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Abstract: For an operator, A, with cyclic vector φ, we study A + λP, where P is the
rank one projection onto multiples of φ. If [α, β~] cspec(^4) and A has no a.c.
spectrum, we prove that A + λP has purely singular continuous spectrum on (α, β)
for a dense Gδ of A's.

1. Introduction

The subject of rank one perturbations of self-adjoint operators and the closely
related issue of the boundary condition dependence of Sturm-Liouville operators
on [0, oo) has a long history. We're interested here in the connection with Borel-
Stieltjes transforms of measures (Imz>0):

where p is a measure with

ί (1.2)

In two fundamental papers Aronszajn [1] and Donoghue [5] related F to
spectral theory with important later input by Simon-Wolff [13]. In all three works,
as in ours, the function (j; real)
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plays an important role. Note we define G to be + oo if the integral diverges. Note
too if G(y) < oo, then the integral defining F is finite &tz = y and so we can and will
talk about F(y).

Donoghue studied the situation

where Pφ = (φ, φ)φ with φ a unit vector cyclic for A. dp is then taken to be spectral
measure for φ, that is,

Aronszajn studied the situation

on [0, oo), where V is such that the operator is limit point at oo. Then, there is
a one-parameter family of operators, Hθ, with boundary condition

p is the conventional Weyl-Titchmarsh-Kodaira spectral measure for a fixed
boundary condition, 0O.

An important result of the Aronszajn-Donoghue theory is

Theorem 1. E is an eigenvalue of Aχ (resp. HQ) if and only if

(i) G(£)<oo,
(ii) F(E)= -λ~ι (resp. cot(0-0 o )).

Our goal here is to prove the following pair of theorems:

Theorem 2. {£| G(E)= oo} is a dense Gδ in spec(^0) (resp. Hθo).

Theorem 3. {λ | Aχ has no eigenvalues in spec(^lo)} (resp. {θ \ HQ has no eigenvalues
in spec(H#0} is a dense G$ in IR (resp. [0, 2π])).

While not stated precisely in those terms, Theorem 2 is a generalization of del
Rio [4]. Gordon [8, 9] has independently obtained these results by different
methods.

Theorem 2 is quite easy and appears in Sect. 2. Theorem 3 is deeper and
depends on some subtle estimates of F found in Sect. 3 and applied in Sect. 4 to
prove Theorem 3.

The interesting applications of Theorem 3 found in Sect. 5 concern singular
continuous spectrum. For example, suppose Ao has spectrum [0, 1] but has no a.c.
spectrum. By general principles, Aλ has no a.c. spectrum either. Then, Theorem 3
says that for a dense Gδ of 1, Aλ has purely singular continuous spectrum. This is
especially interesting because there are examples where the Simon-Wolff theory
implies that for Lebesgue a.e. A, Aχ has only point spectrum. However, this is not
always the case. There exist Ao and P so that spec(^40 + AP) is purely singular
continuous on (0,1) for all λ. However, Theorem 3 implies that it cannot happen
that the spectrum is always pure point.
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2. Forbidden Energies

In this section we'll essentially prove Theorem 2.

Theorem 2.1. Let dp be a measure obeying (1.2). Let

Then, {y\ G(y)= oo} is a dense G$ in supp(dp), the support of dp.

Remarks 1. By Theorem 1, only E's with G(E) < oo can be eigenvalues of Aχ or HQ,
so £'s with G(y) = oo are "forbidden energies," that is, energies which cannot be
eigenvalues.

2. If supp(dρ) ( = spec(^4)) is perfect (no isolated points), then the theorem says
the forbidden energies are locally uncountable in supp(dp).

3. Obviously, {y \ G(y)= oo} cz supp(dp).
4. This says that {j esupp(dp) | G(y) < oo} has interior empty in supp(dp). Even

more so is the interior empty in 1R. The theorem is a stronger result than interior
empty in IR since supp(d/?) might itself have interior empty in IR.

Proof. The following are fundamental facts about Borel-Stieltjes transforms and
their relation to dp (see [3]):

(1) limεJO F(E + iε) = F(E-\-iO) exists and is finite for Lebesgue a.e. E.
(2) dpac is supported on { E | I m F ( £ + i0)>0}.
(3) dρsing is supported on {E | l im £ | 0 ImF(£-f iO)=oo}.

If G(y)< oo, it is easy to see that l i m ε | 0 F(E + iO) exists, is finite and real. Thus, if
G(y) <oo on an interval (α, β)aWL, then by (2), (3), dp(oc,β) = O, that is,
(α, β)nsxxpp(dp) = φ. Thus, {y \ G(y)= oo} is dense in supp(dp).

That {y\ G(y)= oo} is a G^ follows from the fact that G is lower semicontinuous.
To be explicit, let

_ , , , dp(x)

which is a C 0 0 function by (1.2) and G(y) = supm Gm(y). Thus

is a Gδ. Π

3. The Main Technical Lemma

In this section we'll prove

Lemma 3.1. Let dp obey (1.2). Then

{F(y) I G(y)< oo and yesupp(dρ)}

is α countable union of nowhere dense subsets of R.
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Note that G(y)< oo implies the integral defining F(y) is absolutely convergent
and F(y) is real. The proof will depend critically on the fact that F is the boundary
value of an analytic function. That such considerations must enter is seen by

Example. Let A a [0,1] be a nowhere dense set of positive measure (e.g., remove
the middle open \ from [0,1], the middle y from the remaining two pieces, the

middle — , . . . , -^ at the (n- l) s t step). Let

where | | is Lebesgue measure. Then F is Lipschitz; indeed, if x<y, \F(x) — F(y)\ =
\An[x, y]\^\x — y\. But F[^4] = [0, |^4|] has non-empty interior. Thus for our F,
we need more than just Lipschitz properties (our F is certainly not Lipschitz but
F \ {y I G(y)<a) is the restriction of a Lipschitz function to that set).

The idea of the proof will be to break up {y\G(y)<co, yes\xpρ(dp)} into
a countable union of nowhere dense sets, An, so that F is a homeomorphism on
each of those sets. On each An, G will be close to constant. We'll use:

Lemma 3.2. Let BczΊR. be a nowhere dense set and let F:B->Wί be a function
obeying for x<y, with x,yeB:

a(y-x)<F(y)-F(x)<β(y-x) (3.1)

for fixed α, β>0. Then F [ £ ] is nowhere dense.

Proof. By (3.1) F has a unique continuous extension to B obeying (3.1). JR\5 is
a union of intervals (xί?yi) with Xi.yieB. Extend F to the interval byjinear
interpolation using slope i(α + β) on any semi-infinite subintervals of IR\S. The
extended F also obeys (3.1) and so defines a homeomorphism of IR to IR. As
a homeomorphism, it takes nowhere dense sets to nowhere dense sets. •

Proof of Lemma 3.1. We first break 4̂ = {j;esupp(dp)| G(y)< oo} into a countable
family of sets An so that for each n, there is an > 0, δn > 0 so that

(i) for ^

1 /3\
(iϋ) [ ) CA ίy — βδn9y + βδn~\ is connected where β=— -w ^ « 18 \4/

Such a breakup exists for we can first break IR into intervals I ( ̂

and pigeonhole G by its values. Since G(y)< oo implies lim^o i|x-j,|«5 7 τi~®>
(x y)

we can break each such set into countably many sets where (ii) holds. Then we can
break each such set into countably many sets so that (iii) holds by looking for gaps
of size longer than δnβ.
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y

Fig. 3.1.

Each An is nowhere dense by Theorem 2 and we'll show that on An, y>x
implies that

-an(y-x)<F(y)-F(x)<-an(y-x), (3.2)

so that the lemma follows from Lemma 3.2.

Define έn = βδn and zn = *J\ίn. For yeAn, let An(y) be the triangle in C (see
Fig. 3.1):

a r g ( z - y ) - ^

This is the equilateral triangle of side ίn with one side parallel to the real axis at
distance εn from that axis and the opposite vertex at y.

For zeAn(y\ define

<?(*) = J
dp(x) dF

(x-z)2 dz

We claim that for zeΛn

(3.3)

Accepting (3.3) for the moment, let us prove (3.2). By the fundamental theorem
of calculus, (3.3) implies for z, z'eΔn(y)\

\F{z)-F{z')-an{z-z')\^\z-z'\ . (3.4)

By hypothesis (iii) on An, (J A An(y) is connected and so, given y<y'eAn, we
can find a finite sequence yo = y<yi<' ' '<yn

=zyr and zu. . . ,zn so that (see
Fig. 3.2)

and

By (3.4) and (3.5)

which is (3.2).



64 R. Del Rio, N. Makarov, B. Simon

Fig. 3.2.

Thus we need only prove (3.3). We write

where

bo = G(y)-an,

dp(x)
~ J

f
2 = J

with

) = f

By hypothesis (i) on An, |foo| = " ^ -

By hypothesis (ii) on An, |& 2 | ^xτ BY elementary trigonometry,

and ' 3 ι
4 1

Thus

(3.6)

so
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Finally, using the fundamental theorem of calculus and (3.6)

4\3/2

J an

-» 9

by definition of the constant β. Thus (3.3) holds. •

4. Proof of the Main Theorem

Our goal here is to prove Theorem 3 (from Sect. 1) and derive some simple abstract
consequences of it.

Proof of Theorem 3. The maps M^. R\{0}->R\{0} by Mί(λ)=-λ~1 and
M 2 : [0, π)->Ru{oo} by M2(θ) = cot(θ — θ0) are homomorphisms. Thus, by
Lemma 3.1,

{λ\3Es.L G{E)<oo,Eespec(A0),F(E)=-λ-1}

and

{0|3£s.t. G(E)<oo,

are countable unions of nowhere dense sets. Its complement is thus a dense set by
the Baire category theorem. But by Theorem 1, this is precisely {λ\Aλ has no
eigenvalues on spec(^40)}> which we conclude is dense. By general principles [12], it
is also a G$. •

Here are some simple corollaries of Theorem 3. We state them in the rank one
case but they hold in the cot(θ — θ0) B.C. case also.

Corollary 4.1. Suppose that Λo is an operator with no a.c. spectrum and P is a rank
one projection whose range is cyclic for A. Then for a dense G$ ofλ's, Aλ = A + λP has
only singular continuous spectrum in spec(^40)

mt.

Proof Aχ has no a.c. spectrum since the a.c. spectrum is left invariant by finite rank
perturbations. spec(^40) has no eigenvalues for a dense Gδ of λ. There can be
eigenvalues on R\spec(^40) and so point spectrum on 3(spec(^40)) But there
cannot be point spectrum in spec(y40)

int D

Corollary 4.2. Suppose that Ao is an operator with no a.c. spectrum and an interval
[α, β~\ c= spec(^40) Let P be a rank one projection whose range is a cyclic vector for
Ao. Then for a dense G$ of' λ9s, A0 + λP has singular continuous spectrum on all of
(α, β) and only singular continuous spectrum there.

Proof A direct consequence of Corollary 4.1. •
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5. Examples and Consequences

Our first class of examples are half-line Schrodinger operators:

d2

Theorem 5.1. Let V(x) be a locally Lγ function on [0, oo) and let He= —τ-^+V(x)
dx

with θ boundary conditions. Suppose there is some θ0 and a<β so that

(i) [α,/J]cspec(iϊ0o).
(ii) for Lebesgue a.e., £ o e[α, j8], there exists a function φEo obeying

— φ"(x)+V{x)φ(x) = Eoφ(x) , (5.1)

00

J \φ(x)\2dx«x>. (5.2)
0

Then:

(a) For a dense G$ ofE's in [α, jδ], there is no solution of (5.1) obeying (5.2).
(b) For Lebesgue a.e. 0, He has only point spectrum in (α, β).
(c) For a dense Gδ ofθ, Hθ has only singular continuous spectrum in (α, β).

Remarks. 1. (b), (c) say that there are disjoint sets both locally uncountable where
He shifts between purely pure point and purely singular continuous spectrum on
[μ,βl

2. It may well happen that there are 0's with spectrum of mixed type.
3. For precursors of (a), see del Rio [4].

Proof If E is such that (5.1) has a solution obeying (5.2), then φE obeys some
boundary condition at x = 0 and so E is an eigenvalue of some He. Thus (a) follows
from Theorem 2.

To prove (b), note that if Eo has a solution obeying (5.1-2) and Eo is not an
eigenvalue of HQ0, then limεjo f °̂ IG(0, x; E + iε)\2 dx< oo. Now apply the ideas of
Kotani [11] and Simon-Wolff [13].

(c) follows from Theorem 3. •

d2

Example 5.2. Suppose that [α, b~] czspecl — —-^ + V(x) I and that for a.e.

\ ax J

£cz[α, b], lim^oo—-In ||Γ£(x)|| =y{E) and is positive. Here T is the standard

transfer matrix, that is,

φ[{x) φ'2{x)) '

where φt obeys —u" + Vu = Eu with </>i(0) = (/>2(0)=l a n d φ[(0) = φ2{0) = 0. Then

(a) implies there must be a dense G$ of E where either lim — || TE(x) || fails to exist or

is zero. Thus, a positive limit can never exist for all E in an interval. Results of this
genre have been found previously by Goldsheid [6] and Carmona [2].

Example 5.3. Consider a one-dimensional random model with localization, for
example, the GMP model [7, 2]. Then for almost every E in [α, oo), one knows y(E)
exists and is positive. It follows from Theorem 5.1 that for a locally uncountable set
of boundary conditions (a Lebesgue typical set), one has pure point spectrum, while
for a distinct set of locally uncountable boundary conditions (a Baire typical set),
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one has singular spectrum. Each spectral type is unstable to change to the other
spectral type.

Example 5.4. Let H= — —^ + cos(λ/x) on Z2(0, oo), a model studied by Stolz
(XX

[14]. As proven by him for any boundary condition θ:

spec(iΪ0) = [-l, GO) .

sρec(ifθ) is purely absolutely continuous on (1, oo). Krisch et al. [10] prove that for
a.e. θ, Hθ has pure point spectrum in [—1,1] only. Our results show that for
a dense G$ of 0, the spectrum is purely singular continuous. Once again you have
intertwined purely pure point and purely singular continuous spectrum.

Finally, we consider the case of Anderson model-
Theorem 5.5. Let Vω be a v-dίmensίonal model with uniform distribution on [α, fo] at

each set. Suppose that the corresponding Jacobi matrix hω has point spectrum in

[α, β^for a.e. Vω. Fix Vω(n) typical Then for a.e., choice Fω(0)e[α, b], hω has pure

point spectrum in [α, /}]; but for a dense G$ of values ofVω(0% hω has purely singular

spectrum in [α, /?].
This follows from Theorem 3.
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