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Abstract: This note has two purposes. First we establish that the map defined in
[L, Sect. 40.2.5 (a)] is an isomorphism for certain admissible sequences. Second we
show the map gives rise to a convex basis of Poincare-Birkhoff-Witt (PBW) type
for U + , an affine untwisted quantized enveloping algebra of DrinfeΓd and Jimbo.
The computations in this paper are made possible by extending the braid group
action by certain outer automorphisms of the algebra.

Introduction. One of the basic difficulties in working with the quantized enveloping
algebras is that they are deformations of a given universal enveloping algebra
rather than the underlying Kac-Moody Lie algebra. Since a linear basis is no
longer obtained using the Poincare-Birkhoff-Witt theorem, a first task is to
construct a basis of the algebra U + . A PBW type basis of U + formed by ordered
monomials in root vectors £ α , where each Ea specializes at 1 (in the sense of [L3) to
an α-root vector of §.

This paper treats the problem of finding a PBW type basis when the Cartan
datum is the affine extension of a finite Cartan datum. In the case when the
underlying type is s/2, the basis given here is identical to that of [Da, LSS]. This
basis completes the construction proposed in [L Sect. 40.2]. The principal missing
part of that construction is an explicit description of the imaginary root space, and that
is described here. We define a convex basis which is formed by monomials in certain
root vectors of U + multiplied in a predetermined total order on the root system.

The convexity property, which appeared in the work of [L-S] for the finite type
case, means that the ^-commutator of two root vectors, Ea and Eβ, consists of
monomials formed only from root vectors between α and β in the order. This basis
should be useful for a variety of applications. For example, one can explicitly
construct the universal R-matrix in terms of the braid group action by a direct
extension of the work of [LSS]. This construction uses braid group operators
arising from the lattice of translations in the extended affine Weyl group. In the
works ([K-T], [K-T2]) convex bases are also constructed, although the braid
group is not used and proofs are not given.
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Notation. This notation follows that in [L]. Let U be the quantized enveloping
algebra corresponding to an untwisted affine Cartan datum (/, ). Denote its Weyl
group by W, a Coxeter group on a set of simple reflections S = {s0, s l 5 . . ., sn}.

Let Q be the normal subgroup of W consisting of all elements with finitely many
conjugates. Let Ω be the group of automorphisms of (W, I) whose restriction to Q is
conjugation by some element of W. Ω is a finite group in correspondence with
a certain subgroup of automorphisms of the graph of (/, ) (see [B]). The extended
affine Weyl group is defined as W=Ω x W, where the product is given by (τ, w)
(τ',wf) = (ττ',τ'~ (w)wf). The length function of W extends to W by setting
/(τw) = /(w) for τeΩ. Fix an index ioeΐ so that the simply connected root datum
(f, X, < , > , . . . ) of I restricts to a root datum (Y, X, < , > , . . . ) of (/\{i0}, ), the
underlying finite type Cartan datum of (f, •).

Let Wo be the Weyl group of J = 7\{ί0}. Then W^X x Wo and X character-
ized as being the subgroup of elements of W with finitely many conjugates. It is
known that X => Q and X/Q ^ Ω . Let {w;}ί6/ c X = Hom(F, Z) be the dual basis of
Y. Let P+ + be the semigroup in X generated by ωt. Then P++ has the properties:

)9 for x,yeP++ .

The orbit §k of I under W consists of the real coroots. Denoting by M a Y the
coroot set of (7, X, < , ) , . . . ) there is a well-known correspondence between the
following sets:

J + <r+ {(ά, fc) I ά e ^ , /c>0} u {(ά, 0)|

J " <-> {(ά, fc) I Stem, k<0} u{(ά, 0)|

such that J = J + u J ~ .
We define the braid group of W on generators Tw,weW with relations

7^7^, = τww' when ί(ww') = /(w) + l(w'). Write τ for Tτ. We extend the symmetries on
U to correspond to the braid group of W. For τeΩ this is done by defining
τEi = Eτ(i), τFi = Fτ{ih and τKi = Kτ{ih ieϊ.

Let weW. Given a reduced presentation w^s^s^ . . . siN define the initial set of
w to be:

and the terminal set to be:

Iw is independent of the choice of reduced expression of w and is characterized as
the set of <ίeM+ such that w~1(ά)e$~.

1. Convex PBW Bases

Let xeQ such that <i, x> >0 for iel. Fix a reduced presentation of x = shsi2 . . . siN.
By property (*) the following sequence is admissible. For fceZ let ik = ikmod(N),

Lemma 1. Let r>0.

(a) I„ = {(-*,
(b) £ χ r = {(c
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Proof. The terminal set of an element weW is the set of positive coroots w maps to
negative coroots. x acts on the set of positive real coroots by x(ά, /c) = (ά, k — <ά, x>).
This establishes (b). (a) is similar. •

Let P be the set of elements yeU + for which Tζ1Tζ\. . . T^xyeV+,
TirTir+ι. . . Γ , ; 1 J ; G U + for s>0, r<0.

Let yeP. For any sequence c = (. . . c_2, c-i, c0, cί9. . .), c,eN, where almost
all Ci = 0 define

Let U + ( > ) (resp. U + (<)) be the subspace of U + spanned by the elements
££o>Γ-i(£<c-i>) r r i r r j ( £ ^ ) . . . (resp. . . .T^Ef^E^) for various c. Notice
that by [L 40.2.1] U + ( > ) and U + ( < ) are independent of the reduced expression
for x chosen.

By [L 40.2.5 (a)] we have the map:

U + ( > ) ( g ) P ® U + ( < ) - + U + (1)

given by multiplication is an injective map. We describe P for the admissible
sequence (0). Define the imaginary root vectors E^, l^i^n, fceN by:

Lemma 2. Let l<Li<^n,k>0. Then Ej^eP.

Proof. We demonstrate this for a particular reduced expression of x, from which
the lemma will follow independently of the reduced presentation. Write
x = ωi1ω2

2 . . coln and fix a reduced presentation of x which is a concatenation of
reduced presentations of the ω, in the given order. Note that ω t eί2 xW, 1 ̂  i: ^ n,
but since x e g we can collect all elements τeΩ on the left and they will cancel,
leaving an element of Q which has a reduced expression in terms of simple
reflections. Since for τeΩ, τ(u)eU+ <-* weU*, we can work with reduced presenta-
tions of ω f.

Since Tx{Ei

kδ) = Ei

kδ (see [Be], [Da]) (l<^'<*n) it is sufficient to check that:

TjTjr+ι...Tjd(Ei

kδ)eV + ,

T];}ί...TJ-ι

1τ-1(EU)eυ +

 9 lύrύd, (2)

where τsjί . . . sjd is a reduced presentation of some ωy Further, since
Tω.(Eι

kδ) = Eι

kδ, the second expression equals the first and it is sufficient to check the
first.

If j = i then necessarily j d = i and

where 7 ^ = 7^, Γf 1.

The calculation of the last equality is found in [Be]. The lemma now follows by
[L 40.1.2] and the consideration that J(ωisiωi) = 2/(ω ί)-1 [L2, Lemma 2.3]. If/Φz
the lemma is clear using [L 40.1.2] since /(ω/ί) = /(ω; ) -f 1 and /(ω/ΰi) = l(ω3) + /(ωf).

It remains to show the lemma for any reduced presentation of x. Such a pre-
sentation can be transformed to the above one by braid relations alone. Since the
braid relations preserve the length of a reduced expression, the result follows from
[L 40.1.2].



196 J. Beck

It is convenient to renormalize the imaginary root vectors by the functional
equation:

QO

1+tei-βf1) Σ £iί«* = exp((βί-9Γ1) Σ £««*)•
fc^O k = l

Index the Ej^ by 5 = {1, 2,. . ., n} x N and for s = (ι, fc)eS write £ s for Ej^. Fix an
order on 5 and consider the subset of P,

χ = J γ\ Ec

s

s\ c seN, cs = 0 for almost all si ,
UeS J

where the product is taken in a fixed order. Then X c P. By [Be, Prop. 6.1] we have:

Proposition 3. Let y9y'eX9 c = (ci),c/ = (c ), almost all ci9c'i = O. Let t = Y[UIKψ\

(a) The expressions L(h, c, y) form a linear basis of the <Q(q)-vector space U + .
(b) The expressions L(h, c, y) x t x Ω(h, cr, / ) ) /orm α linear basis of the

vector space U,

where Ω is the standard anti-involution of U.

Further, since U + (>)(χ)P(χ)U + (<) imbeds into U + we conclude:

Corollary 4.
(a) X is a basis of the subalgebra P of\J+.
(b) U + ^ U + +

(c) U ^ U +

We recall some facts about the quantum affine algebras (see [Be]). Let
+ =Γ-*(£,-), for fe^O, x i =Γ* ί (-XΓ 1 f») for fc>0 Note that x ί e U + for /c^O,

^ e U + for fc>0.
The following commutation relations hold in U + :

Define Xi7-k = Ω(xί) for fc^O, χ i+_k = Ω(xik), fe>0. Let Fld = Q(Eid) for fe>0.
We now consider the following subalgebras of U:

A< = {ueJJ\(Tx)
kueV-\Jo,k«0}

Note that U + ( < ) c = ^ < , \J + (>)czA>.

Lemma 5.

(a) U

(b) U
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Proof. \J + (>)ciA> n U + is clear. Now use Proposition 3. Let ue
( i > n U + ) \ U + ( > ) . By Proposition 3, u = ΣcgitPtβ2g1 -p g2, where # 1 e U + ( > ) ,
PeP, g2e\J+(<). By assumption some c 5 l ) M 2 φ 0 for p ox g2 not equal 1. Fix fc>0
so that (Tx)

k(u)eV~V°. By definition

The last expression is a sum in PBW monomials for U (coming from Corollary
4 (c)). However, (Tx)

k(p. ^ 2 ) e U + . It follows A> n ϋ + = U + = U + ( > ) . (b) is similar.
Note that Lemma 5 implies that U + ( > ) , U + ( < ) are subalgebras of U.

Lemma 6.
(a) [ P , U + ( > ) ] c = U + ( > ) ,
(b) [P,U + (<)]c=U + (<).

Proof. We prove (a). By the previous Lemma it is sufficient to demonstrate that
[P, A>~\ a A>. Let N+ (resp. N~) be the subalgebra of U generated over <C(q) by
x*k, keZ (resp. x^, keZ). Let H+ (resp. ίf~) be the subalgebra generated by the
E[δ (resp. Fι

kδ). We show that A> is generated as a subalgebra over (£(q)by N + ,H~
and U°. Certainly these are subalgebras of A>. It is known that Uq =
N+ ®H~ ® U ° ( g ) # + <g)ΛΓ. Let ye^>. Write y = Σ S 6 S α s n s

+ x ft" x ί x /zs

+ x n",
where n^ ,h^,t are elements of given bases of Λ^, H± and U° respectively. Here
each αseQ(g) and S is some finite index set for the summation. Fix fc' so that for
fe>fe', Tk(y)e\J"lJ0. Now by the definitions of the x^ it is possible to fix k" large
enough so that for k>k" we have Γί(n s

+)6U"U°, Γx

fe(πs~)GU + U°. Note that
Γ^/i) = ft for all heH. By considering fe>fe/, fe" and using triangular decomposition
it follows that n~ = 1, fts

+ = 1 for all seS.

Consider the basis of U + consisting of the elements

L(h,c,)0, yeX,

h, c as above. Let 0Li = i'eX, l^i^n. For fc^Olet βk = sio. . . 5ίk_1(αίJ, and for
let βk = sil. . . 5ίfc_1(αίk). Let δ be the image in X of the unique element of N[J] with
relatively prime coordinates such that |<5| | / |=0, for ieϊ. In other words, let
δ = Θ + aio, where θ is the highest root of Wo {ai} ie/. Consider the total order on
the affine root system:

βo<β-i<β-2< ' ' <2δ<δ - <β3<β2<β1 . (4)

We introduce real root vectors by defining

Eβk = TΓo

ι . . .TΓk+\(Eik), kϊO,

Eβk = TuTi2...Th^Eik), k>0.

For the imaginary root kδ, order the imaginary root vectors Eι

kδ, ( l^ i^w)
arbitrarily. Then together with (4) we have introduced a total ordering on a set of
root vectors of U + .

Proposition 7. Let Eβ>EΛ.

where c^e(£(q)for γ = (yu Ίi, , ?«).

<γn<β
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Proof. The proof is a case by case analysis as in [L-S]. Consider the case where Eβ

and Ea are real root vectors. Using the PBW basis, write

£ A = Σ < K « M M ί ••£"?:> (5)

where the order on γu y2,. . ., yn is as in (4).

Cos* (7). fc'</c<0. Assume y1=βk- where fc"<fc'. Apply Tik,,Tik,,+ ι . . . ΓIO to both
sides of (5). One obtains an expression of the form

This implies (using triangular decomposition) that for each aί9 ^
which contradicts the assumption that k"<kr. One argues similarly if yi=βk- for
k">k. Therefore,

EβkEk,-aEβk,Eβk = Σ Φ f c E M . . . E* . (6)
α < y i < <γτ<β

Applying TikTikl Tio to both sides of (5) we obtain

-FikKikTr\ . . . Trlχ{E

= ( - ί | β N " [Fik, Γ ^ . . .

Since the left-hand side is also in U + it follows that α = g | α | " l / ? l .

(2). k'<0<L This is similar.

(5). Assume β = rδ, oc = βk>, fc'^0. By Lemma 6 we have

£,£,, .-£,„£, = £ c(q)βE%E%2. . . Efκ ,

where for 1 gi grc, k t ^0. The convexity is checked by verifying k<k\ for l^i^n.
This follows from triangular decomposition as before.

If β = rδ, oc = βk', fc'>0, the situation is similar to the previous case.

Remark. For Uq(sl2) there are two admissible sequences, either ίk = fc(mod2) or
I* = fc + 1 (mod 2). Both of these are of the form above and obtained by considering
the affine Cartan datum {0, 1}, ) together with an underlying finite Cartan datum
of the same type. In the first case one obtains the above description of P when
Zj= J\{0} and in the second case when / = /\{l} (see [Da]). In the cases other than
d2 not all admissible sequences are of the type considered here. For example, one
can pick an arbitrary concatenation of the fundamental weights ω{e W. In this case
the results here hold without modification if each ωt (1 rgi^π) appears an infinite
number of times to the left and right of ί0.
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