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Abstract: We study the almost Mathieu operator: (Ha^x^u) (n) = u(n + 1) + u(n —

1) + λ cos(2παn + θ)u(ri), on 12(Z), and show that for all λ, 0, and (Lebesgue) a.e. α,
the Lebesgue measure of its spectrum is precisely |4 — 2|λ||. In particular, for |λ| = 2
the spectrum is a zero measure cantor set. Moreover, for a large set of irrational α's
(and |λ| = 2) we show that the Hausdorff dimension of the spectrum is smaller than
or equal to 1/2.

1. Introduction

In this paper, we study the almost Mathieu (also called Harper's) operator on 12(Z).
This is the (bounded, self adjoint) operator Haχθ, defined by:

α

(Va x θu) (n) = X cos(2παn + θ)u(ri) ,

where α,λ,0 € R.
Ha χ Q is a tight binding model for the Hamiltonian of an electron in a one

dimensional lattice, subject to a commensurate (if α is rational) or incommensurate (if
a is irrational) potential. It is also related to the Hamiltonian of an electron in a two
dimensional lattice, subject to a perpendicular magnetic field [11, 13] (in which case
the relevant energy spectrum is the union over θ of the energy spectra of HQ χθ).

The almost Mathieu operator has been studied by many authors [1-13, 15, 17-24,
26], and many of its spectral characteristics are known. Our main result in this paper
is:

Theorem 1. If α is an irrational for which there is a sequence of rationals {pn/qn}
obeying:

lim a —
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then for every λ, $ G R:

where σ(α, λ, θ) is the spectrum of Ha χ θ, and \ denotes Lebesgue measure.

Remarks. 1) The set of irrationals characterized in Theorem 1 is precisely the set
of irrationals having unbounded continued fraction expansions. This set is known to
have full Lebesgue measure [16].
2) The θ independence part of Theorem 1 is immediate, since, for irrational α,
σ(α, λ, θ) itself is known to be independent of θ [9].

The equality |σ(α, λ, 0)| = |4 — 2|λ| | was conjectured by Aubry and Andre [1] to
hold for every irrational α. It was later studied by Thouless [21], and by Avron, van
Mouche, and Simon [3], who established the inequality |σ(α, λ, 0)| > |4 — 2|λ|| (for
every α, λ, θ).

For |λ| i 2, Theorem 1 has already been proved in [17]. The main theme of the
current paper is the handling of the case |λ| = 2, for which we prove:

Lemma 1. Let p, q G N be relatively prime, and denote:

then:
2(V5+1) Ic, / _, 8e

< \S(p q,2}\ < —
q q

(where e = exp(l) = 2.71 . . . ) .

It should be remarked that a similar (though somewhat weaker) lower bound on
\S(p/q, 2)| was already established in [18]. It is the upper bound in Lemma 1, which
is the main new result of the current paper and from which the completion of the
proof of Theorem 1 follows.

Lemma 1 is strongly related to a conjecture of Thouless [21-24], which says:

lim q\S(p/q, 2)1 = const = 9.32 . . . .
q-^oo

This conjecture was found numerically for sequences with p, q relatively prime and
q —» oo. It was derived analytically only for some sequences with fixed p and q —>• oo
[22, 23, 26]. Some (nonrigorous) analytical argumentation that it should also hold for
more general cases was given in [18].

It is interesting to note that since σ(α, λ, 0) has no isolated points [9], the vanishing
of its measure for |λ| =2 also implies:

Corollary 1.1. For irrational a as in Theorem 1, σ(α, 2, 0) is a (zero measure) Cantor
set (i.e. a closed, nowhere dense set, with no isolated points).

Moreover, if a is an irrational which is very well approximated by rationals, we
will show that Lemma 1 implies an upper bound on the Hausdorff dimension of
σ(α, 2,0), namely:

Theorem 2. If a is an irrational obeying:

a_Pn
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for some constant C, and a sequence of rationals {pn/qn} with qn —» oo, then:

where dim^(-) denotes Hausdorff dimension.

Remark. The set of irrationals characterized in Theorem 2 has zero Lebesgue measure,
but it contains a dense Gδ set, which makes it "generic" in the commonly used
topological sense.

The analysis leading to our results is based on previous findings of Avron, van
Mouche, and Simon [3], and this paper is, to a large extent, a continuation of their
work. While some parts of this analysis were already carried out in [17] and in [18],
for the reader's convenience, we shall repeat the relevant derivations of those papers.

In Sect. 2 we describe some preliminaries and previously obtained results. In Sect. 3
we prove Lemma 1, and in Sect. 4 we prove Theorem 1. Finally, in Sect. 5, we prove
Theorem 2.

2. Preliminaries

We begin this section with a remark about the considered ranges of α, λ, 0. Since
Ha χ Q is invariant under: α —» α± 1, 0 —» 0±2π, we may always assume: a <G [0,1],
θ e [6,2π]. This has no effect on the correctness of our results for more general values
of a and 0. Moreover, a sign change of λ (λ —» — λ) is equivalent to a translation of 0
by 7Γ. Thus, any quantity or result which is independent of 0 must be invariant under
a sign change of λ, and throughout the rest of the paper we will usually assume:
λ > 0 .

In what follows we will be largely concerned with the spectral analysis of the
almost Mathieu operator at rational frequencies. That is, we will consider Ha λ θ,

where a - p/q, p,q G TV, and we assume throughout that p and q are relatively
prime (i.e. they have no common divisor other than 1). In this case σ(α, λ, 0) does
depend on 0, and we will also be interested in the two spectral sets:

S(α,λ) = |Jσ(α,λ,0),

(2.1)

These sets are also well define for irrational α, but in this case: S_(α, λ) = 5(α, λ) =
σ(α,λ,0). As we shall see later, the set 5(α,λ) has good continuity properties (in
α), and our results for irrational a are essentially based on the study of 5(α, λ) for
rational α.

A central role in the spectral analysis of Hp/q χ θ is played by the discriminant

Dp/q,χ,θ(E), defined by:

,

where V(ri) = Xcos(2π(p/q)n + θ). Dp/q λjθ(E) is a polynomial of order q (in E)
having the following properties (see e.g. [25]):
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(i) Dp/q χ Θ(E) has q real simple zeroes.
(ii) Dpιq χ Θ(E) is larger than or equal to 2 at all its maxima points, and it is smaller
than or equal to -2 at all its minima points.

The spectrum σ(p/q, λ, θ) is precisely the inverse image under Dp/q^x Θ(E) of the

interval [-2,2] (i.e. it is precisely the set of £"s for which: -2 < Dp/q^θ(E) < 2).

Thus, from the properties of Dp/q>Xj(E) it is seen that σ(p/q,X,θ) is made of q

bands (closed intervals), such that Dp/q^0(E) is strongly monotone on each band. A
remarkable formula, originally due to Chambers [6] (also see [5] for a proof), gives
the θ dependence of Dp^q^x e(E):

Proposition 2.1. Ifp,q are relatively prime y then:

"here Δp/^x(E} = Dp/q^/29(E).
Proposition 2.1 implies that S(p/q,X) is precisely the inverse image under

Δp/q^x(E) of the interval [-2 - 2(λ/2)«, 2 + 2(X/2)q]. Moreover, it shows that

if λ > 2 then S_(p/q,X) - 0, and if λ < 2 then S_(p/q,X) is the inverse image
under Δp/q^x(E) of the interval [-2 + 2(λ/2)9, 2 - 2(λ/2)9]. We remark that from
the fact that the above properties (i) and (ii) of Dp/q λ Θ(E) hold for every θ, and

from Proposition 2.1, it follows that Δp, X(E) is larger than or equal to 2 + 2(\/2)q

at all its maxima points, and it is smaller than or equal to —2 — 2(X/2)q at all its
minima points. Moreover, each of the sets S(p/q, X) and S_(p/q, λ) (when it is not
empty) is made of q bands, such that Δp,q X(E) is strongly monotone on each band.

An important property of Ha x θ is the Aubry duality [1], which allows relating
eigenf unctions and spectra of Ha x θ to those of Ha 4 /λ θ. The following version of
this duality was rigorously proven by Avron and Simon [2]:

Proposition 2.2. For every real a:

Thus, it is sufficient to study S(a, X) for 0 < λ < 2, since, for A > 2, 5(α, λ) is
obtained by Proposition 2.2. from the λ < 2 case.

Avron, van Mouche, and Simon [3] proved the following:

Proposition 2.3. For 0 < λ < 2 and p, q relatively prime:

(i) |S_(p/g,λ) |=4-2λ.

(ϋ) 4 - 2λ < \S(p/q, λ)| < 4 - 2λ + 4π -

In particular, Proposition 2.3 shows that if 0 < λ < 2, and if pn/qn — > α, where the
pn/qn's are rationals, and a is irrational, then \S(pn/qn, λ)| — > 4 — 2λ. If λ = 2 then
statement (ii) of Proposition 2.3 becomes useless; but, it was shown in [18] that, in
this case, the remarkable exact equality for \S_(p/q, λ)| (statement (i)) translates to
an exact equality involving the slopes of Δp/q^x(E) at its zero crossings. Namely:
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Proposition 2.4. Ifp,q are relatively prime, then:

where Δf

p/q^χ(E) = — Δp/qtX(E), and El,E2,...,Eq are the q zeroes ofAp/q^(E\

Proof. Since S_(p/q,X) is the inverse image under Δp/q^(E) of the interval

[-2 + 2(λ/2)9, 2 - 2(λ/2)(?], and since Δp/qjX(E) is also a polynomial in λ, we
have, for λ < 2, in the limit λ —> 2:

^ 4 _ 4(X/2)q

\S_(p/q,X)\ ~ 2_, T~Λ/ ί (2.3)

Thus, from statement (i) of Proposition 2.3 we obtain:

01 .. 4 - 2 Λ 1 _

Proposition 2.4 is in the heart of Lemma 1 that we prove in the next section.
For every α,λ G R, the set S(α, λ) is compact, and, therefore, it has definite

edges: max 5(α, λ), min S(a, λ) G S(a, λ). The complement of 5(α, λ) in the interval
[minS^α, λ), max 5(0:, λ)] is open, and it is therefore a union of countably many
(finite) open intervals. We shall refer to such open intervals, when they are chosen to
have maximal length, as gaps in S(α, λ), and we shall denote their union by G(α, λ).
That is:

G(α, λ) = [min Sf(α, λ), max 5(α, λ)]\5(α, λ), (2.5)

and so we have:

|5(α, λ)| = max S(a, λ) - min S(α, λ) - |G(α, λ)|. (2.6)

When α is rational (α = p/q) we have seen that 5(α, λ) is made of # bands. Thus,
it has at most q — I gaps. When a is irrational 5(α, λ) may have an infinite number
of gaps.

We conclude this section by quoting another result of Avron, van Mouche, and
Simon [3], this time regarding the continuity properties of 5(α, λ):

Proposition 2.5. For every λ > 0, there is a constant C, such that if a — a.1 \ < C
(for any α, a' G R), then for every E G 5(α, λ), there is E' G S(af, λ) with:

\E-E' <6(λ|α-α / |

Proposition 2.5 has the immediate corollary:

Corollary 2.1. (i) I f \ a — a' < C, then for every gap in 5(α, λ) with midpoint Eg,

and measure \g\ larger than 12(λ|α — α^l)1/2, there is a corresponding (containing

Eg) gap in S(a'', λ) with measure larger than: \g\ — 12(λ|α — αφ1/2.
(ii) The same continuity as in (i) also holds for the extreme edges of S(a, λ), namely,
for |α-α'| < C:

max max ,

min ' min ''
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3. Proof of Lemma 1

In this section we consider λ = 2 and a fixed rational p/q, where p and q are relatively
prime. For simplicity of notation we denote: Λ(E) for Δp^q^2(E) and S for S(p/q, 2).
(i) Proof of the upper bound. Consider a nonextermal band of S'.I^ - \E\, E2], and
suppose that Δ(E) is increasing on lv. Denote by Ev the zero of Δ(E) inside Iv, and
by EQ the maximum of Δ(E) just above E2. (In principle, we can have EQ = E%,
but typically EQ > E^ , and EQ is inside the gap just above Iv). Define:

(3.1)

Since Δ(E) can be expressed as:

q
Δ(E) = l[(E-E3), (3.2)

j=ι

can be written as:

and we have:
9 1

From (3.4) we see that:

f'(E) < ^E )2 ' <3 5)

and since EQ is a zero of f ( E ) , we have for every E E (Ev^ EQ):

EQ EQ

= - / f(E')dEf > I = = (3 6)/ / ( ΐ ^ f Ty1 \2 EΓ1 ίΓ1 ίΓ1^1 7-Γ1

£; β

Now, consider E € (E^,E^). Since Δ(E2) = 4, we have:

In -P— = In Δ(E%) - In ^\(£7) - / f(E')dE', (3.7)
2i(E) 2 J

E

and by using (3.7) and the estimate (3.6), we obtain:

(3.8)
AI^C/; \ LJ — &v j

Equation (3.8) implies:

(3.9)
Δ(E) e\E-Eu)'

which can also be written as:

„„ „ E-EV

(3.10)
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Since Δ(EV) = 0, we obtain from (3.10), by letting E -» Ev\

Clearly, a similar calculation can also be carried for the lower part of the band, by
integrating f'(E) from the minimum of Λ(E) just below (or at) E\. Thus, we also
have:

^-v^iUkr αi2)

which (together with (3.11)) implies:

It's easy to see that (3.13) could be obtained with a similar calculation, also if Δ(E)
was decreasing on Iv. Thus, (3.13) clearly holds for all of the nonextermal bands. If
Iv is an extermal band, we can still make a similar calculation to (3.1)-(3.11) for the
"less extermal" part of this band, and obtain either (3.11) (for the lowest band) or
(3.12) (for the highest band). But, since |Z\'(.E)| is monotone on an extermal band,
the "more extermal" part of such a band must be smaller than its "less extermal" part.
Thus, (3.13) holds for every band, and from Proposition 2.4 we obtain:

O (3.14)
z/=ι

(ii) Proof of the lower bound. For each band of S:I^ = \_E\, E% ], we denote the two
parts of the band by:

bΐ = [Eΐ,Ev], bv

2=[Ev,E$}. (3.15)

Since Δ'(E) is a polynomial of order q — 1, which has q — 1 distinct real zeroes,
\A'(E)\ has a single maximum between every two consecutive zeroes of Δ'(E\ and
it is monotone above and below the extreme zeroes of Δ'(E). Thus, |Z\;(^)| has a
single maximum on each band (which may be at the edge of the band), and it is
monotone on every subinterval of the band which does not contain this maximum.
This implies that for each band, either for all E E b\ (if the maximum is on b^), or
for all E E b% (if the maximum is on 6^), we have:

\Δ'(E)\<\Δ'(EV)\. (3.16)

Since:
Ev

j \Δ'(E)\dE = \Δ(EV) - Δ(E?)\ = 4, (3.17)

and also

/ \Δ'(E)\dE = \Δ(E%) - Δ(EV)\ = 4, (3.18)
J

Ev
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we have, either for ί = 1, or for i = 2:

(3.19)

In [18], (3.19) has been used to obtain: \S\ > 4/q. We shall now improve this bound.
Suppose that Iv is a nonextermal band and that Δ(E) is increasing on Iv, and

consider the polynomial:
G(E) = Δ(E) + 4, (3.20)

which has a zero at E\. A similar estimate to (3.1)-(3.6) shows that for every

1
(3.21)

(3.22)

(3.23)

Clearly, by considering: H(E) = Δ(E) - 4 instead of G(E), and integrating from
the minimum of H(E) just below E\, we can similarly obtain (3.23) with b\ and b%
interchanged, namely:

1 ' T717Γ (3-24)

Gr(,c/) dhj ±L/ — E^ h/Q — h/γ

By taking E = E^ in (3.21), we obtain:

A'(EJ = G'(£J 1 1 \b%\

4 G(EV) \b\

which implies:

We have seen that either \b"\ > lv or \b%\ > lv. Suppose that \b% > lυ, then (3.23)
implies:

> ίJ^ , (3.25)

which can be rewritten as:

2 , 1 7 ^\bi\ιv-ιv

2>o.
Solving the appropriate quadratic equation shows that (3.26) implies:

κι> Vs-i

Similarly, if \b\ > lv, (3.24) would imply:

(3.26)

(3.27)

so in either case we have:

(3.28)

(3.29)

and it is clear that (3.29) holds for every nonextermal band. For the case of an extermal
band, only one of the inequalities (3.23) or (3.24) can be obtained. But, in this case,
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due to the monotonicity of |Z\'(E)|, we also know which one of the \b" (i = 1, 2) is
larger and obeys: \b"\ > lv. It is easy to verify that \b% >lv corresponds to the case
where (3.23) holds, and that the other case corresponds to (3.24). Thus, we obtain
(3.29) for all the bands, and from Proposition 2.4 we get:

».. O (3-30)

4. Proof of Theorem 1

Lemma 4.1. For every X 6 R, and a sequence of rationals {pn/qn}, with pn,qn

relatively prime, and qn — •» oo:

lim |5(pn/qn)λ)| = |4-
—

Proof. Combining statement (ii) of Proposition 2.3 and Lemma 1 we obtain for every
0 < λ < 2: \S(pn/qn, λ)| — > 4 - 2λ. From that and from Proposition 2.2 the lemma
follows. O

Proposition 4.1 (Thouless [21]; Avron, van Mouche, and Simon [3]). For any
irrational α, and λ, 0 G R:

|σ(α,λ,θ) |> |4-2 |λ | | .

Proof. Let {^(c^λ)}!^ be the gaps in S(a>X) (ordered somehow), and pick some
00 Jε

ε > 0. Since ]Γ) |^(α,λ)| = |G(α,λ)|, there is a finite Jε such that £) |0 (α,λ)| >
j=ι j=ι

|G(α, Λ)| - ε. Now, consider a sequence of rationals: pn/qn — > α. From statement (i)
of Corollary 2.1 we have:

liminf |G(pn/(7n,λ)| > |^.(α,λ)| > |G(α,λ)| -ε, (4.1)
n— >CXD ^— ' ^

J = l

and from statement (ii):

(α,λ). (4.2)n^oo mm mm

Thus, from (2.6) we obtain:

)| -ε, (4.3)

which by Lemma 4.1 implies:

|S (α,λ) l>K-2 |λ | | -e . (4.4)

Since 5(α, λ) = σ(α, λ, 0) and since ε is arbitrary this completes the proof. Q

Proof of Theorem 1. Let α be an appropriate irrational, and let {pn/qn} be a sequence
of rationals obeying: lim qn

2\a — Pn/qn\ - 0. Obviously, q -^ oo, and we
n— >oo

can assume pn,gn to be relatively prime. Since there are at most qn — 1 gaps in
S(pn/qn, λ), we obtain from statement (i) of Corollary 2.1 (for |α - pn/qn < C):

ςn, λ)| - I2(qn - 1) (A|α - Pn/qn\Ϋ/2 . (4.5)
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By (2.6) and statement (ii) of Corollary 2.1 this implies:

\S(a, λ)| < \S(pJqn, λ)| + I2qn(\\a - pjqn\)l/2 . (4.6)

As n — > CXD, we have from Lemma 4.1: \S(pn/qn,X)\ — » 4 — 2|λ||, and by our

assumption on {£>„/<?„}: qn\a - pn/qn\^2 — > 0. Thus, (4.6) implies:

(4.7)

which together with Proposition 4.1 completes the proof. Q

5. Proof of Theorem 2

Lemma 5.1. Let S C R, and suppose that S has a sequence of covers: {Sn}^=l,
S C Sn, such that each Sn is a union of qn intervals, qn — > oo as n — >• oo, and for
each n:

\s <c

\°n ^ β '
<?£

where β and C are positive constants; then:

1
dimH(S) <

1+0 '

Proof. Let Sn = \J b™, where each 6™ is an interval. Without loss, we can assume
ι/=l

that the δ£'s are disjoint. Let t = 1/(1 + /?), then:

"l , (5.D
ι/=l /

which implies:

ι/=l

(5.2)

Recall that the Hausdorff dimension of S is given by (see e.g. [14]):

dimH(5) = inf it € R+ lim inf Y^ I f c t < oo L (5.3)/ -v
-covers

f

where a £-cover is a cover of 5: 5 C \J b^, such that each 6^ is an interval, and

\bv < δ. Thus, since qn —> oo as n —> oo, (5.2) implies: άimH(S) < 1/(1 + /?). Q

Proof of Theorem 2. Let α be an appropriate irrational, and let {ί>n/#n} be a sequence
of rationals obeying: qn —>• oc as n —> oo, and gn

4|ce - pn/gn < C. Clearly, we can



Zero Measure Spectrum for the Almost Mathieu Operator 431

assume that pn and qn are relatively prime. For each n, S(pn/qn,2) is made of qn

bands:

S(pn/qn,2)=\J[Eΐ'n,Eϊn], (5.4)
ι/=l

and by Proposition 2.5, we have (for sufficiently large n):

5(α,2) C \J[E»'n - 6(2\a-pjqn\γl\ E»2

n + 6(2\a - pjqn\γ/2] = Sn . (5.5)
ιχ=l

5n is a cover of 5(α, 2) by qn intervals, and from Lemma 1 and our assumptions on

{PnlQn} We have:

\Sn\ < |S(pn/<Zn,2)| + I24n(2\a-pjqn\)1'2

8e /2C\ 1 / 2 8e+12(2C)1/2

< — + 12gn —^ = . (5.6)
Qn \<2nJ 9n

Thus, Lemma 5.1 implies: dim#(S(α, 2)) < 1/2. Q
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