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Abstract: We introduce and study action of quantum groups on skew polynomial
rings and related rings of quotients. This leads to a "^-deformation" of the
GeΓfand-Kirillov conjecture which we partially prove. We propose a construction
of automorphisms of certain non-commutative rings of quotients coming from
complex powers of quantum group generators; this is applied to explicit calculation
of singular vectors in Verma modules over Uq(sln+ί). We finally give a definition of
a ^-connection with coefficients in a ring of skew polynomials and study the
structure of quantum group modules twisted by a ^-connection.

1. Introduction

This work was mainly inspired by Feigin's construction which associates to an
element of the Weyl group weW an associative algebra homomorphism of a "nil-
potent part" of a quantum group to an appropriate algebra of skew polynomials:

Φ(w):E/-(8HC[JQ, (1)

where X stands for Xly . . . , Xh I is a length of w and XjXi = qaιJXίXj for some
αί; eZ, l^ij^l. The main topics treated in the work are as follows.

1. Realizations of Lie algebras and quantum groups and GeΓfand-Kirillov conjecture.
The fact that a Lie algebra of an algebraic group ("algebraic Lie algebra") can be
realized in differential operators acting on a suitable manifold is, probably, more
fundamental than the notion of a Lie algebra. Explicit formulas for such a realiz-
ation in the case when the algebra is simple, the manifold is a big cell of a flag
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manifold have become especially popular recently because of their relation to the
free field approach to 2-dimensional conformal field theory ([F-F, B-McC-Pl]).
An important property of the realization was discovered by GeΓfand and Kirillov
[G-K1] long ago and in a remarkable generality. Their observation is that however
complicated classification of algebraic Lie algebras may be, equivalence classes of
rings of quotients of universal enveloping algebras are labelled by pairs of positive
integers: a ring of quotients of a universal enveloping algebra is isomorphic with
a ring of quotients of a ring of differential operators on n variables with polynomial
coefficients trivially extended by a fc-dimensional center, where k is a dimension of
a generic orbit in the coadjoint representation and 2n + k is equal to the dimension
of the algebra. (This conjecture has been proven by themselves and others in many
cases [G-Kl,J,McC].)

A natural class of rings suitable for formation of rings of quotients is provided
by the so-called Ore domains. Besides above mentioned universal enveloping
algebras of finite dimensional Lie algebras and rings of differential operators the
class of Ore domains comprises (deformed) enveloping algebras of aίfine Lie
algebras, rings of skew polynomials and ^-difference operators. We prove that
Feigin's morphism Φ(w0) associated to the longest Weyl group element provides
an isomorphism of rings of quotients Q(U~ (sIM+ι)~β(C[^f]). This isomorphism
allows us to equip β(C[Z]) with a structure of ί/g(sln + 1)-module. More precisely
we define an π-parameter family of associative algebra homomorphisms from
Uq(sln + ι ) to an algebra of ^-difference operators with coefficients in β(C[JΓ|). We
conjecture that this provides an isomorphism of Q(Uq($ln + 1 ) ) with an rc-dimen-
sional central extension of the algebra of ^-difference operators. We prove this
conjecture for Uq(sl2), Uq(ζ>\^) in a slightly weaker form.

2. Complex powers, automorphisms and screening operators. A remarkable observa-
tion made in early works on Kac-Moody algebras [L-W, F-K] is that affine Lie
algebras, like finite dimensional simple ones, are also realized in differential
operators, though on infinitely many variables. A family of such realizations
depending on a highest weight λ was constructed by Wakimoto [W] for §ζ and by
Feigin and Frenkel [F-F] for all non-twisted affine Lie algebras. Thus obtained
modules are now known as Wakimoto modules F(λ). The main ingredient of the
2-dimensional conformal field theory associated to an affine algebra g is a 2-sided
complex consisting of direct sums of Wakimoto modules

such that its homology is concentrated in the 0-th dimension and is equal to an
irreducible highest weight module over g (BRST resolution).

Bouwknegt, McCarthy and Pilch revealed a quantum group structure hidden
in the differential of the BRST resolution. Recall that Uq (cj)-morphisms of a Verma
module M(λ) into a Verma module M(μ) are in 1-1 correspondence with singular
vectors of the weight λ in the latter (the correspondence is established by assigning
to a morphism an image of the vacuum vector under this morphism). Denote by
Singλ(M(μ)) the set of singular vectors of the weight λ in M(μ). It is argued in
[M-McC-Pl, B-McC-P2] that there is a linear map

Singλ(M (μ))-.Homδ(F(λ), F(μ)) , (2)

and that conjecturally this map is an isomorphism.



Skew Polynomials and Quantum Groups 219

Singular vectors in Verma modules over quantum groups related to an arbit-
rary Kac-Moody algebra were found in the form [M-F-F, M]

F?1' p?1F^Ft 1' -Ftl (3)1 n * n L to •*• ii L iι > V~V

where si9 t^l^i^l are appropriate complex numbers, Fhl^i^n are canonical
Cartan generators of U~ (g), NeN. Here we carry out an explicit calculation of (3),
i.e. rewrite it in the form containing only natural powers of F's. Observe that the
map (2) is determined by assinging to each Ft what is known as a screening
operator.

One of the consequences of the prescription how to choose powers in (3) is that
Si + ti9 ί^i^l are all non-negative integers. More generally, one may consider
a map

£/-(9)3pι-*FfpFf', βεC.

A simple calculation using the notion of the q-commutator shows that this map
extends to an automorphism of the quotient ring Q(U~ (9)). Therefore a singular
vector is, roughly speaking, obtained by a sequence of automorphisms applied to
a Cartan generator.

Similarly one may consider an operator of conjugation by a complex power of
a linear form

C[x l 9. . ^XjJapM^ + -Xi/p^ + XitΓ
β ,

acting on a certain completion of a ring of skew polynomials G[XI, . . . , xfc].
Simple but nice calculation based on the ^-binomial theorem shows that this map
actually determines an automorphism of the ring of quotients β[C[x1? . . . , xfc]).
This construction may be interesting in its own right: unlike the things in com-
mutative realm, the very existence of (non-trivial) automorphisms of
6(C[xι, . . . , x*]) is not quite obvious. Combined with Feigin's morphism, this
construction answers an informal question: "how does it happen that complex
powers in the singular vector formula cancel out?" Another application of these
automorphisms is that they produce natural examples of ^-connections with
coefficients in skew polynomials.

3. Quantum group modules twisted by q-connections. It has been realized
[A-Y, F-G-P-P] that the "singular vector decoupling condition" makes it neces-
sary to consider non-bounded-neither highest nor lowest weight -modules in 2-
dimensional conformal field theory at a rational level. On the other hand the
singular vector formula (3) makes it natural to consider an extension of a Verma
module by complex powers of generators, which transparently produces non-
bounded modules. It was shown in [F-M] that the duals to such modules are
realized in multi-valued functions on a flag manifold or, in other words, in modules
twisted by connections; in particular a family of integral intertwining operators
acting among such modules was constructed. (One may also find in [F-M]
and in the forthcoming paper [I-M] integral formulas for solutions to
Knizhnik-Zamolodchikov equations with coefficients in non-bounded modules.)

Here we adjust the definition of a ^-connection given by Aomoto and Kato
[A-K] in the commutative case to the case of skew polynomials. This definition
identifies ^-connections with the cohomology group H1(Zfc, β(C[xι, . . . 5 Xjt])).
We also produce a family of elements of H1(Zk, β(C[xι, . . . , x^])) associated with
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complex powers of linear forms, all this being independent of quantum groups. In
the case when the ring of skew polynomials is the one coming from Feigin's
morphism, the twisting by such a ^-connection is nothing but a passage from
a Yerma module to its extension by complex powers of generators. This allows to
construct ^-analogues of the intertwiners of [F-M], which in the quantum case
may be thought of as right multiplications by certain complex powers of linear
forms. We also find out what the (/^(g)-module structure of a Verma module
extended by a complex power of only 1 generator is. Such a module can be viewed
as a module induced from a non-bounded module over a parabolic subalgebra. It
turns out that its structure is formally close to that of a Verma module. In
particular, the notion of a singular vector is naturally replaced with that of
a singular chain and a singular chain encodes information on a family of singular
vectors.

2. Main Definitions Related to Quantum Groups

The material of this section is fairly standard. The usual reference is the work
[DC-K].

1. Let, as usual, A = (aij\ l ^ij ^n stand for a generalized symmetrizable Cartan
matrix, symmetrized by non-zero relatively prime integers dl9 . . . , dn such that
diaίj = djaji for all ij. A Kac-Moody Lie algebra g attached to A is an algebra on
generators Et, Ft, Hi, l^i ^n and well-known relations explicitly depending on
entries of A (see [K]). Among the structures related to g we shall use the following:

the triangular decomposition g = n_ Θ ϊ) ® π+
the dual space I)*; elements of I)* will be referred to as weights;
the root space decomposition n+ =0α6zu9α, $*i = CEi',
the root lattice βel)*, (α1? . . . , αn} c=zj+ ciί)* being the set of simple roots;
the invariant bilinear form QxQ-^Z defined by (α,, 0,-) = ̂ .̂

2. For geC, deZ set:

l-q2nd

Md= 1 Π2d »i— q

[n]d ••[!]„,

[nL [n-j+lL

omitting the subscript if d= 1.
Suppose g is a Kac-Moody Lie algebra attached to A. The Drinfeld-Jimbo

quantum group Uq($), qeCis said to be a hopf algebra with antipode S, comultipli-
cation A and 1 on generators Et, Ft, Kt, K^, l^i^n and defining relations

KtKΓ^KΓ^K^l, KίKj = KjKίί (4)

KtEjKΓ^qΐ'Ej, KtFjKΓ^qΐ'vFj, qt = qdi , (5)

EtFj-FjE^δij**"*1 \ qi = qd*9 (6)
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Γ l — a Ίβ^ ij E-aij-vEjEy = Q ,

W = 0 (iΦj), (7)
v = 0

the comultiplication being given by

JE^Ejφl+KiφE,, JF^FiφK^ + lφF,, 21^ = ̂  <g> K, , (8)

and antipode - by

SE^-Kf'Ei, SF^-FjJCi, SKi = KΓl. (9)

The relations admit the C-algebra anti-automorphism ω,

ωEi = Fh ωFt = Eh ωK^K, . (10)

Set Uq(Q)(Uq (g)) equal to the subalgebra, generated by E^Ff resp.) (1 <*ίίgn)
and t/^)(g) = C[K1

±1,. . . jX^1]. We will sometimes reduce these notations to
Uq , t/~ , Uq if this does not lead to confusion. One may check that the multiplica-
tion induces an isomorphism of linear spaces

ϋi(9)«t/ί (9)® £#(9)® ^(9) - (11)

Set Uf = C/° t/g+ . From now on unless otherwise stated A is assumed to be of
finite type.

3. For any β-graded associative algebra ̂  = @βeQ^β define a ^-commutator,
which associates to any homogeneous be^β a mapping

adqb: #/->£/

of degree β determined by

adqb(c) = bc-q(β^cb, ifcej/,. (12)

One deduces that the ^-bracket is a ^-derivation of j/, meaning that

adqa(bc) = (adqa(b))c + q(Λ'β)badqa(c) if αej^α, be-s/^, cej/y . (13)

Using (13) one proves the following useful formula:

rcΊ
.

7 j ( / ϊ ^

(adqb)j(c)b"-j , (14)
l L 7 j ( / ϊ ^ ) / 2

its Lie algebra analogue being

« / n \
- / . (15)

In the case si = U^ (g) one realizes that the relations (7) simply mean that

(fldβEί)-β '+1(^) = Mβί
1i)"βlJ + 1(^) = 0, if ΪΦj . (16)

The following observation will be used below in the discussion of rings of
quotients:
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The relations (13, 14, 16) imply that for any Ft, beU~ (g) one has

F?beU;(Q)Fi9 (17)

for all sufficiently large N.

4. Following Lusztig [L] introduce the following automorphisms Ri9 l^ί^n of
the algebra £/(g):

- ' E'""' (18)

if

RtK^KjKT*' . (20)

Fix a reduced decomposition r^r^ rίjv of the longest element of the Weyl
group W. This gives an ordering of the set of positive roots:

βi = α/i , β2 = rti α/2, . . . , βN = ril - rilf_ ί α f j v .

One introduces root vectors [L]

Eβ^R^ R^Ei., (21)

F^JV ^ ̂ . (22)

For fc = (fc l 9 . . .,kN)eZN+ setEk = Ek

β\ - Ek

β^Fk = ωEk.

Proposition 2.1. (i) [L] Elements Ek(Fk resp.), fceZΐ, /orm α feα5ϊ5 o/

(ii) [DC-K] Γ/ze algebra t/β(g) affords a structure of a Z^N + 1 -filtered algebra, so
that the associated graded algebra Gr(L^(g)) is an associative algebra over C on
generators Eα, Fα (oceA+}Kf(0^ί ^n) subject to the following relations:

KiK = KKh KtK^~ =1, EΛF = FEol,

Recall that an algebra Cs[x l5 . . . ,x fc] on generators x l 9 . . . , xk and defining
relations xixj = λίjxjxί for i>7, where Aί<7 eC*5 is called an algebra of skew poly-
nomials. Therefore, the item (ii) of Proposition 2.1 asserts that Gr(C/β(g)) is a skew
polynomial algebra. The "classical" analogue of this is the fact that Gr(C/(g)) is
a symmetric algebra S(g).

An algebra of skew polynomials has no zero divisors, therefore, the same is true
for Uq(g) [DC-K].
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3. Rings of Quotients Associated to (Deformed) Enveloping Algebras

3.1. Gelfand-Kirίllov Conjecture and Feigin's Construction.

1. A (non-commutative) ring j/ with no zero divisors is called an Ore domain if any
2 elements of sf have a common right and a common left multiple. A class of
examples of Ore domains is provided by the rings of polynomial growth. We shall
be calling an N-filtered ring si = \J t >{ j/

(0 a ring of polynomial growth if dίm^(i}

is equivalent to a certain polynomial as i-»oo.

Lemma 3.1. A ring of polynomial growth with no zero divisors is an Ore domain.

Proof. Assume that dimj/( ί)~α0i
k, as ΐ-»oo. Then for any ideal / on 1 generator

one has: diml(i}~a0ί
k, /(ί) = /nj/ ( ί ). If 2 ideals /ι,/ 2 on 1 generator have zero

intersection then (/x + /2)
ω~2α0ί

k, contradicting the assumption. D

The simplest examples of rings of polynomial growth are, therefore, algebras of
(skew) polynomials. Further, affine and finite-dimensional Lie algebras are distin-
guished among Kac-Moody algebras as algebras of polynomial growth [K]. This
combined with Proposition 2.1 implies that £/(g), if g is of either affine or finite type,
and Uq(§), if g is of finite type, are Ore domains, as well as the corresponding

2. An Ore domain $0 is a suitable object for formation of a ring of quotients.
Consider expressions of the form ab~l, b~la, a, be<8? called right and left (resp.)
quotients. Introduce a relation « by saying that

(i) ab~i&c~ΐd<z>ca = db ,

(ii) 2 right (left) quotients are in relation « if and only if they are in relation « to
one and the same left (right) quotient.

The Ore domain conditions imply that « is an equivalence relation. Denote the
set of equivalence classes of « by β(^/). One more application of the Ore domain
conditions gives that each equivalence class contains left and right quotients and
that any 2 left (right) quotients are equivalent to left (right) quotients with one and
the same denominator. This allows to define operations of addition and multiplica-
tion (in the most natural way), which completes the definition of the ring of
quotients β (<£/).

A definition of a ring of quotients ^[S"1] with respect to Sc=j/ is a more
subtle matter because due to the noncommutativity of ja/ it is not clear what can
really appear as a denominator. However in the case when j/ is a (quantized)
enveloping algebra one can say more. It follows from (14) that

"/]J J(α ϊ,α l ) / 2

if i φj, n > 0.
(Observe that (16) implies that only finite number of terms in the right-hand

side of the above formula can be non-zero and, therefore, it makes sense as an
element of U~ (g).) Therefore, the result of commuting negative powers of a Cartan
generator to the right is negative powers of the same generator on the right.
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One also deduces from (17) that 2 words F?1 Ff™, Fjj F£ have a common
right multiple of the form

If NI, . . . , Nm are sufficiently large. Now, if 5 c [/" (g) is a multiplicatively closed
subset multiplicatively generated by Fίl9 . . . , Fίk, one defines £7" (g) [S~ 1] as a sub-
set of β(t/~ (g)) consisting of classes of quotients of the form ab~ 1, beS. The above
discussion shows that Uq(o)[S~1'] is a subring. We shall sometimes denote
ί/ίfeKS-1] by ^(gJCFiTSF,:1,. . ^F,;1].

It is easy to see that the same goes through with F's replaced with E's or Uq (g)
replaced with Uq(Q)9 as well as with everything replaced with its classical (g->l)
analogues. Further, even though a ring of quotients is not defined for an arbitrary
Kac-Moody algebra, this discussion shows that a ring of quotients t/(g)[5'"1] is
well-defined if S is multiplicatively generated by a (sub)set of real root vectors.
Actually, formulas (13, 15) provide an algorithm of carrying out operations of
multiplication and addition on elements of

3. It often happens that rings of quotients of universal enveloping algebras
of different finite-dimensional Lie algebras are isomorphic with each other. Denote
by Dnk an algebra on generators α l 5 . . . , αM, α*, . . . , α*, c1? . . . , ck and defining
relations

[α,-, of] =<50 , [c/, aj] = [c*, αjf] = [α>, α, ] = [α*, α*] =0, for all i, j .

Dnk can, of course, be viewed as an algebra of differential operators on n variables
trivially extended by fe-dimensional center.

Conjecture 3.2 (Gelfand-Kίrίllov [G-K1]). // g is an algebraic Lie algebra then
Q(U(§)) is isomorphic with Q(Dnk)for k equal to the dimension of a generic Q-orbit in
the coadjoint represenation and n = (dim$ — k)/2.

This conjecture has been proven in many cases [G-K1, J, McC].

4. It seems that the following construction (due to Feigin [F]) is relevant to
a proper g-deformation of the Gelfand-Kirillov's conjecture. For a pair of Q-
graded associative algebras <£/, $ define a q-twisted tensor product as an algebra
£#®q^ί isomorphic with stf ® $ as a linear space and with the multiplication
given by a^ (g) bί a2 ® b2 = q("'β}a1a2 ® b^b2 if a2e^(0ί\b1e^(β}. Evidently,

is a β-graded algebra.

Proposition 3.1 [F]. For any Kac-Moody algebra g the map

l.C/ίίaHt/ίίgJΘ.C/ίίg),

A: lι->l<8)l ,

A: Ei\-+Ei ® 1 + 1 (x) E^F^Fi ® 1 + 1 (x) Ff resp.) , 1 ̂ i^n

is α homomorphism of associative algebras.

Remark. It is known that the map U% (g)->£/J (g) ® U% (g) does not exist in the
category of associative algebras.
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Iterating A one obtains a sequence of maps

#":£/ί(g)-*t/β-(g)®m, m = 2 , 3 , . . . ,

determined by A2 = 2, Am = ( A ® id) ° Am " * .
For any simple root αt consider a ring of polynomials on 1 variable C[Xf],

which we regard as Q-graded by setting deg^^α,. There arises a morphism of
g-graded associative algebras

Now, for any sequence of simple roots α ί l5 . . . , α ίk there arises a morphism of
β-graded associative algebras:

(Pi,®" ' ®pik)°2k: £/ί (gHCtYuJ ®β ®βC[*Wfc] .

(The double indexation of X's is necessary because some number can appear in the
sequence i l 9 . . . , ik more than once but the corresponding indeterminates have to
be regarded as different.)

Evidently, CCX^J ®β ®βC[Xk i f c] is an algebra of skew polynomials
C[X l ί ± . . . Xkik], satisfying the relations XsίsXtit = q(θίi^^}XtitXsίs, s>t. There- ,
fore, we have constructed a family of morphisms of a "maximal nilpotent subal-
gebra" of a quantum group associated to an arbitrary Kac-Moody algebra to
algebras of skew polynomials. It is interesting that a proper classical analogue of
this construction is not so obvious and is best understood in the framework of rings
of quotients (see below).

We now assume that 9 is a simple finite-dimensional Lie algebra. Let
Wo = rtl - - - riNeW be a reduced decomposition of the element of maximal length.
Set Φ(iί9. . . 5 ϊ Λ r ) = (pi1® ' ®PiN)°2N.

Conjecture 3.3 [F].

(i) Φ(z l 5 . . . , iN) is an embedding.
(ii) Φ(z'ι, . . . , IN) extends-at least for a special choice of a reduced decomposition

w0 = rίl . . . rilt-to an isomorphism of Q(U~ ($)) with Q(C[XUί . . . -XjvίJ)-

5. Example: g = slπ+ι. From the abstract point of view g = slπ+1 is an algebra
related to the Cartan matrix (%•), where

2 i f i = j
1 if Ii-7l = l .

O i f | i - 7 | > l

Choose a reduced decomposition of the longest Weyl group element to be
Wo = rι7V ' ' rnrιr2' ' ' rn-ι ...... r\ r2rι Denote by C [X~\ the skew polynomial
ring on generators Xtj labelled by all pairs ij satisfying 1 ̂  j ^ n, 1 ̂  i ̂  n — i + 1 and
defining relations

Xij Xrs —Pl i Xrs X ij •>

where

^Prs

q2 if

q if

g-1 if

.1 if

i>r,j = s— 1

j<s— 1 .
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In this case the map Φ = Φ(wQ) (here w0 stands for the reduced decomposition
WQ = rι TV ' ' ViTV * ' 7 π _ ι ' * TΊ ^2rι) acts as follows:

(23)

One solves (23) as a system of equations XiJ9 l^i<j^n with coefficients in

Lemma 3.4. The following formulas hold

rί Ύ

One uses this lemma to prove that the Conjecture 3.3 is true.

Theorem 3.5 (i) The map Φ is an embedding.
(ii) The embedding Φ: ί/~(sIM+1)->C[Jί] induces an isomorphism

Proof. Lemma 3.4 actually shows that Q(Φ(U~^(ζ>\n+l)))^Q(C\_X~\). It is, there-
fore, enough to prove that Φ is injective. In [G-K1] GeΓfand and Kirillov asso-
ciated a number to an arbitrary algebra j/ which is now known as the GeΓfand-
Kirillov dimension dimG-κjtf. For example, the GeΓfand-Kirillov dimension of
a polynomial ring on n variables, as well as that of the corresponding ring of
quotients, is equal to n. One of results of [G-K1] is that if an algebra jtf has
a filtration such that the associated graded algebra GΓJ/ is isomorphic with
a polynomial ring on n variables then dimG-K^ = dimG-KQ(^) = n. Regarding
q as an indeterminate and introducing filtration by powers of q — 1 one derives from
the mentioned results of [G-K1] their "g-analogues": dimension of a ring of skew
polynomials on n indeterminates is equal to n and if Grj/ is isomorphic with a ring
of skew polynomials on n indeterminates then dimG-κjtf = n. It follows from
Proposition 2.1 that dimG-KU~ (sζ + 1) = dimG_xΦ(t/~ (sln +£»)) =
n(n+ 1)/2 and, therefore, Φ is injective. D

3.2. Complex Powers, Automorphisms and Singular Vectors.

3.2.1. Construction of automorphisms of quotient rings of (deformed) universal en-
veloping algebras and algebras of skew polynomials.

1. For any keN the map



Skew Polynomials and Quantum Groups 227

is an automorphism. Clearly, <gfί+k2 = <g}1 ° <ti\\ Formulas (14, 16) imply that «?(x)
is a polynomial function of k. For example, in the δlπ+1-case one has

*f+ι(FO = ̂ ιf^ΓΛ = {fc}F ί +ιf ίFΓΛ + {l-fe}F ί, (24)

0 — Q~
where we have used "symmetric" g-numbers: {k}= - zy. Using this we define

an automorphism < f̂ by analytic continuation. Therefore, with every word
F?,1' ' ' Ff* we have associated an automorphism Vfc •«£ of

2. Since in the case g = <5lM + 1 the rings β(t/~(g)) and β(C[X]) are isomorphic
with each other (Theorem 3.5) the above provides the family of automorphisms -
also denoted by ^?l Ήf* — of β(C [X]). Moreover, the last assertion is valid for
any g regardless of Conjecture 3.3. In reality, there is a construction of automor-
phisms of a ring of skew polynomials which has nothing to do with quantum
groups.

Consider for simplicity the ring C[x] = C[x1? . . . , xm], x7 Xi = g 2 XiX 7 if j>i. To
proceed we need a q-commutative version of the q-binomίal theorem:

(x1+ +xm)"= X xi xi' xiΓ »eN. (25)
ίι+ ' • • + lm = « LH J L'mJ

For βeC we set

Γ i Ί f - Γ ι I fU l J 1 U m - l J !

for some l^r^m, thus making sense out of (xi + * * +xw)/? as an element of
a certain completion of C [X~\ consisting basically of formal power series (there are
exactly m different ways to do that).

Obviously the map P\-^(XI+ - +xm)/ Jp(xι+ * +xm)~/J is an automor-
phism of the above-mentioned completion. An explicit calculation (see below)
shows that

Q(C[_x])3P=>(Xl + ' +xm)>p(*i+ +x«)"/ϊeρ(C[x]) . (27)

Note that the same is true for (xi + +xm) replaced with (xί± + +x ik),
1 ̂  h < ' ' ' < ik and - with minor restrictions - for C [x] replaced with an arbitrary
ring of skew polynomials. In particular, in the case of the ring C[X] related to ί/β(g)
by Feigin's construction one obtains automorphisms

Remarks.

(i). It is natural to set log Fj = —- 1\. By definition log Ft is a differentiation
dk

of Q(U~ (g)) as well as of Q(C[JΓ]). It is easy to see that, moreover, this is an
exterior differentiation. Problem: Classify non-trivial (exterior modulo inner) auto-
morphisms of Q(Uq (g)), Q(C\_X~\).

(ii) The set of words F f 1 - Ff/, j81 ?. . ., βi^C is naturally equipped with
a group structure. With each such word one may associate an infinite series: its
expansion over a "Poincare-Birkhoff-Witt type basis" Ffc, where complex powers
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of Fi are allowed. (For details in classical setting see [M-F-F].) Thus we have
identified this group with a subgroup of a certain infinite-dimensional group with
a non-trivial topology. In [Kh-Z] a similar group was considered in the classical
case of differential operators on the line. In particular, it was shown that this is
a Poisson-Lie group.

3. Calculation of (x1 + x2)
βx2(x1^rx2)~β. It is easy to see that the proof of (27)

reduces to the case m = 2, p = x2. One has

The ^-commutative version of the binomial theorem gives

!-1^)', (28)

(Xl+X2r
β= Σ —(-xr1^)' r* , (29)

(.ί = 0 W )ί )

where as usual (a)i = (l-a)(l-aq2)' -(l-^2^"1^
In order to show that in the product of the left-hand sides of (28-29) almost

everything cancels out we employ a commutative version of the q-binomial theorem
[G-R] which reads as follows:

-J4 ί_

λ / 2)

 z —
i = 0 W )i \oo

where (α^Π^ol1-^)-
(Although we are in the non-commutative realm the usage of (30) makes sense

for the right-hand sides of (28-29) basically involve only one "variable" xϊ1x2.)
By (30) the equalities (28-29) are rewritten as follows:

l-r

^-^xΓ". (32)

Carrying out the multiplication one observes that almost all factors of infinite
products cancel out:

βx^x2Γ
1 , (33)

which completes the proof.

3.2.2 Application to singular vectors in Verma modules

It follows from Sect. 3.2.1 that elements of the form

F
Sl J7Sl Ϊ?N rjti -rjti
iι ' ' '^ΰ ^i Γii ' ' ' ?ii

belong to Q(Uq(Q)) if ΛΓeZ, Sf + ̂ eZ, 1 ̂ ί^/. It was shown in [M-F-F, M] that
such expressions are relevant to singular vectors in Verma modules. Here we
explicitly calculate them in the case g = sln+1.
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Recall that a Verma module M(A), A = (A1? . . . , λn)eCn is said to be a Uq(o)-
module on one generator vλ and the following defining relations:

It is easy to see that M(λ) is reducible if and only if it contains a singular vector,
i.e. a non-zero vector different from vλ and annihilated by Uq (g). The reducibility
criterion is the same as in the classical case [K-K, DC-K] and for C/β(sIn+1) reads
as follows:

M(λ) is reducible if and only if for some l^i<j^n, ΛΓeN,

λi + λi+i+ λj+j-i + l = N . (34)

It is known that for a generic point λ on the hyperplane determined by (34)
there is a unique (up to proportionality) singular vector in M(A). This means that
there is a function sending a point λ on the hyperplane to S^.(λ)EU~ (sln+ 1) so that
the vector S^(λ)vλ is singular. We are going to evaluate S^(λ).

Equation (34) can be rewritten in the following parametric form:

I + 1 — f + 2 ~ ί + 1 ~ ?

Ai = if + i — 1

It follows from [M] that

S#(f) = Fj' - F'ϊίFΓF/^' - Ff-'' . (35)

Though (35) is not quite explicit it is sometimes most convenient for derivation of
properties of singular vectors. For example, playing with complex powers one
proves that singular vectors related to N > 1 are expressed in terms of singular
vectors related to N=l. One has

Z7 ί 17 I7l — ί 17 ί — 1.Z7 17*2 — t I7ί — ]V + 1 77 T7 N — t

= Sέ+ι(ί)SA+ι(ί-l) Si+iίί-N + l) . (36)

Arguing by induction one proves that likewise

Therefore, it is enough to calculate Sy(ί). It follows from (24) that

Using (38) several times one reduces (35) to a form containing only natural
powers of generators. Denote by 3P the set of all sequences ε = (ε ί + 1 5. . ., ε7 ), where
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each εm is either 0 or 1. For each εe^ fix a bijection kε: {i+1, . . . ,./}
{j+1,. . .,;} satisfying

1(m-l) i f ε m = l ,

(Such a bijection obviously exists, though is not unique. However, the final result is
independent of a choice.) Further, with each εe^ associate a number Aε, given by

AB= Π {ίm.β} ,
m = l

where
ίm i f ε m + ί =l

.-ίw i f ε m + ί = 0 '

Theorem 3.6.

4. t^(g)-Modules and q-Connections

4.1. Modules Uq\S~l~\υλ. Let SaU~ consist of homogeneous elements, and
such that Uq [_S~ *] is well-defined. A typical example of S is a multiplicative span of
an arbitrary subset of {Fl5 . . . , Fw}. The following isomorphism of vector spaces is
an analogue of the triangular decomposition:

(Existence of this isomorphism follows from the relation [^/,Sj"1] =
— S<7~

1[£ί,S</ ]SJ

:"1, which allows to commute E's to the right.) Denote by
Cλ a character of Uf defined by E -^O, Ki-^qλί; l^i^n. A Verma module over

is said to be ^[S"1] ®t/^CA. Denote by vλ the image of 1 ® 1 in
t^ES"1] ®ι/ί Q. Clearly, L/^ES"1] ®t/f CA is a free C/~ [S~ ̂ -module generated
by υλ. We shall be interested in the restriction of Uq [_S~ 1] ® ̂  CA to Uq(§). Due to

q _ A q

the lack of better notation Uq [S"1] Vλ will stand for this restriction.
Note that the module U~ [_S~^vλ is always reducible for it contains a Verma

module M(λ) = Uq vλ. Though its structure is unknown in general, we are able to
describe it in the simplest case when S is multiplicatively generated by one of F's,
say, Ft.

It is easy to see that

λ.-m+l -λ, + m-l

EjFΓv^δtjWFΓ1- - 3%! - vλ, mεZ. (39)
ίfi Qi

One realizes that U~ E^Γ1]^ is a module induced from the representation of
the parabolic subalgebra generated by £1? . . . ,£„, Ft in the space Θmez ^T ^A
Further, if A f is not in { — 2, — 3, . . . }, then (39) implies that Et acts freely on the
quotient module Uq [_FΓ1~]vλ/M(λ). It is now easy to show that U~ [Ff 1] ι
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is a Verma module related to a Borel subalgebra Rt Uf twisted by the Lusztig's
automorphism (see (18, 19, 20)) and the highest weight A + α,. If, however, λf does
belong to { — 2, — 3, . . .} then, as (39) implies, the vector F*l + 1 is singular.
This means that there arises a chain of submodules M(λ)c=M(λ +
(Aj + l)a,)c:L7 [FΓ1]^. As above one shows that the quotient module
Uq [ F j ~ l ] v λ / M ( λ + (λi + l)tti) is a Verma module related to a twisted Borel subal-
gebra and the highest weight (/(, + (/(,, + 2) o^).

For the sake of brevity, denote by RiMq(λ) an ^(g)-module, isomorphic to M(λ)
as a vector space with the action being twisted by R f :

We have obtained

Proposition 4.1. // λt is not in { — 2, — 3, . . . } then Uq

If λιe{ — 2, — 3, . . . } then there exists a chain of submodules M(A)
[FΓ1] υλ and U q

Observe that Proposition 4.1 along with its proof carries over to the case of
a quantum group attached to an arbitrary symmetrizable Cartan matrix A.

4.2. Modules realized in Skew Polynomials

1. The Feigin's embedding Uq -»CS [Jf] makes the latter into a U~ -module, action
being defined by means of the left multiplication. One may want to extend this to
an action of the entire Uq. It is straightforward in view of the results of the previous
section if g = slπ + 1 for in this case Q(C[X^)&Q(Uq) (Theorem 3.5) and one obtains
a family of modules Q(C[X])vλ( = Q(Uq)vλ). The module Q(C[X])υλ is definitely
too big and it is natural to confine to the smallest submodule containing C [X~\ vλ.
This module is still always reducible, for example, it contains a Verma module
Mq(λ) - the one generated by Xu + - - + Xn-i+1,i, l^i^n-and U~ [F"1]^-
the one generated by Xu + - - - +Xn-i + ι,ί9 l^i^n— 1, X^. Though we do not
have explicit description of this module in general we are able to consider the case
of s!3 in full detail.

Proposition 4.2. For generic λUq(^γC[X^ X2ί, X12]vλ= C[Xll9X2ι, XΪ2]vλ.

Proposition 4.1, therefore, determines the structure of C[X11,X2ι, X^^λ
As to the general case, the module in question should also be isomorphic to

a module Uq [S~ x] vλ for an appropriate set S determined by formula of Lemma
3.4.

2. The above is relevant to the GeΓfand-Kirillov conjecture for Uq(z>ln + 1 ) . Denote
by $)\X~\ an algebra of ^-difference operators acting on β(C[X]). In other words,
Q)\X~\ is an algebra generated by Q(C\_X~]) viewed as operators of left multiplica-
tion and Γ f , l^j^n, l^i^n—j+l, where

n if
2ίj'Ars^Xrs if
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Denote by 3) [X, λ] the trivial central extension of 2f [X~\ by commuting variables
qλl, . . . , qλn, where λ = (λί9 . . . , λn) is understood as a highest weight. The defini-
tion of the module Q(C[X~\}υλ implies that there exists a family of embeddings -
parametrized by λ - of Uq(*ln+ί) into 2\X} or, equivalently, an embedding

p:W, + ιH® [*,*]- (40)

Conjecture 4.1. p provides an isomorphism of a quotient field a certain algebraic
extension Uq(sln+ι) of Uq(sln+1) with a quotient field of a certain subalgebra

Construction of Uq(sln+ί), which goes back to GeΓfand and Kirillov [G-K2], is
as follows:

Identify C7q(slπ + 1) with p([7€(slπ+1)) c=S[JSf, λ] and define Uq(*ln+i) to be the
subalgebra of ®[X, λ] generated by Uq(zln + 1\ qλί, . . . , qλn and Kωι, . . . , Kφn,
where ω f, 1 ̂ i^n are dual fundamental weights, i.e. aj(ωi) = δji. (It is meant that
KωEi = q«i(ω}ί EiK

ω.) Note that elements qλ\. . . , qλn generate a certain finite
algebraic extension of the center of Uq(sln + 1 ). (Description of the center of Uq (sIΛ + 1 )
may be found in [DC-K].)

We have been able to verify the conjecture in the cases of sl2, s!3 by straightfor-
ward calculation of p"1, which is simple in the 5Ϊ2-case and rather tiresome in the
s!3-case.

Proposition 4.3.
(i) β(#g(sI2))«0tJU].

(In this case X stands for Xu.)
(ii) Q(Uq($l3)) is isomorphic with the quotient field of the subalgebra of@[X9 λ]

generated by T?l9 T^, Γu, Γ21, Γ12; X l l 5 X2l9Xl2; qλί, qλ2.

4.3. Uq(Q) — Modules and q-Connections.

4.3.1. A q-connection with coefficients in a ring of skew polynomials. Let C[x]:=
C[xι, . . . 5xn], XjXi = q2XiXj, i<j be a ring of skew polynomials (as yet it has
nothing to do with quantum groups) and the corresponding ring of ^-difference
operators ^[x],

By a quantum line bundle we mean a free rank 1 module over C[x] or, more
generally, CCx]^"1] for a suitable S. Sections of a quantum line bundle, i.e.
elements of C[x] [S"1], thereforee become a ^[x]-module.

By a q-connection with coefficients in a quantum line bundle we mean an
associative algebra homomorphism V: 0[x]->®[x] such that V(Xί) = Xi,
V(Ti) = R(bi(x))Ti9 l^i^n, where &ί(x)eβ(C[x]) and R(bi(x)) stands for the oper-
ator of the right multiplication by bj(x).

The same can be equivalently described in terms of cohomology. For
X = (Xι, - - , Z«)eZ" set T* = Tfί° ° T*n and Vx = V(Tχ). Obviously,
Vχ = R(bχ(x))Tχ for some bχ(x)eβ(C[x]). The associative algebra homomorphism
condition reads as

The last equality simply means that the map Zn9 χ\-+bx(x)eQ(C [x]) is a 1-cocyle of
an abelian group Z" with coefficients in Q(C [x]). It is natural to say that a cocyle is
trivial if it is given by bχ(x) = (Tχr(x))r~1(x) for some r(x)eβ(C[x]). Indeed the
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cocycle χ i— >(Γ*r(x))r ~ 1 (x) makes into the cocycle χ i— >1 by "the change of trivializ-
aύonn:f(x)\->f(x)r(x)~l. The cocycle χ\-^(Tχr(x))r~l(x) is a coboundary of the
0-cocycle r(x). Therefore, we have established 1-1 correspondence between non-
trivial ^-connections and elements of H1(Zn, β(C[x])).

To produce a construction of some elements of Hί(Zn, β(C[x])) fix arbitrary
subsets J1? . . . , Jι of {1, . . , , m} and set

Let Ψ = rflrβ

2*' - rfl for some j? l5 . . . , fteC (see Sect. 3.2.1).

Lemma 4.2. 77ί£ correspondence χ\-^Ψx = (TχΨ)Ψ~1 represents an element of

Proof. The fact that Ψχ = (Tχ Ψ) Ψ ~ 1 is a 1-cocycle is obvious for this is a coboun-
dary of Ψ. (One may also think of it as the "local" change of trivialization
/(x)ι— »/(x) f(x) in the bundle with the trivial ^-connection.) What has to be
proven is that ΨχeQ(C[X~\) for any χ. To do this observe that

1 — J7-2

1 - /*

ί-1

The calculation as in (31,32,33) shows that (q 2x1+ -+q 2 x f _ i
+ X; + + xm) / J~ 1=p(x i+ +xm)β, peβ(C[x]). It implies that

Therefore, a ^-difference operator makes ¥* into p\r^'- pιrfl for some
p l9 . . . , p*e2(C[x]). To rewrite the latter in the form pψ9 peβ(C[x]) one wants to
move each pt to the left. This can be done by using the automorphisms

see (27). One has

where p^rf1- rj^ p y r Γ - 1 - - - p^^, 2^'^/. D

We will denote by V(Ψ) the connection χ\->Ψχ = (TxΨ)Ψ~1 given by Lemma
4.2.

In the classical case tensor product of a pair of trivial line bundles with flat
connections is a trivial line bundle equipped with a canonical flat connection. This
gives an operation on connections. In the classical case connections are also
identified with a certain 1st cohomology group and this operation happens to be
simply an addition. Though we are unable to carry out the same in full generality in
the g-commutative realm, we can produce the following non-commutative opera-
tion on the ^-connections of the form V(Ψ):

This operation is obviously a g-analogue of an addition of 1-cocyles in the classical
setting.
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Remark: Our approach here is a ^-commutative version of that of Aomoto and
Kato in [A-K]. In particular the construction of cocycles in Lemma 4.2 has its
commutative counterpart, which is claimed to possess a sort of universality of
property. The same may be true - with minor modifications - in our case.

4.3.2. Uq(o)-modules twisted by a q-connection.

1. Intertwining operators. Of course everything written in the previous section
applies to more general rings of skew polynomials provided one takes more care
about the choice of elements r l 5 . . . , rz. For example, in the case of an algebra
C[X], coming from the Feigin's morphism Φ: U~ ->C[JΓ| (see Sect. 3.1), a natural
choice is rj = Φ(Fij) for an arbitrary sequence il9 . . . , ih (There are some others
which one can easily think of.) In the case of g = slπ+1 the ^(δln

structure on β(C[X]) implies a homomorphism (see (40)):

(41)

Given a ^-connection V one twists this Uq(*ln + ̂ -module structure by

(42)

As above denote by V(Ψ) the g-conection coming from (TxΨ)Ψ~1e
Hl(ZN, β(C)[X])), ψ = (Φ(Fίί})^' - (Φ(Fil))^ for some βl9..., β^C. Let rteW
be a reflection at the simple root α/. Set

βJ (ri»*-r riι ί*^-) + l (43)

where r^λ stands for the shifted action of the Weyl group. Set
V(r ί± - r,; λ) = V(Ψ) if βl9 . . . , ft are given by (43).

Proposition 4.4. There is a Uq($ln + ̂ -linear map of the module related to V(Ψ) ° ρω. λ

into the one related to V(Ψ)q (x) V(r ί ± r j z ; y l ) o p λ , where ω = rίl- - - rir

Proof. Passage from pμ to V(Ψ) ° pμ means that one replaces υμ (i.e. unit of
with Fii - F^1 vμ. (See the proof of Lemma 4.2.) Formula (39) implies that under
the choice (43) the vector F^1 - - F^1 vλ is singular of the weight r f l rtl λ and,
therefore, satisfies all the conditions imposed on vω.λ. G

Observe that having looked over the definitions one can make precise sense out
of the statement: the module related to V(Ψ)° pω.λ embeds into the one related to
V(¥%®V(r ί l ' ' rίι\ λ)°pλ as a space of sections satisfying a certain regularity
condition.

2. Structure of modules U~ [Ff 1) F f υ λ . Here we obtain the structure description of
the modules twisted by a ^-connection in the simplest case of V = V((Ψ(F^)β\ βeC.
This module always contains a submodule generated by 1 eC[X] and, as one easily
sees, isomorphic with the following extension of a Verma module: U~ [F/~ 1] Ff υλ.
The L^(g)-module structure on the latter is defined as follows:

(i) F1? . . . , Fn act by left multiplication;
(ii) action of El9 . . . ,£„ is determined by setting (cf. (39))

(44)
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Denote by 1U£ the parabolic subalgebra of Uq(o) generated by
El9. . . , En; K^ 1, . . . , K*1; Ft. Equation (44) determines a structure of 1UJ~ -mod-
ule on the space spanned by F f + k

9 fceZ. Denote a module obtained in this way by
TΓj. Clearly, U~ [FΓ*]Ff vλ is isomorphic with the induced module Indf^^l
This isomorphism provides a precise analogy between U~ [F^l~\Ff υλ and
a Verma module U~ vλ: one is obtained from another by replacing the vacuum
vector vλ with the vacuum chain i^[. This analogy can be pushed further by
remarking that U~ [Ff *] Ff vλ is reducible if and only if it contains a singular chain
in much the same way as a Verma module is reducible if and only if it contains
a singular vector. Here by a singular chain we naturally mean a non-zero {U^-
linear map ^c U~ [Ff^Ff υλ different from -Tic: t/~ [FΓ1] Ff UA . A
weight lattice of a singular chain i^l

μ is of the form μ + Zαi. By the weight
of a singular chain ̂  we mean an element /ieί)*/Zαj, where μ stands for
an image of μ under the natural projection ^-^ίj^/Zα/. The following partially
relies on Sect. 4.1.

Theorem 4.3. (i) If βeZ or βeλ(Hi) + Z then U~ [Ff ^Ff υλ is isomorphic with
either U~ [Ff1] vλ or U~ [Ff *] vrrλ (resp.); see Proposition 4.1.

(ii) Otherwise U~ [Ff *] Ff vλ is reducible o if contains a singular chain of the

weight λ — Nafor some αezl + , αφα ί 5 NeNothere is jeZ, NeN such that

N
(λ + p, <*+j<xi) = —

w/ίere pel)* 15 determined by ρ(Hk}

Remark. The Verma module M(/l) contains a singular vector of the weight λ — Na,
αezl + if and only if λ belongs to the Kac-Kazhdan hyperplane ([K-K], see also
Sect. 3.2.2) related to the pair (α, N):

(λ + p,α)=y(α,α), αe^+ . (45)

Item (ii) of Theorem 4.3 claims that t/~ [Ff 1 ] Ff vλ contains a singular chain of the

weight λ — ΛΓα if and only if λ belongs to the union of Kac-Kazhdan hyperplanes
related to all pairs (α+7'α ί5JV), ot,+jaιieA + . Therefore a singular chain encodes
information on a collection of singular vectors in a Verma module.

Proof of Theorem 4.3. Item (i) immediately follows from definitions and (44). As to
(ii), fix root vectors £α, oteA+ as in (21). It is clear that the space spanned by all
singular chains coincides with the space of solutions of the following systems of
linear equation

£αω = 0 f o r a l l α Φ α i . (46)

(This system should be regarded as restricted to each weight space of the
module.)

One deduces from Proposition 2.1 the space of solutions to (46) is
a <Fj, Kf 1, £j>-module from which one easily extracts a singular chain.

All the vector spaces U~ [Ff1] Ff υλ parametrized by βeC are naturally
isomorphic with each other and with the space U~ [FΓ1]. Therefore (46) may be
regarded as a family of systems of linear equations on U~ [Ff 1] polynomially
depending on β. For a fixed weight space of U~ [Ff 1] existence of solutions to (46)
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lying in this space is equivalent to vanishing of a certain polynomial depending on
λ and β. It is easy to deduce, however, that under the assumptions of (ii) once there
is a solution for β = β0 then there are solutions for infinitely many values βeβ0 + Z.
Therefore the mentioned polynomial is actually independent of β. Now we may set
β = 0 without lack of generality. But then it is easy to see that - again under the
assumptions of (ii) - the same system (46) gives reducibility criterion for the
submodule M(λ) of U~ [Ff*] vλ, see Proposition 4.1. The proof now follows from
the Kac-Kazhdan equations, see the above Remark. D

The Kac-Kazhdan reducibility criterion (45) was carried over to the case of
a quantum group attached to an arbitrary symmetrizable Cartan matrix A in [M].
It follows that Theorem 4.3 remains valid in this general setting.

Acknowledgements. Our thanks go to B. Feigin who explained to us his unpublished results, to
N. Reshetikhin who brought to our attention the paper [A-K] and to M. Jimbo for his interest in
the work. Some results of the work were reported at Mie University in Tsu, F.M. is indebted to M.
Wakimoto for his heartiest hospitality during the visit.

References

[A-K] Amoto, K., Kato, Y.: A ^-analogue of de Rham cohomology associated with
Jackson integrals. In: Special Functions. Proceedings of the Hayashibara Forum
1990 held in Fujisaki Institute, Okayama, Japan. Aug. 16-20, Berlin, Heidelberg
New York: Springer, 1991 pp. 30-62

[A-Y] Awata, H., Yamada, Y.: Fusion rules for the Fractional Level sl(2ΓAlgebra. KEK-
TH-316 KEK Preprint 91-209, Januarty 1992

[B-McC-Pl] Bouwknegt, P., McCarthy, J., Pilch, K.: Free field approach to 2-dimensional
conformal field theory. Progress of Theoretical Physics, Supplement No. 102, 70,
67-135 (1988)

[B-McC-P2] Bouwknegt, P., McCarthy, J., Pilch, K.: Quantum Group Structure in the Fock
Space Resolutions of sl(n) Representations. Commun. Math. Phys. 131, 125-155
(1990)

[DC-K] De Concini, C, Kac, V.G.: Representations of quantum groups at roots of 1. Progr.
in Math. 92, 471-506 (1990)

[F] Feigin, B.L.: Talk at RIMS, 1992
[F-F] Feigin, B., Frenkel, E.: The family of representations of affine Lie algebras. Usp.

Math. Nauk ( = Rus. Math. Surv.) 43, 227-228 (1988) (in Russian)
[F-M] Feigin, B., Malikov, F.: Integral intertwining operators and complex powers of

differential (^-difference) operators. Preprint RIMS-894, September 1992, to appear
in Advances in Sov. Math.

[F-K] Frenkel, I.B., Kac, V.G.: Basic representations of affine Lie algebras and dual
resonance models. Invent. Math. 62, 23-66 (1980)

[F-G-P-P] Furlan, P., Ganchev, A. Ch., Paunov, R., Petkova, V.B.: Reduction of the rational
spin si(2, C) WZNW conformal theory. Phys. Lett. 267, 63-70 (1991)

[G-R] Gasper, G., Rahman, M.: Basic hypergeometric series. Encyclopedia of mathemat-
ics and its applications 31, Cambridge: Cambridge University Press, 1990

[G-K1] Gelfand, I.M., Kirillov, A.A.: Sur les corps lie aux algebres envelopantes des
algebras de Lie. Publ. Math. IHES 31, 509-523 (1966)

[G-K2] Gelfand, I.M., Kirillov, A.A.: Structure of the field of fractions related to a simple
splitting Lie algebra. Func. Anal, i ego Appl. 3, 1, 500-523 (1966)

[I-M] lohara, K., Malikov F: Solutions to Knizhnik-Zamolodchikov equations with
coefficients in non-bounded modules. Submitted to Int. J. Mod. Phys. A, 1993

[J] Joseph, A.: Proof of the Gelfand-Kirillov conjecture for solvable Lie algebras.
Proc. Am. Math. Soc. 45, 1-10 (1974)



Skew Polynomials and Quantum Groups 237

[K] Kac, V.G.: Infinite-dimensional Lie algebras. Cambridge: Cambridge University
Press, 1990

[K-K] Kac, V.G. Kazhdan, D.A.: Structure of representations with highest weight of
infinite-dimensional Lie algebras. Adv. Math. 34, 97-108 (1979)

[Kh-Z] Khesin, B., Zakharevich, L: Poisson-Lie group of pseudodifferential symbols and
fractional KP-KdV hierarchies. Preprint 1992

[L-W] Lepowski, J., Wilson, R.L.: Construction of the affine Lie algebra A^. Commun.
Math. Phys. 62, 43-53 (1978)

[L] Lusztig, G.: Quantum groups at roots of 1. Geom. Ded. 35, 89-144 (1990)
[M-F-F] Malikov, F.G., Feigin, B.L., Fuchs, D.B.: Singular vectorsin Verma modules over

Kac-Moody algebras. Funkc. Anal, i ego Pril. 20 2, 25-37 (1988)
[M] Malikov, K: Quantum groups: Singular vectors and BGG resolution. In: Infinite

Analysis - Proceedings of the RIMS Research Project 1991 Part B, Singapore:
World Scientific, 1992 pp. 623-645,

[McC] McConnell, J.C.: Representations of solvable Lie algebras and the Gelfand-Kiril-
lov conjecture. Proc. London Math. Soc., Ser. 3, 29, 453-484 (1974)

[W] Wakomoto, M.: Fock representations of the aίfine Lie algebra A(*}. Commun.
Math. Phys. 104, 605-609 (1986)

Communicated by H. Araki






