
Commun. Math. Phys. 163, 629-643 (1994) Communications IΠ

Mathematical
Physics

© Springer-Verlag 1994

Uncovering the Detailed Structure
of the Algebra Formed by the Invariant Charges
of Closed Bosonic Strings
Moving in 1 + 2-Dimensional Minkowski Space

K. Pohlmeyer

Fakultat fur Physik der Universitat Freiburg, Hermann-Herder-Strasse 3, D-79104 Freiburg, Germany

Received: 10 June 1993

Abstract: For the Nambu-Goto theory of closed, bosonic strings moving in three
space-time dimensions, generating relations of degree < 6 for the Poisson algebra
of the infinitesimal generators of observable symmetry transformations have been
computed. These computations result in a deeper insight into the structure of the
symmetry algebra. In addition, a parametrization of the quantum corrections for the
generating relations of degree 3 is given.

Introduction

By Wick rotation, the classical theory of relativistic bosonic closed strings moving
in (d — 1)4- 1-dimensional Minkowski space-time [1] is related to the geometry of
complete minimal surfaces isometrically immersed in the d-dimensional Euclidean
space [2]. With respect to a given (Cartesian) frame of reference, these surfaces and
their immersions (apart from translations in some well-defined, surface-dependent
direction) can be reconstructed from the knowledge of a certain infinite set of
algebraically indepedent conformal invariants [3]. The reconstruction exploits the
conformal structure of the minimal surfaces.

Along with previous investigations [3, 4, 6-10], the present analysis explores the
intriguing possibility that the quantum theory of relativistic bosonic closed strings
moving in (d - 1) 4 1-dimensional Minkowski space-time is obtained from the
geometry of complete minimal surfaces in the following way:

In a first step, the conformal invariants are turned into the (reparametrization
invariant) elements of the algebra of infinitesimal observable symmetry generators
("invariant charges") of the classical string theory,

so(M-l) b o o s t s W{M d θf)+Θ()-}.

Here the symbols Md, fj j, and ί)^ stand for the linear span of the infinitesimal
generators ^,λ = 0 , l , . . . , d — 1, of rigid translations in Minkowski space, and

This work was supported by Volkswagenstiftung



630 K. Pohlmeyer

for the algebra of (translation invariant) "internal" invariant charges ^^ (^ for the
left- and right-movers (with the components of the energy momentum vector being
treated as onumbers), respectively. In all cases, the field of coefficients is the field of
complex numbers. The invariant charges ^^[K^N carry dimension (mass)^, degree

of homogeneity K, "grade" k = N — K and "degree" £ = N - K — 1. Fφ and rj,^>
form graded algebras, respectively, both under

i) the commutative ordinary multiplication, graded w.r.t. the grade k, and

ii) the non-commutative Poisson bracket operation, graded w.r.t. the degree L

These algebras are presented in terms of their defining relations generating them
from the commutative and associative ring of polynomials in the basis elements of
the corresponding free Poisson algebras, i.e. generating them from the symmetric
algebras over the free Lie algebras whose composition law is given by the Poisson
bracket operation.

The observable content of the classical constraints is formulated in terms of the
Casimir elements of the Poisson algebras ί) J and f)^>, respectively.

In a second step, "non-additive composition laws" for the invariant charges giving
rise to a "Poisson bi-algebra structure" are specified. These laws compensate for the
loss of analyticity in the transition from the theory of minimal surfaces to the theory
of closed strings and include the classical "scattering" of closed strings.

In a third step, the algebras ί) ̂  and ίj^, are deformed, respectively, into algebras
under associative multiplication and star operation, the Poisson bracket being replaced
by (ίh)~l times the corresponding commutator, the complex conjugation being
replaced by the star operation. The analogue goes for the respective bi-algebras,
the non-additive composition laws being replaced by corresponding non-trivial co-
multiplication laws. The stated deformations should be subject to (an appropriate
adaptation of) the requirement of coinciding Poincare series and should correct the
results of the Poisson bracket operation to the results of (ifι)~l times the corresponding
commutation by polynomials in the (quantum version of the) invariant charges with
coefficients exhibiting positive integer powers of h. The quantum version of the
classical constraints consists of a restriction of the values of the Casimir elements
of the commutator algebras (j^> and ί) .̂

In a fourth and final step, positive energetic, unitary, irreducible representations

of the algebras f)^> and f)^> as well as their respective bi-algebras are classified,
representations which are subject to the constrains on the values of the Casimir
elements.

There is a fair chance that this fiction is borne out by facts:
Firstly, it has been argued in ref. [4] that the renormalization of the invariant

charges in WKB-approximation is attended with a single free parameter 7 only, this
parameter being already familiar from the analysis of the anomalies of the free loop
wave equation by Lϋscher, Symanzik and Weisz [5], and that at least in WKB-

approximation there does exist a representation of \) ̂  Θ f)^> with a totally symmetric
ground state.

Secondly, as the internal invariant charges commute with the components of
the energy-momentum operator, and as in nature only finite energy-momentum

degeneracies are observed, finite-dimensional representations of the algebras f) J, and

^ meet predominant interest. For the existence of such representations, the algebras

ί) J, and $φ must - and, in fact, do - possess ideals of finite co-dimension (see below).

Since all representations of f) J> Θ f)^> consists of entire multiplets of the little group
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(of the Lorentz group), any finite-dimensional representation of f)^> Θ ί)^ is bound
to have a maximal spin-transfer. In any one of them, all invariant operator charges
of sufficiently high spin must be represented by the zero operator, and, in addition,
for the representation at hand there must exist a finite subset of invariant (operator)
charges of lower spin such that any invariant (operator) charge can be expressed as a
function of these.

Thirdly, as suggested by the combined behaviour of the grade k under ordinary
multiplication and the degree i under Poisson bracket operation of the classical

invariant charges =£5^ κ , their quantum counterparts ^^\N are uniformly
representable as

with the dimensionless operator $^κ^μ acting by discrete amounts and commuting

with the mass operator 3^2. Here, the symbol a' denotes the inverse string tension.
This implies that any reference to Planck's constant h can be completely eliminated

from the defining relations of the algebras ̂  and ί)^>.

Fourthly, maximal abelian subalgebras of the classical algebras f)^> and ί)~ for

^2 = rn2 > 0 have been identified [7] and so have been the Casimir elements of
f)+ and fjT", [8]. Also, the observable content of the classical constraints has been
formulated in terms of these Casimir elements.

Fifthly, the emergence of non- additive composition laws for the invariant charges
has been noted in ref. [9].

Sixthly, for the special case d = 3, there is some control over the derived algebras
{f}^, ί)^}, cp. ref. [10], and some of the relations defining the algebras f)J> and f)^>
have been computed explicitly, viz. all relations of degree I = 3 and the following
relations of degree ί — 4: the pseudo-scalar relations, the only "spin" = 5 relation
and one of the "spin" = 3 relations.

In the present communication, for d = 3 and a' = l/(2π), I shall spell out the
remaining ί = 4 relations and report the essential features of all the i — 5 relations
and of two especially important £ = 6 relations which have been computed explicitly
(and which are available on microfilm). These pieces of evidence bring the general
structure of the algebras f) + and ()~ to the fore. With the help of the above-mentioned
requirements for the quantum deformations, I parametrize the quantum corrections of
the defining i — 3 relations.

Simplifications, Conventions and Basic Facts

The algebras ί)^ and ί)^>, with the ordinary multiplication as the composition law, are
isomorphic. As Lie algebras, with the Poisson bracket operation as the composition
law, they differ by a global factor —1 for the structure constants. Thus, it suffices to
analyze the algebra f)^. Henceforth, the superscript + will be suppressed.

The focus of interest concerning the structure of the Poisson algebra ί)^ and the

commutator algebra ί)^ lies in the case ,̂ 2 = m2 > 0 and d^2 — m2 1 > 0,
respectively. Due to Lorentz invariance, without further loss of generality the
momentum rest frame
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will be chosen as the frame of reference. The algebras f)(m 0,0) anc* fym,o,0)

denoted by f) and fy, respectively.
The algebra ί) is not finitely generated. However, in terms of certain iterated

integrals, the generators are explicitly given [6]. For the case at hand, d = 3, they
are:

i) the infinitesimal generator of rotations in the (1, 2)-plane:

the degree of Q being set equal to zero,

ii) the invariant charges of degree 1: Ls, "spin" 5 = ±1, ±2 with {Q, L2} = - sLs,%
and

iii) the (scalar) exceptional elements Lφ(=L0),Lφ,Lφ, . . . carrying degree 1,3,
5, . . ., respectively:

Γ - 11 V ^(2) T -^-L\^ &W T -—\^ Φ^
® ~~ 4 / ^ ^Oi(H ' ^© — ^ / ^ ^OOOiOOOz ' ^® — ^ / j ^OOOOOiOOOOOi >

i=l i=l z=l

(Note that - compared to ref . [6] - the convention regarding the sign of the spin has
been changed.)

The effect of parity transformation on the invariant charges is realized by replacing
Q/Q by —Q/ — Q and LS/LS by L_5/ί/_ s, respectively, and leaving the exceptional
elements unchanged.

Complex conjugation (star operation) maps LS/LS into L_S/L_S and leaves Q/Q

and the exceptional elements unchanged. The algebras ί)/ί) are described in terms of
generating relations, i.e. (additional) relations imposed on the symmetric algebra over
the free Poisson/the universal enveloping algebra of the free Lie algebra generated by
the elements Q/Q, LS/LS, s = ±1, ±2, and Lφ/L@, I = 1,3,5, ____ The simplest

of these generating relations assign to the element Q/Q the role of measuring the
spin.

The next simplest of these generating relations can be stated as follows [7]: it is
possible to set up explicitly a 1 : 1 correspondence between the exceptional elements
Lφ ί — 1,3,5, . . . and certain (real) scalar elements B£ of degree i which are
algebraically independent of each other and which are in involution. (For further
characteristic properties of the scalar elements B^ see below.)

For the case at hand, d = 3 = odd integer, the next simplest generating
relations can be stated as follows [7]: for every even integer i > 0, there exists
an essentially unique pseudo-scalar real element B^ a dominant invariant charge of
degree £, such that all these algebraically independent pseudo-scalar elements are in
involution with each other and with the aforementioned scalar elements B2n+l. By
"essentially unique" I mean: unique up to normalization and addition of a polynomial
in the pseudo-scalar elements carrying degrees < ί. The scalar and the pseudo-scalar
elements under consideration generate the said maximal abelian subalgebra.

There are no further generating relations of degree t, — 0, 1 and 2.
In the following section I shall report further generating relations of degree > 3.

A tolerably systematic description will be given - faute de mieux - in terms of
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i) Q/Q,
ii) simple Poisson brackets/commutators, at least one of the scalar elements corre-

sponding to the elements B^/B^ I = 3,5,7, . . . being among the arguments of each
Poisson bracket/commutator, and

iii) the 'Ήall basis" elements of the free Poisson algebra/the free commutator algebra
generated by the elements L0/L0, LS/LS, s = ±1, ±2.

For the construction of the Hall basis [11], I stipulate the following admissible
ordering: let u and v be two "standard monomials". I set u < v, iff the (Hall)
"degree" of u is smaller than the (Hall) "degree" of v , or the (Hall) "degrees" of
u and v are equal and the spin of u is smaller than the spin of υ, or the (Hall)
"degrees" and spins of u and v are equal and the non-periodic cyclic word i±i2 . . . in

of index letters ir G [—2, . . . , +2], r = 1, . . . , n, (Hall) bracketing of which
gives rise to u, "precedes" the non-periodic cyclic word jl j2 - . . jn of index letters
js G [—2, . . . , +2], s = 1, . . . , n, (Hall) bracketing of which gives rise to υ. (The
non-periodic cyclic word ί{i2 . . . in is said to precede the non-periodic cyclic word
JιJ2" jn iff ~ reac* as integer numbers -

or

and

ίp(l}ίp(2} . . . ip(n} < MIN jq(l)jq(2) . . . jq(n} ,

p(l}p(2} .. p(n}

p(l)p(2)... p(n}

Sn and Zn denoting the symmetric group and the cyclic group of n objects,
respectively.)

Multiple Poisson brackets of Ls^ s% = 0, ±1, ±2, will be denoted by L(SI Sn).
The symbols

(s j , ..., sα,( sα+l) •••> S fo)) s 6+l> •••> sc,(<sc+ι, ..., s^), ...)

stand for the multiple Poisson brackets of L0 , . . . , L0 ,Γ s\ ' ' Sa

^(βα+l.-.^'^b+l' •"' ^c'
L(Sc+1,...,5d)'

Their spin is:

S^ (si, •••,sa,(sa+

A corresponding notation is used for multiple commutator brackets of Ls , sτ = 0,
±1,±2.

I conclude this section by specifying the scalar elements B^ for ί — 1,3,5 and the
pseudo- scalar elements B^ for £ = 0, 2, 4:

B\ = L® >

B3 =

- 2(L ( 0 >_ l f l ) + L(0>ι,-i)) - 48iQ - L ( 1 >_1 } - 8L_2 - L2 -f 8L_1

3

φ- (16)4L@ - (16)4Lφ . L@ + \ x (16)4L3
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plus a polynomial in Q, L±1, L±2, and in the Poisson brackets involving Ls,
s = 0, ±1, ±2 (see appendix);

BO = Q >
B2 = i(L(2j_2) -4L(1)_1}),

1, -2,0,1)

; - 64iQ L(0j_2)2) + 64iQ - L ( 1 >_2 > 1 )

64L_2 - L(2>0) - \2SL_, . L^^ - (16)2L_1 L(1?

- 10 x (16)2Q2 L(1 _1} -f 13 x (16)2iQ - L_2 - L2 - (IβfiQ - L_{ - Lj

The Generating Relations of Degree 3 for the Algebra ί)

Besides the explicitly stated relations and their implications, there are 10 independent
generating relations of degree 3, one for each of the possible non-vanishing spin
values: s — ±1, ±2, ±3, ±4, ±5. It suffices to state the relations for the positive spin
values. The relations for negative spin values can be obtained by complex conjugation
or by parity transformation.

s = 4: 0 - 9L(2>0>2) + 4L(2>1>1) + 48L2 ,

s = 3: 0 = 3L(25_1?2) + 7L(2>0jl) + 8L(1A2) + Ί2(ίQ - L(2>1) - Lλ - L2),

s = 2: 0 = 2L(2|_M) + L(1 _1|2) + 6L(1A1) -h 24(iQ - L(2>0) - 2L2 - 8Q2 . L2),

s = 1: 0 — jL*(25_2,i) ~^~ ^(i,-2,2) ~ 3L*(2,—1,0) -h 31L(o,-i,2) — olL^^^^

- 12L(1AO) + 24(iQ - L (2 j_1} - 3L_! L2 + 24Q2 - L j ) .

Note the absence of factors Bl (= I/0) from the right-hand sides of the above relations.

The Generating Relations of Degree 4 for the Algebra f}

There exist elements of degree £ = 4 for all possible values of the spin between +5
and -5. Besides the explicitly stated relations and their implications, there are 31
further independent generating relations: one for s = 5(—5), two for s = 4(—4), three
for s = 3(-3), four for s = 2(-2), four for 5 = 1(-1) and three for 5 = 0, among
them one scalar relation. Again it suffices to state the generating relations for positive
spin values:

5 A TΓ TT T TΓ
: U = 1^0,2,2) ~ 9^(2,1,1,1) ~~ T 2 ' -^(2,1) '

s = 4: 0 = L(2 j_2j2>2) - 24L(1;θ5l52) + y L((2|1)>(lj0)) + | x (16)2iQ L(2|1>1)

- 128L! - L(2 j l ) + 128L2 - L(2)0) + y x (l6)2ίQ L\ ,

0 = -^(2,0,1,1) ~ 1^(1,0,1,2) + "3" ίQ ' -^(2,1,1)

+ 48L2 - L(2 0) + 104 x IβiQ - L\
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8 = 3: 0 =

iQ L(2>0>1) - WίQ - L(1A2)

- 192Q2 - L(2>1) - 96Li - L(2ι0) + 192L2 - L(2>

-h 240L2 - L(1 0) + 204 x IβiQ - Ll - L2 ,

0 — Ί-9L(θ5_ l j2;2) — 4L((2)1)?(1)_1}) -f 3L(2ι0j0jl) -f }

+ 33L((2j0)i(1|0)) + 20L(1AM) - U4iQ L(2A1)

- UQiQ L(1>0)2) -h 960Q2 - L(2 j l ) + 536L{ - L(2?0)

- 48L2 - L(2,-i) ~ 376L2 ' L(i,o) - 228 x

0 = 3L ( l j _ l j l j 2 ) - L^,!)^!,-!)) — 2^(i,o,ι,

-h 64L2 L(1 0) + 108 x IβiQ Ll - L2

0 = + L - ~" 2 L , ( l , - 2 ) ) + 2 (1, -1,0,2

~~ ^(2,0,0,0)

,0,0,1) - MQ ' L(2,-2,2)

-h 6$ίQ - L 2 O + W4ίQ - L 1

0 =

-320Q2 L(2;0)+44L1 L(2?_1)

- 328L! L( l j0) + 16L2 - L(2?_2) - 96L2 -

+ 96iQ Li + 19 x (l6)2ίQ3 L2 ,

- UOiQ - L(1>0|1) + 4L_> - L(2 j l ) + 192Q2 . L

,-1,2) ~ UiQ ' L(2,0,0)

(2j0)

| - 16L2 L(2?_2) + 112L2 - L(1>_1}

+ 42 x IβiQ - L\ - 9 x (lβ)2iQ3 - L2 ,

0 = L

2, i),(l, -2)) ~ Y^(l, -1,0,2)

>_1 | 2 ) - 60iQ L(2AO)

(2>0)- 192Q2 L(2>0) -

L( l j0) - 24L2 L(25_2)

- 288i<? - L\ - 37 x (IβfiQ3 - L2
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5 = 1 : 0 = L(o,-2,l,2) ~ 3 ̂ (1, -2,1,1) ~ 2 ̂ (1,-1,-1,2) ~" 2 ̂ ((2,-l),(l,-l))

— 7L( l j_ l j 0 } 1) 4- 3L((l j0^ l j_1)) — 3L(0?_1)1;1) — SiQ - Mι5_2,2)

( 0 _ l 2 ) - 40iQ - L ( 1_M )

f L-2 ' L(2,i) + 12L-ι - L(2|0) + (16)2Q2

2x(16)2Q2 L (1)0)-f L rL (2>_2)

L(1;_1} + — L2 - L(1>_2)

4- 96L2 L(0 _1} 4- 62 x 16zQ - L _ j L2 -

— ^((2,0), (1, -2)) ~~ 3^(1, -2,1,1) "~ ^(2, -1,0,0) + ̂ (0,- 1,0,2)

- 24iQ

2
- L_2 - L(2|1) + 24L_! . L(2>0) + 160Q

+ (16)2Q
2 2

 (1|0) - f

+ f L2 ' L(l,-2)

-f IβQiQ - L_γ L2 -

Π — II — lί — -lί — 5lΓu ~ JL'((2,l),(0,-2)) Ml, -2,1,1) 2 Ml, -1, -1,2) 2 ((2, -!),(!,-!))

— 3 L l _ 1 H- S

-h 24iQ - L ( 1 > _ l f l ) + 96iQ L(1>0>0) - 8L_2 - L(2|1)

4- 12L_j - L(2j0) + 384Q2 L(2>_1} + 384Q2 L(1>0)

- 16L, - L(2)_2) - 48Lj - L ( 1 |_υ + 32L2 - L(1)_2)

4- 96L2 - L(0 _1} 4- 102 x 16iQ L_ t L2

- 21 x (16)2^Q3 - L! ,

4 ^(-1, -2,2,2) ~ 2^(1, -2, 1,1) ~ 4 ̂ (2, -1,0,0)

+ 4^(0,-1,0,2) ~~ 2^((2,0),(0,-1)) + 2^(1, -1,0,1)

- UiQ - L(1>_2>2) + \5iQ - L(2j_1|0) - 15iQ - L(θ

4- 18zζ) - L(1)_M) 4- 96zQ L(1)0j0) + 8L_2 L(2?1

+ 6L_{ L(2)0) 4- 168Q2 - L(2)_1} - 192Q2 - L(1>0

+ 16^1 L(2>-2) - 36L! . L(1

4- 456zQ - L_! L2 - 308 x

4L2 -

5 = 0, scalar.

0 =

1 )_1 > 0^ — 32(L_2
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s — 0, pseudo- scalar:

0 = 3L((2 j_1))( l j_2)) - 3 ^((2,l),(-\,~2))

-f 2(L( l j _ l j _ l j l ) — IL^^^j^j) +

+ lβ[2iQ (L ( 1 >_2 j l ) + L(-ι,2,_i)) + 3z<3 (L(0|_M

— (L_2 L(2j0) - L2 L(_2)0)) 4- 3(L_! L(2,-i) -

+ 2(L_! L(1>0) - L! L (_ l j 0) - 64Q2 - L (1 |_1)

- IβiQ L_2 L2 -

0 = 3L((2j0)j(0>_2)) ~ 2(L(0

- 24iQ - (L(0>_2|2) +

+ 16(L_2 - L(2j0) - L2 - L(_2>0) + 64(L_! - L( l j0) - L{ > L(_1|0))

- 192Q2 - L(2)_2) + (16)2Q2 - L ( 1 >_1 } + (16)2zQ L_2 - L2

+ 2 x (16)2iQ - L_! L! - (16)3zQ5 .

Note the absence of factors B{ (= L0) and 53 from the right-hand sides of the above
relations.

In particular, I conclude from the last of the s = 2 and 8 = 1 relations that the
Poisson bracket action of the scalar element B3 (which has replaced the exceptional
element Lφ) maps the quotient of the symmetric algebra over the free Poisson algebra
generated by Q, L3, and {. . . {L5, L0}, . . . , L0}, s = ±1, ±2, by the ideal generated
by the remaining relations of degree < 4 linearly into itself.

The Generating Relations of Degree 5 for the Algebra I)

There exist elements of degree i = 5 for all possible values of the spin between
s = +6 and -6. Besides the explicitly stated relations and their implications, there
are 17 further independent generating relations - a remarkably moderate increase in
the number of generating relations: one for s — 4(— 4), two for s — 3(— 3), two for
s — 2(— 2), three for s — 1(— 1), and one for s = 0, the latter being a scalar relation.
The relations are available on microfilm and will not be spelled out in detail here.
Their most important feature consists again of the absence of (a priori possible) factors
Bγ and/or B3 in the polynomially non-linear parts of the relations among the multiple
Poisson brackets of degree 5 involving the elements L0 and Ls, s — ±1,±2. Here,
the generating relations of lower degree have been used. To wit, these non-linear parts
of the generating relations are polynomials in Q, Ls, s = ±1. ± 2, and the simple
or multiple Poisson brackets of degree < 4 with arguments L0, Ls, s = ±1,±2.
This corroborates further the conjecture made in ref. [6] as to the generality of this
feature for all generating relations of arbitrary degree. If this conjecture is indeed
correct, then the set U of all polynomials in Q, Ls, s = ±1, ±2, and in the simple
or multiple Poisson brackets of arbitrary degree with arguments Z/0, Ls, s = ±1, ±2,
closes under Poisson bracket operation (and ordinary multiplication), i.e. forms an
algebra both under Poisson bracket operation and ordinary multiplication. Moreover,
the Poisson bracket actions of both Bl (= L0) and B3 map the set U linearly into
itself.
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The set U is quotient algebra of a subalgebra of the symmetric algebra over the
free Poisson algebra generated by the finitely many elements Q, LQ, Ls, s = ±1, ±2,
The double role played by the scalar element B{ (= L0) is a peculiarity of 2 + 1-
dimensional space-time. This irregularity gives way to a perfectly "democractic"
scenario in 3 -f- 1-dimensions.

Returning to the case at hand: 2 -f 1-dimensional space-time, it seems worth
pointing out that the pseudo-scalar elements £?0, B2, B4, . . . generate a maximal
abelian subalgebra of the algebra U and - if the scalar element L0 is added - a
maximal abelian subalgebra of the said symmetric algebra.

The Generating Relations of Degree 6 for the Algebra ί)
and the Apparent Structure of the Poisson Algebra of Observable Symmetries

Time and again checked by the computer, it was possible to calculate the Poisson
bracket action of the scalar element B5 on the generators L3, s = ±1,±2. The
formulae for the corresponding generating relations are available on microfilm, too. It
turns out that the images of Ls under the Poisson bracket action of B5 are contained
in the set U. This implies that B5 maps the set U linearly into itself.

It is now a fairly obvious guess that the algebra ί) of internal invariant charges has
the following structure: ί) is the symmetric algebra over

with 21 the infinite dimensional abelian Poisson Lie algebra generated by B^
t = 1,3,5,7, ____ This amounts to a considerable specification and simplification
of the structure of the algebra formed by the infinitesimal generators of observable
symmetry transformations:

50(1, 2)boosts ω {M3 Θ (2l+ y t/+) Θ (2Γ W U-)}

exhibiting, in particular, infinitely many ideals of finite co-dimension. This structure
is expected to survive quantization.

The Generating Relations of Order ft4 for the Algebra ί):
Parametrization of the Quantum Corrections

The inverse string tension a' is reintroduced. I postulate the following properties of

the quantum deformation of the Poisson algebra ί) into the commutator algebra ί):

ϊ) There exists a 1 : 1 correspondence between the generators of the algebra f): Q,
Ls, s = ±1,±2, Lφ, ^ = 1,3,5, ... and algebraically independent elements of the

algebra (j: Q, Ls, s = ±1, ±2, L@, £= 1,3,5, . . . which in their turn generate the

algebra f). Each one of these generators of the algebra f) carries a "weight" - with
the interpretation: power in ft/(m22πα') - which is given by the grade of its classical
counterpart.

ii) Consider the algebra ^ as a quotient of an auxiliary quotient of the free associative

ring of polynomials in the generators Q, ί/s, s = ±1,±2, and Lφ,L@,ί/φ, . . .
identifying the Lie bracket with the commutator, i.e. of the universal enveloping
algebra generated by Q, Z/s, s = ±1,±2, and ί/φ, ί/@, ί/@, The auxiliary
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quotient is to be formed w.r.t. the ideal defined by the generators: [Q,LS] — hsLs,

and [Q,Lφ], s = ±1,±2; ί — 1,3,5, Extend the above Hall basis of the
free Poisson algebra/free commutator algebra to include the exceptional generators

Lφ/Lφ, I = 1,3,5, With the help of this extended Hall basis construct a basis
for the auxiliary quotient algebra. The resulting basis elements consist of "words"
with "letters" from this Hall basis in some fixed order.

Divide a given Hall basis element by (ίh) to the power: number of commutations
involved in the expression for the given basis element. Call the outcome the "adjusted"
Hall basis element associated with the originally given basis element. Assign to
the adjusted Hall basis element the weight: sum of the weights of the individual
generators involved in the expression for the given basis element minus the number
of commutations involved. The "adjusted words" with adjusted Hall basis elements
as letters appearing in some fixed order still form a basis of the auxiliary quotient
algebra. Assign to each such adjusted word the weight: sum of the weights of its
individual letters.
iii) The generating relations of degree £ of the Poisson algebra rj can be decomposed
according to their behaviour under rotations and parity transformation, i.e. they can
be labelled - among other things - by their spin (and parity). Within the symmetry
algebra over the free Poisson algebra, they express certain linear combinations of
Hall basis elements of the free Poisson algebra, all of which carry the same degree
£, spin s (and parity), in terms of polynomials in Q and in the Hall basis elements
of the free Poisson algebra carrying lesser degree, the polynomials having neither a
constant nor a linear part and not involving the exceptional generators as letters in

their words. The commutator algebra (j is obtained from the above auxiliary quotient
of the free associative ring of polynomials by a set of quantum generating relations
which are in a 1 : 1 correspondence to the classical generating relations. To each one
of the classical generating relations of degree t, spin s (and even or odd parity)

there corresponds a quantum generating relation of order Tιi+l spin s (and even
or odd parity). The quantum generating relation corresponding to a given classical
generating relation of degree ί, spin s (and even or odd parity) expresses a definite
linear combination of adjusted Hall basis elements in the quantum generators Q,

Ls, s = ±1, ±2, ί/φ, ί/d), ί/(5), . . . - each one of the adjusted Hall basis elements
carrying weight (-£ + 1), spin s (the corresponding parities being either all even or all
odd) - in terms of a polynomial in the adjusted Hall basis elements, such that the
weight of each one of the adjusted words constituting the polynomial is equal to or
smaller than (I + 1). The definite linear combination of adjusted Hall basis elements
in the quantum generators just alluded to is obtained from the linear combination
of Hall basis elements in the classical generators appearing in the corresponding
classical generating relation by replacing the classical generators by their quantum
counterparts and by replacing each Poisson bracket by the corresponding commutator
divided by (ffi). The polynomial alluded to above is not completely determined by
the corresponding classical generating relation, as yet. However, it is required to
have the following properties: (1) Including the coefficients into the counting, each

term of the polynomial is of order h£+l. (2) That part of the polynomial which is
made up of words, each one carrying weight equal to (i+ 1) can be interpreted as a
quantum ordering of the corresponding classical polynomial (carrying degree 1) in the
Hall basis elements in the classical generators of lesser degree. (3) Each term of the
polynomial carries the same spin s. (4) The behaviour of the polynomial under parity
transformation and star operation is given by the respective behaviour of the linear
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combination of adjusted commutators. (5) The requirement of consistency among the
generating relations does not introduce any independent new relation which is not the

uniquely defined counterpart of a classical relation. (6) The algebra fy is the enveloping
algebra of

with 21 an infinite dimensional abelian commutator algebra generated by hermitian
scalar elements B^ ί — 1,3,5, . . . , and U a commutator algebra generated by Q,

ί/s, and [. ..[Ls, L0], . . . , Z/0], s = ±1, ±2. (Further restrictions on the polynomial
under consideration are expected to result from the postulated bi-algebra structure.)

Applying the above postulates concerning the quantum deformation and employing
an obvious notation, I arrive at the following description of the generating relations

of order h4 in terms of 12 real parameters α, 6, . . . , g, r, s, . . . , v:

\
s = 5: 0= j L[2 i 2] ih ' '

5 = 4: ° = ~ ̂ 2 ^[2,0,2] ~ ^2 ^[2,1,1] + n™ι\2 % '

3 ^ 7 .
: = 3: 0= -

'72
L[2)1]

2 , 1 , 6
S = 2'. (j = — —~ ]LrΛ _ ι 11 — -TΓ JLr I _ 1 71 — —

1,2] ^2 -[1,0,1] ' (2πα0

2

192

Γ2

12

t2 [25—2,1] + 2 [1)—2,2] *2 [2, — I j O J α.2
/I /I /I /I
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_ _ l Λ 4 Λ l

5 = 0: 0 — — —^ JLj 2 2,0] Ί~ Γ2 [i,-i,0] ~^~ TO 7\2n n \Lπoί)

n\

Next, I pass to the dimensionless operators <ξ>, J^0, J^s, s = ±1, ±2:

s = 5: 0 = £[2)lj2] ,

0 - 3 [ 2 ) _ l j 2 ] 4- 7V[2j0,i] +
 8 [ i ,o,2]

0 = 2t[2_1;1] + t[i,-ι,2] + 6t[i,o,i] ~ 12ί^ ' t
[2,o]

2, -1,0]

0 =

Conclusions

In this communication I have formulated and substantiated a program for the
quantization of the bosonic closed string moving in (d— 1)4- 1 -dimensional Minkowski
space-time. The program is purely algebraic. Mutatis mutandis, such a program might
be applicable also to the sourceless Einstein gravity in 3 -h 1 -dimensions - once
sufficiently many charges invariant under general coordinate transformations have
been identified.

For the actual computations in the string case, resulting in a conjecture about
the detailed structure of the algebra of observable symmetries, I have restricted
myself to d — 3. The reason for this restriction was purely technical: the simplicity
of the irreducible representations of the stabilizer group O(2) of the momentum
rest frame and the relatively small number of non-exceptional generators of the
algebra of observable symmetries. A slight irregularity of the structure of the algebra
of observable symmetries for the case d = 3 was the price for the technical
simplifications. For the more interesting case: d = 4, the stabilizer group of
the momentum rest frame is O(3) and the set of non-exceptional generators of
degree ί — 1 consists of the following irreducible representations of SO (3): two
representations with / = 2 and one representation with 1 = 1. For the computation of
the generating relations it is helpful to introduce an algebraic basis of rj/ίj consisting
of (reparametrization invariant) "irreducible tensor charges." Naturally, the generating
relations involve Clebsch-Gordan coefficients. The first characteristic generating
relations arise already in the stratum of degree t — 2, i.e. among the simple Poisson
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brackets/the simple commutators. Apparently, the algebra of observable symmetries
for the case of positive mass has the following structure:

so(i, 3)boosts ω {M4 Θ (<&+ ω ϋ+) ω (2Γ ω #-)} ,

where 9^ denote infinite dimensional abelian algebras generated by the hermitian
scalar elements B^, I = 1,3,5,7, ... corresponding to the exceptional elements

and where U^ denote algebras generated by the infinitesimal generators of SO(3)
and the non-exceptional elements of grade 2. The superscripts ± refer to right- and
left-movers, respectively.

A host of problems remains open. To mention but the obvious ones, it would
be highly desirable to gain insight into the systematics of the generating relations
and to prove the above conjectures concerning the structure of the Poisson alge-
bra/commutator algebra of observable symmetries.

Appendix

The complete expression for B5 is:

B5 = (16}4L® - (16)4Lφ . L@ + i(16)4L3

_L Γl &( 28 TT _i_ 70Tί _l_ 56 IT
-h [10^ 3 ^((i,_2,2),(l,-2)) ~r 3 1L((2,-2,l),(l,-2)) ~r 3 JL(((2,

2 j_1 ) )(2 jo)) - T^((0,-2,-l),(2,l)) ~~ ^((l,-2,0),(2,-l

88L — L -i^L9 jb((-l,-2,0),(2,l)) 3 ib((l,-2,2),(0,-l)) 3 1L((l,-l,l),(l

230 ^ 196 . R][

Γ ((1, -2, !),(!, -1)) 9~^(-l,-2,l,l,l) "T" O]Ll((0,-2,0),(2,0))
418

-2,l),(l,0)) — y ^((l,-l,-l),(l,0))

j_ l j 0 ) ) ( 1 >_ 1 ) ) - 128L(0>_ l j0)0j l)

- (16) ίQ - ( — 4L(25_2)_2,2) 9~^((

( - 8L(2;_2)2) -f y

356^ 242^ \ , / ι 6 Λ 2 r . / 254 ̂
" ̂  ~f~ ~ ~ ̂  ~r V 1 0^ ^- JL'

.
3" ^(2,0,0) ~f~ ~3~ ^(1,0,1); ~r V 1 0^ ^-1 V 3 JL'(l,-2,2)

~ X

(16)3Q2 - ( L(0)_2)2) - L(1 |_2|1) -

(16) ( - 2 L (_1 ?_2 ) L (2 j l ) -f 76L(0)_2)L(25θ) + y L(1>_2) IL(2;

T^(l,-2) ' ^(1,0) "^ 3~^(0,-1) ' -^(1,0) 3~^(2,-2) ' ^(1,-1)

154(L(lι_1})
2) - (\6fiQ (^ L_2 - L(2ι0) - f L_, L (2>_υ

f i-i ^(i,0) + T 32 1^,,-,,) + 06)3 (f i_2 L?

+ [L, ̂  L_ s, s = 0, ±1, ±2, Q ̂  -Q] .
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