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Abstract: We prove that for any diophantine rotation angle ω and a.e. phase θ the
almost Mathieu operator (H(θ)Ψ)n = Ψn-i + Ψn+i + λcos(2π(0 + nω))Ψn has pure
point spectrum with exponentially decaying eigenfunctions for λ^ 15. We also
prove the existence of some pure point spectrum for any λ^

1. Introduction

In this paper we study localization for the almost-Mathieu operator on /2(Z):

The almost-Mathieu operator attracted a lot of interest especially in the last
decade. For references before 1985 see [1]. Some of the later references are [2-7].

While it is very well understood and commonly believed that for diophantine
ω and \λ\ >2 the operator H(θ) should have pure point spectrum with exponen-
tially decaying eigenfunctions for almost every θ, this is not yet rigorously proved.
Localization was proved by Sinai [2] and Frohlich, Spencer and Wittwer [3] in the
perturbative regime: \λ\ "big enough." The methods developed in [2] and [3]
are very different but have to overcome one common difficulty: the absence of
a Wegner-type estimate that would give control of eigenvalue splitting. In both [2]
and [3] the gaps in the spectrum were estimated by special inductive multi-scale
procedures and these were the hardest parts of the proofs. The estimation of the
gaps is in fact the main difficulty in the proof of localization for any potential that is
not random enough to be treated by a Wegner-type argument. In this paper we
present a new approach to this difficulty: avoiding rather than fighting it. That
makes the proof of localization shorter and more elementary.
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The proof presented uses many basic ideas of the one in [3], but it is neither
a perturbative nor a multiscale type of argument. Namely just one big enough scale
is employed. It allows extension of the proof to the range of "not so big" values of
λ (from now on we assume without loss of generality that λ ̂ 0). The argument as it
is works for λ ̂  15, but we believe it should be extendible for smaller λ, maybe even
up to the critical value λ = 2. The number 15 (which is actually 14.97 . . .) looks
ugly of course and is an artifact of the "short proof." Surprisingly the method also
allows us to prove localization in the center of the band for λ ̂  5.4 which somehow
contradicts the intuition gained in experience with random potentials that localiza-
tion should be easier to prove near the edges of the spectrum.

There is of course a price to pay: the method loses the explicit control of the
appearance of the gaps and, unlike the method of [2], cannot prove the Cantor
character of the spectrum.

We will denote the spectrum of H(θ) by σ and the pure point part of the
spectrum by σpp. It is well known that for irrational ω both σ and σpp (understood
as the closure of the set of eigenvalues) do not depend on the phase θ for a.e. θ. But
the dependence on the two other parameters, λ and ω, is very nontrivial. For λ>2
and irrational ω the Lyapunov exponent is positive; that proves the absence of the
absolutely continuous part of the spectrum [8,9]. By Aubry duality for λ < 2 there
is no pure point spectrum [4], and there was recently great progress [7] in proving
that in this case the spectrum is absolutely continuous for any irrational ω. But for
λ>2 the arithmetic nature of ω starts to play a major role. Despite the positivity of
the Lyapunov exponents, for Liouville ω (abnormally well approximated by
rationals) the spectrum of H(θ) is purely singular continuous. Anderson localiza-
tion (pure point spectrum with exponentially decaying eigenfunctions) is expected
(and proved for λ large) only for "typical" (diophantine or may be satisfying
a slightly weaker property) values of ω.

We say that an irrational number ω is diophantine if there exist r> 1 and C > 0
such that

C
\qω-p\>— (1)

for any p,qeN. Throughout this paper ω will be assumed to be diophantine.
We will prove

Theorem 1.
1. For λ>5Λ there exists an interval [ — ε(λ\ ε(λ)'] such that σ p p n[ — ε(λ\

ε(A)] Φ0 and the spectrum ofH(θ) in this interval is (for a.e. θ) pure point with
exponentially decaying eigenfunctions.

2. For Λ^ 15 we have ε(λ)^.λ + 2 which means Anderson localization for a.e. θ.

Remarks.
1. The function ε(λ) is montone increasing in λ and so is the function ε(λ) — λ.

For example ε(6)^4, ε(9)^9 and β(14)^ 15.
2. As can be seen from the proof, the set of 0's for which we prove localization,

is given by an explicit condition (e.g., 0 = 0 belongs to this set). Thus Theorem
1 provides a lot of "concrete" examples of operators with pure point
spectrum.

3. With only minor changes in the argument (mainly in the proof of the
Proposition 5) the same result can be proved for ω satisfying a weaker
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condition than (1). Namely, let g(x) be any function such that for any c>0 we
have e~cx = o(g(x)). Then the same result holds for all ω such that for any
p,qeN we have \qω—p\>g(q).

2. Proof of Theorem 1.

Let

M(E,λ)=-y=

where by ^/(E + ϊ)2 — λ2 we understand the value with positive imaginary part. We set

)

Theorem 1 follows immediately from

Theorem 2. If an interval I is such that C(E,λ)>0for all Eel then the spectrum
of H(θ) in I is pure point and the corresponding eigenfunctions are exponentially
decaying.

Proof of Theorem 1. It is easy to see that C(£, λ) is monotone decreasing in | £ | and
increasing in λ. Since Oeσ, (see, e.g. [6]) the first statement now follows from
C(0,5.4)>0.

For any λ we have σ c [ — λ — 2, λ + 2]. In order to finish the proof of the second
statement it remains to notice that C(λ + 2, λ) is monotone increasing in λ and that
C(16.97,14.97) >0. D

3. Proof of Theorem 2

We will use the notation G [ X 2 ) X 2 ](£) for the Green's function (H — E)'1 of the
operator H(θ) restricted to the interval [x i ,x 2 ] with zero boundary conditions at
x1 — 1 and x2 + 1. Let us denote

Pk(θ,E) = detl(H(θ)-E)\l0tk_lΊ\.

k — \
Notice that Pfe(0, E) is an even function of the argument θ-\—— ω and can be

written as a polynomial of the degree k in cos I 2πί θ-\—— ω j I:

Pk(θ, E)= J

To simplify the notation we will sometimes omit the dependence on E.

It is easy to see that bk = 2λk. We now fix EeR; l < m ! < - . Given fc>0 let
us denote
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For any x l 5 xz = — 1, xt^y^x2 we have

\GlXι,Xll(y,x2)\ = (2)

Proposition 1. For any ε > 1 there exists k(ε, E) such that for k > fc(ε, E) and all θ we have

\Pk(θ,E)\<(εM{E,λ))k.

Proof. We define

θ,E) = Bk(θ,E)...Bo(θ,E).

For A = ( , I we define the norm of A as IIAII = maxi^/a2 + c2, N/ft2 + ίί2). Let

||Λ Hop be the operator norm. It is well known that \Pk(θ, E)^ \\Mk(θ, E) | | o p g

For any matrix A of the form ( ) we have ||.<4||op^—-^ \\A\\, thus
1 \) I

ί 2 \
\Pk(θ9E)\^l-j=\ Y\k

j=0\\Bj(θ,E)\\. Since \\B(Θ9E)\\ is a continuous function

of θ we can use strict ergodicity of the rotation by the irrational angle ω to show
that for any ε > 1 and k large enough we have

1

3 \

The last integral can be computed directly and is equal to ln( ~—M(E, λ) I. •

It follows from Proposition 1 and (2) that for XιβAk, x2 = Xi + k-l, k>fc(ε),
— < m 2 < l and ye[x1,x2] such that
m

(

ln(εM(E,λ))

we have
\GlXι,^(y,x,)\<mk

2, i = l , 2 . (3)

Definition. 4̂ point yeZ we be called (m2,k)-regular if there exists an interval
[ x 1 ? x 2 ] containing y such that

Otherwise y will be called (m2,k)-singular.
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Proposition 2. Suppose yeZ is (m2,k)-singular. Then for any x such that fe(l — cλtE) ^
y — x^kcλε we have that x does not belong to Ak.

Proposition 2 follows immediately from (3).
The key part of the proof is the following lemma:

Lemma 3. For almost every θ there exists k^θ) such that for k>k1(θ) if the points
Xi,x2 are such that

-[ί±i]*4,.-i.i

m2) d i s t ( x l 5 x 2 ) > |

dist(x 1 ? x 2 )>α f c

with α = α ( m l 9 λ ) > l .
The proof of Lemma 3 will be given in the Sect. 4.

Definition. A formal solution ΨE(x) of the equation H(Θ)ΨE = E ΨE will be called
a generalized eigenfunction ίfΨE(x)^C(l + \x\) for some C = C( ΨE)<oo.

It is well known that to prove pure point spectrum one only needs to prove that
generalized eigenfunctions belong to I2 ([10]; see also [3,11]).

Let E(θ) be a generalized eigenvalue of Hθ, Ψ(x) the corresponding generalized
eigenfunction.

Lemma 4. For every xeZ such that Ψ(x)ή=0 there exists ko = ko(x, m2,θ,E) such
that for k>k0 the point x is (m2, k)-singular.

Lemma 4 is the same kind of statement as Lemma 3.1 in [3] and so is the proof.
We now can finish the proof of the theorem. Suppose C(λ, E)>0. Then there

exist l < m ! < - , m 2 < l and ε > l such that 2c A ε —1>-. Assume without loss of

generality that *F(0)Φ0. Let |x | be bigger than max[/c(ε, £), fc1(θ)/co(0, m 2 ) 0, £)] .

Suppose x is (m2, |x|)-singular. Since 0 is (m2, |x|)-singular, and 2 c λ ε — 1 > - , we

obtain using Proposition 2 that the points xx = x — cλjx\ and x2 = — c^fi|x| satisfy
the conditions of Lemma 3 with k = \ x | for | x \ large enough. Applying Lemma 3 we
get that dist(xx, x2) = \x\ > α | x |, which gives a contradiction for |x | large and implies
that x is (m2,|x|)-regular. Thus we have that there exists an interval [ j i , j 2 ]
containing x such that

We now can use the formula

ψ(χ)=Gfr.yjx,

to obtain the estimate:

)m2*'. Π
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4. Proof of Lemma 3

Let xux2 be as in Lemma 3. We write:

Sk={θ:\Pk(θ)\<m\}9

QΛx)=Σ bj(E)
j=o

We consider Qk{x) as a polynomial on [ — 1,1].
Let

Z}= <

cos(2π(0Ί+;ω)), j=(

[,..., k

Since θ+(Xi+j)ωeSk for i= 1,2; OrS/g; , we have that

L 2 J

Let us write Q(x) in the Lagrange interpolation form:

Π
We set

Then we have

δU)(x)
(4)

And, in particular, the right and the left hand sides of (4) have the same coefficient,
2λ\ with xk. Thus

2χk= y \£kyj> <

So there exists je[0, k] such that

max

l)m\

2λk

(5)

(6)

Proposition 5. For any b>2 there exists k0 such that for k>k0 andje [0, k~] we have
that \QlJ)(z)\<ak, any a>0 implies there exists se[0, fe], s+j such that

\z-zs\<(ba)*.
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Proof. Suppose \z — zs\ >(baY for all se[0, fc], s+j. We can assume without loss of

generality that j ^ — — . We can write

l n | & Λ | ( z ) | = Σ ln|(z-cos(2π(θi+sω))) |
5 = 0,...,

ln|(z-cos(2π(0 2

s=0

-cos(2π(0Ί+sω)))

(7)

where

2rC2
22rC

18
, C and r are as in (1), since the diophantine property (1) implies that

there exist not more than 4 points se[0,fc] such that \z — zs\ ^C1k~2r.
Let ω = [fci, . . . , & „ , . . . ] be the continuous fractions expansion of ω;

— =[fc l 5 . . . , fcw]-the nίΛ approximant. We will use the following properties of the
In
continuous fractions expansions (see, e.g., [12]):

1

and

Pick n such that "~L
k+ l Ί
—— < q n + 1 . Inequality (9) implies that

fe>64. We can represent — — as =£>«<?«+

Γ f c + 1 Ί «.
~~2~ Γ M B - -bj+iQj

(8)

(9)

l<31nfc for

o, where for

each O^j^n,
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k+ϊ

(8) together with (1) imply that

bi<—
q, 2 J

bn<

k+ϊ

In

The right hand side of (7) can be estimated from below as:

l)jfk(z-cos2πθ)dθ-2(bn+ . . . +bo)Var/fc

L 2 J
^ C

In—;

r

Here we est imated the error in the ergodic t h e o r e m using a s t a n d a r d technique (see,
e.g., L e m m a 4.1, Ch. 3, [12]). T h e contradict ion proves the statement of the
proposi t ion. •

Let us fix —-<a<- and 2<b<- .
λ 2 a

Proposition 5 implies that for fc large enough there exists joe[0, fc],j0 +j such that

— 1 —

(10)

(11)

(12)

which means that there existΛ1?Λ2, j S ι

e 0, —— u x2 —

—-— , i = 1,2, such that

Icos(2π(0Ί +;5iω))-cos(2π(0/

1 +Λ,ω))| ^

Inequality (10) implies that either

i)

or

ϋ)

sm

Condition (1) together with (11) implies
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7-k-l>m\

1

with m3=(bay~9r, for k large enough.
The event ii) can occur for a specific set of θ only. Namely for every j S ί , jS2 we

define

βjs Js = {θ: (12) holds}.

F o r every pair s1,s2 the set (9, , is independent of E and has measure not

exceeding (32(ba)4-)2. The total number of pairs sίys2 such that

jse 0, — — u [ x 2 — X i , x2 — Xi + k—l — \ — — , Ϊ = 1, 2, does not exceed

-(/c+1) 2 . Thus the set

1 h. L

has measure not exceeding -(fc+l)2(32(bα)4)2 and using the Borel-Cantelli

lemma we obtain the statement of the lemma. •
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