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Abstract: Two sets of identities between unitary minimal Virasoro characters at
levels m = 3, 4, 5 are presented and proven. The first identity suggests a connection
between the Ising and the tricritical Ising models since the m = 3 Virasoro charac-
ters are obtained as bilinears of m = 4 Virasoro characters. The second identity
gives the tricritical Ising model characters as bilinears in the Ising model characters
and the six combinations of m = 5 Virasoro characters which do not appear in the
spectrum of the three state Potts model. The implication of these identities on jthe
study of the branching rules of N = 4 superconformal characters into SU(2) x SU(2)
characters is discussed.

1. Introduction

The theory of unitary highest weight state representations of iV-extended supercon-
formal algebras (N = 0, 1, 2, 4) is by now very well understood [20, 10, 11, 3, 2, 4, 5,
15, 6, 22, 7, 8, 12, 16, 17], and is of considerable interest in the analysis of the
spectrum of string based models. Unlike the iV = 0,J^2 extended superconformal
algebras, the N = 4 algebras both with SU(2) or SU(2) x SU(2) Kac-Moody sub-
algebras have no representations falling in a minimal series [7, 8, 12]. As a conse-
quence, there is no value of the central charge c allowed by unitarity for which the
characters corresponding to unitary highest weight state representations carry
a finite representation of the modular group. Generically, there exists a finite
number of massless characters and an inifinite tower of massive characters, corres-
ponding to representations with non-zero and zero Witten index respectively. The
modular transformations of massless characters mix massless and massive charac-
ters in a complicatecΓway, which has only been analysed in a very limited number
of cases. In the SU(2)k extended N = 4 superconformal algebra, the modular
transformations involve a Mordell integral when the level of SU(2) is fc = 1 [9]. For
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the SUfyϋ- xSU(2)^+ extended N = 4 algebra, certain combinations of massless
characters play a particular role and transform among themselves under the
modular group when k+ =k~ = 1 [18]. In attempting to generalise this result for
k+ > 1 (k~ = 1), we have found new relations between unitary minimal Virasoro
characters when k+ = 2 and 3. In the following section, we present these identities,
which will be proven in the Appendix, and we discuss in Sect. 3 their relevance in
the study of N = 4 superconformal algebras. Some comments on how the identities
between unitary Virasoro characters at low levels could be generalised to higher
levels are given in the conclusions. We also briefly discuss the potential conse-
quences of these identities in 2-d conformal field theory.

2. The Identities

The first set of identities relates the unitary Virasoro characters at levels m = 3 and
m = 4 in such a way that the three Ising model characters are given by the vector
product of two 3-vectors whose components are the six tricritical Ising model
characters,

ZΪ.'ί(3) («) = ey*( - 1)'+* Xfl<4) (q) Xlϊ(4) (q) (2.1)

Our definition of the unitary Virasoro characters at level m is,

where the integers m, r and s have the following ranges,

m = 2,3, . . .; r = l , 2 , . . . ,m—1; s=l, . . . ,r .

The Dedekind function, η(q), is defined by,

β ά Π ( l - « " + 1 ) , (2-3)
n = 0

while the generalised level k theta functions, θm>k(q\ are given by,

ΣQkin+*?> ( 2 4 )
«eZ

with the properties,

This definition, (2.2), of the Virasoro characters coincides with the definition given
in [20] up to a factor q~^ where c is the central charge,

These identities (2.1) can be rewritten in a slightly different notation where the
characters are labelled by their conformal dimension /zr>s,

_

4m(m+l) '

and where the equivalence between the tricritical Ising model characters and
the characters of the first theory in superconformal JV= 1, minimal series is
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implemented. Since the latter are given by,

V i q ) , (2.5)

the identities (2.1) take the form,

^ i r ( 3 ) (q)+xϊh(3) (q)=χl/8o (q) x%s («)+ f in 6 («) x?/si o («),

/ ^ ( 9 ) ) (2.6)

It is interesting to note that the vector χl,\ ( 3 ) (g) (i = 1,2,3) being orthogonal to the
vectors (— l)j xj'l^iq) and ( — l)fc χ^2 (4)(^) (no summation on j and /c) is a trivial
consequence of the identity (2.1). It produces relations which can be derived from
repeated use of the Goddard-Kent-Olive (GKO) sum-rules [11],

)= Σ x\rHq^)xinku?r+M, (2.7)
2ί" = 0

where If = 2^Λ-lf (mod 2) and where the SU(2)k characters for isospin
i (2^ = 0,1, . . . ,/c) are defined by,

&fozHβ-178*-1 ft (l-ίT'α-ί^T'α-β"" 1^" 2)" 1

n = l

χ ^ g ( * + 2)w»|-z2(* + 2)m_z-2(fc+2)m-| < ( 2 . 8 )

In this instance, one considers the coset lSU(2)ίxSU(2)1xSU(2)1ySU(2)3 and
applies the GKO sumrules twice on the following trilinear in 517(2)! characters,

In the second set of identities, the tricritical Ising model characters are obtained
as the product of unitary Virasoro characters at levels m = 3 and m = 5 in the
following way,

Xl iri(4) (q) ± Zl i ri ( 4 ) (<?) = [χΓi < 3 ) (q) ± xlT} (ί)] ίxJ%(5) («) + χ ^ <

χΊ%(4)(q)±xV,2(4)(q) = ίχV

ί:i
(3)(q)±XΪ:\(3)(qΏ ίxΊ%(5)(q) + xJ%(5>(«)] (2.9)

It is remarkable that the six combinations of level m = 5 Virasoro characters
involved are precisely those which do not appear in the spectrum of the three state
Potts model. The identities (2.9) are consistent with the weaker identities,

(2.10)
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and,

Γ ( 4 ) Γ ( 4 ) («)] [Zl,ir2(5) (9) + Zlί2(5) («)]

which can be obtained from the GKO character sumrules for the coset
lSUi2)i xSt/(2)2xS£/(2)1]/St/(2)4 when considering the following trilinears in
Sί/(2) characters,

[Xo(q, z)χl(q9 z)] * ϊ(9, z) = A z)[χl{q,z)χ\(q, z)] ,

and,

[Zέ(β, *)X?(«, z)~\ χ\{q, z) = ZS(β, z)[χ?(«,z)χ}(q, z)] .

A proof of the identities (2.1) and (2.9) involving the Jacobi triple product identity
and standard properties of the generalised theta functions (2.4) is given in the
Appendix.

In order to gain some insight in the way one might generalise this type of
relations between unitary Virasoro characters, we now turn to N = 4 superconfor-
mal algebras whose study has prompted the identities presented here.

3. Properties of N=4 Superconformal Characters

The SU(2)k+ x SU(2)k- extended N = 4 algebra we consider is a non-linear super-
conformal algebra which, together with a dimension 2 Virasoro generator L(z) and
4 dimension 3/2 supercurrents Ga(z) (a = 1,2,3,4), contains 6 currents T±ι(z)
(ί = 1,2,3) whichjire dimension 1 primaries with respect to L(z) and generate two
Kac-Moody SU{2) algebras at levels fc+ and k~ [21]. The representation theory
and corresponding characters were given in [12, 16, 17] for unitary highest weight
state representations. These are labelled by the two isospin quantum numbers / +

and£~ and have conformal dimension h whose lower bound h0 is a function of/ + ,
ί~,k+ and k~. An irreducible representation with conformal dimension h0 is called
massless or chiral (in the Ramond sector, it corresponds to a representation^ with
non-zero Witten index), while any representation with conformal dimension h> h°
is called massive. For fixed k+, k~, there is a finite number of massless and an
infinite number of massive representations and corresponding characters. In the
Ramond sector, the massless characters are labelled by,

with ^±=0,1/2, ...,fc±/2 and,

~Rk+ k- +ψ+ + Γ)(ί+ +Γ

while massive characters are denoted by,

C^(fc+,k-,/+y-

with /± = 1/2, . . ., £±/2 and hR > h%.
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Two essential properties of the characters are used in the following. First, the
massive characters split into two massless ones as hR reaches the lower bound h*,

(3.1)
JΛ

Furthermore, when the conformal dimension is,

T [_{2{++2/~)2 + k+

H = ~
j 4(k++k~+

4(/c++fc-+2) |_£+ + 1 fc~ + l j 4(fc++fc-+2)

one has,

= Σ UMί.^)^(«.z-)zK(ί)^-+V u-+ I(ί). (3-2)

where 2/1+ -2/1" Ξ 2 / + - 2 / ~ + 1 (mod_2), so that the branching functions

for massive characters into St/(2)p xSU(2)z- characters χfl+(^?

z+) xtx-faz-) a r e

products of unitary Virasoro characters at levels m = k+ + 1 and m = k~ + 1. For

fc± = 1, we recall that χ £ Γ # + 1 )te)= 1.
The second property of interest is that when the angular variables z+ are related

by z- = — Z+1, the massive characters in the Ramond sector vanish while the
massless characters reduce to SU(2)k++^~ characters [13],

CftSi^fcVV^g;^,-*;1^ (3-3)

Let us now introduce the following combinations of massless characters for
fc~ = l, which is the only case discussed here (for simplicity the fc+, fe~ and
hi arguments have been suppressed),

Chl(L=l . . .,/

(3.4)

where 2(/ + + / " ) = L . The combinations for L = l , . . .,fc+ are orthogonal to the
combinations present in (3.1).
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In terms of SU(2)z+ x <St/(2)i characters, the above combinations are given by,

2λ+=02/Γ=0

(3.5)

where L = 2λ+ + 2λ~ mod 2 and the branching functions YVZ+IL+IM* (<?) a r e n o t

known for k+ > 1. It turns out that,

r & ΐ W ^ ( 3 6 )
so that there are as many such functions as unitary Virasoro characters at level
m = k+ +2 . We find it convenient to introduce the following notation (k~ = 1),

Y&XILW (q) = q2λ*-LV2λΎ y&+?,t+1 (q), (3.7)

where the functions Γ^r + u + i (<?) have a g expansion,

characterised by a prefactor which is the inverse of the corresponding m = fc+ + 2
Virasoro character prefactor. We emphasize that the symmetry property (3.6) does
not necessarily imply a similar symmetry property on the functions Y&VIL+I (#)•
F o r i n s t a n c e , w h e n k+ = l,Y{?\(q) = qY^(q).

When k+ = ί, it is easy to calculate the three branching functions [13, 18],
which can be written in terms of Ising model characters,

= Y?\(q)±Y£\(q)=-^u7

« ) = n % ) ^ . (3-8)

In an attempt to determine the branching functions for k+ > 1 [19], we analyse
the properties of the matrix A(+) of branching functions for the combinations (3.4) of
massless characters C/ZQ(2L)L(L =0, . . ., [ i(£ + + l)]) and the massive characters
η(q)Ch^(L, j) (L = 1, . . ., [ i £ + ] ) as well as the properties of the matrix Ai~) of
branching functions for the combinations of massless characters C/*o(2L + l)
(L =0, . . ., [ i£ + ]) and massive characters η(q)Chl(L + i , i) (L = 0 , . . ., [i(k+ -1)]).
By [r], we mean as usual the integer part of the real number r, i.e. the biggest integer
smaller than or equal to r. The matrices Λi+) and A('} are both of dimension
(k+ +1) x (k + +1), and have the same determinant (up to a sign) when k+ is even,

for k+e2Z .

The inverse matrices, [ Λ ^ ] " 1 and [v4(~)]~1, are encoded in the relation,

+ η(q) 2X ^ f ^^
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for L = 2(/+ +<f~) being ^ven and odd respectively. The functions ^ ^ r + i^-(#)
are unknown, except for £ + = 1 where they are equal to 1. They obey the symmetry,

&W(q) = 4^ι\jί* + x-V*Λ-3f-(Λ), (3-10)

and there are as many such functions as Virasoro characters at level m = k+ + 1.
(Recall that when fe~ = 1, 2t~ =0 or 1 when 2^ —2^ + is even or odd respectively.)
We define,

where the ̂  expansion of the functions X%?+2/+Ί i (<?) *s>

< ^ . ( ί ) = «*~W+1 £*.,-, KeZ,

with the prefactor being the inverse of the corresponding level m = k + +1 Virasoro
character.

Note that this relation (3.9) reduces to the GKO sumrule when z~ = —z+1

9 as
can be easily seen using the properties (3.3) and

The key observation which led us to the identities, (2.1) and (2.9), presented in the
previous section is that the product of the determinants of the matrices A{+) and
A{~] is equal to minus one when k+ = 1. Indeed, the matrices A(+) and A{~] in this
case are given by (suppressing the q dependence),

^ \ ) (3.12)

and,

This can be seen by using the expressions (3.8) and the well known identity,

1 = Xl"2(3) (q) (XT:\(3) (q) + XJ%(3) («)) (xll^ (q) - ZΪ ! ί < 3 ) (β)) ,

which can be easily checked by using the infinite product representation of Ising
model characters given in the Appendix. There is some evidence that the product
det A( + ) det Ai') is a modular invariant [14] and we therefore conjecture the result,

detAi+) detAt-^-l, Vfc+eN, fc" = l . (3.14)

The identities of Sect. 2 enable us to prove it for k+ = 2.

Indeed for k+ =2, we have, according to relations (3.5) and (3.9),

-γiU2;l

vVir(3)

^2,4;0

^2,2;0

yVir(3)
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XlA ~Xί,2 ^ l . l l

Vir(4) ,,Vir(4) y(3)
2,4 #2,2 A l , 2 ; 0

Vir(4) _ yVir(4) γ(3)

y(4)

zT.V3'

2,2;0 I 3,2;ί

^(4) v (4)
2,4-0 * 3,4;1

T i r3 ( 3 )vVir(3)
X l 2 xT, ir3

vVir(4)
l. l l

vVir(4) vVir(4) y(3)
~~Xl,2 ~~XlA A l , 2 ; 0

\X2 XXA- ^ 1 , 3 ; ! ,

(3.15)

Exploit ing the fact t h a t the matrices A(+) a n d [^4 ί + )] 1 are inverses of each other,
we m a y write,

/ 1\J + k < v V i r ( 4 ) / ^ vVir(4) /

where,

Γ | etr /4(+)-|-i _p L r n α + 6 v v i ί ( 4 ) ω vVirί4)f/

with σ = 0 or 1 for 1 — c odd or even respectively. By virtue of (2.1),

(3.16)

T h e result (3.14) follows from the observat ion t h a t d e t ^ " ^ — det^4 ( + ) when
k+=2.

When fc+ = 3, the situation is slightly different since the matrices A{+) and A{~]

do not have the same determinant up to a sign. With matrices Ai+) and ( + )

taken to be,

1 l,5;0

y(5)
1 l,3;0

y(5)
r l . l O

1 zT, i r 5 ( 5 )

- χ l i r 5 ( 5 )

χ l i r s < 5 )

y(5)
— / 2,5;1

y(5)
~ r 2,3;1

-^25,1;1

x Γ 2

( 4 )

χy, i r 3 ( 5 )

X3, i Γ 3 ( 5 ]

-χϊ%(

y(5)
1 3,5;0

(5)

^3,3;0

y(5)
1 3,l;0

χ ^ < 4 )

v V i

xV,
~~x*

y(5)
~" J4,5;l

(5)

~ - * 4,3;1

_y(5)

vVir(4)
#2,4

r(5) γ(4
1 Λ 2

l!ϊ %2

/ir(5) y(4
l ,l A 2

\

/

•)

2;1

)
3;0

^ ; 1 y
(3.17)

it is easy to set that,

(3.18)
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However, because the following bilinear in m = 5 Virasoro characters is equal to
1 (see Appendix),

( 5 ) t e ) = 1 , (3.19)
one obtains from (3.18) that,

vVir(5)/_\ Vir(5)/Λ\
yVir(4), ) _ Xl.l W-Xl .5 W (3 20)

We have used the well known symmetry properties of unitary Virasoro characters,

Vir (m) (n\ _ vVir (m) / \

It is now straightforward to conclude from the identities (2.9) and the expression
(3.20) that

The number of unknown functions, X{*lσ(q)9 in the matrix [^4(~)]~1 is however too
high to derive its determinant, even with the help of the identities (2.9). This
precisely shows the limit of our approach to generate more identities of the type
described in Sect. 2. Indeed, the higher value £ + takes, the higher number of
unknown branching functions F& σ

+ 2 )(4) a n d functions Xί%ϊΛ)(q) one gets. For
instance, when £ + =4, the fact that Λ{+) and [ y l ^ ] " 1 are inverse matrices implies
that the m = 5 Virasoro characters are obtained as,

v Vir(5)/ / | \_ * p / l y + Λ + ί vVir(6)/Λ\ vVir(6)/^\ vVir(6)/^\ γ(5) (
Xί,i W — i , p .( + )-,=!: είjklm{— 1) Xj,6 WXkA W)Xl,2 itfM 3,m;<r

X3i W) — )Ί-l Sijklm\—ί) Xj,6 WXk,A W) Xl,2

(3.21)

so that potential identities between unitary Virasoro characters depend on the
unknown functions X{

r

5£σ(q).

4. Conclusions

We have presented and proven two sets of identities between unitary minimal
Virasoro characters at levels m = 3, 4, 5. The first identity (2.1) suggests a strong
connection between the Ising and the tricritical Ising models since the m = 3
Virasoro characters are obtained as bilinears of m = 4 Virasoro characters. It may
also imply an as yet unknown mechanism which produces a conformal field theory
with central charge c = \ when considering two copies of a c =^ό theory in a much
less trivial way than their tensor product. Such a mechanism would be a very
interesting alternative to twisting the energy momentum tensor of a given theory in
order to alter its central charge.
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The second identity (2.9) is more involved since it gives the tricritical Ising
model characters as bilinears in the Ising model characters and the six combina-
tions of m = 5 Virasoro characters which do not appear in the spectrum of the three
state Potts model. A field theoretic interpretation of these identities would certainly
shed new light on the underlying structure of minimal Virasoro theories.

It would also be important to investigate the generalisation of these identities to
higher level Virasoro characters. Our approach, which involves the study of N = 4
superconformal characters and their branching functions into SU(2) x SU(2) char-
acters is quite limited at present due to the lack of information on the analytic
structure of the branching functions. A more direct approach based on a deeper
field theoretic understanding would undoubtedly reveal more relations between
Virasoro characters of different levels.

Acknowledgements. We thank Jens-Lyng Petersen for sharing his insights into the extended N — 4
superconformal algebra. We also thank Ed Corrigan, Paul Mansfield and Gerard Watts for
stimulating discussions. We acknowledge the U.K. Science and Engineering Research Council for
the award of an Advanced Fellowship.

A. Appendix: Proof of the Identities

We give here a complete proof of the vectorial identity (2.1) between m = 3 and
m = 4 unitary Virasoro characters, as well as a proof of one of the identities (2.9)
between m = 3, 4, 5 Virasoro characters. The other identities in this second set can
be proven by similar methods. We use the infinite product representation of m = 3
and m = 4 characters, given for instance in [20],

XΪliι3)(q)±XΪ%l3)(q) = q-* ft
n = 0

and,

n = 0

n = 0

« = 0

The vectorial identity (2.1) is equivalent to the set of three scalar identities,

) - %ίT] (9)] [XΪ%W (β) + ZΓ2

<4) («)]), (A.3)
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(A.4)

When using the product representation (A.I) and (A.2), Eqs. (A.3) and (A.4) may be
rewritten as,

oo /i i ««+lwi ~H+1\ oo

00

(A.5)

and,

00

= Π {l+q5" + 2)(l+q5n + 3)(l+q5n+l)(l+q5n+l)
n = 0

±qi Π (i+i 5 " + 1 )( i+<? 5 " + 4 )( i+if 5 " + l )( i+g 5 " + l ) (A.6)

The Jacobi triple product identity,

f z"q"2=f{(ί~q2"+2)(ί+zq2"+1)(ί+z-1q2'' + 1 ) , (A.7)
n — — oo n = 0

with q-^ql, z->±ql~' for i = i , | , 1 and 3, allows us to rewrite (A.5) and (A.6) as,

[
+0° , Ί Γ +0° , Ί

Σ <?|n2+Ί Σ (-iΓβ*"1+2"

t +oo ~| Γ +oo

.«= — oo J L m = ~ oo

_«= —oo J L » ι = - oo _J

(A.8)

and,

L_«= — oo _J|_m=—oo

±«* Σ Φ"+t" Σ ( + i r ^ m + 2 m

L Λ = - oo J |_m= -oo J
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80 A. Taormina

and

(A.9)

Σ + k'(q) (A. 10)

In particular, we have,

We repeatedly used the relation,

p= - oo/ = 0 / = 0

and the definition of Virasoro characters (2.2). Using the product representation of
level m = 4 Virasoro characters once more, it is very easy to see from (A.ll) and
(A. 12) that the identities (2.1) hold.

We now proceed to prove the identity (2.9),

XV2:r)(q) = XV2%i3)(q)(χXT)(Φ-X4iΛ(5)(q)), (A. 14)

which we rewrite using (A.I) and (A.2) and the definition of m = 5 Virasoro
characters in terms of theta functions as,

«=0 w=0

X [Θl.3θ(ί) + β29f3θte)-011.3θ(«)-βl9.3θte)] (A. 15)

The infinite product on the RHS can be expressed as a product of level k = 30 theta
functions after use of the Jacobi triple identity,

έ Π (1-«15"
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while the LHS is given by,

q"+1) = q-*+* fl (1-V 5 " + 1 T5 " + 1 T 6 Π
«=0 M = 0 r=0

(A.17)
The identity to prove then reduces to,

2

= Π ίθΊ + iθr,
r = 0

(A.18)
which is equivalent to,

Λ5(qf]9 (A. 19)

as can be seen by using the product of two theta functions at level 30 (A.IO) as well
as the standard properties,

29

θm,6θ(q)= Σ #3Om+36OOΛ54OOθ(<?) , (A.20)
/ = 0

and,

This last equality (A. 19) can be derived by considering the product,

.3θ(«)] , (A.22)

and using (A.IO), (A.20) and (A.21) by pairing the first and second factors together
(and the third and fourth factors) and then by pairing the first and third factors
together. This completes the proof of (A. 14). The other identities of (2.9) can be
proved along similar lines.

Finally we wish to show that the bilinear in m = 5 Virasoro characters (3.19) is
equal to 1,

$ ( S ) (9) = 1 (A.23)

From the definition of Virasoro characters in terms of theta functions (2.2) and
using the same techniques as above, we must prove that,

θl3,15(β)] (A.24)

However, the Euler pentagonal identity [1] gives an expression of the Dedekind
function in terms of level 6 theta functions,

η(q) = «ά f (-ψQlml+ϊm = θU6(q)-θ5t6(q), (A.25)
m = — oo

and therefore,
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(A.26)

where the product formula (A.10) and (A.21) have been used.
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