalent holomorphic structures we can put on the manifold M
itself. To make this analogy even more striking it turns out that the KS action itself
may be viewed as a CS action where the gauge group of the open string is replaced by
an infinite dimensional group of ^-preserving diffeomorphisms of the 3-fold. This
point we will now explain.

Let us consider a 6-real-dimensional symplectic manifold M which consists of a
3-dimensional base space X and a 3-dimensional internal space Y. This symplectic
manifold may be regarded as an "analytic continuation" of a Calabi-Yau manifold,
where we relate the complex coordinates (z,~z) of the Calabi-Yau to a pair of real
coordinates (x,y) of M (x G X, y G Y). The Kahler structure on the Calabi-Yau is
inherited on M as the symplectic structure, the holomorphic and the anti-holomorphic
3-forms on the Calabi-Yau become the volume forms on the base X and on the fiber
Y. There is also analog of the '-operation on M which is realized by a multiplication
by the volume form on the fiber. Consider the Lie algebra C of the volume preserving
vector fields (satisfying condition dyA' = 0) along the fiber with coefficients in 1-
forms on the base. We also assume that the space of £' is orthogonal to HI on M.
An invariant Killing form for this Lie algebra is given as follows:

TrAB =
JY

In this notation it is easy to see that KS action coincides with CS action for £,

X2S(A, 0) = - / d3xTrA f\dxA+- ί d3xTrA Λ A Λ A .

5.6 Kodaira-Spencer theory at one-loop. In this section we will discuss the computa-
tion of Kodaira-Spencer theory partition function at one-loop. In order to do this, and
in view of more general applications, we will first discuss the holomorphic Ray-Singer
Torsion.
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5.7 Holomorphic Ray-Singer torsion. Consider a Kahler manifold M with a holomor-
phic vector bundle V on it equipped with a norm and a connection compatible with
it. Let dy denote the del-bar operator coupled with the vector bundle acting 24

where p runs from 0 to dim(M) — 1. Let Ay - A\ + Z\2 denote the corresponding

Laplacian where A\ = dydv and AΊ = dvdy. Let us consider the spectrum of Δ(y
acting on Λpf* (8) V. By Hodge decomposition we can find the non-zero spectrum of
the Laplacian by finding the spectra of Δ^ and Δ^ Note that the spectra of Δ^

and Δ^~l} are the same, as are the spectra of Δ^ and Δ^+l\ Let us denote the

spectrum of Δ^ by {λp?p+ι}. In constructing a determinant of the Laplacian acting
on forms of all degree it is natural to consider an alternating product of spectra raised
to the power of ±1 depending on the parity of the form, deleting the zero modes.
However this will just give the net answer 1, because the spectra of Laplacian coming
from Z\jp) will cancel with those of Δ^1^ and those from Δ^ will cancel with those

of ΔI . To avoid this trivial cancellation we can consider instead

n-l

p=0

This can also be written, taking into account the Hodge decomposition, as

)'-1^ , (5.27)

where ' denotes deleting the zero modes. The appropriately regularized I(V) in the
case that V is a flat bundle is known as the holomorphic Ray-Singer torsion for this
vector bundle [40]. We will use the same terminology even if V is not flat. The main
theorem in [40] asserts that for flat bundles /(Vι)//(l/2) is independent of the choice
of Kahler metric on M though it does depend on the choice of complex structure on
M (the case considered in [40] is when there are no zero modes)25. Morally speaking

we should think of I(V) as the Π(deί'dy )(~1)P. Note that formally one may write

/
°

.
-Tr'(-lFpexp(-s#), (5.28)

where the Tr' is over all degree forms in the positive eigenspace of H where H = Ay.
This integral is regularized by taking s to run from e > 0 to oo.

The main technique to compute the Ray-Singer holomorphic torsion has been
recently developed in connection with Quillen's holomorphic anomaly [41]. Consider
a family of complex structures on M parametrized by a_complex parameter t. Let
us assume that there are no jumps in the zero modes of dy. Choose a holomorphic
basis for the zero modes of dy and let dp = log(det#(p)) denote the determinant of

24 We are abusing the notation of denoting the section of the bundle and the bundle both by V.
25 We expect that a generalization of Ray-Singer torsion exists where one relaxes the condition for the

flatness of the bundles and allows arbitrary holomorphic bundles, in which case one should expect
that for a fixed Kahler structure the precise choice of the Kahler metric would be immaterial for the
holomorphic torsion.
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the inner product in the subspace of ΛPT* 0 V of the kernel of dy. Then it turns out
that using the Quillen anomaly in this context one can show [41]

dd YV-lf dp + 2πi Td(T)Ch<y)i ί
JM

(5.29)

where T is the tangent bundle of M viewed as a bundle over M times the complex
moduli space, Td denotes the Todd class

— exp(—

where R is the curvature form for the tangent bundle, and Ch(y) = tr exp(F/2τri)
denotes the Chern class of the vector bundle V, viewed as a bundle over M times the
complex moduli space where F is the curvature of V. The symbol |(i, i) in the above
formula means that we take the (n+ 1, n+ 1) form of the integrand and integrate over
M to be left with a (1, 1) form on the complex moduli. The basic idea behind (5.29)
is that, if we ignore the zero modes that are present, if we integrate both sides over
1 dimensional complex moduli, the left-hand side (l.h.s) gives 2πί times the total
number of zero modes of d (weighted with ± sign) and r.h.s. is the family's index for
the <9y operator, and thus counts precisely the same as the l.h.s. The main non-trivial
content of (5.29) is that it is true even before integration over moduli space (this can
also be argued using the integrated version by taking various interesting limits). The
terms corresponding to the determinant of the norm of the zero modes in (5.29) is
also familiar from the Quillen anomaly and come about because we are dealing with
the determinant of Laplacian with the zero modes deleted (see e.g. [42]).

5.8 KS theory at one-loop and RS torsion. Having developed the notion of the RS
torsion, we are now ready to compute the partition function of the KS theory at one-
loop. In fact we will be more general as the computation can be carried out in the
B-model version of any Calabi-Yau n-fold and not just the 3-fold. From the formula
for FI given by (2.37) it is possible to extract the large volume behaviour, in which
case FL and FR as noted in Sect. 2 are given by

inserting F^F# in the trace, and using the sl(2) invariance of Kahler manifolds we
can replace —(k — k^)2 in the trace with (p + q — n)2, and noting that insertions of
p2 or q2 alone in the trace are independent of the moduli (as they would be index
computations) leads us to the statement that the insertion of FL,FR is equivalent (as
far as the moduli dependence is concerned) with insertion of p q. Now using the
form of FI and comparison with (5.28) leads us to

1 2
q

Now, according to [20] we have a formula for the dd anomaly of FI. On the other
hand, using the Quillen anomaly discussed above for I(V), we can compute the
anomaly in another way. The fact that the two are the same is a very interesting
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check on these ideas, and in particular is the 'mirror' version of the conformal theory
statement of the anomaly. There were two terms in the anomaly discussed in [20], as
there are two terms for the anomaly (5.29). The first term in each of these two is the
same, and simply is the contribution of the volume of zero modes to the anomaly.
The more subtle term is the second one which comes from the contact terms both
in string theory and in the computation of Quillen anomaly. As shown in [20] the
second term there is χ(M) G/24, where G is the Kahler form for the Zamolodchikov
metric on moduli space. Therefore we wish to prove the following equation:

(5.30)
f n

2πi I Td(T)yV-l)ppCh(ΛpT*)
JM P=o = ^X(M)G

(l,l)-part

We start by recalling a few facts [43]. First of all,

n

Td(Γ) (-

(T* is the cotangent bundle). This is (a special case of) Theorem 10.1.1 in [43].
Now we apply the Hirzebruch argument to our case. Let 7^ be the eigenvalues of the
curvature form. Consider the identity (notation as in the proof of Th. 10.1.1)

D
p=0

(5.31)

One has

p=Q p=0

Using the identity (5.31), the r.h.s. becomes

3 3 i>¥J

Imitating the proof of the quoted theorem, we consider (ξ ι-> T*)

n

Td(T) *) = ncn(T) -
P=0

_ JJ -y* (5.32)

where . . . means higher degree. Inserting this expansion in (5.32) we get

Td(T) - — cn(T)c,(T) + . . . .

We have to take the (n + 1, n + 1) component of the r.h.s. which is

~
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Now using the fact that by the discussion in Sect. 2, c\(T) - —c\(T*) = —G/2πί,
and the fact that /cn(T) = χ(M), we get (5.30) which is what we wished to show.

5.9 One-loop topological open string amplitudes. If we consider the open string ver-
sion of the N = 2 twisted model coupled to gravity, as mentioned before, it turns
out that the space of vacua is related to a choice of a holomorphic vector bundle V
over M [24]. In such a case taking the large volume limit in the jB-version of the
model would lead us to (5.28). Thus the one-loop partition function of the open string
is exactly the holomorphic Ray-Singer torsion, F\ - I(V\ and is thus computable
again using the Quillen anomaly (5.29).

Note in particular the computation in Sect. 4 of the one-loop open string amplitude
gives the same answer as the first term in the Quillen anomaly for Ray-Singer torsion.
The contact terms were not considered in Sect. 4, but since they can be computed in
this field theory setup, they must be the same as the ones leading to the index integral.

5.10 The geometrical information encoded in Fg for the A-model. In this subsection
we describe the geometrical information encoded in Fg for the A-model defined on
a Calabi-Yau 3-fold M. As discussed in Sect. 2.2. the A-model action reads

ί( dXadX~β + Γ ? f(ωi)aj3 9X~βdXa + fermions,

where the integral forms ωι span Hl>l(M). As we know from the discussion in
Section 3, Fg is not a holomorphic section of £2~2g, and therefore Fg depends on
a choice of a base point tl in the moduli space Hl^(M, C). The meaning of Fg is
particularly transparent if we choose the base point to be at infinity, i.e. to correspond
to positive infinite volume. Then we set P = tm\ where Ύ^lm

lωτ is a positive
Kahler form ω, and then send t — > +00. Of course, in this process the £ l's are still
kept arbitrary. Since in the weak coupling (= infinite volume) limit the A-model
correlations reduce to classical geometric objects, this is the choice of base point for
which the geometric nature of Fg is more evident.

Indeed, as t — » +00 the action becomes

'~ + ... . (5.33)

Then all finite action configurations satisfy dXa = 0, i.e. correspond to holomorphic
maps from the Riemann surface Σg to the Calabi-Yau space M. Thus the g-loop
amplitudes for the A-model with base point at infinity are exactly given by sums
over holomorphic maps X from genus g surfaces to the Calabi-Yau space M of the
form

- . . nh

where, as in Sect. 2, qk = exp[— tk] and nk = f X*ωk. The coefficients A^ιn2...n^
are related to the 'number' of maps in the given topological class as we will discuss
below. This means that we can use the A-model partition functions to 'count' the
number of such maps, or equivalently the number of genus g holomorphic curves
lying on M. This counting was done for the special cases g = 0 and g = 1 in Ref. [7]
and [20], respectively.
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In general, given a Riemann surface Σg the existence of a holomorphic map
of a given degree into M depends on the complex structure of M. Because of the
absence of mixed anomalies (Section 3), Fg is independent of the complex structure
of M. Then in order to get the number of curves from the A-model it is crucial that
we integrate over the complex moduli of Σg, i.e. that the A-model is coupled to
topological gravity. Then the 'number' of holomorphic maps Σg —> M summed over
the moduli space of M.g is independent of the complex structure of M.

In order to extract from Fg the number of maps of a given type, we need to know
for each kind of map (including multi-covers and singular ones) how the coefficient
^nln2...nh ^n me ^-expansion of Fg is related to the actual number of holomorphic
curves. This requires doing an explicit path-integral around an instanton of the given
type. The rest of this section and Appendix A are dedicated to such path-integral
computations. In fact, this section is rather technical. We will limit ourselves to a
smooth manifold M and not deal with spaces such as orbifolds, though many of
the techniques we discuss can be easily adapted to such cases. The limit t -» oo is
implicit throughout.

We recall that Fg is given by Fg = fM Zg, where Zg is the following top form

over Mg (for g > 2):

|3<7-3\

= ( \dma(
1 9
(5.34)

and raα are coordinates on Mg associated to the Beltrami differentials μa.

5.11 Contribution to Fgfrom an isolated genus g curve. If Fg has to 'count' the number
of genus g curves lying on the Calabi-Yau manifold M, in particular it should be
true that the contribution to Fg from an isolated such curve Cg is given by

exp (5.35)

with coefficient 1. Here we check explicitly this property of Fg. The assumption of
Cg being isolated is rather unrealistic; for g > 1 the holomorphic curves typically
belong to multi-parameter families. Below we shall drop this assumption.

Let Tg be the Teichmϋller space of genus g curves. Clearly counting holomorphic
maps Σg(m) —» Cg for m G Mg is equivalent to counting holomorphic maps homo-

topic to the identity but with m G Tg. We shall take this second viewpoint26. We take
as base point in Tg the point corresponding to the complex structure of Cg (for some
choice of marking); hence for raα = 0 we have a holomorphic map Σg(Q) —» Cg C M
homotopic to the identity. By the general argument around (5.33) the contribution
from Cg to Fg has support at ma = 0, so in the following we take ma to be very
small.

26 It is also convenient (although not necessary) to modify the metric ωaβ in a tubular neighborhood

of Cg such that the induced metric on Cg has constant curvature. We are free to do this, since a

deformation of the metric preserving the Kahler class is a D-ίerm perturbation which does not affect

any topological quantities.
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Our action can be rewritten as

S = i(t + Z) / d2zωa-β OμX
adμX~β + ̂ (t - t) I X*ω + fermions] , (5.36)

where ω is the Kahler form of M. We are interested in the limit t — > +00 at t fixed.
The second term in the r.h.s. of (5.36) is independent of the smooth map X, as long
as its image is in the homology class of Cg. Hence the minimum of the action in this
topological class is obtained by minimizing the first term, i.e. by the corresponding
harmonic map. Here we are interested only in ma small. In this case the harmonic
map has the form X(z)a + δXa, where X(z)a is the map Σg(Q) -> Cg. We can
decompose the variation 6Xa into a component perpendicular to Cg and one along

Cg. The component perpendicular is an element of H°(Σg(Q), TM) and hence vanishes
by the rigidity assumption. Then, to the first order, our harmonic map can still be seen
as map X: Σg(m) — > Cg. It is a theorem by Schoen and Yau [44] that there exists
a unique harmonic map Σg(πι) — > Cg (homotopic to the identity). Neglecting higher
orders in raα, the value of the action at the extrema is then

where E(ma,fhb) = f d2z g^ dμX'ίdμX^ is the Schoen- Yau "energy" as a function
of the moduli and

is the 'degree' of Cg.
Of course, one has

E(ma,mb) >

with equality if and only if the corresponding harmonic map is holomorphic, which
happens only for ma = 0. The function E(ma,fϊιb) is the Kahler potential for the
'Weil-Petersson' (WP) metric Wa^ at the base point, i.e. [45]

= wa-b.m=0

More precisely, Wαg is the usual Weil-Petersson metric if we have chosen the metric
on M so that the induced metric on Cg has constant curvature (see previous footnote).
Otherwise, Wa^ is some metric on Tg; our computations below are valid for any choice
of the metric.

Consider the Schoen-Yau solution X(z, z). By definition, this smooth function is
holomorphic with respect the complex structure defined by Cg. Then, applying the
Kodaira-Spencer machinery to the variation of the complex structure of the Riemann
surface, we see that

0 , (5.37)

where Φ is the KS vector defining the complex structure of Cg in terms of that of
Σg(m\

Now, let us consider the derivative d^aX of X at m = 0. If μα is the Beltrami
differential corresponding to an infinitesimal variation of the moduli <5raα, one has
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dmaφ = μa. Then, taking the derivative of (5.37), we get

ra=0
= μadzX Φ

ra=0
dmadX = μα,

where we used the fact that at m = 0 the Schoen-Yau map is the identity, i.e.
X(z)\m=o = z> and Φ|m=o = 0. The same argument give d^dX = 0.

Then27

dad~bE
ra=0 ra=0

where ( , •) is the Hodge inner product on K 0 K l with respect to the metric 7^ on
Σg induced by the imbedding in M, i.e. 7^ = ωaβdzX

ad-zX
d(3. If we choose this

metric to be constant curvature, this inner product is (by definition) the Weil-Petersson
metric on Mg.

As t —» oo, the contribution of Fg from the curve Cg is concentrated at the point
m = 0 in moduli space. Hence we can assume m to be small. In this case, one has

:e-
tdexp[-^tWa-bm

amb}\_

le-dtδ(ma)δ(mb) (5.38)

= -=- e-dtδw(m),

where δw(m) is covariant ^-function for the WP metric, i.e. such that

dμwpf(m)δw(m - a) = f ( a ) ,

where dμwp is the WP volume form.
From (5.38) we see that only the identity map contributes to the integral. In the

pre-exponential factor in (5.34) we can replace Xa(z) by this identity map.
Let i:Cg -* M be the imbedding map and ηAa (A = 1 , . . . , 3(# — 1)) be a basis28

of H°(Cg, K 0 i*T*) orthonormal in the sense that

Λ

Let μα be the Beltrami's corresponding to the moduli raα, chosen to be harmonic
with respect to the metric 7^ Then consider the quantity

27 There are two terms in the definition of E(m, rri). However, since their difference is just the topological
invariant d, for computing the variation of E(m, rn) we can replace their sum by twice the first term.

28 In fact, since the map X: Σg(G) —> Cg is the identity, ηA are just the ordinary quadratic differentials
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it belongs to HQ(Cg, K <g> i*T*) and hence has an expansion in terms of the ηA basis
of the form Bά

AηA for some coefficients Bά

A.
Let us expand ψ(z) as29

ψ(z)
Then

Then the expression

zero—modes

after the integration over the ψ zero-modes becomes

(3g - 3)1 \t\39~3\ det[£]|2 JJ dmadm-b = (3g - 3y.\t\39~3dμWP . (5.39)

Here the last equality follows since | det[£]|2 is nothing else than det(W], where W
is the WP metric. Indeed,

»α,M6) = J ' ωa^(ωa-βμa

Finally from (5.34), (5.38), and (5.39), we get

= e~d tδw(m)dμwp (5.40)
isolated curve

By definition of <5vt/(m), the integral of the r.h.s. in any domain of M.g containing
our base point m - 0 is just exp[—d£], that is the contribution of an isolated genus g
curve to Tg is given by Eq. (5.35).

5.72 Contribution to Fgfrom a continuous family of curves. Typically the holomorphic
maps are not isolated but belong to a family. We have to say how we 'count' instantons
in this case. In general a direct path-integral computation is quite hard. However,
general principles [46] lead to an abstract formula for N% n^ which is valid in
full generality. In the A-model on a Calabi-Yau 3-fold this formula is as follows.
Assume we have a family of holomorphic maps from genus g surfaces to M,

f8:Σg(s)-*M, seS ,

where S is the space of parameters for the family. Over S we define the bundle V
whose fiber at s is the vector space

V =.

29 The factor \fi arises because physically we have to normalize the Fermi zero-modes with respect to
the true metric (t + ΐ)gή, rather than with respect to the reference one g^-.
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and let r = rank(V). Then the contribution of this family to Fg reads

) , (5.41)
Σ

αl ί
J J

that is the coefficient is just the integral over the moduli space 5 of the Euler class
of the bundle V. It is using this abstract formulation that Aspinwall and Morrison [8]
were able to prove the formula for contribution from multi-covers in genus zero that
we mentioned in Sect. 2.

5.13 Contribution to Fg from constant maps. We wish to compute the limit of Fg

when t3 and tl go to infinity. The result of this computation will be needed below
to fix part of the ambiguities arising in the solution of the anomaly equation. In this
limit only the constant maps contribute to Fg.

The moduli space of constant maps from a genus g surface to M is given by
X = Mg Θ M. There are three % zero-modes spanning the fiber of the vector
bundle30 TΓ^TM over X, while the 3g ψ zero-modes span the fiber of the vector
bundle

V =

where Ή is the Hodge bundle over M.g (i.e. the bundle whose fiber at rn is
H°(Σg(m),K)).

Then the general formula [46] gives

F,
ί,t—»oo

X

= /C3 f l (V). (5.42)

It is easy to recover (5.42) by a direct path integral computation. In order to do this,
we introduce some notation. Let ω& (A = 1 , . . . , g) be a basis of holomorphic one-

forms on Σg(rri)9 and the NAB be the inverse matrix of NAβ = Im ΩAB = / ^A /\UB
Then we put

Aa AB = I (μa^λ) Λ ωB , (5.43)

and ΛAB = dmaAa AB From the theory of variations of Hodge structure (which is
essentially the same thing as the tt* equations) we know that the curvature of the

Hodge bundle is PABabdma A draδ, where31

Then the curvature of V is given by

Λ dx~? . (5.44)

30 ττt is the projection into the i-th factor space of X = Mg ® M.
31 Notice that if you interpret AaAB as the 3-point function on the sphere, this is just the tt* equation

for the curvature.
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As t,t — > oo the theory gets coupled in a weaker and weaker way, and we can
use perturbation theory (that is free fields). Then the derivatives of the scalars can be
eliminated using the free contraction [47]

(dXa(z)dx'β(w))g = G~βaωA(z)NA5 ω5(w) . (5.45)g

We denote the 3g ψ zero modes, by ψ^ (a = 1, 2, 3, A = 1, . . . , g) with

ψa(z) = ψ£ωa(z). (5.46)

In addition we have three constant zero-modes χa. The extra Fermi zero-modes are

absorbed by 3 factors of (/ Raβ
Ίδχaχβ ΨΊ Λ ψ$) extracted from the exponential of

the action. Using (5.46) and the definition of NAQ we get

NAB

Then using (5.43) and (5.46), the contribution to (5.34) from the constant maps is
reduced32 to an integral over the zero-modes ̂ , χa and xa of the following quantity

l V~3 /- ~* - »,Λ-uBι

After integrating away the χ's, we remain with the integral over the -0's and the
bosons of

/

^ a b Ra'θldxΊ Λ dx6 ψψ . (5.47)

\ g

6} ψAψj \ .

Comparing with (5.34) we see that

lim /

•9

r r n 1 /*
/ det = /

J [2πι\ J

lim Fa = lim / Z0 =

>ίg

(5.48)
/ I /V /

= (-i)s

which is Eq. (5.42).
The class ^(TiΘT^) can be related to the Chern classes of TM and Ή using the

'splitting principle.' We use Xi (resp. ya) to denote the 'eigenvalues' of the curvature
of the bundle H (resp. T^). We start from the identity

0 3 3 ^

Π Π(χ* + yJ = Π Σ yΓr^(χi)
i=\ α=l α=l r^O .- ̂

V /

r1,r2,r3=0

As always, non-zero modes cancel by topological invariance.
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where σr are the elementary symmetric functions. For c^g(V) we are interested in the
terms in (5.49) homogeneous of degree 3 in the y's. For g > 2 they are given by

x) - 3σg-3(x)σg(x)2]+

{(x)σg(x) + 3σg-3(x)σg(x)2].

In particular, this identity says that the component of c^g(H ® T^) which is a (3, 3)-
form on M reads

c3(T^) [c3

g_{ - 3cg_2 Cg-ι cg + 3cg-3 c^] + terms proportional to cι(Tj^),

where ck = c/^Tϊ). Since for a Calabi-Yau manifold c\(TM) = 0, we have

lim Fg = -χ(M) ί {<? ^ - 3cg-2 Λ cg-ι f\cg + 3cp_3 Λ c]} . (5.50)
t,ί—»oo J

Mg

The integral in the r.h.s. can be simplified. Indeed, as it is well known, the c&'s are
not all independent. Let H be the de Rham bundle (i.e. the bundle over M.g with
fiber Hl(Σg, C)). Obviously, H is a holomorphic subbundle33 of H and we have the
exact sequence

0-»Ή-+H-+7ι!*-+0.

Now, from the tt* geometry discussed in Sect. 2, we know that H comes with a
natural flat connection — the V-connection — and hence

1 = c(H) =

Then we have the following relation between the c^'s:

(5.51)
k=l h=l

In particular, Eq. (5.51) gives the C2/c's as polynomials in the C2m+ι. The first few
relations are

(5.52)
/ o

Equating the two sides of Eq. (5.51) in degree 4g we get

2

while in degree 4(g - 1) we get

4 = 0 , (5.53)

33 This is the same situation we encountered in Sect. 2.1 in the context of special geometry in Section

2.1. The trivial bundle H plays here the same role as H3(M, C) in Sect. 2.
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Using these two relations Eq. (5.50) reduces to

lim (5.54)

The integrals ^_ 1 ? can be easily computed if we know the Chow ring of

Mg. In fact, by definition our ck are represented in the Chow ring by the tautological
classes λfc (notations as in ref. [48]).

The Chow ring of Mg is explicitly known for g = 2 [48] and for g = 3 [49]. In
particular, for g = 2 Th. 10.1 of ref. [48] gives

2880 '

while for g = 3 using Eq. (5.52) and Table 10 of ref. [49] we have

ί 3- 1 /
J MI % JM

1 1

Then X(M)

5760

X(M)

1451520

8 90720 725760

for g = 2

for g = 3 .

(5.55)

6. Solution to the Anomaly Equation and Feynman Rules for Fg

In this section, we develop a systematic method to solve the holomorphic anomaly
equation

(6.1)

6.1 Feyman rules at g = 2, 3. As a warm-up, let us start with the genus-2 case,

(6.2)

Interestingly enough, a_key to solving this equation lies in a genus-0 object. Because
the Yukawa-coupling C-^ is totally symmetric in its indices and satisfies

we can always integrate the Yukawa coupling locally as

zjk ~~ ί j k ι (6.3)

where 5 is a local section of £ 2. In fact, in all the examples we will discuss later,
it is possible to construct 5 globally on the moduli space of the topological theories.
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We will present such constructions later in this section34. To simplify the expressions
below, we use the following notation:

In this notation,

where

S! = BiSj, where Sj =

c =

(6.4)

(6.5)

~, Sjk = G"Sί .

We now solve the genus- 2 equation (6.2) by "integration-by-parts." We first rewrite
(6.2) using (6.5) as

F2 _

The r.h.s. can be evaluated using the holomorphic anomaly of F\ and the special
geometry relation for [9-, Dj] as

Cnm]k
Z

Now we repeat the integration-by-parts.

F2~-ϊ

1
+ 4;

It turns out that the r.h.s. of this equation can also be written as a total derivative

with respect to ?. By using the genus-1 anomaly and the special geometry, we find

' n
~^^nmjk '

24

O o o
Λ~IZ

34 In refs. [50], a solution to (6.3) is constructed using particular coordinates on the moduli space.

However 5 constructed there does not behave nicely under the modular transformation, and thus is

not globally defined on the moduli space. The explicit expressions of S we obtain in various examples

later differ from those obtained in these references.
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Thus the iteration stops here. We have converted the genus-two anomaly equation
(6.2) into the following form:

(6.6)

i _ QJkfi Qpq/~~ι nmn , ojk opq amn /
T O Oj&pO ^qmn^ 10

o 1Z

Now one can easily integrate this equation as

F2 = l

T
, J_

10
IZ

(6.7)

48 24V24

where we used the notation C\ ...% = Dil - - DlnF^g\ This equation can be expressed
graphically as in Fig. 17

ί̂  ^ __ s ί/

x .x =-2S

Fig. 17. The terms obtained by solving the anomaly equation for genus 2 have a strong resemblance
to Feynman graphs with correct symmetry factors and with an appropriate definition of vertices. This
correspondence can be made precise as discussed in the text. We identify the solid lines with the massless
moduli modes and the dotted lines with the dilaton field. These graphs fix F^ up to a holomorphic function
of moduli represented by /i(i).
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Here /2(ΐ) is some meromorphic object which is not fixed at this stage. Since both
F2 and 5 are sections of C~2 and Cijk is a section of £2 x Sym3T* on the moduli
space, /2 must be a meromorphic section of £~2. Although we cannot determine
/2 from the holomorphic anomaly alone, the holomorphicity gives rather stringent
constraints on /2 and, in many cases, almost uniquely determines it. In the case of
the topological sigma-model, we can exploit the geometric meaning of F^ studied in
Sect. 4 to fix /2. In the next section, we will demonstrate this procedure in various
examples.

This method also works in the case of g = 3. After six iterations of integration-
by-parts, we obtain

C

mj/^σ) QklπW mj Qfcί/odWl) ,
~ 2 Vk l ~ 4 Uik^jl +

+ - - - (it would take five more pages to write them all) + /3(t) .

Here fa(t) is a meromorphic section of £~4. Genus 3 contribution is presented in
Fig. 18.

One may observe that Eqs. (6.7) and (6.8) have a strong resemblance to the
Feynman rule (see Fig. 17). Consider a finite dimensional quantum system with (—5U')

as a propagator connecting the indices i and j, C^k, CVy &/,...as classical vertices, C\ ,

C\3; ,... as one-loop corrected vertices etc, and compute two- and three-loop partition
functions according to the Feynman rule. If we multiply an overall factor of (—1)
after the computation, we reproduce all the terms in (6.7) and (6.8) including all the
symmetry factors, except for those containing S\ S and the holomorphic sections /2

and /3.
The terms involving Sl and S can also be recovered if we introduce one more

degree of freedom φ and extend the Feynman rule as follows. The propagators are
given as

K*3 = -Sij, Kiφ = -S\ Kφ>φ = -2S (6.9)

Fig. 18. Some of the Feynman graphs which emerge in solving the genus 3 anomaly equation.
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and the vertices are given by

(6 10)

Compute two- and three-loop partition functions using this Feynman rule and multiply
the overall factor of (—1) after the computation. By adding the meromorphic sections
/2 and /3, we recover the expressions (6.7) and (6.8). The definition (6.10) of the
vertices reminds us of the puncture equation in topological gravity. In fact, we will
now identify the variable φ with the dilaton which is the first topological descendant of
the puncture operator [4] σ\(P). All the other topological descendants decouple from
the correlation functions simply by the £7(1) charge conservation and thus the only non-
vanishing correlation functions involve those of marginal fields and the dilaton field.
So far we have only discussed the marginal fields. To properly discuss the dilaton
field coupling we need to enlarge the field space from that of pure topological theory.
However luckily the correlation for the dilaton field can quite generally be eliminated
from correlation functions by the recursion relations. In fact the first equation in (6.10)
is precisely the general recursion relation of [4] and so φ is indeed the dilaton field.

6.2 Feynman rules for arbitrary g. The emergence of the Feynman rule is rather
mysterious from the way we discovered it at g = 2 and 3. It would be extremely
difficult to prove the Feynman rule for g > 4 by using the method in the above since
the number of iterations would grow exponentially. Thus we will develop another
technique which enables us to prove the Feynman rule directly for all g. We will do
so by reducing the Feynman rule for Fg to the Schwinger-Dyson equation of the finite
dimensional system. In Sect. 3, we introduced the generating function W(λ,x',t,t)

for C, , which satisfiesfcl'" tn

2 f e &ι2

2 l dχidxk

To prove the Feynman rule, it is more useful to consider a generating function

W(\, x, φ, t, ΐ) for the vertices C\9\.in φm of the Feynman rule,

OO OO

g=0 n,m=0
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By the definition of the vertices (6.10), W is related to W as

2σ-2+n

1?>,*" ^
g=Q n

;*,ή - (£ - l) logλ--l-φ l-φ

Thus W satisfies the equation

(6.11)

It turns out that there is another function of xl and φ which satisfies almost the
same equation as (6.11). It is given as follows:

) (6 12)

Here Z\ is an inverse of the propagator K defined by (6.9), i.e.

(6.13)

Thus Y may be regarded as a kinetic term for the finite dimensional system of xl

and φ. The most important properties of these inverse propagators are

diΔjk = C™nΔmjΔnk + GijΔkφ + G-^Δjψ ,

which we can derive from (6.4) and (6.5). Just as the anomaly equations for
are encoded in (6.11), the above equations for Z\'s can be written as a differential
equation for Y.

— exp(Y) = [-— ϋf 0

 d^ , - G-iΊx
j^-} exp(Y) . (6.14)

dtl [ 1 dχidxk IJ dφ\ ^

Now we consider the following integral.

Z = / dxdφexp(Y + W) . (6.15)

Although this integral itself may be divergent, we can compute its perturbative ex-
pansion with respect to λ. The integral Z may be regarded as a partition function
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of a finite dimensional quantum system with dynamical variables xl and φ, and the
perturbative expansion of Z can be evaluated using the standard technique of the
Feynman rule as

log Z - λ2

+ λ4

+ λ6

77 cijrι(V r W QiJnF2--bJCij - -C7. S' 'CT,.

(6.16)

2" "v

where ( •) in the coefficient of λ2 represents the terms in the r.h.s. of (6.7), ( •) in
the coefficient of λ4 represents those in (6.8), and so on.

Previously we found, by the iterative method, that the coefficients of λ2 and
λ4 in the perturbative expansion of Z are holomorphic in t. We can now prove the
holomorphicity of Z to all order in the perturbation as the Schwinger-Dyson equation
of the finite dimensional system. By using (6.11) and (6.14), we obtain

J,*-/**,"^1

*/

d2

' ^A

^ 9^

J dφ

7 A Λ=-Cϊ dxdφ w

-G-, (dxdφ ~ \xjeγ+w} .J J dφ I J

The point is that the integrand in the r.h.s. of this equation is the total derivative
with respect to xτ and φ. In the perturbative expansion, we are free to perform the
integration-by-part and drop boundary terms since integrals involved in the perturba-
tion are all Gaussian. Thus we have derived

d?

As is evident from the expansion (6.16), the holomorphicity of Z means that we can
express Fg as a meromorphic section fg of C2~2g minus a sum over the Feynman
graphs constructed from the propagators (6.9) and the vertices (6.10).

6.3 Construction of propagators. So far we have assumed that there is a global section
5 of C~2 which satisfies (6.3). Now we are going to construct such an object. The
important ingredient is again the special geometry relation

ι +Gk~δi — (6.17)
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Since Gή = didjK, this can be rewritten as

fy[S3kCklm] = d-t [dιK&m + ΘmKδi + Γ{m

This can be easily integrated as

S*Cjkl = 6\3kK + δ^K + Γkl + fl , (6.18)

where fkl is some meromorphic object which should compensate for the non-
covariance of d^K and Γfa in the r.h.s. We can express fl

kl as

rkl = δ\dk log / + 5* 0, log / - υ^dkv*'* + fkl ,
α=l

where / is a meromorphic section of C, {^'α}α=ι,...,n (ft- is the dimensions of the
moduli space) are meromorphic tangent vectors which are linearly independent almost

everywhere on the moduli space, υlja are inverse of ΐΛ α OCα^,α^'α = ^P an<^ fli
is a meromoφhic section of T x Sym2T*. In general, (6.18) has |n2(n+ 1) equations

for \n(n +1) variables S^ and it is over-determined when n > 1. Thus we should

make an appropriate choice of fl

kl to ensure that (6.18) is solvable with respect to
5 .̂

The situation is much simpler in the one-modulus case since there is only one

equation in (6.18) and there is no constraint on f^. In order to construct Fg by using
the Feynman rule, (6.7) and (6.8) for example, we do not need the most general

solution to dSn = C\ since any holomorphic ambiguity in 511 is absorbed into the
holomorphic section fg which we add to Fg at the end of the computation. Thus we

can, for example, choose f\γ = 0. With this choice, S'11 becomes

Sn = ~ [2dlog(eκ\f\2) - (GnvΓ^vGu)] . (6.19)
^111

To find 5% we need to integrate

d-βi = GlkSJk .

Substituting (6.19) into this, we obtain

A special solution to this equation can be easily found as

(d\og(eκ\f\2)}2 - v~ld (^log(ex|/|2))l . (6.20)
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Finally we need to find 5 which satisfies

OS = GύSl . (6.21)

A special solution to this equation is given by

S=\Sl- l-D,Sn - l-(Sn)2Cn?\ dlog(eκ\f\2)+
(6.22)

Let us check that this indeed satisfies (6.21). We first note that the following special
combination of Sl and 5" is holomorphic

= ΰ - , - - Γ ή - m

= 0,

wherejve used the special geometry relation35 (6.17), the definitions of Sl and S11

and dC\n = 0. Now it is straightforward to check Eq. (6.21) as

Here we once again used the special geometry relation36.
To summarize, in the one-modulus case, the propagators Sn , 51, and S are given

as

Sn =

(vdlog(eκ\f\2))] ,
J

5= ί1 - D,Sn - (S 11)2^,, d}og(eκ\f\2)+

35 0,5" =(Θ-2Γ}1 -2dK)Sn. Therefore (d, D,]5U =2G,iSn - 2CmC\ 5".
36 Dj5' = (9 - Γ," - 2SJQS1. Therefore [δ.DΠS1 = -CmϋJ's1.
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In the multi-moduli case, (6.18) gives

n

G^ + Jl . (6.23)
α=l

In order to obtain an expression for SIJ' from this equation, we need to "invert" the
Yukawa coupling. Although we do not know if it is possible to do so in general, it
is certainly possible for the A-model discussed in Sect. 4. In this model, each chiral
field corresponds to a Kahler form in the target space and, in the large volume limit,
the Yukawa coupling Cτjk is given as an intersection of the three Kahler forms. There
is a distinguished Kahler modulus t1 in this model corresponding to an overall scaling
of the target space metric. In the large volume limit t1 — » oo, the Yukawa coupling
Cij\ then gives the inner product of the two Kahler forms k% and kj9 and it is non-
degenerate as an n x n matrix, det(Cij 1)1^=1,...^ ^ 0. Since det(Ciji) is holomorphic
in t, this means that det(CV,0 should be non-zero almost everywhere on the moduli
space. Therefore we can invert Cι3\ in (6.23) to find an expression for Sτ3\ provided

we made an appropriate choice of f l

k l .

As in the one-modulus case, we substitute (6.23) into d-τS
3' = G-^S13 to obtain

=G-tldk

α=l

This can be easily integrated as

n

S«Ctjk =d3 log(eκ\f\2)dklog(eκ\f\2) -^vk,«di [vl'adι\og(eκ |/|2)] +
α=l (6 24)

Here /jfc is a meromorphic section of Sym2Γ*. As in the case of S13 in (6.23), with

an appropriate choice of /^, we can invert the Yukawa coupling in the above and
obtain an expression for Sτ.

To complete the Feynman rule, we need S which satisfies

diS = G-^ . (6.25)

A special solution to this equation is given by

(6.26)

Let us check that this satisfies (6.25). As in the case of one-modulus, the following
combination of S1 and S13' is holomorphic due to the special geometry relation and
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= 0,

dι[(n +

1

7̂ .7 rimn /

= (n+l)G-ik&
k - ldi,Dk]&k - G"Gk~kdkC- k-

= 0.

We can then compute d-S as

+ sisklcjkl + s*cllcjkι - sisklcjkΐ)

Here again, we used the special geometry relation for [c?-, Dj].
Thus we have prepared all the ingredients we need for the Feynman rule of Fg.

In the next section, we will construct Fg explicitly in several examples.

7. Examples — The Experimental Evidence

In this section we show how to compute a higher loop partition function Fg (for
small g) for some examples. We will elaborate in details how the perturbation theory
developed in previous section works. The simplest and most trivial example would
be a three dimensional complex torus. In this case there is nothing to compute. All
loop partition functions are identically equal to zero due to fermion zero modes. The
simplest way to get a non-zero answer is to orbifoldize the model. Below we will
consider two examples — the Zs ® Za orbifold model and the quintic — in detail,
and comment on some other models also at the end.

7.7. Orbifold. Let us start with some definitions. The Z3 ® Z3 orbifold is obtained
by dividing T2xT2xT2, with each torus having a Z3 symmetry, by the discrete group
generated by g = diag(l,α;,α;2) and h = diag(cc;,α;2,1). This model has 3 untwisted
Kahler moduli corresponding to the moduli of each of the tori and 81 corresponding
to the blow up modes. This orbifold is rigid and has no complex moduli. The Euler
characteristic χ = 168. We will denote the Kahler moduli of each of the three tori by
rα (α = 1,2,3). The Kahler potential is given as follows:

The only non zero component of Yukawa coupling is Cm - 1. Zamolodchikov's
metric is diagonal and is equal to

G - ϊ£?
ab (To. ~ f0)

2
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We also need the genus one partition function, which is equal to

FI = -« ̂  log(τa - fa)\η2(τa)\2 ,
α

where K = 4 for this orbifold. In spite of the fact that it is easy to solve the equations
for F2 and F3 directly, we first review the ingredients of perturbation technique. In
case of orbifold the equations for different components of propagator Sab , Sa and S
are very simple,

1 9βk _ 9α

(7.1)
c -- - — , , -- - —. , a - - - — .,

(τc - rcγ (τb - rbγ (τa - τα)
2

where (abc) is a permutation of (123) and Sab = 0 for α = 6. Integrating these
equations we obtain

where (abc) is a permutation of (123). At every integration step the holomorphic
piece was fixed by, modular invariance. For example, integrating the equation for
Sab we obtain Sab = -l/(τc - fc)

2 + /(τc). The untwisted moduli space of Kahler
structures for this orbifold is the product of three copies of fundamental domain in
the upper half plane modulo a symmetry group. The condition of modular invariance
fixes /(r) = 2τ/(τ)/rχτ). Similar arguments lead to the answers (7.2). It is easy to
verify that all diagrams give rise to the same type of contribution and therefore F2 is
proportional to 5 (this is in fact a peculiarity of the orbifold example). One can also
solve the equation for genus two directly. In this case the anomaly equation reads

a c .
2 (rα - rα)

2

Taking into account the explicit form of jFΊ , one can easily integrate the above equa-
tion37

37 If we considered the non-abelian orbifold obtained by the above one modded out by a further symmetry
which permutes the three tori, we would have ended up with one untwisted modulus and then Fg

would be a modular function of weight 6g — 6 with respect to this modulus. In this case even at genus
2 we would have to fix the coefficient of holomorphic contribution to F^ as there is a modular form
of weight 6.
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The equation for genus 3 is given as follows:

l

a c2 (ra - τaγ τb -τb τc- τc

dbF{(dc + —^-)F2 + dcFι(db + — ~)F2] .
τc — τc τb - τb

As usual (abc) is a permutation of (123). After substitution the genus-two solution
obtained above, Eq. (7.3) becomes

- - — α ι , _ _ c _
(τα - τaγ τb -τb τc- τ

TC — τc τb — rb

The expression in brackets does not depend on τa and therefore we only need to solve
the equation

δα/ = ~ - l-=-^daFl. (7.4)
4κ (rα - rα)

2

We must be careful at this point since the solution is not unique. The reason for this
is the existence of modular form of weight four ηff(τ)/η(τ) — 3(τ/(τ)/?7(τ))2. The
general solution for (7.4) is given as follows:

= V x(daFl)
2

where x is an arbitrary parameter. The condition of permutation symmetry forces the
coefficients in front of the two terms to be equal to each other. As a result we obtain
a fully symmetric solution for genus-three partition function

where CO is an arbitrary constant and it can not be determined from the anomaly
equation.

This phenomenon persists at every genus whenever there is a modular form of
appropriate weight. Unfortunately we do not know the asymptotic behavior of Fg for
the orbifold to fix the ambiguity. An analysis along the line of Sect. 5 done for the
orbifolds would be needed to fix this ambiguity.

7.2 Quintίc. Quintic hypersurface can be described as the vanishing locus of a ho-
mogeneous polynomial of degree 5 of five variables W(xτ) = 0 which determines
the embedding of complex 3-fold in P4. This Calabi Yau 3-fold has 101 complex
moduli, all these moduli can be thought as the coefficients of the polynomial, and 1
Kahler moduli, which can be thought as the Kahler class of P4.
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To construct the mirror manifold one starts with a 1 -parameter subfamily of quintic
hypersurfaces given by

W(xi) = / J a ^ — 5^X0X1X2X3X4 = 0

All these Mψ hypersurfaces are invariant under the discrete group Z^. Following the
construction of [51] one may obtain the mirror family Wψ by dividing out the discrete
symmetries.

The mirror manifold W has only 1 complex modulus and 101 Kahler moduli. One
can describe the mirror family Wψ using the same complex parameter ψ as for Mψ
(for construction of mirror map see [7]). The variations of φ can be identified with
deformations of complex structure of the mirror W. The multiplication of ψ by a fifth
root of unity α = e2ϊ7Γ//5 can be always undone by appropriate change of variables
Xi and therefore Ψ — > aψ is a modular transformation. All physical observables are
invariant under ψ — > aψ. The modular parameter ψ describes a degenerate Calabi-
Yau 3-fold only for ψ = 1 and ψ = oo. For ψ = 1 the corresponding Calabi-Yau
is conifold, while for ψ = oo the corresponding Calabi-Yau manifold is a singular
quintic. In spite of the fact that ψ and aψ correspond to the same complex structure
the point ψ - 0 is a regular point corresponding to one of Gepner's model.

The purpose of this section is to present the computations of numbers of holo-
morphic curves of low genus in the quintic hypersurface. To be more precise there
are no holomorphic isolated curves for genus bigger than one. The numbers we com-
pute are in fact the Euler characteristics of the corresponding families as discussed in
Sect. 5.10. We will follow the following logic in this section. We first compute the
elements of the diagram technique for fixed ψ but in the limit ψ — » oo. We discuss the
holomorphic ambiguity by requiring regularity Fg(φ) everywhere except ψ = 1 and
ψ = oo. Then by making a mirror transform and expanding in instantons we extract
the numbers in question.

The holomorphic three form Ω is taken in the gauge

In the same gauge the Yukawa coupling is equal to

Different components of the propagator are expressed in terms of the Kahler po-
tential, Zamolodchikov's metric and two sections / £ C and v G T* (see formulas
(6.19), (6.20) and (6.22)). The Kahler potential always enters into invariant combi-
nation eκ\f\2, while the metric enters in the invariant combination Gψψ υ\2. As ψ

goes to 0, eκ diverges as \φ\~2, while the metric remains finite. The condition of
regularity at the origin implies that / should necessarily have a zero at ψ = 0, while υ
remains finite. The regularity condition at the origin and the absence of any additional
singularities except possibly at ψ = oo and ψ = 1 implies the following ansatz for /
and υ

ψ(l - ψ5T , v(ψ) = (l- ψ5)b ,

where a and b are some constants. The precise choice of these sections is irrelevant
since any holomorphic ambiguity can be reabsorbed into the section /2 which we add
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to the final answer Fχ. From the general formulas (6.19), (6.20) and (6.22) one can
immediately deduce that for small ψ

-) , ^ΈT^^ΈT and S ̂  const .

The behavior of the perturbation series near singularity φ = 1 follows from the
general arguments presented in Sect. 5 (see Eq. (5.24)). In order to apply the formula
(5.24) we need to find the canonical coordinate near - 0 = 1 which is an interesting
example of how different a canonical coordinate can be from the special coordinate.
In fact the canonical coordinate at this point is just

as can be seen from the fact that in this coordinate Γ*t and all its holomorphic
derivatives go to zero as ψ —> 1. Taking into account the explicit form of the Yukawa
coupling which in the ψ coordinate behaves as

and that

and using formula (5.24) we find that

F9~~r T3^3

as φ —> 1.
To discuss the large ψ limit let us recall that special coordinates of special geom-

etry are nothing else but canonical coordinates around infinity. One may regard the
mirror map ψ —> t as a transformation to canonical coordinates. Using the general
properties of canonical coordinates we conclude that Zamolodchikov's metric G^

and Kahler potential K(ψ,ψ) have the following expansion:

,dt dψ -/.—3\

where C is some constant and WQ(Ψ) is the solution of Picard-Fuchs equation (we
are following the notations of [7]). The passage to canonical coordinate implies the
change of gauge in such a way that all holomorphic derivatives of K vanish. Namely

K —> K + log WQ + const

(see the discussion at the end of Sect. 2). The choice of const is equivalent to the
choice of string coupling constant, and we will choose it in such a way that Yukawa
coupling has an integral expansion (const = 3 log(2πz/5)).



398 M. Bershadsky, S. Cecotti, H. Ooguri, C. Vafa

In computing the higher genus amplitudes of this example it is convenient first to
take the limit t — > oo while fixing t. This is useful because in this limit as discussed
in Sect. 5.10, there is some information about the behaviour of Fg (as counting of
holomorphic maps of genus g in Calabi-Yau). We use this correspondence to fix the
holomorphic ambiguity in integrating the anomaly equation.

To consider the ϊ — » oo we use the results discussed at the end of Sect. 2 to
simplify the formulas for different components of the propagator. Indeed, plugging
these expansions into (6.19) and (6.20) we obtain the following result:

Iog(f/w0)] .

There is not much simplification in the expression for 5. Namely,

S = is* - DΨS^ - (Sψψ)2Cψψψ\ dψ Iog(//Π70)

In the large volume limit (φ — > oo) the propagators S^ ~ ψ2, S^ ~ ψ and
S ~ const and therefore all Fg go to const.

The genus zero and one have already been discussed in [7] [20] respectively. So
we consider the genus 2 for which the techniques developed in this paper are crucial.
The genus two partition function is given by Eq. (6.7)

F2 = SW&φφ + ClψS+*Clψ - S^Cψψψψ + ... + f ( φ ) ,

where f ( ψ ) is holomoφhic ambiguity. The most general form of the holomorphic
ambiguity consistent with the asymptotic behavior of Fg is given as follows:

B C
J2\ψ) ~ -̂  "*" /ι / ^ \ / ι / S\9 ' \' 3)

Now we are almost done. We just need to transform FΊ to canonical coordinate t
and canonical section for the bundle. Note that F^ is a section of a line bundle £~2.
Taking into account the change in the gauge in going to canonical coordinates we
obtain F2 . 2

(7.6)

Note that the ambiguities in the choice of the sections / and v given by two coefficients
α and 6 should simply shift F2 by a holomorphic function and thus should be possible
to absorb in A, B and C. That this should be possible leads to a strong check both
for the Feynman graph techniques discussed in Sect. 6 in solving the Fg, as well as
for the computer code we wrote. So we set α = b = 0 and we are thus left to fix the
three unknown coefficients A, B and C.
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To do this we need to know the structure of instanton expansion. First of all there
are no genuine genus two curves of degree 1, 2 and 3. The contribution of degree
1, 2 and 3 comes entirely from the bubbling of the sphere or a torus (in case of
degree 3). We take into account these bubblings and demand that the denominators of
coefficients of such terms can at most be 1/5760 consistent with some characteristic
class computation on moduli space of genus 2. Now it is natural to expect that
after subtraction of these contributions the rest of the expansion be with integral
coefficients as would follow from 'counting' holomorphic curves. Of course there
is no guarantee that this is correct to impose, because indeed there are continuous
families of holomorphic curves and we are computing the appropriate Euler charac-
ters as discussed in Sect. 5, and these could be fractional if the corresponding moduli
space has orbifold points. Anyhow to proceed we assume that at least in the case
of the quintic these coefficients are integral and we end up uniquely fixing all the
coefficients. We obtain A = -71375/288, B = -10375/288, C = 625/48, and get

<">
where dn counts the number of holomorphic rational curves of degree n, Dn counts
the number of holomorphic curves of genus 2. We found that there is no toroidal
bubbling, which can also be argued on physical grounds38. In the above search we
did not impose by hand the large volume behavior ί, t — -> oc computed in Sect. 5.
Indeed it was shown there that the leading term should be χ(M)/5760 which in our
case is —5/144 in agreement with what we found, thus lending further support to the
assumptions we made in fixing the coefficients of bubbling. Moreover the number
1/240 is also very natural as it is minus the Euler character of moduli space of genus
2 curves. It would be very interesting to understand this. Also the structure of the
multi-bubbling is very simple, though different from what has been encountered in
genus 0 [7] and 1 [20]. It would also be important to derive this structure. At any
rate the results of this computation for Dn are summarized in Table 1 .

As we have just seen the knowledge of the instanton expansion allows us to fix
holomorphic ambiguity. Holomorphic ambiguity at genus g can be written as follows:

-
In general there are 2g — I unknown parameters. To fix this ambiguity uniquely one
needs to know the precise structure of the instanton expansion. What is lacking in
particular is how the lower genera contribute to genus g (bubbling). Even if this is
fixed, to completely fix the Ag we need to know the first few coefficients for the
number of holomorphic curves of genus g to fix all the rest.

The asymptotic behavior of Dn(g) (i.e. the coefficient of asymptotic expansion
for large n and fixed g) is determined by the structure of singularity around ψ = 1.
As was argued the asymptotic behavior of Fg as ψ — > 1 is given by

38 If there were toroidal bubbling then we would end up with a moduli space which has as a factor
a torus. However, since we have to bring down factors of curvature from the action to absorb the
fermion zero modes, and since the curvature vanishes for the torus, we just get zero.
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Table 1. # curves of genus g on quintic hypersurface

Degree

n=0
n=l
n=2
n=3
n=4
n=5
n=6
n=7
n=8
n=9

large n

Degree

n=0
n=l
n=2
n=3
n=4
n=5
n=6
n=7
n=8
n=9

large n

# = o
5

2875
609250

317206375
242467530000

229305888887625
248249742118022000

295091050570845659250
375632160937476603550000

503840510416985243645106250

α
0
n-

3
(lognΓ

2
e
2
— "

9 = 2

-5/144
0
0
0

534750
75478987900

871708139638250
5185462556617269625

90067364252423675345000
325859687147358266010240500

α
2
n(logn)

2
e
27mα

9= 1

50/12
0
0

609250
3721431625

12129909700200
31147299732677250

71578406022880761750
1 5499054 1 752957846986500

3240644643 10279585656399500

αm-'e
2
™""

9

-100 -[c
3
^]

αX*-
3
(logn)

2
*-

2
e
2
— '

The last factor ((2πz/5)3π7o)2^ 2 is nothing else but the gauge transformation. In
the limit ψ — » 1 this factor tends to a constant and therefore it does not affect the
asymptotic behavior. On the other hand the structure of singularity around ψ = I
is dictated by asymptotic behavior of Dn(g) coefficients. Assuming the reasonable
ansatz Dn(g) ~ np(logn)σeσ27rnt(1) we immediately get39

dnnp(logn)σe 2πnl

1

ψ-l

p+l

- 1)]
σ — p— 1

Comparing the last two formulas we obtain p = 2g — 3 and σ = 2g — 2. Thus the
asymptotic behavior of Dn(g) is given as follows:

Dn(g) - a n29~3(logn)2g~2e27Γna , (7.8)

where ag and a = ί(l) are constants which are not universal in the sense that they
depend on the manifold under consideration. Morally speaking the degree of the
map n coincides with the notion of the area of the embedding measured in some

The contribution from lower genera is subleading for ψ —> 1.
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units. In this interpretation Dn is nothing else but a fixed area partition function.
Asymptotic dependence (7.8) of Dn(g) on the degree of the map is the same as the
area dependence for the c = 1 model coupled to gravity. It even reproduces correctly
the logarithmic scaling violation [52], which is specific for the c = 1 model. This
fact is not very surprising; c = 3 N = 2 topological models are closely related to
the c = I model coupled to gravity. In fact it has been shown that a particular c = 3
twisted N = 2 theory is equivalent to the c - I model coupled to gravity [53]. To see
the logarithmic scaling violation, consider Fg as a function of cosmological constant
A which can be identified with 2π(t — α). For large areas (n) one can replace the
summation by the integral

Γ ί A \2~29

Fg(Δ) ~ / dnn29-\\ogn^-2e~nΔ ~ ί j—^ J

The real scaling behavior is determined not by Δ but by μ = Δ/ log Δ exactly like
in the c = 1 model. The Δ dependence of Fg coincides with ί-dependence (up to
irrelevant shift and reseating). Then the logarithmic scaling violation is entirely due
to the structure of the canonical map around ψ = 1. Indeed, (φ—l)~ (t — ά)/log(ψ —
I) ~ (t — a)/ log(t — α) ~ μ around ψ = 1 (where t here is the canonical coordinate
defined for t -» oo).

In cases where there are more than one Kahler moduli, fix a direction in the
Kahler cone of if 1?1(M, Z). Let us denote this direction by (ni,..., nr), where uι are
integers. For large n the asymptotic behavior for Ai.(nlv..,nr)Q7) f°r fiχed (ΉΊ, ..., nr)
is thus expected to be given by the expression (7.8). The exact values ag and a clearly
depend on M and the direction chosen in if1'1, while the powers 2g — 3 and 2g -2
are expected to be universal. It would be important to check this conjecture in full
generality.

7.3 Other examples of Calabi-Yau models. Here we briefly describe the results of
genus two calculations for some other Calabi-Yau models. Let us first consider some
hypersurfaces in project!ve spaces. These Calabi-Yau spaces are described as the van-
ishing loci of quasihomogeneous polynomials which describe (up to deformation) the
embedding of Calabi-Yau 3-folds in a weighted projective space

k = 5 : WQ = zl + z\ + z\ + z\ + z\ = 0 ,

k = 6 : WQ = 2zt + z6

l+zl + zl + zl = 0,

k = % : Wb = 4*g + *? + ̂ +*f + *! = 0,

jfc = 10 : Wo = 5zl + 2z\ + z\° + zl

3° + zf = 0 .

These models were earlier investigated in connection with g = 0 holomorphic maps in
[54, 55]. The higher genus computations for these models are parallel to the quintic
case. The most general holomorphic ambiguity consistent with asymptotic behavior is
given by (7.5) (with 5 replaced by fc). Again to fix the ambiguity we must know some
additional data (the large volume behavior of genus two partition function fixes only
A). In case of the quintic we knew that there are no genuine genus two curves
of degree 1, 2 and 3. Now there is no such information available. It is known that
there are families of genus two curves of degree 1 and 2 for cases k = 6 and k - 8.
There are no reasons to believe that their contribution to genus two partition function
is zero. We denote their contributions by TV and M respectively.
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As in the quintic case the genus two partition function has the structure

The coefficient 1/240 in front of the spherical bubbling is universal and independent
of the model. We found that after subtraction the genus zero contribution (bubbling)
F2(q) = χ(M)/5760+^r Drq

r has almost the integral expansion, except for the k = 6
model. The results of calculations are summarized in the following (/-expansions:

+ (14735432142+ 18504 M- 97465842 N)q3+

N

V 2 (7.10)

+ (3199366969602589296 + 26545490985 12 M -

- 2039944663753 1235 N )q5+

+(3472081741 1136316872780 + 27042685856051310 M -

- 219919127006205233856 N)q6 + - -
for the k = 6 model,

+ (2297430758208 + 102816 M - 29822398727V) q3+

+ (222468094578584808 + 7410413536 M - 282015713196032 N) q4+

+ (15516453237414083197120 +4590692535 11 168 M-

- 1944723 1842568395440 N) q5+

+ (941762378252908894389530784 - 26 12924891 9673002880 M -

- 1171714563944600408125440 TV) q6 +
for k = 8 and

+ (2869664890712800 + 1271200 M - 447052624000 N) <?
3
+

+ (3508008133715103890200 + 1 1 43497004000 M -

- 529021878501 120000 TV) q
4
+

+ (3098620653232515436678572256 + 8877039 1 9048960000 M -

- 457872639654043275150000 N) q
5
+

+ (2385179845759540102344438070862400 + 63457243963762 1 668400000 M -

- 346846888907287393959739633664 N)q
6
 +

(7.12)
for k = 10. In fact we checked that all coefficients are integer up to g10, except for
the coefficient q4 in the k = 6 model (provided that N and M are integers). This
in particular suggests that there must be continuous families of holomorphic maps in
this case where they have at least Z2 orbifold points, and they contribute a 1/2 to the
coefficient of q4. It would be interesting to verify this.
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Another example which is amusing is the Z3 orbifold which is obtained by mod-
ding out T2 x T2 x T2 by a diagonal (ω,ω,ώ). In this case explicit computation of
F\ shows that it is zero. Now the anomaly formula for FΊ implies that FΊ is purely
holomorphic, and indeed this is exactly zero as can be seen by a direct computation of
the orbifold model at all g. This in particular means that even though there was room
for Fg to be non-zero consistent with the anomaly equation, as there are appropriate
holomorphic functions, nevertheless it vanishes.

There are other interesting models that one may wish to consider. A particularly
interesting class is where there are no marginal operators in the twisted theory. This
can happen, for example, in the context of J5-models for Calabi-Yau which are rigid.
In such cases the Fg is simply a number (up to multiplication by the string coupling
constant λ2p~2), and summing over all g will lead to a function F(λ). This may be
an easier case to study. In particular since there are no marginal directions, there are
no anomalies either. A simple realization of this type of model is again given by the
Zs x Z3 orbifold model discussed in this section, but with the .0-twist instead of the
A-twist. The Z3 orbifold in the J3-twist is also rigid but in this case one can show
again by explicit computation that Fg = 0.

Note that in the A-model twisting and for smooth manifolds, we can compute
Fg for all g up to exponentially small corrections, in the limit of large volume, as

Fg —> |χ(M)[c^_1], in terms of some cohomology computation on the moduli of

Riemann surfaces. In particular if χ(M) ^0 (and barring an accidental zero of [c^_J)
we see that Fg ^ 0. It would be interesting in this connection to study Calabi-Yau
manifolds with x = 0, as this argument also shows that Fg = 0 up to exponentially
small terms in the large volume limit.

8. Physical Implications of Topological Amplitudes

One of the main motivations to study N = 2 SCFT's comes from the fact that
they serve as building blocks for string vacua. In this connection particular objects
which have natural interpretations for the TV = 2 SCFT's turn out to also have some
interesting phenomenological implications in string models. One such object is the
Yukawa coupling. If one considers heterotic strings compactified on a Calabi-Yau 3-
fold, with gauge connection identified with the spin connection of Calabi-Yau, then
the chiral primary fields of charge 1 give rise to massless generations and the chiral
ring coefficients djk give the Yukawa couplings between the different generations.
Given the fact that Yukawa couplings are simply the three point function of topological
gravity, it is natural to expect that all the other computations of twisted TV = 2 theories
coupled to gravity also have similar physical significance for an appropriate string
theory. In particular we would like to discuss the significance of Fg in connection
with standard string theories. Before we discuss this let us note where we could look
for such contributions in the effective field theories arising from string theory.

Let us note that the massless fields tl(xμ) in general end up as the lowest compo-
nent of chiral superfields from the spacetime point of view. In general in supersym-
metric theories we can have F-terms, i.e., superpotential terms, which involve only
chiral superfields, i.e. are holomorphic functions in t\ Now morally we expect Fg

to be a holomorphic function of tτ (ignoring the holomorphic anomaly) and so we
expect that Fg is a contribution to a superpotential. This observation, together with
the fact that Fg is a section of a particular bundle essentially fixes what term we
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get in the effective Lagrangian. However instead of guessing we will show this more
directly below. So before we proceed further, the dictionary we expect is

Topological Computations <-» F — terms in field theories.

We will discuss both the case of closed and open strings. Afterwards we consider the
computation of threshold corrections for heterotic strings at one-loop and its relation
to FI and Ray-Singer torsion. The case of the closed string has also been recently
discussed in detail by [56].

8.1 Type II string Interpretation. We start by asking which string theory Fg should
be related with? Given the fact that it is left-right symmetric, and it is related to the
twisting of a supersymmetric sigma-model for closed string theory, one is naturally
led to consider type II strings compactified from 10 to 4 on a c = 3 internal theory. We
thus are searching for low energy effective field theory terms that Fg is computing.
Compactifying type II on c = 3 theory gives rise to a low energy field theory in four
dimensions with N = 2 supergravity. The chiral fields tl are scalar fields for this
supergravity (for aspects of N = 2 supergravities that one obtains by compactifying
on Calabi-Yau manifolds see [57]). The N = 2 supergravity multiplet in particular
contains a Maxwell field which is called gravi-photon. We will denote the field
strength for this field by T. This field arises from the Ramond-Ramond sector of type
II string and the vertex operator for this field, in the limit of vanishing momentum
k — > 0 is proportional to

where φ is part of the bosonized /?, 7 field [58] and where S (S) denote the left-
moving (right-moving) 4d spinor vertex operators and σ (σ) denotes the unique vertex
operator for the left-moving (right-moving) charge 3/2 (3/2) Ramond vacuum state
for the internal N = 2 theory (with c = 3). Indeed this vertex operator is the same as
the FMS [58] spin operator (taking into account the fact that the internal theory is a
general c = 3 rather than flat space). Note that σ, S and exp(— φ/2) (together with
their right-moving counterparts) generate the spectral flow from the N S sector to the
R sector. We will use this vertex operator to go between the twisted theory and the
untwisted theory.

There are a number of differences between the twisted theory and the ordinary
type II strings. First of all there are more fields in the ordinary theory. In addition
to an untwisted N = 2 SCFT with c = 3, in type II strings we have the fermionic
diffeomorphism ghosts (6, c) of spin (2, —1), the bosonic super-diffeomorphism ghosts
(/?, 7) of spin (3/2, — 1/2), and the space-time fields, which we take to be two complex
bosons Xτ of spin 0 and two complex fermions φl and their conjugates x^ of spin
1/2 with i = 1, 2. Of course the same content of fields is needed for the right-moving
part which we denote by barred fields. If we could twist the 1/2 integral spin fields
by half a unit, then their spins would be the same as the integral spin fields but
with opposite statistics, so they would tend to cancel out of the partition function. In
addition we would need to twist the internal N = 2 theory which is also the same
as shifting the 1/2-integral fermion spins of the internal theory. Both of these can be
accomplished by insertion of (2g — 2) vertex operators for gravi-photon V£+ (modulo
some subtleties mentioned below). The way to see this is that the spin content of
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fields can be changed by addition to the action of

ί/
where φ denotes the bosonized version of the fields. We can choose the curvature R
to have delta-function like support at 2g — 2 points. But each such point is equivalent
to the insertion of Vf+ as mentioned before. However, to write it in a conformally
meaningful way, given that Vf+ is dimension (1, 1) we have to integrate it over the
surface (which is equivalent to choosing the delta- function support for R by averaging
over all points); we thus have found the dictionary that

•λlg-1
VT+\ ' ' ' )untwιsted = (' ' ')twisted ' ^8'2)

This means that the determinant of non-zero modes of the extra fields which were not
in the original twisted internal N = 2 theory cancel out, leaving us with the twisted
internal theory. However, we have to pay particular attention to the zero modes of the
extra fields we have introduced: There are zero modes for 6, β and the ψ, χ system
that have to be absorbed in order for the partition function not to vanish. Let us first
deal with the ghost zero modes.

The b zero modes give rise to the measure over moduli space. In fact if μ^ denote
the basis for Beltrami-differentials, we have to insert in the superstring measure a
factor of

6(μι). . .

to absorb the 6 zero modes. For the β zero modes we usually have to insert 2g — 2
factors of δ(β) - G, where G is the TV = 2 supersymmetry current for the full theory.
But that is true for the partition function with no operators inserted. In our case
inserting 2g — 2 vertex operators Vf+ which are in the —1/2 picture means that we
need to insert 3g — 3 factors of δ(β). Moreover the fact that /3, 7 is effectively twisted
means that we can choose the same basis for the Beltrami differentials to fold with
them. Moreover by charge conservation for the internal twisted theory only the G~
component of the internal theory gives non-vanishing amplitude, so we end up with

\δ(β(μ{)) -

With this choice of Beltrami-differentials the zero modes of 6 and δ(β) give oppo-
site contribution and thus 6, c and β, 7 completely drop out of the picture, having left
us with the twisted N = 2 theory with 3g — 3 insertions of G~ which is precisely
the prescription we had for computing Fg of the twisted string coupled to gravity.
However we still have to get rid of the space-time fermion zero modes. There are
g of ψz (which has spin 1) and one of χ^ (which has spin zero) zero mode for each
i (and similarly for the right movers). To absorb the χ zero mode and one ψ zero
mode we can insert the operator

Γ i ~i'- ί —/ —
XtΦ X? J ΨJXjΨ X-3> - (8-3)

Note that up to factors of momentum, this operator is precisely the insertion of
two graviton vertex operators. We are left to absorb g — I extra zero modes of ψl.
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Taking into account that after twisting ψl has spin 1, one is tempted to introduce

g — I operators of the form f ψτψ3, but unfortunately this does not have a well-
defined meaning as a vertex operator for the untwisted theory. Instead, motivated
by a suggestion from the authors of [56], we can make the insertion of g — 1 of

ψlψ2ψ ψ operators at g — 1 of the points where we have taken the delta-function
curvature singularity. This choice will have the property of absorbing the unwanted ψ
zero modes, without getting an operator which does not make sense in the untwisted
theory. This is because choosing this position for the g — 1 curvature singularities
will convert g — 1 of Vf+ to Vγ~ which is the vertex for gravi-photon field with
opposite self-duality property. In this way we can absorb all the zero modes and end
up with Fg. We thus see, putting all this together, that

F9 = ([J ^τ++]9"' [/ Vf-]9~leveifj,Wl, f Vxtf'x? f

(8.4)
Putting the momentum factors this means that Fg is the coefficient in the low energy
effective action for a term of the form R2(T2)9"1. This completes the derivation
of the relation between topological partition function and field theory. However we
should note that in the above derivation we were somewhat careless in some points:
We assumed that we can twist fields simply by adding ^ J Rφ term to the action,
but as is well known this is true up to boundary terms. The boundary terms are in
fact responsible for picking which point on the Jacobian of the twisted field we end
up with (i.e. the choice of the flat bundle) — we have to make sure that we end
up with the trivial flat bundle tensored with the appropriate power of the canonical
bundle. Secondly, a point which is related to this, is the fact that we have to sum over
spin structures in the untwisted theory. Somehow this is already taken into account
in the twisting, because viewing the twisting as choosing a background gauge field
set equal to half the gauge connection is ambiguous up to a choice of a Z2 bundle,
which is just the choice of spin structure. This ambiguity should translate to a sum
over spin structure to get a correspondence between the twisted and untwisted theory.
To make sure that these points do not affect our argument one will have to go to
more detail and check the explicit factors arising in the twisting. Fortunately this has
been considered very carefully in [56] using bosonization techniques which confirms
the above heuristic arguments.

As argued at the beginning of this section we should expect a term in the
superpotential which gives rise to the effective action of the form R2(T2)9~l. In
fact one can find an F-term which gives rise to such a term:

[Fg(W2)g]F (8-5)

where W2 is the square of the Weyl superfield (W2 is a composite chiral superfield
of weight 2), and [ ]F is the F-density for conformal N = 2 supergravity. Notice
that this coupling makes sense since, Fg is a section40 of C2~2g, which — in the
language of conformal N = 2 tensor calculus [14] — means that it is a chiral field of
weight 2 - 20, so that the combination Fg(W2}9 has weight 2 and hence defines an
invariant F-term [14].

In more traditional terms, Fg is represented in superspace by a homogeneous function of the vector
fields Xj of weight 2 — 2g. The Fg we use throughout the paper is obtained from this homogeneous

function by choosing a gauge for the line bundle C.
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However, Eq. (8.5) makes sense only if Fg is a chiral superfield, which happens
only if Fg is a holomorphic function of the chiral fields tl. But as discussed in Sect. 3,
Fg is not holomorphic because of anomalies. Then (8.5) cannot be the correct form of
the supergravity coupling corresponding to the amplitudes we discussed above. How-
ever we have to recall how one deals with a field theory which has flat directions, as
is the case here. In such cases there are inequίvalent vacua determined by what the
expectation value of the massless fields are. Suppose we have chosen such an expec-
tation value, which we denote by (ίo?ϊo) Then we can expand Fg holomorphically
about this base point. What this means is that we consider (in canonical coordinates)

Thus Fg is now a holomorphic function of superfields xz, and we are thinking of
(to, to) as a base point for expansion of Fg and not as a superfield. This view of
the effective Lagrangian we are presenting is motivated from the fact that in the
construction of solutions to the anomaly equation, discussed in Sect. 5, a function W
was introduced which was a holomorphic function of xl. So in particular we end up
with the superpotential for the N = 2 supergravity, including all loop contributions:

;tv,tώ]F , (8.6)

where here λ"1 is a section of C~l and plays the role of compensating field in the
supergravity theory [14] (one-loop contribution can also be included here by addition
of a term proportional to log λW).

8.2 Open super string interpretation. As discussed in the previous section, we can also
consider the twisted N = 2 theory for the open strings. It is also natural- to ask what
is the interpretation of the F% in the low energy effective theory of some super string
theory. The natural superstring theory to look for in this context is the 10-dimensional
open superstrings compactified on an internal N = 2 SCFT with c = 3. This theory
gives rise to a 4-dimensional low energy theory of TV = 1 supersymmetric Yang-Mills
coupled to supergravity. Actually as is well known to get a consistent theory we need
to consider unoriented strings. Also if we wish to avoid anomalies we need to take the
gauge group O(32) which brings us to one of the most interesting superstring theories.
Our considerations in the following will also apply to the more general gauge group
of O(N).

Unoriented strings will have worldsheets which include both orientable and non-
orientable surfaces. Let us concentrate on the contribution from orientable surfaces
which we have discussed for the twisted TV = 2 theories. To simplify further let us
first consider the case with no handles g = 0 with h boundaries. We will use the same
idea as in the closed string case, in other words add the extra fields which are present
in the superstring compared to the N = 2 twisted topological model, and then put
appropriate insertions to twist the | -integral spin fields to obtain integral fields which
cancel among each other except for zero modes, which have to be checked separately.
The field analogous to the graviphoton in the open string case is the gaugino field,
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Fig. 19. The worldsheet for open strings with g = 0 and h - 5 boundaries, two of which are the two
boundaries of the cylinder and three of them (ft, ft, ft) are slits on the cylinder. The twisted theory
corresponds to putting gaugino vertex operators Vψ on the end points of the slits and gauge field vertex
operators VF on the boundary of the cylinder.

which we denote by the vertex operator V^, at zero momentum. This operator is the
spectral flow operator in the internal N = 2 SCFT, combined with the operator which
twists the spins of β, 7 ghosts and space-time fermionic fields ψ,χ. In particular this
operator is inserted where we choose curvature singularities of appropriate strength.

Let us consider the open string worldsheet shown in Fig. 19.
This is a cylinder with two boundaries and with h — 2 slits cut on it. We also mean

this geometrically, i.e., that the metric be the flat metric on the cylinder. However,
note that this introduces curvature singularities at the two end points of each of the
h — 2 slits. The reason for this is that the zero curvature on the boundary corresponds
to π radians, but here at the two end points we get 2π radians of worldsheet. So we
insert V£ operators at each of the two end points of the (h — 2) slits. This takes care
of the twisting of the internal theory; the ghost zero modes also cancel leaving us
with the measure for the twisted N = 2 theory coupled to gravity. So we only need to
consider the space-time fermion zero modes. There are h— I zero modes for each of
the two ψl and 1 zero mode for each of the χ-r. The χ- zero modes can be absorbed
by adding the operator

Each of these is the vertex operator of a gauge field Vp (up to momentum factors) at
zero momentum. Again as in the closed string case we need to absorb the remaining
h - 2 zero modes for each of the ψτ. Again, this can be done in a conformally
meaningful way only by including them at one of the two end points of each of the
h — 2 slits converting h — 2 of the VJ operators to Vψ operators. This will thus
conclude absorbing zero modes, and so we end up with

* F/untwisted i
s, Js, Js Js

where Sτ denote the interior slits and the S denotes one of the two boundaries of
the cylinder. Thus we see, taking into account the structure of the insertions at the
boundaries in taking the trace, that this gives rise to a term in the effective lagrangian
of the form

The non-orientable worldsheets do not contribute to this amplitude because the ab-
sorption of fermion zero modes does not have the right structure.

As discussed in the introduction we expect that the topological theory is computing
the coefficient of a superpotential term. Indeed there is a superpotential term which
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gives rise to the above interaction and that is given by

d2ΘF%(WaW
a)h-{ . (8.7)f

As discussed in the previous section, the partition function F^ is now going to be a
section of C2~h. This is consistent with the fact that W2 is a section of C (which
is also related to the fact that closed string coupling is the square of the open string
coupling constant). The discussion we had regarding the non-holomorphicity of Fg

in the closed string case applies word for word in the present situation and we will
thus not repeat it.

The appearance of (8.7) as a topological amplitude, which is in principle exactly
computable possibly using anomaly techniques discussed for open strings, is very
interesting. This is because such an interaction has a strong bearing on the question
of gaugino condensates, which has been proposed [59] as a mechanism to break
supersymmetry in the context of superstrings ! This would be very interesting to pursue
in detail. Also the heterotic version of this would have to be investigated [60].

8.3 Threshold corrections for heterotic strings. In the context of heterotic strings the
one-loop contribution to threshold correction for gauge coupling is related to the
topological amplitude we have been discussing. In fact it has been shown in [61] that
the one-loop corrected gauge coupling constant which depends on the moduli of the
internal theory can be written as

16π2 16π2 Mluτ^ log— ̂  + Δa , (8.8)2 α 2
9l

a(β) QGUT

where a denotes the gauge group in question, ka is the level of the group, ba de-
notes the contribution of massless modes to the threshold, and Δa which includes
contribution of internal stringy states is given by

— Ύr'(-l)FίFLQ2

aq
HίqHκ , (8.9)

T2

where the trace is in the R-R sector and is over the massive modes of the internal
theory, including the right-moving gauge group contribution and the four dimensional
modes, Qa denotes a gauge group generator for the group α, and the integral is over
the fundamental domain of moduli of tori. The ba in the above formula reflects the
fact that the zero modes lead to a divergence in the above formula which can be
removed by defining a running scale μ, and so

massless modes

It was shown [61] that Δa satisfies an anomaly equation in terms of its dependence on
moduli of the internal theory. Moreover it was shown that in the case of identifying
gauge connection with the spin connection of the Calabi-Yau, which breaks E^ x E%
heterotic string to E^ x E%, Δ(E6) — Δ(E%) satisfies the same anomaly equation as
12 FI, where F\ is the genus one topological partition function defined in Sect. 2.
It would be interesting to show this fact directly and moreover show that they also
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have the same holomorphic piece, i.e. not only dd[Δ(Eβ) — Δ(E%)] = \2ddF\, but
that Δ(E6) - Δ(Eύ = \2F\.

In order to argue this, it is worthwhile deriving the more general formula for
the behavior of Δa even if the internal theory is not (2, 2), i.e. when the gauge
connection is not identified with the spin connection of the Calabi-Yau but belongs
to some bundle V. The bundle V needs to be stable and ^C2(V) = ^(M) for a
consistent heterotic string vacuum [62]. To be able to relate Δa to what we have
computed and in particular to the Ray-Singer torsion, in this generality, we need to
take a particular limit, namely the limit of large volume of the Calabi-Yau. We will
compute the dependence of Δa on the complex moduli of Calabi-Yau in this limit.
Actually taking the large volume limit in the case V = T(M) is not a restriction as it
is well known that the complex structure dependence and Kahler structure dependence
of Δa decouple in this case. So for this case our remarks are quite general. We suspect
our answer is also independent of this limit in the more general case but we do not
have a rigorous argument.

Let us consider the internal theory to be a Calabi-Yau manifold with a vector
bundle V on it. Let H denote the holonomy of this bundle. This means that the first
ES gets broken down to

E8 -> G x H ,

where G is the maximal remaining group for which G x H can be imbedded in Eg.
We will for simplicity of notation take G to be a simple Lie group, otherwise we can
do what we are about to do for each simple factor of G. Thus the unbroken gauge
group in 4 dimensions is G x Eg. Now the adjoint representation of Eg breaks under
this decomposition to

where Ra (ra) denotes the G (H) representation.
Now consider the limit of infinite volume on the Calabi-Yau with arbitrary com-

plex structure. In this limit the computation of Δa is easy to do, because by adapting
the argument used in the derivation of the Kodaira-Spencer theory to the present case,
the interior part of the moduli space make no contribution to the answer, and only
degenerate Riemann surfaces contribute. In the case of moduli of torus, this means
that only TΊ — •> oo contributes, in which case (and after integrating over r\) only the
massless modes of the right-moving sector contributes and the internal theory simply
becomes the same computation as the Ray-Singer torsion discussed in Sect. 5.7. We
thus see that

) , (8.10)

where I(Vra) denotes the Ray-Singer torsion for the vector bundle V with represen-
tation ra and T(Ra) denotes the index of representation Ra (coming from Q^). Also
note that similarly for the unbroken Eg we have

Δ(E%) = T(Eg)/0 , (8.11)

where IQ denotes the Ray-Singer torsion with the trivial bundle. As discussed in [61]
only the difference between the threshold corrections is meaningful, and so physically
we should only consider Δ(G) — Δ(E%). This is our general result. Now we specialize
to the case where V = T(M), in which case G = E6. We have the decomposition

248 -> (78, 1) Θ (27, 3) Θ (27, 3) θ (1, 8) . (8.12)
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Also we note that since the spin connection is identified with the gauge connection
we have

/(Vo) = /o /(Va) = /(T*) I(VJ = /(T* Λ T*) . (8.13)

Using the values T(E8) = 30,T(£6) = 12,T(27) = 3, and making use of (8.13),
(8.12), (8.10) and (8.11) we find

Δ(E6) - Δ(E*) = (12 - 30)/0 + 3(/(T*) + /(T* Λ T*)) =

= 6( - 3/o + i/(T*) + 1/Cr Λ T*)) =

= 6(— /o + -I(T*) + -/(T* Λ T*) - -/(T* Λ T* Λ T*)) =

8.14)

where we used the fact that /(T* Λ Γ* Λ T*) = /0. This is what we wished to
show. Even though we derived this in the context of complex structure dependence
of the threshold corrections, by mirror transform, it may also be viewed as the Kahler
structure dependence. If we view it in this way we can then use the result of [20] to
estimate the dependence of F\ for large volume of Calabi-Yau. It was shown there
that (taking into account the factor of 2 difference in the definition of F\)

1 * 24

where k denotes the Kahler class of the Calabi-Yau manifold. Note that (as discussed
in [20]) /M k Λ c2 > 0. So we have

Δ(E6) -
/ M

Now we can use (8.8) to see that the effect of changing k beyond the Planck scale is

the same as getting an M^/J^cUve according to

ve = MGUT exp(—) = MGUT exp

where in this case b = 54+3(/&ι jι+ftι j2). We thus see that the effective grand unification
scale for this relatively general class of string compactifications is extremely sensitive
to the size of the internal manifold and moreover when we increase the size of the
internal manifold above Planck scale it tends to increase exponentially fast!

9. Open Problems

In this section we discuss open problems and directions for future research. Let us
first summarize some of the main results of this paper. We have considered N = 2
twisted topological strings. The partition function of these theories at a given genus
g is formally a )lomorphic modular function of weight 2g — 2 on moduli space
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of the conformal theory. However we find that there is an anomaly and that the
partition function is not necessarily holomorphic. What goes wrong with the formal
argument of holomorphicity is the assumption that total derivative terms vanish upon
integration over the moduli space of Riemann surfaces. Using the geometry of moduli
space of Riemann surfaces and the structure of the N = 2 twisted theories one can
compute the boundary contributions and they turn out to be expressible as (products
of) lower genus correlation functions. This can be summarized as a second order linear
differential equation, the master anomaly equation, for the full partition function of
the theory summed over all genera. This recursion relation for the antiholomorphic
dependence of the partition function can be solved by introducing Feynman rules
which can be expressed as an integral over an auxiliary space which includes the
dilaton and the marginal fields as propagating degrees of freedom and whose vertices
are the correlation functions of the lower genus and the propagators are made of a
canonical41 prepotential, for the anti-topological theory, and its derivatives. This fixes
the genus g partition function up to a holomorphic modular form, which are typically
finite in number and thus reduces the computation of the partition function to fixing
the coefficients of these functions. In concrete examples using mirror symmetry these
coefficients can also be fixed, at least for low genera.

We discussed the realization of TV = 2 SCFT's in terms of sigma-models on
Calabi-Yau manifolds. There are two different ways to twist such theories, the A-
twist (the Kahler twist) or the jB-twist (the complex twist). In the case of A-twist a
particular limit of the topological string theory computes the number of holomorphic
maps (or an appropriate Euler character on the moduli space of holomorphic maps)
from the Riemann surfaces to the Calabi-Yau. In the case of the B-twist the target
space theory of the topological theory may be described as an ordinary field theory,
actually a topological field theory, which quantizes the complex structures on Calabi-
Yau, which we called the Kodaira-Spencer theory of gravity.

We also found an interpretation of the computations of the topological partition
function Fg as the genus-g correction to four dimensional low energy lagrangian
generating superpotential terms that arise upon compactification of superstrings on
internal theory with c = 3 from 10 to 4 dimensions. In the open string case this
term will be relevant for the gaugino condensates. Also we related F\, the genus one
partition function, to the threshold corrections for gauge group couplings for heterotic
strings in the 'standard' compactification scenario (identifying the gauge connection
with the spin connection of the Calabi-Yau). This shows a surprisingly universal
exponential dependence of the effective GUT scale with respect to the volume of the
Calabi-Yau manifold.

This was a basic summary of some of the main results. Let us now discuss
some directions for future research. One of the most significant aspects of the master
anomaly equation is that it captures the anomaly to all orders in string perturbation
theory and is thus a way even to proceed towards non-perturbative formulation of it.
It would be interesting to compare how the non-perturbative aspects of the topological
strings discussed here compare with those of some other string theories discussed in
[63]. A first step in this direction is to find exact solutions to the anomaly equation to
all orders. In this paper we saw how we can do it order by order in perturbation theory
(using the Feynman graph technique discussed in the text) but we did not manage
to find a simple closed form for any example which would be valid to all orders.
The simplest example to consider in this connection is the toroidal example discussed

Which is different from the ones previously used in the literature.
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in Sect. 7. One might well imagine that a theta function like solution may exist to
the master anomaly equation, though we were not able to find one. The attempt is
complicated by the fact that not only one wishes to find a solution to the master
equation, but a solution which satisfies the correct boundary conditions (dictated by
the genus-1 answer). Of course finding a solution to the master anomaly equation,
even if it satisfies the correct boundary condition is no guarantee to be the correct
amplitudes given by the string amplitudes, just because the anomaly equation only
captures the anti-holomorphic dependence of the partition function on the moduli. One
still has the freedom to correct it order by order by addition of holomorphic terms.
Indeed changing the holomorphic dependence at a given genus will affect even the
non-holomorphic dependence for any higher genus computation. Finding a nice way
to fix the holomorphic dependence, even though it just means fixing a finite number
of coefficients at each order, is a major challenge. The most logical way to proceed,
in the case of the B-model is to study the Kodaira-Spencer perturbation theory which
naturally will also give the holomorphic part as well as the anomalous part of the
amplitudes. Otherwise we have rather limited resources to fix the holomorphic part of
the amplitudes. Mirror symmetry helps, as it did in the examples considered in Sect. 7,
in fixing some of the low genus answers by relating it to counting holomorphic maps
of genus g to a target space. But even in these examples the attempt was complicated
by the fact that for a given genus g the lower genus holomorphic maps may contribute
as a kind of degenerate contribution to the genus g amplitude (which in the case of
genus 0 contribution of degree one is called the 'bubbling'). A deeper understanding of
these general bubbling phenomena would be greatly helpful in fixing the holomorphic
ambiguity of the solution to the anomaly equation. The situation in understanding
these contributions can significantly improve through collaboration between algebraic
geometers and physicists. Some discussions of the bubbling phenomena appear in
Appendix A.

One of the most mysterious aspects which emerged in the course of solving
the anomaly equation (see Sect. 6) was the appearance of Feynman rules involving
propagation of massless modes and the dilaton. This was rather unexpected and needs
to be understood better. In a sense it seems to suggest that effectively we can add
the massless modes as dynamical fields to the string field theory despite the fact that
we had to delete them in order to write the string field action in Sect. 5. In this
interpretation putting back the massless fields in the theory is effectively a way to
restore background independence and so would suggest that including the massless
modes would simply lead to answers which are independent of t,t thus explaining
the Feynman graph rules we found for computing Fg. In fact the propagator we have
for the marginal fields, which is formally identified with bobo/Lo and is ill-defined
0/0 is effectively 'regularized' by the propagator S^ introduced in Sect. 6. In fact
one can 'formally' derive the defining property of Sli from this definition using a
££*-type argument. It would be interesting to develop this further as well as see how
the propagators involving the dilaton field will appear. At any rate demystification
of the Feynman rules that we found is a very important hint in progress in a better
understanding of these theories.

Perhaps the most important aspect of the present work is the discovery of a
new topological gravity theory in six dimensions, the Kodaira-Spencer theory. It is
topological in the sense that it is independent of the metric of the Calabi-Yau manifold,
though it depends on the complex structure chosen. This topological theory is the
target space description of a topological worldsheet theory on a Calabi-Yau. The fact
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that there is a string theory description of this theory makes us believe that the ultra-
violet divergencies of the KS theory are not a real obstacle to its existence and strings
can be viewed as effectively giving a 'nice regularization' of the theory (deforming
it from the manifold space to the loop space). Nevertheless it should be interesting
to regularize the KS theory using the more standard regularization techniques of field
theories. In particular it should be possible to derive the holomorphic anomaly master
equation directly in this field theory set up for all loops. The one-loop version of
the anomaly was checked explicitly to agree with the field theory one using the zeta
function regularization techniques (which were used in [41]).

In more than one way the KS theory in 3 complex dimensions mirrors its cousin
the Chern-Simons theory in 3 real dimensions. It is a closed string version of Chern-
Simons theory. Thus just as one has interesting topological invariants in the Chern-
Simons theory, giving link invariants on three manifolds, one also expects the same
here in the context of invariants associated to Calabi-Yau 3-folds (or more abstractly,
classification question of variation of Hodge structures which arise in superconformal
theories). This aspect is worth more thought. Also the open string version of strings
on Calabi-Yau is a mirror to ordinary Chern-Simons theory. So in this setup the
coupling of this mirror theory to KS theory is interesting to study. In particular the
holomorphic anomalies in the open string sector discussed in this paper should be the
mirror transformed versions of (a certain limit of) Chern-Simons theory's anomalous
dependence on the metric of the 3 manifold which has been studied recently [64]
to all loops (for the study of Chern-Simons perturbation theory see also [65]). It
would be interesting to work out the detail of the anomaly equation for the open
string case which, except for the one-loop case which we computed in detail, we just
briefly discussed in this paper. This is more urgent in view of the fact that gaugino
condensates which are believed to be a mechanism to break supersymmetry in string
theories will be strongly affected by such terms. This aspect of the present work,
which may have potential relevance in questions of phenomenology, i.e., the fact
that topological partition functions may also be viewed as particular computations
in certain string models compactified on the corresponding topological theory we
find rather significant. Not only topological theories can be used to compute some
amplitudes in ordinary strings, but the amplitudes that they compute are the most
interesting ones to compute, i.e. the superpotential terms. This opens the door to
exact computations in string theories using topological techniques. Amplitudes which
are computable, at least in the context of open superstrings, will be of interest also
in connection with gaugino condensates which has been proposed as a mechanism to
break supersymmetry. In fact it would be quite satisfactory that deep facts such as
supersymmetry breaking be linked to very natural topological computations. It would
be nice to extend these computations to the heterotic case in view of the potential
phenomenological implications. The fact that heterotic strings morally should behave
like the open strings suggests that even in this case the topologically formulated
heterotic string should compute similar superpotential terms, as would be interesting in
questions of gaugino condensates. At any rate it would be very important to determine
the consequences of such terms in the supersymmetry breaking scenarios in string
theory.

The crucial link needed to establish between topological string theories with con-
ventional superstrings was the observation that basically the twisting of an ordinary
superstring is equivalent to insertion of an appropriate number of FMS spin operators
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which twists the field measure. Even though topological amplitudes correspond to
very special amplitudes in string theories it is natural to ask whether one can formu-
late arbitrary amplitudes in superstring theories using the twisted topological models
by inclusion of non-topological operators (including conjugate FMS spin operators
to untwist the measure). If such a formulation can be done it would be a step forward
in that one would not have to deal with issues of summing over spin structures or
the question of splitness of supermoduli space, both of which are naturally absent in
the topological theory because the spin of all the fields are integral. In fact results of
[66] suggest that this should be possible.

Another aspect of the present work was the fact that in all the examples studied,
the large area behavior of the genus g partition function of the topological theory on
a Calabi-Yau 3-fold is in the same universality class as the c = I theory coupled to
gravity (i.e. has the same exponents). This result shows that the identification of the
c= I theory coupled to gravity with a particular supersymmetric coset representation
of black hole with c = 3, discovered in [53] which is a non-unitary N = 2 twisted
model, is actually only the tip of the iceberg. Indeed what we have found seems to
strongly suggest that the universality class of c = 1 strings is the same as that of
topologically twisted c = 3 theories. It would be interesting to study this connection
further. In particular for each Calabi-Yau manifold M the large 'worldsheet' area
A > 1 behaviour should go like

It would be interesting to compute ag(M) for all g and for all Calabi-Yau manifolds
(b(M) can be computed from the genus zero result if one knows the mirror manifold).
For a fixed g how does the number ag(M) depend on Ml Also for a fixed M how
do the numbers ag(M) depend on g! Do they satisfy recursion relations of the type
encountered in topological theory coupled to gravity?

There are even more connections with c = 1. Indeed as pointed out in [67] the
target space physics of c = 1 strings has the symmetry of the volume preserving
diffeomorphism. As discussed in Sect. 5 this is precisely the gauge symmetry of the
Kodaira-Spencer theory which is the target space physics of the critical topologi-
cal strings. This relation is also worth further investigation and is suggestive of the
universal relation between c= I strings and c = 3 topologically twisted theories.

The special status the c = 3 topological string enjoys among more general topo-
logically twisted theories, is very much analogous to the special status c = I strings
enjoy among all the theories with c < I coupled to gravity. It is natural to ask if what
we have been discussing in connection with unitary c = 3 twisted theories has any
bearing on the more general classes of possibly non-unitary theories (as is the case
with the theory discussed in [53]) or twisted theories with c < 3 (as is the case for
the minimal N = 2 twisted theories which is related to the (l,p) theories coupled to
gravity [23, 22]). The central question is whether the anomaly equation should exist
in these cases. In fact morally it should be true but to make it precise a few technical
obstacles should be overcome: In the context of non-unitary theories one has to argue
that the cohomology elements are the only ones that contribute for long tubes (this
is no longer guaranteed in the non-unitary case). In the context of c < 3 models one
has to recall that in order to get non-zero amplitudes one will have to perturb the
corresponding conformal theory in two directions: The massive direction, as well as
turning on the gravitational (or topological) descendants. Turning on relevant pertur-
bations which makes the theory massive raises the question of whether we can still
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integrate over conformally inequivalent classes of metric. Even if this can be done,
we will have to know the analog of the Zamolodchikov metric for these massive
theories. One would imagine that the analog of it* equations which is also known
for the massive [2] case should be relevant (in fact the results of [68] suggest that
the one-loop partition function should be related to the tau-function). However it is
not completely straightforward because as we discussed in Sect. 2 the Zamolodchikov
connection and tt* connection differ by a term involving the connection on the line
bundle C. Unfortunately in the massive case the line bundle C is not a holomorphic
sub-bundle of the vacuum bundle and so this prevents one from constructing canonical
connections on it42. This will have to be better understood. Another direction of per-
turbation is turning on the gravitational descendants (which are in particular needed
for a non-vanishing amplitude at higher genus for the twisted minimal models cou-
pled to gravity). The correlations involving topological descendants can typically be
viewed as boundary contributions to the amplitudes [22]. Thus one would expect an
interesting mixture with the anomaly discussed in this paper. In this connection the
Landau-Ginzburg formulation of the descendants may be particularly useful [69].

Typically string theories have infinitely many particles. However there are some
cases known where string theory has only a finite number of particles. Precisely in
these cases the string theory seems also to be related to topological theories both in
the sense of world sheet and in the sense of target theory. Let us summarize some of
the known examples and speculate on the relation between them.

Let us summarize some of the most important known topological field theories:
Apart from the 6-dimensional one that we discovered in this paper, and its open string
analog [24], there are two important topological theories in 4-dimensions, topological
gravity and topological Yang-Mills theory (Donaldson theory) [70], in 3-dimensions
one has the Chern-Simons theory [71] and in 2-dimensions one has topological
sigma-models and topological gravity theories, and topological Yang-Mills theories
[4]. Amazingly enough almost all of these theories seem to be describing the tar-
get space physics of some string theory: The 6-dimensional KS theory is the target
space physics of critical topological strings as we have discussed in this paper. The
4-dimensional topological theories seem also to be related to target space of TV = 2
strings [37] in that the relevant target space geometry in both cases involves self-dual
geometries43. The 3-dimensional CS theory is equivalent to open string topological
theory [24]. Finally the 2d topological YM theories, which are equivalent to ordinary
2d YM theories may also be viewed as a string theory using the results of [72] which
could also be viewed even as a topological string theory (a deformed topological
sigma-model coupled to gravity [20, 73]). So it seems that many of these topolog-
ical field theories are string field theories of string theories which themselves are
topological (i.e. are coupling of 2d topological theories to topological gravity). The
completion of this picture suggests that the N = 2 strings should have a reformula-
tion as a topological theory in the worldsheet sense, and should also be able to obtain
topological sigma-models and topological gravity theories in 2 dimensions as effec-
tive target space theories for a topological world sheet theory. Having such a unified
picture also raises the question of what are the relations between various topological
theories, and also their relation to integrable theories. In a sense the six-dimensional

42 In the context of integrable massive perturbations C is typically a sub-bundle because of discrete
symmetries and one can define the corresponding line bundle connection. It would be interesting to
study this particular class further.

43 This connection needs to be clarified further.
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topological theories should play a key role in connecting them. In particular self-dual
geometries arise naturally from considerations of holomorphic vector bundles in six
dimensions, through twistor transform. One could speculate whether this formulation
can be used to connect it to the topological theory describing the open strings on
Calabi-Yau [24] which has as a solution an arbitrary holomorphic vector bundle in
six dimensions. Similarly one may expect that the KS theory which characterizes the
complex structures of a six dimensional space be related to the topological gravity
theories in 4d, which characterize self-dual geometries. Clearly a lot more work re-
mains to be done. We hope to have taken one small step which may be helpful in the
final emergence of a unified picture.
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10. Appendix A. The Bubbled Torus

In this appendix we shall rederive from a physical viewpoint the result by Katz
(see the appendix of [20]) on the bubbling of spheres in genus 1. Some preliminary
computation for g > 1 is also presented.

As before, ψ denotes a fermi field which is a section44 of K 0 /*T^, whereas χ
is a section of /*TM>

The basic degenerate instanton in genus one is given by (here D C M is a rational
curve rigid in M and C is the world-sheet torus)

ΓpqCCxDcCxM,
given by

(Cx{q})U({p}xD). (A.I)

As always, the χ zero-modes are in one-to-one correspondence with the 'col-
lective coordinates' describing the given family of instantons. In the present case we
have just two of them, corresponding to the freedom of choosing the two points p
and q in C and D, respectively. We are also interested in finding the zero-modes of
ψ in this configuration. From the viewpoint of an Observer' in a 'generic' point of
the torus45, the situation looks as follows. The torus C gets mapped into the point
q C D C M. Then — as for any constant map — the pullback of TM to C is trivial,
and dimHl(C,TM) = 3. However, there are not really three obstructions, since the
deformation of q in the direction tangent to D is 'not obstructed.' So we remain with

44 Strictly speaking, this description is adequate for non-degenerate instantons only.
45 I.e. not at the point p where the 'bubble' is attached.
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the two zero-modes which are orthogonal to D at q, in agreement with the index
theorem which predicts an equal number of χ and ψ zero-modes. Our observer on C
understands this as follows. For him the instanton Γpq arises by the following limiting
process: One constructs an approximate solution mapping the world-sheet to the (ra-
tional) curve D by taking an usual instanton on the plane, of scale46 α much smaller
than the periods of the torus C and 'gluing' it at the point p. Then letting α —» 0 we
get a true solution which — to our observer — looks like a 'delta-function' instanton
centered at p. To be specific, let us identify D with P1 in such a way that the point
q is taken as the origin. Then our approximate instanton reads (for w ~ p)

f ( w ) =
w — p

The pullback Kahler form for w ~ p reads (say, taking D to be a line, and the metric
to be the one induced by Fubini-Study)47

a dz Λ dz
= -δ(z)δ(z)dz Λ dz ,

i

where z = w — p. Of course this is just the statement that we have a ^-function
instanton. Clearly if D is a degree k rational curve this generalizes to

/ the pulled back Kahler class \
= -zfc5(z)δ(2)d2:Λd2. (A.2)

\ as seen by our observer on C I

From the viewpoint of this observer, as α —» 0 the instanton disappears, leaving a
local operator inserted at the point p. This operator implements a boundary condition
at p for the ψ zero modes; it is this condition that gets rid of the tangent component
of *φ leaving just the two 'normal' components.

To see the nature of the above boundary condition we have to discuss the situation
from the viewpoint of a second observer on D. From the point of view of this observer,
the limit a —> 0 is accompanied by a compensating conformal rescaling by α"1, so
that to him the instanton looks to have a finite size in the limit. However, at α = 0 he
happens to be in a different 2d 'universe' with respect to the other guy (i.e. on D).
For this observer the pulled back Kahler form is

( the pulled back Kahler class \
K u n = iωM , (A3)as seen by our observer on D I

where UM is the Kahler form for M and i: D —> M is the embedding. Putting
together the two 'universes' one gets

the pulled back Kahler class = -ik δ(z) δ(z)dz /\dz + i*ωM , (AA)

which should be compared with Katz's result, i.e. E\ + h (see the appendix of [20]).
From the viewpoint of the second observer, there are no zero-modes for -0, since

on the sphere

46 By conformal invariance, there are instanton of any arbitrary small scale.
47 The normalization of the <§'s is such that the integral of the r.h.s. is just 1.
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In order for a zero-mode to be regarded as vanishing by the observer on D, it should
have a vanishing invariant norm as z —> p. Let ψ= be the tangent would-be zero-
mode. Near p its norm reads

IhM2 = (1 + άY KM2

V \ z \ /

which is divergent as z —> 0, unless ^=(0) = 0. But a holomorphic function48 vanishing
at one point vanishes everywhere. Instead for the 'normal' zero modes49

"^' (1+αVN 2 ) '

which vanishes at z = Ofor any ψ_\_. This shows that we have just two ψ zero modes
(as required by the index theorem). The structure of these zero-modes is as predicted
by Katz.

The moduli space of the above configuration is M.\^ x P1 (here we identify
D ~ P1). As we vary the point in the moduli space, the zero modes ψϊa (a = 1,2)
will also vary, giving a bundle B over the above moduli space. By construction

B = π^H 0 π%λί ,

where Ή, is the Hodge (line) bundle over M\,\ whose fiber is spanned by the holo-
morphic one-forms for the corresponding elliptic curve, and J\ί is the normal bundle
to D in X. The curvature of B has the structure 1 0P + Λ0 1, where P is the Hodge
bundle curvature as computed in §.1.1, and R is the curvature of the normal bundle
J\f = TM/TD. As it is well known

R = R

where θ is the 2nd-fundamental form of

- θ Λ #f , (A.5)
λf

Thus, in general it is not true that the curvature of the normal bundle is the restriction
of the curvature of the tangent bundle to the normal directions. However, if D is a
rigid sphere on some Calabi-Yau 3-fold M,

and hence the bundle splits and the extra term in (A. 5) should be an exact form. Then
the curvature is50

= δ^N^Pdy /\dy + Rl ' jkldxk Λ dxl + . . . , (A. 6)

where . . . means exact terms and x are the coordinates of the point q in M.

48 Recall that from the viewpoint of the first observer TX is trivial and so is K.
49 We use that

We do not write indices for N and P since in the present case the indices can take only one value.
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Let us summarize: there are 2 zero-modes for x corresponding to the deformations
of the point p and q, and two zero modes for ψ^ Then consider the quantity

) f\ (dy j μ%5A?) (kmlχ
mχl) j Rkh

npχkχhφnΦp\ ,

C C '

i.e. the g - 1 one-point function. We wish to compute the contribution of the (single)
degenerate instanton to the above quantity. The subtle identity is (A.4). It means that
we have the replacement

where χz (resp. χx) is the zero mode associated to the variation of the coordinate z
(resp. x) of the point p (resp. q) on C (resp. D), and —ikdx Λ dx = I*UM>

Integrating away the χ's and the ψ's (using the same formulae as in Sect. 1.2)
we reduce to an integration over the boson zero-modes, of the expression

δ(z)δ(z)dz Λ

where 7£# is given in (A.6). This can be rewritten as

deg(D) / c2(H®λΓ).

MI^D

A simple computation gives (recall Λ/* = O(— 1) θ O(— 1))

Finally from

/ cι(W) f

Preliminary Considerations for Genus g > 1. If M is simply-connected it is also
algebraic. Then let α>o be the Kahler form induced by the imbedding of M inside
P^. By degree of a curve C lying on M we mean fc UQ. Then a curve of degree one

is a line in P^ and hence it is necessarily rational. Therefore for all g the O(e~t)
contribution to Fg should arise from maps of the form

Σg Λ D ̂  M ,

where D is a degree 1 rational curve on M, i the inclusion and / some degree
1 holomorphic map. However, for g > 0 there is no such a thing as a degree 1
meromorphic function. Thus at first sight, it may seem that for g > 0 the O(e~t)
term in Fg should vanish. However, it is not so as was shown explicitly in ref. [20]
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for g = 1. The point is that although there is no smooth instanton in this topological
class, we can construct an approximate solution mapping Σg to D by taking an usual
instanton on the plane for the P1 sigma-model, of scale51 α much smaller than the
periods of the curve Σg and 'gluing' it at the point p G Σg. The approximation gets
better and better as α —» 0. In the limit we get a solution which looks like a 'delta-
function' instanton centered at p. However, there is a better viewpoint. By conformal
invariance, while we let α —> 0 we can do a compensating scale transformation in a
neighborhood of p such that the instanton remains of a finite scale in the limit. In this
picture, as α —> 0 a sphere will 'bubble off the world-sheet. In terms of the graph
Γ of the map Σg -^ D, the resulting degenerate instanton will be (q is a point in D)

Γpq C Σg x D C Σg x M ,
given by

(Σg x {q}) U ({p} x D) . (A8)

That such singular instantons like Γpq should be taken into account, follows from
Gromov's theory of symplectic invariants; as t —* oo the functional measure gets
concentrated on the critical points only if the integration space (the 'space of all
maps') is compactified. Otherwise the instanton may 'escape to infinity.' Now, these
configurations (A.8) belong to the Gromov compactification of the 'space of all maps.'

Comparing with the genus one case, it appears that the following computation
should be relevant for the higher genus bubbling:

C3g-ι(B), (A.9)

where
B = tfH 0 π2*Λ/"* Θ π\H 0 πjT£ .

Here J\ί is the normal bundle to D in M and Ή is the Hodge vector bundle as before.
The fiber of U is HQ(Σg,K). Instead U is the bundle with fiber Γ(O(-p) 0 K)
— that is the holomorphic one-forms vanishing at p G Σg. Obviously we have the
following exact sequence:

ΰ-^H-^H^ L-^0 , (A. 10)

where L is the line bundle over Mg,\ whose fiber is Tp.
From the definition of B one has

and then
C39_i(B) - c2g(H

Since D is one-dimensional

= cg(H)2 - 2cι(M) CgCH) cg_,(Ή.) = 2c, (M) cg(K} Ca-1(Ή.),

- c9_2(W)cι(Tβ),

where, in the first line we used (5.53). Now we see that

l)), c,(ΓD) =

51 By conformal invariance, there are instanton of any arbitrary small scale.
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On the other hand, from (A. 10)

c(H) = c(H) c(L) = c(H) (1 + cι(L)) ,

or equivalently,

which in particular gives

k=0

Then

/ c3ί,-ι(β) = I
J D J D

k=Q

The term with k = 0 vanishes, since the integrand is the pull-back of a (3g — 2)-form
on Mgψ. Also the term with k = g vanishes for trivial reasons. Comparing with [48]
this can be rewritten in terms of Mumford classes as

4

fe=l Ma

It remains to understand the precise relation between this Chern class computation
and the actual bubbling coefficient.

11. Appendix B. Further Analysis on the Master Anomaly Equation

In Sect. 3, we found that the generating function

is characterized by the two equations,

(B.Ί)

and

d\j\ (R3)
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The first equation (B.3) summarizes the holomorphic anomaly equations for

and the second equation (B.3) implies that C^,,,in in W(\, x\ t, ΐ) are given by deriva-

tives of the partition function Fg. In Sect. 6, we developed a method to solve the
holomorphic anomaly equation order by order in g. In this appendix, we analyze the
two Eqs. (B.2) and (B.3) directly to all order in g. We hope that the method presented
here would be useful to understand non-pertubative aspects of the string theory.

Let us first solve the anomaly equation (B.2) without imposing (B.3). This turned
out to be possible by the Borel transformation in the string coupling constant λ and
by the Fourier transformation in xl ,

/

_
dpdqQXp(-\~lq + i\~lxipi+Γ(q,p\t,t)) . (BA)

The anomaly equation (B.2) for W is transformed into the following first-order linear
differential equation:

(5.5)

A special solution to this equation is easily found as

Γ0fo, p; t, t) = - - S^pipj + iS%

Piq + Sq2 .

This satisfies (B.5) by the definitions of S ,̂ Si and 5

& = C--e2KGjΪGk~k , Sl = C-ie

2KGa , S = Ce2K

Cljk = D~ιCjk » Cjk = D3Ck J Ck = DkC '

Since (B.5) is first-order and linear, its general solution can be expressed as

,p;ίJ)) , (B.6)

where /(£) is a meromorphic section of £, and ΰ does not depend on t except through
eκ in the second argument.

The general solution (B.6), after the Borel transformation, does not necessarily
have the form (B.I). So we need to impose the second equation (B.3). After the Borel
transformation (B.4), (B.3) becomes

where n is the dimensions of the moduli space of the TV = 2 theory. Substituting
(B.6) in the above, we obtain a differential equation for ϋ as
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where

Pi = /"' (p, - iqdi log(eκ|/|2)) , ~q = f~lq, Cljk = f~2Cljk .

Due to the special geometry relation, the coefficients

/*(ΐ) =Cyl5
Ifc - Γ* - ̂  log(eκ|/|2) - δkdk

/«(*) =Cijk [Sk - Sk

+ cUog(e*|/|

are holomorphic in ί, and so are

ef (ί) = f~2

> Snk)3k

+ CimnS
mSnj - 2Sδl)d, log(ex|/|2)+

Due to the genus- 1 anomaly equation, hi(t) given by

is also holomorphic.
For each tl, Eq. (B.7) is of the form of the Schrδdinger equation for a particle

moving in an (n+l)-dimensional space of p1 and q in a t-dependent harmonic oscillator
potential and a ^-dependent constant magnetic field. Since it is a first order differential
equation in t, we can solve it uniquely once we know $ at a particular value of t.
The situation is similar to the case of the Wess-Zumino-Witten (WZW) model on
a Riemann surface where the partition function satisfies the heat equation with the
moduli of the surface Σ being time-like variables and the moduli of the holomorphic
vector bundle on Σ being space-like variables. It is known that the WZW model is
related to the three-dimensional Chern-Simons (CS) theory, and the heat equation
in the WZW model is identified as the physical state condition for a wave-function
in the CS theory. The similarity between the WZW model and the Kodaira-Spencer
theory suggests that the Schrδdinger type equation (B.7) for the (Borel-transformed)
generating function i? may also be derived as a physical state condition of some higher-
dimensional system. It would be very interesting to identify such a system. This would
also explain the origin of the finite dimensional quantum system discussed in [28].
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