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Abstract: We prove that for finite range discrete spin systems on the two dimen-
sional lattice Z2, the (weak) mixing condition which follows, for instance, from the
Dobrushin-Shlosman uniqueness condition for the Gibbs state implies a stronger
mixing property of the Gibbs state, similar to the Dobrushin-Shlosman complete
analyticity condition, but restricted to all squares in the lattice, or, more generally,
to all sets multiple of a large enough square. The key observation leading to the
proof is that a change in the boundary conditions cannot propagate either in the
bulk, because of the weak mixing condition, or along the boundary because it is
one dimensional. As a consequence we obtain for ferromagnetic Ising-type systems
proofs that several nice properties hold arbitrarily close to the critical temperature;
these properties include the existence of a convergent cluster expansion and
uniform boundedness of the logarithmic Sobolev constant and rapid convergence
to equilibrium of the associated Glauber dynamics on nice subsets of Z2, including
the full lattice.

Section 0. Introduction

Let us consider a discrete, finite range lattice spin model in the one phase region
and let us analyze the problem of establishing mixing properties of the correspond-
ing Gibbs measure. As is well known, a very powerful approach to the above
question is to study the local specifications of the Gibbs measure and to try to
derive the uniqueness and mixing properties (e.g. exponential clustering) of the
infinite volume state from suitable conditions on the local specifications which
express some sort of weak dependence on the boundary conditions. We have in
mind, in particular, the Dobrushin [D] and Dobrushin-Shlosman [DS1, DS2,
DS3] conditions and we refer the interested reader to a recent paper by two of the
authors, [MO1], for a detailed critical review of these conditions together with
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their implications both for the Gibbs measure and for the associated Glauber-type
dynamics.

The above conditions can be roughly divided into two classes that we call weak
mixing and strong mixing, respectively, according to the following criterion (see
Sect. 1 for more details):

A weak mixing condition implies that if in a finite volume A we consider the
Gibbs state with boundary condition τ, then a local (e.g. in a single site yeAc)
modification of the boundary condition τ has an influence on the correspond-
ing Gibbs measure which decays exponentially fast inside A with the distance
from the boundary dΛ.

A strong mixing condition implies, in the same setting as above, that the
influence of the perturbation decays in A exponentially fast with the distance
from the support of the perturbation (e.g. the site y).

This distinction is very important since, even if we are in the one phase region
with a unique infinite volume Gibbs state with exponentially decaying truncated
correlation functions, it may happen that, if we consider the same Gibbs state in
a finite volume A9 a local perturbation of the boundary condition radically modifies
the Gibbs measure close to the boundary while leaving it essentially unchanged in
the bulk and this "long range order effect" at the boundary persists even when
A becomes arbitrarily large. We will refer to this phenomenon as a "boundary
phase transition." It is clear that if a "boundary phase transition" takes place,
then our Gibbs measure may satisfy a weak mixing condition but not a strong
one.

A "boundary phase transition" is apparently not such an exotic phenomenon
since, besides being proved for the so-called Czech models [Sh] (in dimension 3 and
higher), it is also expected to take place for the 3D ferromagnetic Ising model at low
temperatures and small enough magnetic field (depending on the temperature)
[DS4].

It is however very reasonable to conjecture that, for finite range interactions, no
"boundary phase transition" can take place in 2D for regular enough regions, e.g.
squares, for which the boundary is "one dimensional!" In the present paper we
prove this conjecture (see Theorem 1.1). It is important to stress that the restriction
of the strong mixing condition to squares and other "nice" regions is not a matter
of our inability to extend further the result to arbitrary regions. It is actually known
that, even in two dimensions and even for ferromagnetic systems, under the same
hypothesis of Theorem 1.1, the strong mixing condition may not extend to
arbitrarily shaped regions. Some simple counter-examples are presented in [MO1].
From the point of view of the "physics" involved in the problem, it is not surprising
that one has to restrict the shape of the regions so that their boundary be basically
"one-dimensional."

The main result discussed above is relevant because:

a) A strong mixing condition on e.g. all squares implies some nice consequences for
the Gibbs measure (see Sect. 3) like analyticity, the existence of a convergent
cluster expansion (see [O] and [OP]), good behavior under a decimation
transformation (see [MO2] and [MO3]), existence of a finite logarithmic
Sobolev constant (see [MO2] and [LY]), rapid convergence to equilibrium of
the associated Glauber dynamics (see [MO1, MO2]).
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b) There are several cases in which the weak mixing condition can be proven to
hold. For instance, this is the case if the Dobrushin-Shlosman uniqueness
condition [DS1] is verified. In Sect. 3 of this paper we will show that for finite
range Ising-like ferromagnets weak mixing indeed holds in most of the one-
phase region. In particular we can show that it holds in the absence of an
external field for all temperatures which are larger than the critical one. As
a consequence, we obtain the results quoted in (a) arbitrarily close to the critical
temperature. For these models we believe that weak mixing (and hence strong
mixing, if the dimension is 2) actually holds for every value of the temperature
and external field, except (of course) on the transition line and the critical point.

The paper is organized as follows: in Sect. 1 we define the models, the various
mixing conditions and state the main result (Theorem 1.1); in Sect. 2 we prove
Theorem 1.1 and, finally, in Sect. 3 we discuss some consequences of the main
theorem.

Section 1. General Definitions, Notation and Main Result

1. The Model. We will consider lattice spin systems in d dimensions (later to be
restricted to d = 2) with configuration space of a single spin given by the finite set
S = {1,. . . , JV}, JVeN. On the lattice Z d we will use the norm

| | x | | = s u p \Xi\,
i = l <f

and measure distances accordingly. The configuration space on a subset ΛLc:Zd,
namely SΛ, will be denoted by ΩΛ and a generic element of ΩΛ by σΛ. If A coincides
with the whole lattice Zd, then we simply write Ω and σ. By σx = σ(x) we denote the
value of the spin at the site xeA in the configuration σ. Also, when A a A, we
denote by σΔ the restriction of σΛ to A (note that this is consistent with the previous
use of the notation σΔ). The number \X\ denotes the cardinality of X c z c Z d (we
write I c c Z d iff X is a finite subset of Zd).

Next we define the potential or interaction U as:

where, for every finite X,

satisfies the condition Ux(σ) = Ux(η) in case σx = ηx for all xeX. On the potential
U we will always assume the following hypotheses:

HI. Finite range: 3r<co: Ux = 0 if diam(X)>r.
H2. Translation invarίance: VXc=c:Zd VfceZd:

Ux+k(σ) = Ux(η) if σ(y + k) = η(y) for all yeX .

Given AczZd and τeΩΛ< (where Ac = Zd\A), for every σeΩ we denote by (στ)Λ

the configuration obtained from σ by changing it to τ outside A:

(στ)Λ(x) = σ(x) VxeA ,

(στ)Λ{x) = τ(x) VxeAc . (1.1)
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Given a set AczczZά, a boundary condition, (b.α), is a configuration τeΩΛc and the
energy associated to a configuration σeΩΛ when the boundary condition outside
A is τeΩΛc is given by:

ί α ( * ) = tfΛ<7|τ)= Σ Ux((στ)Λ). (1.2)
0

Because of the hypothesis HI, H^(σ) depends only on τx for x in

dr

+ Λ = {xφΛ: dist(x, Λ)^r} . (1.3)

Finally the Gibbs measure in Λ with b.c. τ e f ^ at inverse temperature β>0 is the
probability measure μ^ on Ω^ given by

/ΰW- ^ - ^ " " ' . (1.4)

where the normalization factor, called partition function, is given by

ZA = X exp(-jJHA(σ)). (1.5)

If there exists a unique limiting Gibbs measure for A -• Zd, independent of τ, it will
be denoted by μ.

Remark. In the next sections it will be very convenient to consider the Gibbs
measure μA(σ) directly as a measure on the infinite volume configuration space
Ω such that on Ac we have a.s. σ = τ. Moreover we will frequently write, for τ and
σ in Ω, μ\(σ) instead of the more precise but cumbersome μγ(σΛ).

2. Definition of Weak and Strong Mixing for the Gibbs Measure. We first recall that
the variation distance between two probability measures μu μ2 on a finite set Y is
defined as:

\ \= sup \μι(X)-μ2(X)\ . (1.6)
ZyeY IcF

More generally, given a metric £>(•,•) on a finite space Y (a much more general
framework can also be considered) the Kantorovich-Rubinstein-Ornstein-Vasser-
stein distance with respect to ρ between two probability measures μu μ2 on F, is
defined as

KROV ρ (μ 1 ,μ 2 )= inf
μeK(μuμ2)y,y'eY

where K(μί9 μ2) is the set of joint representations of μi ,μ 2 , namely the set of
measures on the cartesian product Y x Y whose marginals are, respectively, given
by μί9 μ2. i.e., μeK(μu μ2) iϊVBczY

μ(BxY)= Σ
yeB,y'εY

μ(YxB)= Σ
yeY, y'eB

It is well known that for the particular case

Q(y>y')—^ iff y + / a n ( ^ 0 otherwise , (1.8)

KROVP( , ) coincides with the variation distance Var( , ).
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Given a measure μΛ on ΩΛ we call relatiυization of μΛ to ΩΔ, with zl c /t, the
measure μ ^ on £2̂  given by

We are now in a position to define strong mixing and weak mixing.
We say that the Gibbs measures μχ on ΩΛ satisfy the strong mixing condition

with constants C, y if for every subset A c A and every site yeAc

sup Var(μA,,, μτiΔ)ύCe-^Δ>*, (1.10)
τ,τ'eΩ/: τ=yτ'

where τ = j,τ' means that τx = τ'x for all x Φ j . We denote this condition by
SM(Λ, C, γ).

We say that the Gibbs measures μΛ satisfy the weak mixing condition with
constants C, y if, for every subset A c= A,

sup Vax(μτΛ,Δ9μ
τiΔ)£C Σ exp(-y | | x- j ; | | ) . (1.11)

We denote this condition by WM (A, C, y).
Finally we say that WMρ{Λ, C, y) holds if VJ

sup KROV ρ (μ^, ,μD^C Σ exp(-y||x-j;| |) . (1.12)
τ,τ'eΩΛc xeA,yed? A

3. The Main Result. The cube (we will also call it "square" if d = 2) of side 2L+1
centered at the origin is the set

AL = {xeZά;\\xUL}.

Our main result reads as follows:

Theorem 1.1. In 2 dimensions, if there exist positive constants C and y such that the
Gibbs measures μΛ satisfy the weak mixing condition WM(Λ, C, y)for all AaczZ2,
then there exist positive constants C and y' such that they also satisfy the strong
mixing condition SM(Λ.L, C, y') for every square AL.

Remark. Actually, as we will see in the next section, the conclusion of the above
theorem remains true even if we assume the weak mixing not for all finite subsets of
Z d but only for all subsets of a square ΛLo provided that L o is large enough
(depending of course on the constants C and y and on the range of the interaction).
Moreover it is possible to show (see [MO1]) that, once SM(ΛL, C, / ) holds for
every square AL, then it also holds for all sets "multiple" (i.e., union of disjoint
translates) of a given, large enough, square.

Section 2. Proof of Theorem 1.1

Theorem 1.1 actually follows from an apparently weaker result that we state as
a proposition. First we need to introduce a technical definition; given L and τ,
τ'eΩc

ΛL set

QL,τ,τ> = {xeAL; | | x - > ; | | ^ L 1 / 2 Vy such that τ(y)*τ'(y)} .
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Proposition 2.1. In 2 dimensions, if there exist positive constants C and y such that
the Gibbs measures μΛ satisfy the weak mixing condition WM(/L, C, y) for every
ΛaczZ2, then there exist positive constants Co and y0 such that for every square ΛL

and every site yeΛc

L,

sup V a r ( μ ^ Q
ΩΛI: τ=yτ

From the above proposition and from the triangle-inequality property of the
variation distance, it follows immediately that, if τ and τ' are two arbitrary
boundary conditions outside the square ΛL, then we have

^(^QL,τ,τ^LQί,^
CoML + 2r)e--y^ , (2.1)

where r is the range of the interaction. We can use at this point the following result
which was proved in Sect. 4 of [MO1]. (See the proof of Theorem 4.1 there, and
observe that the only way in which the hypothesis of strong mixing for some cube
was used there was through their inequality (4.2). It is well known that the uniform
estimate on the spectral gap obtained in that theorem implies the type of strong
mixing that we claim; this implication is contained for instance in Proposition 4.1
in [MO1].) We quote the result in our special 2D setting.

Theorem 2.1. In 2 dimensions, there exists a constant L such that if

sup Var(μ^βw,, μ^^^L^1 (2.2)

for some L0>L, then there exist positive constants C and y such that the strong
mixing condition SM(/1L, C, γ) holds for all squares ΛL, L^O.

From (2.1) (where L is arbitrary) and the above theorem we immediately get
Theorem 1.1.

Remarks. Actually in order to be able to use the results of [MO1] we only need to
prove the result of the proposition for L so large that the r.h.s. of (2.1) is smaller
than pr, where K is a suitable constant. As one can easily check in the proof given
below, this requires as input the weak mixing condition only for all subsets of
a large enough square.

It should be stressed that the powers of L that appear in (2.1) and (2.2) are
technical and have no physical meaning.

Thus we are left with the proof of Proposition 2.1. Suppose that L, yeΛc

L, τ and
τ' are fixed and such that τ = yτ\ and abbreviate Q = QL, τ,τl=={xeAL; \\x—y\\^i
L 1 / 2}. The key idea is to show that it is possible to construct, by successive
"improvements" over an increasing sequence of length scales, a coupling,

of μ\^ Q and μ L̂, ρ such that

-y°Lυ\ (2.3)

for suitable positive constants C o and yo> which do not depend on L, y, τ and τ'.
Clearly (2.3) proves the proposition, because of the remark concerning (1.8).

Each "improvement" will be carried out via the so-called "surgery" technique
(used for instance in [DS1]) that we will now recall (here it is very convenient to
adopt the convention pointed out in the remark which followed (1.5)).
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The ingredients of a surgery are:

i) A finite set ΛczcZ* and a subset Γ c A.
ii) A coupling veK(μτ^, μτ£) for some τj. and τ 2 .

iii) A transition kernel T(η, \\ ή, ξ) (where η, ξ9 ή, ξ run over Ω) which has to satisfy
the following property: For each pair η, ξ

T(η9ξ;9)eK(μl9μ*Γ).

In particular, T(η9 ξ;η9 ξ) = 0 if ηΓ + ήr_or ξr + ξr-
The result of a surgery is a new coupling veK(μ^, μj) defined by:

m?)=Σvfa><ϊ)rfo,6fcί). (2.4)

One can check that the measure v defined above is indeed a new coupling of μ̂ 1 and
μ j with the following simple type of computation:

Xv(ή9 ξ) = Σ v(η9 ξ)ΣΆη, ξ; ή9 ξ) = Σ
ξ η,ξ ξ η,ξ

Σ^ (2.5)
η

where the second equality follows from the property (iii) above, while the third and
fourth equalities follow from the definition of coupling and the DLR equations,
respectively.

The simplest example is the so-called product surgery defined by:

T(η9ξ;ή9ξ) = μUή)μμξ). (2.6)

Let us now go back to the proof of Proposition 2.1. Recall that yeAc

L is fixed. Given
an integer l0 to be chosen conveniently later on independently of L (in (a) below), we

tL 1 / 2Ί
7T/4 >

i = {xeDi;mm\\x-z\\^l0} ,
zφΛL

It is easily seen that for large L there can be at most one value of i for which the set
Dt is at a distance less than L1/4/2 from one of the four vertices of the square ΛL. If
such a value of / exists, we will denote it by i0, and below we will have to treat it
differently than the other values of i.

The following two geometric facts can be easily checked:

a) Let C and y be the positive constants which appear in the statement of the
proposition. We can choose l0 so large (depending only on C, y and r) that for all
large L and each Ϊ=M O J

C X exp( —y||i# — ϋ | | ) ^ l / 2 .
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b) If L is large enough, then for each iΦ iθ5

The key idea in the proof is to iterate the procedure described below for
ΓL 1 / 2 Ί

i= 1, 2,. . . , - ^ . We describe now the i-th step of the iteration. Suppose that

from steps 1,. . . , i— 1 we have been able to construct a joint representation of μτ

A^
μτ

Ah that we denote by vί-ί. At the i-th step we obtain a new coupling vt e
K(μ\, μτχL) as follows:

I) If i = ϊ0 we do nothing, namely we set

II) If, on the contrary, i Φ i0, then we modify vf_ i via the following surgery applied
to Vf-i on the set Γ,. The transition kernel of the surgery, Th is defined as follows:

ILi) If ί/Df-^^D,-!? t n e n keep in mind that the range of interaction is r and
define

ξ; η, ξ) = μη

Γi{ή) if ήΓi = ξΓi and ξπ= ξπ, ήπ= ηπ ,

Tt(η, ξ; ή,ξ) = O otherwise . (2.7)

Il.ii) If ηD._1 φ ξ,Di-^ then we observe that, since ί φ i0, we can use (a) above and
the weak mixing property on the set Γt to deduce that there exists VieK(μη

Γ, μ\)
such that:

mΛ)\nB = ΪBfeV2, (2.8)

for all L large enough (independently of ϊ) provided that /0 was chosen properly. In
this case we define Tiζη, ξ; ή9 ξ) as:

Uη, ξ; η, ξ)=ΣUή, ξ)μ\(η)μ{(ξ) . (2.9)
rί,ξ

(In (2.9) we are taking the composition of two surgeries, the second of which is the
product surgery on At)

It is easy to check that indeed Ti(η, ξ; ή, ξ), defined by (ILi) and (Il.ii), has the
right properties to be the kernel of a surgery; moreover, thanks to (2.7), (2.8), (2.9)
and (b) above, the following crucial estimate holds:

inf X % { ; α ) ψ W = y ^ > 0 , (2-10)

where the constant a>0 depends only on the range and the norm of the inter-
action U.

Remark. Notice that the constant δ is independent of the side L and of i just
because we are working in two dimensions; it is only in two dimensions in fact that
the cardinality of the sets Ah can be bounded above uniformly in L and i (by 2rlo)\

Finally we set, in case (II), according to (2.4),

V ί f o ξ)= Σ vt-dη, ξ)Uη9 ξ; ή9 ξ) . (2.11)
η, ξ
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Let now iQ be the largest i such that Q a Γ, . Then viQeK(μτ

ΛL, μ̂  ,) and

viQ((η,ξ);ηQ*ξQ)S Π v ^ ^ ^ . Φ ^ ^ ί l - ^ - 3 . (2.12)
ί = 2 , . . . , iQ, i 4= i0

Clearly (2.12) implies (2.3) and hence proves Proposition 2.1 and therefore also
Theorem 1.1. •

Remark. We notice that in the above proof we used the weak mixing condition
only for the sets Γt which, in turn, can have only two particular geometric shapes.
Actually we can weaken our hypotheses even further if we use the results of
Appendix 2 in [MO1]. There it was shown that, in order to prove strong mixing, it
is sufficient to establish, in a large enough square (or hypercube in ^-dimensions),
a bound like (2.1) on the truncated correlation functions of two local observables
/and g with support of diameter equal to the range r of the interaction and located
on two opposite faces of the square. Using this geometry it is easy to show that one
could modify slightly the geometric construction used in the proof, in order to
require the weak mixing condition only on rectangles.

Section 3. Some Consequences and Applications

In this final section we first prove the equivalence, in 2D, of the validity of
weak mixing with several other statements that involve either the Gibbs states
or a Glauber dynamics reversible with respect to them; afterwards we check
that weak mixing actually holds true in most part of the one phase region of
Ising-like ferromagnets. In order to state our result we first have to give some
definitions.

A Glauber dynamics is defined by means of its generator L which is formally
given by:

Lf(*)= Σ cx(σ9 a)(f(σx>a)-f(σ)) , , (3.1)
x, a

where σXf a is the configuration obtained from σ by setting the spin at x equal to the
value aeS and the non-negative quantities cx(σ, a) are called "jump rates."

We will also consider the dynamics associated to the above described jump
rates in & finite volume A with boundary conditions τ outside A. By this we mean
the dynamics on ΩΛ generated by UΛ, defined by

Σ
XGΛ,a

with

The general hypotheses on the jump rates, that we shall always assume, are the
following ones.

H I . Finite range r. This means that there exists a finite r such that for each xeZd, if
the configurations σ and η satisfy Y]{y) = G{y) whenever \\y — x\\^r, then for every
aeS,
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H2. Translation ίnvariance. That is, if for some xeZά we have for every yeZύ that
η(y) = σ(y + x\ then we also have for every yeZd and every aeS,

H3. Positivity and boundedness. There exist two positive constants kl9K2 such
that

0 < ki ̂  inf cx(σ, α) ̂  sup cx(σ, a)^k2 .
σ, x, a σ,x,a

H4. Reversibility with respect to the Gibbs measures. For each xeZd and aeS,

expf-jβ £ £/*(σ) W , α) = exp(-jS £ Ux{σx*a))cx(σx>a

9 σx) . (3.2)

Under these conditions above L (resp. UΛ) generates a unique positive self-
adjoint contraction semigroup on the space L2 (Ω, dμ) (resp. L2 (ΩΛ, dμτ

A)) that will
be denoted by i>(resρ. Pfτ) (see [L]).

It is immediate to check that, in finite volume, reversibility implies that the
unique invariant measure of the dynamics coincides with the Gibbs measure μτ

Λ.
Given a family (finite or infinite) Γ of subsets of the lattice Z d we say that

ECU(Γ, m) holds if for each cylindrical (i.e., depending on finitely many spins)
f:Ω-> R there exists a finite constant Cf such that:

sup \\PJ>Λf-μτ

Λ(f)\\^Cfexp(-mt) .
τ,ΛeΓ

Below we will use v(/) to denote the average of the continuous function
/: Ω -+ R with respect to the measure v. (This is a common abuse of notation, since
v(σ) still denotes the v-probability assigned to the configuration σ.) Using this
notation we define gap (Λ9 τ) as:

g a p ( Λ , τ ) Ξ inf \ X μτ

Λ(σ)cx(σ, a)(f(σx>a)-f(σ))2 .

We define the Logarithmic Sobolev Constant cs(v) for an arbitrary measure
v on ΩΛ as the smallest number c such that for every non-negative continuous
function/: ΩΛ -> R the following inequality holds:

xeΛ

where

if σx = i9 with iV-f 1 = 1.

We define the decimation transformation of spacing b, Tby as follows. Let

Zά(b) = {yeZά; y = bx for some xeZά} .

Then

i.e., Tbμ
τ

Λ is the relativization to Zd(b)nΛ of μτ

Λ.
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Now we recall the Dobrushin-Shlosman finite size condition for uniqueness.
Given a metric ρ on the single spin space S let

xeΛ0

Then we say that condition DSUρ(Λ0, δ) is satisfied if there exists a finite set
Λo CZCZ Zd, and a number δ > 0 such that to every yeΛc

0 we can associate a number
αy which satisfies the following two inequalities: Vτ, τ'eΩc

Λo with τ'x = τx\/x + y

4 ^ > φ , (3.3)

and

Σ αy^Mol. (3 4)

We simply say that DSU(Λ0, δ) is satisfied if (3.3) and (3.4) hold with ρ(ij) given
by (1.8).

Theorem 3.1 (Dobrushin-Shlosman [DS1]). IfDSUρ(Λ0, δ) is satisfied for some ρ,
Λo and <5<1, then there exist positive constants C and y such that condition
WMρ(/L, C, y) (defined by (1.12)) holds for every ΛaczZά. In particular, if ρ(ij) is
defined by (1.8), we obtain ΨM(Λ, C, y)for all Λc:c:Zd.

We are now in a position to state the main consequence of Theorem 1.1:

Theorem 3.2. In 2 dimensions the following are equivalent:

(i) There exist positive constants C and y such that WM(/1, C, y) holds for every
iccZ2.

(ii) There exist positive constants C and y such that SM(ΛL, C> y) holds for every
square ΛL,L>0.

(iii) There exists a positive constant m such that ECU(Γ, m) holds, with Γ the family
of all squares in Z2.

(iv) There exists a positive constant m such that gap(/LL, τ)^mfor every square ΛL,
L>0.

(v) There exists a positive constant c0 such that supτcs(μ^L) ̂  c0for every square ΛLi

L>0.
(vi) DSU(Λ0, δ) is satisfied for some Λoac:Z2 and δ<l.

Moreover each one of the above conditions implies that the renormalized measure
Tbμ converges (exponentially fast in b) to a product measure and that it is possible to
carry out a convergent cluster expansion for μ\.

Remarks. For simplicity we did not state the above result in its strongest version;
namely in (i) we could have assumed weak mixing only for all subsets of a large
enough square or, even, only for all rectangles with large enough shortest side
inside a large enough square. Similarly, in the remaining conditions, the collection
of all squares could have been replaced by the collection of all subsets of Z d

multiple of a large enough square.
It is also worthwhile to stress the fact that from items (iii), (iv) and (v) of the

theorem, analogous statements follow for the system on the infinite lattice Zd.
There is actually only one step in the proof of Theorem 3.2 where we use the

hypothesis that d = 2:to assure that Theorem 1.1 can be used and hence (i) implies
(ii). In arbitrary dimension it is still true (changing, of course Z 2 to Z d and squares
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to cubes in the statements) that (ii), (iii), (iv) and (v) above are equivalent, that they
imply (vi) and that (vi) implies (i).

Proof. That (ii), and (iv) are equivalent was proved in [MO1]. Moreover (iii) clearly
implies (iv) and (ii) implies (v) (see [MO2]) which, because of hypercontractivity
(see e.g. [G] or [SZ]), implies (iii). That (i) implies (ii) was proved in Theorem 1.1,
while the Dobrushin-Shlosman uniqueness theorem above, Theorem 3.1, tells us
that (vi) implies (i). Therefore we only have to show that (ii) implies (vi). The simple
argument that we present below to prove this is borrowed from the proof of
Theorem 3.3 in [DS1]; we reproduce it here, for the reader's convenience, because
that theorem was stated in a weaker form in [DS1]. The argument is presented in
arbitrary dimension. Let Λo be a cube of side L o and, for yed? ΛQ and ̂ 4>0 set

BA(y) = {xeA0;\\x-y\\^A\og(L0)} .

Suppose that τ' = yτ. Because of the validity of SM(A0, C,γ) there exists a joint
representation v of μ\iBλ^ and μτΛ0,BA(y) such that

X v((σ,η);σ(z)Φη(z))SLd

0v((σ,η);σΦη)SLdoCexp(-yA\og(L0)). (3.5)
zeBA(y)

Let now q(σAo\BΛy), σ'Ao\BA{y) \ σBΛy), σBΛy)) be any joint representation of / # $ $ $ and

μ^Λo\BB

Afyf' Then, as one can easily verify, the measure

v(<τ, σ') = q(σΛo\BA{yh σ'Ao\BΛy) \ σBΛyh σBΛy))v{σBΛy), σBΛy)) (3.6)

is a joint representation of μ\ and μτ

Ao and its relativization to the set BA(y) x BA(y)
coincides with the measure v. Thus, because of the definition of KROVρv4o and using
(3.5) and (3.6), we have, when ρ is given by (1.8),

KROV^ o (μχ, μ^ o )^L d

0 Cexp(-^log(Lo)) + 3 ί ίμiog(L 0)) ί ί . (3.7)

Clearly, if we take Λ = d/y and if L o is taken large enough, the r.h.s. of (3.7) is
bounded above by (3d + l ) ( ^ l o g ( L 0 ) ) d ^ a r Thus, in this case,

Σ ayS(2d+l)(A\og(L0))d\d;A0\«\A0\, (3.8)
yeδr

+Λ0

if L o is large enough. This finishes the proof that (ii) implies (vi).
The fact that condition (ii) implies that the renormalized measure Tbμ converges

(exponentially fast in b) to a product measure and that is possible to carry out
a convergent cluster expansion for μτ

A follows directly from the methods developed
in [O, OP, MO1] (this was already noticed in [MO3] in the particular case of 3D
Ising model but the argument is valid for the class of interactions considered in this
paper).

In fact in [O, OP] a polymer expansion was performed via a block decimation
procedure on a sufficiently large scale. The fact that the convergence of the
corresponding cluster expansion immediately follows from the validity of
SM(/L, C, γ) on a suitable cube A was shown in Appendix 2 of [MO1]. •

From this point on, we restrict ourselves to the case S= { — 1, +1} and consider
the (formal) Ising-type Hamiltonian:

H(°)= A Σ J(x~y)σxσy-Σhσx , (3.9)
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where J( ) satisfies the following conditions for arbitrary zeZ d : J( — z) = J(z\
J(z)^0 and in case | |z| | >r 5 then J(z) = 0. More formally, the corresponding poten-
tial ί / = { ί / Ϊ 5 I c c Z d } is given by Ux(σ)=-hσx for X = {x}, Ux(σ) =
— J{x — y)σxσy for X = {x, y}9 and Ux = 0 otherwise. For arbitrary A cczZ*1 we will
use the notation μX (resp. μ^) to denote the Gibbs measure in A with b.c.
identically + 1 (resp. — 1). By βc we will denote the critical inverse temperature, i.e.,
the supremum of the values of the inverse temperature β (in the definition (1.4)) for
which there is a unique Gibbs measure on the infinite lattice Zd, when h = 0. The
following theorem shows that the weak mixing condition is verified in most of the
phase space (the (β, h) plane) of these models. As a consequence, in d = 2 the
equivalent statements (i)-(vi) in Theorem 3.2 all hold for these same values of β and
h. By "standard Ising model" below we refer, as usual, to the particular case in
which J(z) = 1 iff z is one of the Id nearest neighbors (in the usual sense, i.e., w.r.t.
the Euclidean norm) of the origin in Zd, and J(z) = 0 otherwise.

Theorem 3.3. For every Hamίltonian of the form (3.9), in arbitrary dimension:

a) The following two statements are equivalent:

a.i) There exist positive constants C and y such that the weak mixing condition
WM(Λ, C, y) holds for every A c cz Zd.

a.ii) There exist positive constants C and y such that for every L,

b) For all β<βc and all h there exists positive constants C and y such that
WM(Λ, C, y) holds for every y i c c Z d .

c) For the standard Ising model there exists a finite β0 such that for all β > β0 and
there exists C and y such that WM(A, C, y) holds for every AczczZd.

Proof a) That (a.ii) follows from (a.i) is a tautology, so we turn to the proof of the
converse statement. Let A be given and let τ, τ'eΩΛc be two boundary conditions.
By the F.K.G.-Holley inequalities, (see [H] or Chapter 4 of [L]), one can construct
a probability space and a family, {στ; τeΩΛc}, of ΩΛ-valued random variables on
this probability space so that

i) For each τ, στ has law μτ

Λ.
ii) If τ ^ τ ; , then σ τ ^ τ τ ' (both inequalities in the coordinatewise sense).

Using the relation between the total variation distance and the Kantorovich-
Rubinstein-Ornstein-Vasserstein distance (with ρ given by (1.8)), one concludes
that for any A a A,

^ Σ PK*σϊ)= Σ \μλ(σx)-μX(σx)\ . (3.10)
xeA XEΔ

Let now, for each xeΔ, Qx be the largest cube centered at x and entirely contained
in A. Then, again by F.K.G.-Holley, the r.h.s. of (3.10) can be bounded from above
by:

Σ \μl(σx)-μϊx(σ*)\£CΣ e - « ^>. (3.11)
XEΔ xeΔ

ΨM(Λ, C, y) follows from (3.10) and (3.11).
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b) It follows from part (i) of Theorem 2 in a paper by Higuchi, [Hi], that for all
β<βc and all h (a.ii) above is satisfied. Therefore (b) follows from (a). (Actually
Higuchi, in [Hi], discusses only the standard Ising model. Nevertheless in his proof
of part (i) of his Theorem 2 the only ingredients used are the GHS and Lebowitz
inequalities, and the results by Aizenman, Barski and Fernandez [ABF] on the
absence of intermediate phase. All these results hold in our more general situation.
For the particular case h = 0, one can also find an argument which shows that (a.ii)
holds for all β< βc in [CCS], in the derivation of Eq. (2.7) in that paper.)

c) Again, it is sufficient to check that the condition in (a.ii) above holds. This
was proved in Corollary 5.1 in [MO1] using a result by Martirosyan, [M], on the
low temperature d-dimensional standard Ising model under arbitrary non-null
external field. A stronger version of Martirosyan's result appears as Theorem 3 in
[S], where the reader can find a self-contained proof in arbitrary dimension as well
as a greatly simplified proof in case d = 2. •

We conclude now with a discussion of some of the nice consequences of the
results presented in this paper. From Theorems 3.2 and 3.3, and the perturbative
theory developed in [O, OP], one can immediately deduce, for 2D Ising models, in
the one-phase region, analyticity properties of thermodynamic functions and
correlation functions in terms of perturbation parameters, for a wide class of
possible complex perturbations.

For simplicity only the results concerning the free energy, in the case of
translation invariant complex perturbation of the Hamiltonian, are precisely stated
in the following Theorem 3.4. Similar statements hold also for the expectations of
local observables even in the case of non-translationally invariant complex per-
turbations when some spatial uniformity condition is satisfied. The following
theorem is a corollary to our results above and Theorem 1.1 in [OP].

Theorem 3.4. Consider a ferromagnetic Ising model in 2D, described by the Hamil-
tonian given in (3.9). Let Ul9. . . ,Uι be I finite range, translationally invariant real
potentials (i.e. Uj satisfy HI and H2 of Sect, lforj= 1,...,/). Consider the complex
partition function Z(Λ, β, U) defined as in (1.5) with U=U+Yj

ι

j=1λjUj in place of
U and λjEC, j= 1 , . . . , / . Let fβ

Λ: Cι->Cbe given by:

fβΛ=^ogZ(Λ,β,U).

Then, for β and h as in parts (b) or (c) of Theorem 3.3 above, there exists a neighbor-
hood V of the origin in C1 such that the limit

lim fβ

Λ

Λ-+Z2

exists and is a holomorphicfunction of λj,j=l9. . . ,1 in V.

We notice that, in particular, for the standard 2D Ising model we get, from
Theorem 3.4, that the free energy is a real analytic function of h, at h = 0 and every
inverse temperature β<βc. To the best of our knowledge, this result, certainly
expected on physical grounds, had been proven before only for β«βc.
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