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Abstract: According to a theorem of Belyi, a smooth projective algebraic curve
is defined over a number field if and only if there exists a non-constant element
of its function field ramified only over 0, 1 and oo. The existence of such a Belyi
function is equivalent to that of a representation of the curve as a possibly compactified
quotient space of the Poincare upper half plane by a subgroup of finite index in a
Fuchsian triangle group. On the other hand, Fuchsian triangle groups arise in many
contexts, such as in the theory of hypergeometric functions and certain triangular
billiard problems, which would appear at first sight to have no relation to the Galois
problems that motivated the above discovery of Belyi. In this note we review several
results related to Belyi's theorem and we develop certain aspects giving examples.
For preliminary accounts, see the preprint [Wol], the conference proceedings article
[Baultz] and the "Comptes Rendus" note [CoWo2].

0. Introduction

While several years ago the moduli space of compact Riemann surfaces seemed to
be as remote a subject of consideration in theoretical physics as possible, it plays
nowadays a considerable role from various points of view. To name some: string
field theory, conformal statistical physics, topological field theories, two dimensional
quantum gravity, classical integrable systems. On the other hand it is a classical
subject in mathematics since the days of Riemann involving intricate structures.
Any further one added to the impressive amount unraveled so far is nevertheless
welcome to get a deeper understanding. According to a well established tradition,
a natural temptation for physicists was to develop a manageable discretization. This
was accomplished through the use of matrix models and their perturbative expansions
in terms of decorated cell decompositions of surfaces, leading to a corresponding
cellular complex in moduli space. This opened the way to a fascinating interplay
between topological properties of moduli spaces and (a restricted class of) solutions



606 P. B. Cohen, C. Itzykson, J. Wolfart

of the integrable KP hierarchy as well as new insights on some non-perturbative
aspects of quantum gravity in two dimensions.

On the other hand a new development occurred through the realization that
cell decompositions of compact orientable surfaces are related in a natural way to
arithmetic curves (defined over a finite extension of the rationals) as a consequence
of a remarkable theorem of Belyi. While this was quite explicit in the work of
mathematicians it was not perceived by physicists until the work by Shabat and
Voevodsky. As a result, a new character entered the scene: the absolute Galois group
of the maximal extension Q over Q, acting on cell decompositions (or fat graphs,
or dessins d'enfants, a terminology borrowed from Grothendieck). The present note
is designed to describe some aspects of these relations as well as connections with
various subjects such as fuchsian triangle groups. This theory is admittedly still in its
infancy but has the virtue of interlacing various disciplines from theoretical physics to
combinatorics, finite group theory, automorphic forms, hypergeometric functions and
number theory. It is therefore natural to explore at first some examples. This is our
spirit here where we review the foundations and suggest a few non-trivial connections.
It could be that techniques borrowed from physics might provide some light on the
mysterious action of Gal(Q/Q). On the other hand one might hope that progress in
this direction provides some help in physically motivated questions.

1. Fuchsian Triangle Covering Groups for Curves over Number Fields

Let W be a smooth projective algebraic curve defined over a number field /c. By a
theorem of Belyi [Be] there exists a non-constant rational function,

defined over a finite extension of k and ramified only over the points 0, 1 and oo.
We call such a function a Belyi function for W. If ί) = f)+ and ί)~ denote the upper
and lower half planes respectively, then the connected components of β~l(fy+) and
β~l(§~) are the open cells of a triangulation of W with vertices forming the set
β~l{Q, 1, oo}. If at each element of β~l{l} the order of ramification is assumed
to be equal to 2 one can, following Grothendieck, Shabat, Voevodsky [Gr, VoSh,
ShVo], consider the "dessin" G on the curve W given by β~l[l, oo]. If necessary, on
replacing the Belyi function β by 4/3(1 — /?), we can always make this assumption.
Returning to the general case, let p, q, r be positive common multiples of the orders of

ramification of β over 0, 1, oo, respectively. Suppose that f - H --- h - ) < 1. Let Δ
\P q rj

be the Fuchsian triangle group of signature (p, q, r) acting on (). The Δ-automorphic
function j given by the inverse of a Schwarz triangle function for a triangle with

angles — , -, — maps h to Pι(C). One can normalise the function j in such a way
p q r

that the ramification order over 0, 1, oo are exactly p, q, r. On choosing a local branch
of β~l o j that one continues analytically, and on applying the monodromy theorem,
one sees that j factorises as

j = β ° Φ,

where Φ determines a (possibly) ramified covering of W by f) depending on β and on
Δ. One has therefore the following generalization of the discussion in [ShVo], which
appears again in Sect. 3 in the context of triangulations.
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Proposition 1. Let W be a smooth algebraic curve defined over a number field
and let β \ W -+ P^C) be a Belyi function. Let p, q, r be finite positive common
multiples of the orders of ramification of β over 0, 1, oc respectively. Suppose that

— I --- 1 — ) < 1 . Let Δ be the cocompact Fuchsian triangle group of signature
P Q rj

(p, g, r) acting on ί). There exists a holomorphic map

ramified at most over the elements of β~l{0, l,oo}. The covering group H of Φ is
a subgroup of finite index in Δ. There is therefore a Riemann surface isomorphism
between H\t) and W.

The above discussion goes through equally well for non-cocompact triangle groups.
Indeed, with p = q = r = oowe recover the known result that every smooth

projective curve defined over Q can be represented as a compactified quotient H \ f)
with subgroup H of finite index in the principal subgroup of level 2 in PSL{L. In the
particular case where the ramifications of β over 1 are all equal to 2, one can choose
q = 2 and define β and H by means of the cartographic group of Grothendieck [Gr,
ShVo].

Remarks. 1) The map Φ is the unramified universal covering map if and only if p, q,
r are the precise ramification numbers of β in every point of β~l(Q), β~l(l)9 β~l(oo)
respectively.

So the procedure we have described above can yield the universal covering map of
Σ if and only if there is a Belyi function β on Σ with constant ramification numbers
in the fibres over 0, 1, oo. We therefore can state the following consequence also
noticed by Manfred Streit using a different method: The curve W has a universal
covering group contained in a triangle group if a Belyi function exists on W defining
a Galois covering W — » P^C). By Galois covering, we mean that H is a normal
subgroup of Δ.
2) The above construction contains two ambiguities. First there are many choices for
the Belyi functions, and second there are infinitely many choices of the multiples of
p, q, r and hence for Δ = Δp q r and for j. The problem arises therefore of obtaining
more insight into the characterisation of these Belyi functions. Even if we fix a Belyi
function β on W , we can realise it in many different ways as a natural projection,

where p, q, r denote common multiples of the respective ramification numbers of β
over 0, 1, oo, and Hp q r is the covering group of the covering map Φ of Proposition
1. One may ask how the different #p)(??r are related, and how they are related

to the universal covering group of W . Although these groups are not in general
commensurable, we can at least prove a result of the following type. Under suitable
normalisations and in the sense of Chabauty's topology, the Hp q^r converge with
increasing p,q,r to ^00;00)00, the subgroup already mentioned of Δ00j00>00 (the
principal subgroup of level 2 in PSX2(Z)). F°r me Chabauty convergence, see [Wo4].
It seems reasonable to restrict one's attention/to this special case H^ ^ ̂  in order to
obtain at least a partial uniqueness. On the one hand, we must in so doing delete the
vertices of the triangulation when they may play a very important role, as we shall
see in the next section.
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2. Grothendieck Dessins and Shimura Varieties

In this section we shall prove the following, announced in [CoWo2],

Theorem 1. Let W be a smooth algebraic curve defined over a number field and let
β \ W -+ P^C) be a Belyi function. With the notations of Proposition 1, Sect. 1,
the group H determines an arithmetic group Γ acting on tf of some positive integer
t. The quotient V ~ Γ \ f y t is a Shimura variety. There exists an analytic injection
f) c-> ί)έ and a compatible group inclusion H °-> Γ inducing by passage to the
quotient a non-trivial morphism defined over Q,

which sends the elements of β~l{0, l,oo} onto points of complex multiplication by
a subfield K of a cyclotomic field. The morphism ψ and the field K depend on W , β
and the conjugacy class of the chosen group Δ in PSX2R.

Proof. The group Δ is rigid, that is its conjugacy class is uniquely determined by its
signature (p, <?, r), meaning that the presentation of Δ is given by

(M1? M2, M3 I Mf - M2

9 - M3

r = M1M2M3 = I).

The statements of the theorem concerning the uniformisation of W by the subgroup
H of the triangle group Δ are given by Proposition 1 of Sect. 1. The rest of the
proof relies on the modular embedding method developed in [CoWol]. Namely, let
L be the field generated by the traces of the elements of H\ then H generates
a quaternion algebra B over L contained in M2(R). Let .Γ be the norm unit
group in B. If H denotes the Hamiltonian quaternion algebra, there is an algebra
isomorphism

B <8>Q R ~ M2(R)* Θ nd~\

where d — [L : Q] and t is the number of unramified infinite places of L with respect
to B. By means of this isomorphism, one can define an action of H and of Γ on
f)* (see for example [Shi]). The inclusion of H in the arithmetic group Γ defines
the modular embedding at the group level. At the level of the universal coverings,
in [CoWol] an analytic embedding ί) -̂> ίj* was constructed which commutes with
the actions of H (on ί)) and Γ (on f)*). By passage to the quotient, one obtains a
non-trivial morphism ψ of W ~ H \ ί) into V = Γ \ f)*. This morphism is defined
over Q.

The space tf parametrises the abelian varieties of dimension 2d with generalised
complex multiplication by a purely imaginary extension K of L. The field K is

a subfield of the cyclotomic field Ql exp — — J , where - = l.c.m.(p, g,r), and the
\ / / 2

CM type of the abelian varieties is determined by the ramification of the infinite
places of B over L. For these details the reader can consult Sect. 1 and the end of
Sect. 3 of [CoWol]. The images of the fixed points of Δ by the modular embedding
are the CM points by Sect. 5 of [CoWol] (p. 103 in particular). They correspond
to the varieties which are isogenous to a product Al x A2 of abelian varieties
with complex multiplication by K in the strict sense, i.e. 2dimcAi = [K : Q]
for i = 1,2. The images of the fixed point of Δ by the natural projection onto
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the quotient ^ ~ H \ ί) form the set β~l{0, l,oo}, hence the statement of the
theorem.

The reader will find some additional information about the modular embedding
method of the above proof in Sect. 7.

Notice that for the Grothendieck dessins, ψ sends not only the vertices of the
dessin G onto CM points, but also those of the dual dessin G* that one obtains by

taking — instead of /3, and the points in the intersection of G and G*.

3. Triangulations of Riemann Surfaces and Their Fields of Definition as Curves

Voevodsky and Shabat [VoSh] have shown that a compact Riemann surface, consid-
ered as a smooth algebraic curve, is defined over a number field if and only if it can
be triangulated by "equilateral" triangles. In this section we provide an account of the
somewhat more general approach developed in the preprint [Wol].

The essential property of compatibility between a given conformal structure and a
given oriented triangulation T of a compact Riemann surface Σ, in order that Σ have
the structure of a smooth algebraic curve W defined over a number field, is that for
every edge E of a triangle T of 1 there exist a reflection preserving T, fixing E, and
mapping T antiholomorphically onto the neighbouring triangle T' of 1 sharing E.
Such a reflection is not in general defined globally as a topological automorphism on
Σ. Indeed to obtain a suitable global action one may either develop a combinatorial
definition by means of the "cartographical group" of Grothendieck [G] and of others
[VoSh, ShVo] discussed in a forthcoming section, or, as we do in the present section,
pass to a simply connected, but possibly ramified covering Σ of Σ. The triangulation
T of Σ1 lifts to a triangulation T of Σ and the appropriate global action on Σ1 of a
reflection group is provided by well-defined reflections in the sides of the elements of
T. These reflections generate an extension of index 2 of a triangle group. The group
of the possibly ramified cover Σ of Σ is a subgroup of finite index in this triangle
group. When Σ = ί), using the components of β~l(t)+), β~l(t)~) as triangulation, we
thus recover Proposition 1.

Let us now be more specific about the properties that the oriented triangulation
T of the compact Riemann surface Σ underlying a smooth algebraic curve W must
have in order to assure that the field of definition of the curve is a number field.
Let T consist of 27V open cells T = T^ (positive orientation) and T^ (negative
orientation) with n, m — 1 , . . . , AT homeomorphic to euclidean triangles, and let Σ
be simply connected covering space of Σ1, possibly ramified over the vertices of the
triangulation of Σ. One may even allow Σ to be a covering space of Σ minus some
of the vertices: we refer then to a logarithmic ramification over these vertices. In any
case, the triangulation T lifts to a triangulation T of Σ by (in general infinitely many)
open cells T = T+ and f~, v, μ — 1,2,.. . . We will simply call all these open cells
"triangles."

Definition. We call (T, Σ) a "covered symmetric triangulation" of Σ if it satisfies the
following properties: For a f among the elements of £ there exist three reflections
σ in the sides e , j = 1,2, 3 off such that :

a) the σj are homeomorphisms of Σ onto itself, preserving the triangulation by the
f+ f-
± > ± '
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b) each σ^ maps f onto its neighbour sharing the edge e^ with f. Moreover, σ^ \e.

is the identity and σ? = 1 for j = 1,2,3,

c) the action of the σ3 on the triangles changes the orientation, i.e. for all T^ and

j there is a f* such that σffi = f* ,

d) the covering map Φ : Σ —» Σ is holomorphic and the σ^ : Σ -* Σ are
antiholomorphic maps.

We may now formulate the following consequence of Belyi's theorem:

Theorem 2. A smooth projective algebraic curve over the complex numbers is defined
over a number field if and only if, as a compact Riemann surface, it has a covered
symmetric triangulation.

Before passing to the proof of this theorem, we note that, for a given algebraic
curve defined over Q we have infinitely many possible covered symmetric triangu-
lations. But in the opposite direction, any such triangulation determines uniquely the
conformal structure of the underlying Riemann surface and therefore of the algebraic
curve up to isomorphism. Even more is true: as only property d) of the above defini-
tion involves the conformal structures of Σ, Σ1, and the analytic properties of Φ, σj9

j — 1,2,3, we may use the rest of the definition just as well for compact orientable
two-manifolds on replacing d) by the hypothesis:

d') For any τ in the group generated by σ{, σ2, σ3 in AutΣ1, the property rT = f
implies τ = Id.

We use the nomenclature "covered symmetric triangulation" also in this case.
Under this variant of the definition, the following has been shown in [Wol] by some
straightforward topological arguments similar to those of the proof of Theorem 2
below:

Proposition 2. Let Σ be a compact oriented two-manifold with a covered symmetric
triangulation. Then there are conformal structures on Σ and Σ unique to biholo-
morphic mappings such that Φ : Σ —->• Σ is holomorphic and the σ}: : Σ —> £ are
antiholomorphic. By Theorem 2, this determines uniquely the structure of Σ as an
algebraic curve defined over Q.

Proof of Theorem 2. Proof of the ((only if part; from Belyi functions to triangu-
lations: Let W be a smooth projective algebraic curve defined over Q and Σ be
its underlying Riemann surface. By Belyi's theorem [Be] there is a Belyi function
β : Σ —> Pj(C) ramified only over the points 0, 1, oo. Let p, q, r be either oo or
natural numbers divisible by all ramification numbers of β over 0, 1, oo respectively.
Consider the triangle group Δ of signature (p, q, r) acting as a discontinuous group of

holomorphic automorphisms on Σ = C, C, or h according to whether f - H h -
\p q r

is > 1, = 1, or < 1. The other cases being completely analogous, we concentrate on

the hyperbolic case f - H h - ) < 1. Fix a fundamental domain for the action of
\P q rj

Δ on Σ = rj. This domain is the union of two hyperbolic triangles with angles —,

—, —. Fix one of these triangles, ̂ +. The hyperbolic reflections σ t, σ2, σ3 in the
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sides of J^+ generate a group Δβ with defining relations

σ = σ = σ = σ{σ2 = ̂

where if, for example, p = oo, the relation (σ1σ2)
p = 1 is omitted. The group Δ

consists of all products of an even number of σ 's and is a normal subgroup of index
2 in AR generated by

Ml = σλσ^ M2 — cr2σ3> ^3 = σ3σn

and with defining relations as given in Sect. 2,

Mf - M* - M3

r = MλM2M^ = 1.

Let $ be the triangulation (subordinate to a tessellation of fj) comprising the ̂ +,
given by all Δ-images of J^+, together with the J^~, given by all Δ-images of

σ2^
+, so that the conditions of the definition of a covered symmetric triangulation

are satisfied in as much as they concern f). The remarks preceding Proposition 1 of
Sect. 1 show that there exists a holomorphic map Φ : f) —* Σ ramified only in the
vertices of the triangulation and inducing a finite triangulation of Σ by the Φ-images
of the ̂ +, ̂ ~. The image of the triangulation T of rj under the map Φ is a finite

triangulation T of Σ by triangles T+, Γ^, n, m = 1, . . . , TV, where TV is the mapping
order of the Belyi function /?, that is the number of its sheets. The 2N triangles T+,
T^ are just the connected components of β~l(fy+\ β~l(\)~).

Proof of the "if part; from triangulations to Belyi functions. Let (T, Σ) be a
covered symmetric triangulation of a Riemann surface Σ. Let Δβ be the group
of automorphisms of Σ generated by the σ , j = 1,2,3 satisfying a), b), c) in the

definition of such a triangulation. As Σ is connected, the group Δβ acts transitively
on the set of triangles in T. For the purposes of exposition, assume that the covering
map Φ : Σ — > Σ has finite ramification numbers. Then the vertices of a choice
of T as in the definition are contained in Σ. Now, we can join T to any other
element of T by a finite path avoiding the vertices of this triangulation. Let T denote
the closure of T. This path can be covered by a finite number of Δβ-images, T ,
σ^ T, σ σkT, . . . ,rT, for some r E ΔR, since for every σ G Δβ the triangle σf

has as neighbours the va^T, j = 1,2,3. By the finiteness of the triangulation of

Σ, for a given vertex of T there is a finite positive integer p such that the set
of closed triangles filling up a neighbourhood of this vertex has elements, T, σ^T ,
σ^ f, σ σ^f , . . . , ( .̂̂ cnf = < .̂f for some i, j = 1, 2, 3 say i = 1, j = 2.
In this sequence of neighbouring triangles the sign changes at each step so that we
cannot have, (σ1σ2)

p~1f = σ2f. Therefore we have, (σ1σ2)
p~1σ1f = σ2f and

(σlσ2)
pf = T. The transformation (σ1σ2)

p is the identity since it is a holomorphic
transformation fixing the three vertices of T (for the compact oriented 2-manifolds
in Proposition 2 of the present section, this argument must be replaced by condition
dO). In the same way we prove the existence of finite positive integers q, r with
(σ2σ3)

qί = (σ3σ1)
r = 1. Since Σ is simply connected, these local relations coming

from closed loops around a fundamental domain for Δβ are sufficient to give the
presentation, already encountered in the "only if part of the proof, of ΔH (see for
example, [P, Ge, Beh]):

Λβ = ( σ l> σ2> σ3 I σl = σ\ = σ\ = (σlσ2)P = (σ2σ^ = (σ3σ\Y = l)
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By the rigidity of triangle groups, the group Δβ is the index 2 extension of the triangle
group Δ of signature (p, q, r), with the presentation also given in the "only if part

(\ 1 1\
of the proof, the number I — I --- 1 — I determining Σ. For convenience consider

VP q rj
the case where Σ = f). As the triangulation of ί) is induced by the triangulation
of Σ1, the covering group H of Σ — » Σ must preserve the triangulation of Σ.
If p, q, r are mutually distinct, we have H C Δ and therefore Σ ~ H \ Σ1 is
defined over Q (this fact is well-known, but we shall come back to it in Remark 2)
following the proof). If some of the p, q, r coincide we need a slightly different
argument: For every 7 G H there is a 6 G Δ with either 7? = δf or 7? = <5σ3T,

depending on whether 7 changes the signs labelling the elements of T or not. In
other words, either δ~~lj or σ3<5-17 is an automorphism of both ί) and f . In the
first case, δ~l/j is therefore either the identity or (only in the case_ p = q = r)
it defines a rotation of T of order 3 and belongs to an extension Δ of Δ which
is again a triangle group (of signature (2, 3, 2p) and index 6 over Δ). In the
sign-changing case, the triangle σ3f is both a holomorphic and a reflected image

of f . This is possible if and only if the signature of Δ has the special form
(p, <?,<?), and in_this case δ~1^ again belongs to an extension of Δ, namely a
triangle group Δ of signature (2p, g, 2). In any case, the covering group of Φ is

a subgroup //" of finite index in a triangle group Δ, so Σ ~ H\\) (which has to
be compactified in the usual way if Γ has cusps_). Once again such a quotient has
the structure of an algebraic curve defined over Q. This completes the proof of the
theorem.

Remark. 1) In the "if part of the above proof, the complex structure of the Riemann
surface Σ is completely determined by the covering group H, and hence by the
triangulation.
2) For the convenience of the reader we recall Belyi's argument [Be], used at several
points in the above proof, whereby W ~ H \ f) is defined over Q if H is a subgroup
of finite index in a cocompact triangle group Δ or equivalently (by the above results)
if a Belyi function on W exists. Let (ff,β) be defined over a field K C C, that is
W, that is %? and β are given by equations with coefficients in K. Any embedding
α : K < -̂» C defines (by its action on coefficients) a conjugate curve ^α and induces
from the Belyi function β on W, a morphism βa : ^a -> P^C). The morphism βa

is also a Belyi function with the same ramification numbers and of the same mapping
order N as β. Hence W ~ H \ f) and ̂ α ~ #α \ f) with two subgroups # and #α of
the same rigid triangle group Δ. (By "rigid" is understood "uniquely determined up
to conjugation in PSL2(^) by its presentation in terms of generators and relations").
Furthermore, the groups H and Ha have the same index AT in Δ, and there are only
finitely many subgroups of this index in Δ ([MKS], p. 102, Exercise 19), so we can
obtain only finitely many non-isomorphic curves Wa by this procedure. If W is an
elliptic curve, by inspection of the modular invariant we see that W must be defined
over a number field. If W has a higher genus, we have to apply Theorem 4 of [We]
and to control whether, for isomorphisms faβ : W& — > W0" between such conjugate
curves, we shall obtain,

fa β

This condition is easily seen to be satisfied for such isomorphisms faβ at least if we

combine them with one of the finitely many automorphisms of W^ .
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We end this section by observing that, in the "if part of the above proof, we can
of course go back from the quotient space to the Belyi function: Let j be the modular
function for the triangle group Δ D H and H(z) the orbit of z under H, then

=

defines a Belyi function on the curve W whose underlying Riemann surface is Σ. The
covered symmetric triangulation of Σ1, whose elements are the connected components
of β~l(t)+) and β~l(t)~), is the Φ-image of the triangulation of ϊ) by the usual
fundamental domains of Δβ.

We have therefore,

Proposition 3. Let W be a smooth algebraic curve defined over a number field. Every
Belyi function on W defines a covered symmetric triangulation, and every covered
symmetric triangulation has a subtriangulation coming from a Belyi function.

4. Fermat Curves: An Example

Consider the covered symmetric triangulations obtained in Sect. 3. By applying a
combination of inverse triangle functions and Schwarz-Christoffel maps, we can find
a biholomorphic mapping of any curvilinear triangle onto any euclidean triangle.
In particular we can replace our triangles by equilateral triangles in the spirit of
[VoSh]. Yet there is a different and, in the context of Theorem 2 of Sect. 3, more
natural way to construct "equilateral " triangulations. Namely, let Σ be the Riemann
surface underlying a smooth projective algebraic curve W defined over Q with Belyi
function β. We can choose an integer M > 3 as a common multiple for all the
ramification numbers of β. We may then apply the construction of the covered
symmetric triangulation of Sect. 3 using the triangle group Δ = ΔM of signature
(M, M, M) acting on ί). This gives rise to an equilateral hyperbolic triangulation

TM of Σ = ί) by hyperbolic triangles of angles —, —, —. Notice however that
M M M

even if Σ has genus greater than 1, as the map Φ : ί) -» Σ is not in general the
universal covering map, the hyperbolic metric on Σ is not obtained from the image
of this covering triangulation under Φ in the same way as it is from the equilateral
triangulation in [VoSh]. Nevertheless, this triangulation enables one to see that any
curve defined over Q shares a common ramified finite covering curve with a Fermat
curve. Indeed, let FM be the Fermat curve of exponent M, so that its affine equation
is XM +yM = 1 and its universal covering group is the commutator subgroup [Δ, Δ]
of Δ. Now Σ = H \ f), where H is the covering group of Φ. Both H and [Δ, Δ] are
of finite index in Δ. By taking a normal subgroup T of Δ in their intersection, we
obtain a finite ramified covering curve Y = T \ ί) of both Σ and FM. This induces a
correspondence between Σ and FM. All the covered symmetric triangulations of Y,
Σ and FM are images of the same triangulation TM of ί).

Restricting our attention now to FM, let us recall how to calculate its genus
gM. Using the Riemann-Hurwitz formula (see for example [Cn, p. 143]) we have
gM — 1 — M + b/2 with b = Y^(ei — 1), where the e% range over the exponents of
uniformisation at the branch points. One writes
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for j = 0, . . . , M - 1, a branch point over x — ζ"-7 contributes M - 1 to 6. Therefore
gM = (M- 1)(M - 2)/2.

It is easy to check that

Δ/[Δ, Δ] ~ Z/MZ Θ Z/MZ.

Indeed, the group acts on FM by the automorphisms

g(x,y) =

where ζ"M = exp ( - I . As the fundamental region of Δ in ί) consists of 2 triangles,

it is clear that Φ induces on FM a triangulation by 2M2 triangles, with 3M2 common
edges, and each of the 3M vertices common to 2M triangles. One may cross-check
that one has the correct value for gM. The 2M2 triangles of this covered symmetric
triangulation on FM are the connected components of the pre-images of ί}+ and f)~ by
the Belyi function βM(x, y) ̂  XM . The 1 -skeleton of this triangulation even forms a
Grothendieck dessin G (but not for βM\) on FM. To see this, use the fact that there
is an extended triangle group Δ containing Δ and with signature (2, 3,2M) whose
modular (j-)funcύon induces a clean Belyi function on FM.

In the context of Theorem 1 of Sect. 2, in the cases M = 4, 5, 6, 7, 8, 9, 12, 15,
the group Δ is arithmetic [Ta], so that the morphism ψ of the curve W to a Shimura
variety V is the identity and W = V is a Shimura curve which obviously has an
infinity of CM points. For the other values of M, the morphism ψ sends at least the
vertices of the triangulation of W onto the CM points of a Shimura variety V of
complex dimension greater than 1. One can determine explicitly the field K and the
CM type of the simple factors of the abelian varieties corresponding to the vertices.
On p. 107 of [CoWol] we treated the example M = 10.

Fermat curves will also be central to our discussion of rational triangular billiards
in Sect. 6.

5. The Cartographic Group

The abstract cartographic group £ξ [Gr] may be defined by the presentation

(^r^r2 rl = r\ = r\ = (r0r2)
2 = l).

We begin by supplementing the discussion of [VoSh, ShVo and Gr], in which it is
indicated how a connected (finite) cell complex gives rise to a representation of this
group. Recall (see for example [RoSa, p. 26, Die, pp. 244-248]), that an abstract
(finite) simplicial complex S consists of a finite set JQ(S) (the vertices), together with
a family J = J(S) of subsets of J0(5) (the simplexes), such that if j C / £ J then
j E J. The abstract simplicial complex S can be realised as a simplicial complex in
R^o'"1 (see for example [LuWe, p. 17]). A simplex consisting of ra-f 1 distinct vertices
is called an n-simplex. We wish to consider such abstract information coming from a
connected (finite) cell complex K which satisfies certain regularity assumptions. As
we shall indicate at the end of this section, when we consider the formal context of
abstract cell complexes as treated for example in [AhlSa, Ch. 1§7], these regularity
assumptions can be weakened for the definition of the oriented cartographic group
(see also [ShVo, p. 207, 1.4]). It is instructive to work first in a non-oriented context.
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A connected (finite) cell complex K gives a finite set V = J0(K) (the vertices)
and collections E — J\(K) (the edges) and F = J2(K) (the faces) of subsets of
JQ(K). The edges consist of 2-element subsets of J$(K). The faces F consist of
n-element subsets, n > 2, of JQ(K) of the form {υ\,... , υn} with el = {vi^vi+l},
i = l , . . . , n — l , e n = {vn, v±} e E. If n = 3 for every face then all the three distinct
2-element subsets of a face must be edges of the complex: hence every face is a 2-
simplex and we recover an abstract simplicial complex. The flag set & = ^(K) of
K consists of triples (v, e, f) with υ eV, e e E, f e F such that u = {v} C e C f.
Let the πς : ̂ (K) —> Jq(K), q = 0,1,2 be the corresponding projections. We make
the following regularity assumptions (compare with [ShVo, p. 200 0.1]) ((i) follows
from the above definitions):

(i) each edge e contains exactly 2 vertices, v = v(e) and vσ = υσ(e), σ2 — 1,
(ii) a given face / has each of its vertices v lying on exactly 2 of its edges,

e = e(v C /) and eσ = eσ(v C /), σ2 - 1,
(iii) each edge e lies on exactly 2 faces, / — f ( e ) and fσ = fσ(e), σ2 — 1.

This enables us to define the following operations on ̂ ,

σ0 : ( v , e , f ) = ( v ( e ) , e , f ) ^ (vσ,ej) = (υσ(e),ej),

σ, : (v, e, /) - (υ, e(v C /), /) » (v, eσ, /) - (v, eσ(v C /), /),

σ2 : (v, e, /) - (v, e, /(e)) H-> (v, e, /σ) - (v, e, /σ(e)).

Clearly,

σ0σ2 : (v, e, /) - (v(e), e, /(e)) .-> (<Λ e, /σ) - (^σ(e), e, /σ(e)),

so that

σ0 = σl = σ2 = (σ0σ2) = 1.

We now notice that the connectedness of K requires the action of the σi9 i = 0,1,2
on ̂  to be transitive. We denote by W^ the representation of W2 defined by
ri i—>• σ ϊ ? i — 0,1,2. Moreover, for all p, g G {0,1,2} and all L G & one has
πq(σp o L) = πς(L) if and only if p ^ q.

Now, we assume the existence of an orientation on j^", that is a function
o : ̂  -> {+1, -1} satisfying for all g G {0,1,2}, L e ̂ ,

o(σg o L) = -o(L).

In view of the above remarks, given v G V, e G £7, {^} C e, the two faces / with
e C f may be distinguished by the orientation: one writes / = fQ(υ, e) if (v, e, /)
is positively oriented, and / = /j(v,e) if (ι>,e,/) is negatively oriented. Using the
orientation in an analogous way, given v G V, / G F with t? C / we define e0(υ, /)
and βγ(v,f\ given e C / we define vQ(e^f) and ^(e,/). Therefore, starting with a
flag L = (v, e, /) we have v = vτ(e, /), e = e^(^, /), / — /f(e, f) where, depending
on whether or not L is positively or negatively oriented, i — 0 or 1 respectively. Let
σ G Perm{0,1} ~ 52 be the transposition σ = (0,1).

We may now rewrite the operations σq, q — 0,1,2, in a more convenient form as
follows:

σ0 : (υ, e, /) = (υf(e, /), e, /) ι-* (t;1, e, /) = (υσ(l)(e, /), e, /),
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where, as the orientation has been reversed, we have

V1 = Vσ(ϊ)(6ι A e = eσ(i)(vl > Λ / = /σ(i)(υl ' 6)'

Similarly,

where, if e = eτ(υ , /), we have

where, if / = f^υ , e), we have

Using this notation, it is easy to compute the effect of ρQ = σ2σ1? ρl = σ0σ2,
ρ2 = σ{σ0 on L = (υ,e,/) E J^, υ = ^(e,/), e = e .('u, /), / = /^,e), where
z = 0 if o(L) = 1 and i = 1 if o(L) = -1. Namely,

e1 - eσ(i)(t;, /) =

e -

If the valency of a vertex is the number of edges containing it, and the valency
of a face is the number of edges it contains, it is clear by inspection of the above
expressions, that if for L = (v, e, /) e ̂  we let ι/0(I/) be the valency of υ and z/2(£)
be the valency of /, we have

β?(L\L) = L,

Q\(L) = L,

Q?(L\L) = L.

Notice that an edge always has "valency" 2.
I TS-

We denote by £ζ the oriented cartographic group, that is the subgroup of index
2 of W^ generated by the words in the σi, ί = 0, 1, 2 of even length. Clearly the ρi9

i = 0, 1, 2 are generators of ^+'K and satisfy ρ2Q\Qo — 1.
We now construct an abstract simplicial complex 5 = S(/Q which may be thought

of as a (bary centric) subdivision of K. We start with JQ(K), then for every edge
e G Jι(K) we add a vertex ve $ J0(K) and for every face / e J2C?0 we add a
vertex v^ ^ J$(K) with v^ ^ ve for any e € Jγ(K). We require 5 to be the (finite,
abstract) simplicial complex with vertices J0(5) = {υ \ v E JQ(K)} U {υe \ e E
J^JΓ)} U {vf I / E J2(K)}9 edges ^(5) the 2-element subsets of J0(K) of the
form {vQ,υe}9 {v^v^, {vQ,vf}9 {vj,vλ}9 {ve,vf}9 where e = {v^υ^ E Jλ(K)9

e C /, / E J2(^Γ) and faces J2(Sj the 3-element subsets of J0(5) of the form
{vQ,ve,υf}9 {vλ,ve,vf}9 where e = {v0,v{} E J^K)9 e C /, / E J2(^) (In
a geometric realisation of K, the bary centric subdivision 5 — 5(/0 = K; is the
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simplicial complex whose 2-simplexes have vertices the bary centres of J$(K),
and J2(K)). We then have the action of the cartographic group on &(S) as W2

for L G ̂ (S) the generators ρ'Q, ρ(, ρ'2 of W2'
S clearly satisfy the relations,

Above, we have written the set JQ(S) as a union of three families: a vertex is of one
of type v G JQ(K\ type ve, e G ^(^Q or type Vf, f G J2(K). By identifying the
elements of J0(5) of each type we obtain a simplex T with for each L G ̂ "(T),

ι/0(L) - 2, z/2(L) = 3. Indeed, g^'τ = 53 = (t0,t1,t2 | ί§ = if - t\ = t2tltQ = 1),

the symmetric group on 3 elements. Hence, mapping ^+' to ^+' by the induced
action, we have a surjection with kernel Γ, say:

As £Q = ίj = 1 we have both ρQ = (ρf

0)
2 and ̂  = ρ((ρΌ)2ρ{ G Γ. Moreover, a direct

computation using (g^)3 ~ 1 shows £0 and ργ to be invariant under conjugation

by the elements of %flS. Now, the quotient (%ZftS/Γ) = 53 has 6 elements, but

then a direct computation shows that the quotient ^+'5/{£o>£ι) does a^so' so ^^
J1 = (^Q'^ι) °̂ everY flaβ L — (f,e,/) G ^(K) is associated a unique flag
L1 = (v',e',f) G (̂S) with vf = v, e' = {v,ve} and /' = {v,ve,υf}. It is easy
to see that the flag ρ0(L) is then associated to ρQ(L') and the flag ρλ(L) to ρλ(L').

As ^0 and ρλ generate ^+'X, these remarks show that there is a surjection of Γ on

gξ+'κ. Notice that if I/ - (v,e'Jf) with v G JQ(K) then ^(^(L7)) = 4 so that
indeed (p1)

2(L/) = I/. In [Baultz], an example is given which shows that Γ is not

isomorphic to £ζ+' in general.
Consider a cell complex K and the set of edges J[(K) of S = S(K) of the form

{vQ,ve}, {ve,vγ}, where e — {^0^ι} ^ J\(K) Then J[(K) has 2^4 elements, where
A is the cardinality of Jλ(K). Let V^ be the number of vertices of valency z/0 and
F^ be the number of faces of valency z/2. Then

so that the number of odd valency vertices and faces is even. We remark with [ShVo]
that the positively oriented flags (written "flags+," singular "flag"1"") of K are in 1
to 1 correspondence with the oriented edges of K. An edge may be oriented in two
ways. Hence the flags"1" are in 1 to 1 correspondence with the elements of J[(K).

The total number of flags+ is therefore 2A and one may view the group £ζ+'K as
a subgroup & = &(3K} of the symmetric group S2A of order 2A, see [Baultz] for
more details. As in [Baultz], we let H be the group of symmetries of K given by the
centraliser of & in S2A, that is the set of permutations of the 2 A flags+ commuting
with the action of 3̂ . Denote by p,q,r the respective orders of the ρi9 ί = 0, 1,2.
Then q = 2 and p, r are respectively the smallest common multiples of the valencies
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of the vertices and faces. Following [ShVo], we say that K is balanced if all the
valencies of its vertices are equal, and hence equal to p, and if all the valencies of
its faces are also equal, to r. Let B be the stabiliser in & of any flag+ (the action of
& on the flags+ is transitive). We say that K is regular if B is trivial. We have the
following propositions whose proofs may be found in [Baultz],

Proposition 4. The order of the symmetry group of a cell complex divides twice the
number of its edges and the complex is regular if and only if its symmetry group is
isomorphic (but not identical) to its oriented cartographic group.

Proposition 5. Let g = 1 — χ/2, where χ is the Euler characteristic. Then for g > 1
the order of the symmetry group of a regular cell complex is at most 84(g — 1).

There is an intrinsic description of the symmetry group H of K. Choose a flag
L G & — .̂ (jFQ, let BL C ̂  be its isotropy group in 3? and consider the normaliser
Norm(£L) C Ŝ , that is the group of g G ̂  such that gBLg~l = BL. Clearly BL is
an invariant subgroup of Norm(JBL). We have,

Proposition 6. The symmetry group H is isomorphic to Noτm(BL)/BL.

Let us now place this discussion in the context of dessins on compact oriented
surfaces. As in [Gr, ShVo], a dessin D on a compact oriented surface Σ is a pair
D == (K(D), [ί\)9 where K(D) is (the underlying polygon of) a connected 1-complex
and [z] is an isotopical class of inclusions i : K(D) c-> Σ. One supposes as in
[ShVo] that the complement of ι(KQ(D)) in ι(K(D}} is a finite disjoint union of open
segments, together with the regularity assumptions. We may then, as in Sect. 5, speak
of vertices, edges and faces in the usual sense of a graph and it is clear that by
considering G = ι(K(D)) as giving a cellular decomposition of Σ we obtain the
oriented cartographic group ̂  as a subgroup of S2A, A = card J{(G).

By realising on Σ the subdivision described in the present section, of G into a
2-simplex S = 5(G), we obtain a triangulation of Σ whose vertices are divided into
three mutually exclusive families: a vertex is a υ G J0(G), a υe, e G Jj(G) or a υ^
f G J2(G). We have already seen in Sect. 1 how a clean Belyi function gives rise to a
dessin. Here we are now ready to carry out the converse construction: the orientation
of the surface gives rise to a bicolouration of the triangles. One constructs a function
βD from Σ to Pj(C) so as to send each vertex v G J0(G) to oo, each vertex υe,
e G Jγ(G) to 1 and each vertex Vf, f G J2(G) to 0, with the triangles of one colour

mapping onto f) and of the other colour onto ίj~. This construction of Belyi [Be]
is discussed in [ShVo] and in depth in [Wol], where it is shown that a conformal
structure on Σ exists such that this function βD gives rise to a clean Belyi function
defined over a number field on a smooth algebraic curve structure underlying Σ. We
therefore recover the Grothendieck dessin G by taking /^[l, oo] as in the discussion
of Sect. 1.

We remark with [ShVo] that as ¥? acts on the oriented edges of G one may as
in [ShVo, p. 207, 1.1.4] define the action of 3? on the positively oriented flags, with
no regularity assumptions: so that G may have loops and trees (see also our remarks
below on abstract cell complexes).

The context of abstract cell complexes. In this subsection we remark that an analogous
construction of the oriented cartographic group can be carried out using the language
of abstract cell complexes as defined for example in [AhlSa, Ch. 1§7]. It is in this
spirit that the oriented cartographic group is introduced in [Baultz]. A (finite, abstract)
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cell complex K consists of two finite sets, the set E = J{(K) of edges and the (non-
empty) set F — J2(K) of faces. Each element e 6 E has an inverse e~l e E and each
/ £ F also has an inverse f~l € F. One supposes that (e"1)"1 = e, ( f ~ { ) ~ { = /,
e~l φ e and f~l ^ /. To each face / is assigned its boundary, given by a cyclically
ordered set e^e2 . . . em, m > 1 of edges ei9 ί = 1 , . . . , m, where the inverse cycle
eπι - - e2le^1 is assigned to f~l. The vertices V = J0(K) of K are of two types,
inner and border vertices, and can be defined using the sets E and F. Namely, we
call a successor of the edge e any edge appearing immediately after e in a boundary
of a face. A cyclically ordered set υ = (e{,e2,..., en) is called an inner vertex if ei

has e~\ and e~^{ (indices taken modulo n) as successors. If the same condition holds

for 1 < i < n, while el and en have only the successors e2

l and e~^_{ respectively,
then υ regarded as a linearly ordered set is called a border vertex.

In the exposition of [AhlSa, Ch. 1§7] it is assumed that each edge of K occurs
either once or twice as an element of a boundary and that K is connected. If an edge
appears in two places, it therefore has two successors counted with multiplicity, i.e.
they may be identical.

With these conventions, it is clear that every edge can be assigned a vertex
(qualitatively, its terminal point) as follows: starting from an edge e we find its
neighbours in a vertex by taking the inverses of its successors. This rule can be
iterated in both directions until the cycle closes, or until we hit sides with only one
successor.

The faces of the cell complex are divided into pairs /, f~l. A choice of notation
whereby one out of each of these pairs is denoted by / and the other by /"*,
constitutes an orientation of K (see [AhlSa, p. 94, §40]). The orientation is called
coherent if each edge e appears at most once in the whole system of boundaries of
the faces /: so if e appears twice in the whole system of boundaries, then it appears
as the boundary of a face fl and of a face f2

l. A cell complex K is called orientable
if it has a coherent orientation. Now, supposing that V contains no border vertices
and that K is orientable, we choose an orientation of K. That is, from each pair of
faces, /, f~l, f E F, we retain just one and this in such a way that every edge
e appears once on the boundary of a face. Intuitively, the edges e and e~l appear
as paired sides of neighbouring faces. The vertices are now the cyclically ordered
sets v — (el,e2,...,en) such that e~^ is a successor of e^ that is e^\ appears
immediately after ei on the boundary of a retained face, with indices taken modulo n.
This representation of v is unique. To e G E is associated one vertex v (its terminal
point as described above) and υ has a unique representation as υ = (e1? e 2 , . . . , en)
with e = ei some i — 1 , . . . , n. We let κ;0 be the map e ι-> eί+1, where the index is

taken modulo n. We let κ,l be the map which to the edge e associates the edge e~l

and define κ,2 by ^2

κι^o ~ l Notice that these actions are defined without regularity
assumptions. We have already remarked that the oriented edges of a cell complex
are in one to one correspondence with its positively oriented flags. The edges of our
abstract cell complex are therefore in one to one correspondence with the positively
oriented flags. The action of the group generated by κQ^κ>l^κ2 corresponds to the
action of the oriented cartographic group induced by this correspondence (see [ShVo,
p. 207, 208], although notice that the illustrations in this reference indicate that to
each edge was associated its initial, rather than its terminal, point). In this way, the
cellular decomposition of a compact connected oriented surface is generated by the
transitive action of an oriented cartographic group on a set of positively oriented flags.
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Notice that the initial discussion of this section is recovered from an oriented
abstract cell complex by forgetting the distinction between initial and terminal point
(which is not necessary to our definition of an abstract simplicial complex). To each
edge e we may associate a set of two vertices whose elements are the terminal point
of e and the terminal point of e~l: in this sense we say that e contains two vertices
and consider it as being this two point set. It is clear that e and e"1 now contain the
same vertices and are no longer distinguished. We say that e is an edge of the face /
if e occurs in the boundary of / (each edge will now occur in two boundaries) and
that υ is vertex of / if v is contained in one of the edges of /. We consider the faces
to be given by their vertex sets so that / and f~l are no longer distinguished.

6. Some Examples Coming from the Platonic Solids

With the notation of Sect. 5, the inequalities 2A < pV and 2A < rF lead to

X > 2A( - + - H 1). Hence, if ( - + - + - ) > 1 we are in genus 0
\p 2 r J \p 2 rj

(that is the case of a spherical triangle group in the context of Sect. 1). The genus 0
balanced cases correspond to the Platonic solids and we have the table (n > 2):
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3
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3
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3
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2

2

2

2

2

2

2
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t
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 \&\
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n
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4
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4 24
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5
 60

5
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Consider the regular polyhedra on the Riemann sphere in Euclidean 3-space whose
faces are equilateral triangles: namely, the regular tetrahedron (¥/ = A4), octahedron
(54) and icosahedron (A5). The Riemann sphere can be considered as the concentric
circumscribed sphere whose centre is the centre of symmetry of the polyhedron. These
polyhedra correspond to the Schlafli symbol of the form {3, z/}: i.e. we have a net of
equilateral triangles z/ surrounding each vertex. One has v = 3 for the tetrahedron,
v = 4 for the octahedron and v — 5 for the icosahedron.

Given any face, we can consider its barycentric subdivision, as an equilateral

triangle T, into six smaller triangles with angles —, — and —. These smaller triangles
2 3 6

have three types of vertices: υ a vertex of T, ve a vertex in the middle of an edge of
T and Vj a vertex in the middle of a face of T. For the six small triangles, the angle

at the vertices of type v is —, at type ve is — and at type υf is —. We may project

each of these triangles on the circumscribed sphere using the sphere centre as the
centre of projection. One obtains in this way a spherical triangulation of the Riemann
sphere formed by arcs of great circles. The angles of the small spherical triangles

at the vertices of the polyhedron (on the sphere before projection) are given by —,
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where v is (as above) the number of faces around a vertex. The other angles of the

smaller triangles are preserved under projection so that we have angles —, —, — for

the small spherical triangles. Notice that the large spherical triangles obtained from

the faces of the polyhedron have angles f —, —, — ) . There is a bicolouration of
\υ v v )

the small spherical triangles and a natural Belyi function βv mapping every triangle of
one colour to f]+ while mapping every triangle of the other colour to f)~. This Belyi
function is given by the inverse of a Schwarz triangle function and has ramification
numbers 2, 3 and v over its respective ramification points.

It is possible to construct a compact connected Riemann surface Συ which as a
branched covering of the Riemann sphere has branch points of the same and minimal
order exactly at the vertices of the polyhedra (one vertex of type υ per small spherical
triangle). Composing the natural projection from this surface onto the sphere with
the Belyi function βv one would obtain a Belyi function βζ on the surface with
ramification numbers 2, 3 and v x 5, where S is the number of sheets. Now, for the
tetrahedron, there are 4 vertices with 3 faces at each vertex so accounting for an angle
7Γ at this vertex. The surface Σ3 must therefore have a branch point of number 2 at
each vertex in order to fill up an angle of 2τr. By the formula of Riemann-Hurwitz, the
surface Σ3 then has genus 1. Indeed, by cutting along the edges meeting at a vertex,
one may open out the tetrahedron as a triangle in Euclidean space subdivided into 4
smaller triangles. On doubling (Σ3 has 2 sheets) the triangle by reflecting it in one
of its sides, we obtain 8 triangles. By identifying sides congruent under the reflection
we obtain as expected a torus triangulated by 8 equilateral triangles. In a similar
fashion, for the octahedron there are 6 vertices with 4 faces at each vertex filling up

4π
an angle of —, so that Σ4 has a branch point of number 3 at each vertex. The genus

of Σ4 is therefore 4 and the triangulation induced from that of the polyhedron has 24
triangles. For the octahedron, there are 12 vertices with 5 faces at each vertex filling

5π
up an angle of —. The branch points therefore have number 6 and Σ6 has genus 25

with an induced triangulation of 120 triangles.
By the discussion of Sect. 1, the ramification numbers of the Belyi function β^

on Σv enable one to deduce that Σv is a quotient of a simply connected domain by
a subgroup of finite index in a Fuchsian triangle group of signature (2, 3, 2e), where
2e = v x S turns out to be the number of edges of the polyhedron. This simply
connected domain is the complex plane for the tetrahedron, the Poincare upper half
plane for the octahedron and icosahedron, whilst 2e — 6, 12 and 30 respectively for
the tetrahedron, octahedron and icosahedron. The nature of the ramifications ensures
that these are universal covering groups. Recall (see Sect. 4) that the Fermat curve
Fe is also a quotient of the Poincare upper half plane by a subgroup of finite index
in the Fuchsian triangle group of signature (2, 3, 2e).

In the case of the tetrahedron (only), Σ3 with the equilateral conformal structure
is in fact the Fermat curve [Aultz]. Indeed, consider the triangulation of Σ3 that we
obtained above as a pull-back of the equilateral triangular faces of the corresponding
polyhedron. One may now endow Σ3 with the conformal structure whereby this
triangulation is itself equilateral. The Schwarz map

X

/

du

w2/3(l — w)5/6
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maps the half-plane Im x > 0 into a triangle with angles — , — , — , one of triangles
2 3 6

of the barycentric subdivision of an equilateral triangle. In terms of the variable x,
(\Ύ

the holomorphic differential dt is therefore given by ω = —^ - j^. Now, Klein
calculated the inverse x ^ ~ x>

yV + 8)3

(yθ- 202/3 _8 )2

of the spherical triangle map for the angles — , — , — . Here the normalization is such
π π

that each vertex at the angle — is mapped to x — oo, at the angle — to x = 1
7Γ

and at the angle — to x = 0. These spherical triangles are pulled back by /?3 to the
6

triangles of the above barycentric subdivision of the equilateral triangulation. Hence
to calculate the equation of Σ3 we need to rewrite ω in terms of y. We obtain

which is the affine equation of the elliptic Fermat curve F3. For the cases v = 4, 5
the same calculation has been commented in [Aultz]. We shall meet the idea behind
the computation again in Sect. 7.

7. Rational Triangular Billiards

In this section, we explain how the rational triangular billiards considered in [Aultz]
in the context of the pseudo-integrable systems of Richens and Berry [RiBe] provide
natural examples of some of the considerations central to the preceding sections. We
rely on the older exposition of Hobson [Hob] for our introductory remarks below. For
a recent survey of problems linked to the trajectories of a point mass in a billiard,
see [Ber].

Consider the motion of a single point mass moving elastically in 2 dimensions and
at constant speed (the absolute value of the velocity) inside a euclidean triangle R with

interior angles the rational multiples of π : —-, —-, ——, fe, <L) = 1, ΐ = 0,1, oo.
% <?1 <?oo

In particular, we have — H—- H—— — 1. With energy conserved, the motion is
% ς f i <?oo

confined to the reduced phase space X = R x [0,2π) of points x = (q{, #2> </0» where
x — (qλ 5 q2) G Λ is the position of the point mass and φ is the velocity direction.
When the point mass meets a side of the triangle it undergoes a reflection so that
its perpendicular velocity changes sign. We do not consider the singular trajectories
hitting the corners.

Such a motion can be developed in a straight line as follows. From an initial point
x = (ql:q2) G R, draw a ray from (q{, g2) in the direction φ. Reflect R across the
side through which this ray passes. Repeat this operation to obtain a sequence of
triangles along the ray. It is clear that we can study the possible motions by studying
the properties of rays passing through these sequences as the initial point varies. The
union of such triangles is contained in the configuration A of possibly overlapping
triangles obtained by reflecting R across each of its sides and then iterating this
operation for the images.
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As R has the rational angles — -, i — 0, 1, oo, it is straightforward to check that
V i

the elements of A have 2Q, q — Lc.mXgQ,^) possible orientations. We retain in A
only a system of representatives for these orientations. We may divide the array A
into the subarray A+ of polygons obtained from R by an even number of reflections
and the subarray A_ of polygons obtained from R by an odd number of reflections.

Write therefore A = R+ U Λf U . . . U R^ U RQ.
Our remarks show that the velocity of the single point mass can take at most 2Q

values of equal length. The reflections s1 ? s2 in any two distinct sides of R meeting
TΓp

at an angle — , (p, q) = 1, satisfy
q

(in the sense that (s{s2)
q sends .R to a triangle of the same orientation lying above it in

a cyclic neighbourhood of the fixed point vertex) and give a faithful representation of
the dihedral group D2q, the group generated by the reflections in two lines making an

angle — . On combining the actions of the D2q^ , i = 1 , 0, oo we realise an action of the

group D2Q on the possible velocity directions. Now, A forms a possibly overlapping

array of 2Q triangles with some free (unpaired) sides. Let E^ be a free side of J?^,

ί — 1, . . . , Q. If, in the configuration A, reflection of Rf through Ef gives a triangle

with the same orientation as R^ , then reflection of Rf through just one of its sides

Ej gives a triangle with the same orientation as Rf. We pair, by labelling identically,

the parallel sides Ef and Ej. All the sides of the elements of A are now identified in
pairs (via the above action of D2Q) and one may form a triangulated compact oriented
surface, associated to the space of an abstract polyhedron with faces comprising 2Q
copies of the euclidean triangle R, by fitting together 2Q oriented curvilinear triangles
according to this pairing [Aultz]. The triangles have in common 3Q sides. Since for

i = 0, 1, oc, a vertex of angle — -, (p^q^ = 1, gives rise to a fixed point of order

2qz for the above local action of D2 , there are ]Γ — distinct vertices in this
i=0,l,oo Qi

triangulation. Notice that this is a purely combinatorial construction and that the
same surface could have been modelled from unoverlapping copies of the triangle

with angles — , — , — (which are most often hyperbolic; see the end of the present
% <ll (loo

section). The Euler characteristic χ and genus g of this surface are given by

χ = 2-2g=

We have therefore a topological description of a surface and an orientation for it,
together with the formula for its genus. As explained in [Aultz] the configuration A
contains branch data which codes for a specific birational equivalence class of curves:

p P
namely, writing — as — ̂ , ί = 0, 1, oo, that of the Riemann surface ΣR = Σ(PQ, Pj)

Qi Q
with equation
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To understand this, write as above A = Sl U S2 U . . . U SQ9 where Si = R+ UR~. For
ί — 1 , . . . , <3, the interior of the pair of triangles Si is equivalent, up to translation,
rotation and rescaling, to the image of the pair of open triangles f)+ U ί)~ of P^C)
by a chosen branch of the Schwarz triangle map

X

du

so that T is a complex coordinate in Sτ. The passages Si ι—> Si+]_, i = 1 , . . . , Q — 1,
5g H-» 5t correspond to changes of branch of the multivalued function r. Writing the

dx
holomorphic differential dτ in the complex plane as the holomorphic differential —

on a Riemann surface gives the equation for ΣR, which as expected is paved by 2Q
triangles.

Assume Q > 3. The euclidean triangle R is the image by a conformal mapping,
which may be continued to give a mapping holomorphic on f) using Schwarz'

reflection principle, of the hyperbolic triangle TQ with angles —, —, —. Recall
Q Q Q

now our discussion of Fermat curves in Sect. 4 so that FQ is the Fermat curve

XQ _|_ yQ = i Then a direct calculation shows that Σ(PΌ,Pl) is the image of FQ

under the mapping

K : (X,Y) ^ (x,y) = (XQ ,

It is clear that the Belyi function /3g = XQ (see Sect. 4) on FQ induces the Belyi
function βR = x on Σ(PQ^ Pj). Inspection of the equation for Σ(P0, Pj) confirms that

βR is indeed a Belyi function. The triangulation GR on ΣR with vertices βR

l{0,1, 00}

is the image under K of the covered symmetric triangulation K = KQ on FQ by 2Q2

triangles introduced in Sect. 4 and has the 2Q triangles comprising A.
In Sect. 4 we saw that Δ = Δg acts on the triangulation of FQ as [Δ, Δ] is

normal in Δ [Wol, §5.3]. Moreover, on passing to an extension Δ of Δ of signature
(2,3,2Q), we recover a representation of the action of the oriented cartographic

group £ξ+'5 where, as in Sect. 5, S — S(K) — K' is the barycentric subdivision

of the triangulation K of FQ [Wol, §6, ShVo]. The generator g'Q of %£~'s satisfies

(£o)2(^ — 1 s° that §Q — (£>ό)2 has order Q and descends to the action of the generator

£o °f ^R ~ ^2+ R- The generator ρ0 corresponds to the local action induced by

the rotations D% of D2 around the vertices of angle —-, i = 0,1, oo, referred to

above, and to a global action of D^Q
We now explain how the construction in [Aultz] of a basis of holomorphic

differentials on ΣR is closely related to the modular embedding construction of
Sect. 2 of the present article. Recall that the triangle group Δ = Δ(p, #, r) of signature

(p, 0, r), ( - H h- ) < l i s the monodromy group of the hypergeometric differential
\p q r)

equation of Gauss which has as a basis of its solution space two multivalent functions
of the form:
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with

α/ ' = u/ (x) = u~μ°(u — l)~μι(u — x)~μ2du,

where 7 is a certain integration path (one can take for example the two Pochhammer
cycles around 1, 0 and 0,x), the variable x varies over Pj(C) - {0,1, oo}, and

- if _ i i -\ --( - ---\ - i Λ _ i _ i _
^Q ~ 2\ p q r) l ~ 2 \ p q r) 2 ~ 2\ p q r/

Let I be the least common multiple of the denominators of μ0, μ1? μ2 and let
μ3 = 2 - (μ0 -h μ{ + μ2). To construct the modular embedding one singles out
those integers (that we call "admissible") v G (Z/ZZ)* for which,

τv =' ~1 ~^~ {^Mo} + {^Mll + {^2} "I" {^3} ~ ^?

where 0 < { α } < l , α G Q , denotes the fractional part of α. For each of the 2t
such integers z/ we replace μx by {z^μj, i = 0,1,2,3 in the above integrand which
becomes the differential of the first kind

on a factor of the Jacobian of the curve X(x) with affine equation,

This gives rise to the solution space of the Gauss hypergeometric differential equation
associated to the triangle Tv with angles the multiples of π:

at the vertices corresponding to x = 0, 1, oo respectively. The triangles Tv and T~v

are isomoφhic, so one has to make a choice modulo ±1 of the admissible if. The
map of T — T{ onto Tv , continued analytically to all of ί), gives the z/h component
of the modular embedding [CoWol].

In the construction of a basis of holomorphic differentials on ΣR, with R of angles

the multiples — , — , -̂  of π, one singles out in [Aultz] those integers (also called
% Ql <?oo

"admissible") v G (Z/QZ) preserving the euclidean geometry; that is

J I <?1 J I <?oc

To each such integer v one associates the differential of the first kind on

< = «-I+^}(i-«ΓI+^}d«,
and the euclidean triangle Rυ with angles

Indeed, the triangle map for R" is obtained by replacing ωR by ω^ in the integral
expression for r. Restricting to v e (Z/QZ)* yields a basis on a factor of Jac(Z^).

Notice that the modular embedding construction in the hyperbolic case, when
specialised to the fixed points of the corresponding triangle group, gives such
a euclidean construction. Consider for example the point x — 0 and suppose
(μ0 + μ2) < 1 in the above construction. The admissible v e (Z/ZZ)* are those
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3

for which X]{^/^} = 2. At x = 0, one has the new parameters μ'Q — μ0 + μ2,
j=o

μ\ = μλ, μ'2 — 0, μ'3 = μ3 corresponding to a euclidean triangle Rf with angles

— = 1 — (μ0 4- μ2), ~ — 1 ~ A h » "̂  = 1 ~~ Ms> and me admissibility condition
00 01 0oo

becomes f{^Uί^l + l^lUl, (,,/)^l, with ^(0)^^,.
V I 0o J 10 ι J 10oo J y

Whereas in the hyperbolic case one associates to T (see Sect. 2) a family of
abelian varieties, one for each point of T (and, by analytic continuation, of ίj), in the
euclidean case there is only one such abelian variety associated to R. This degeneracy
phenomenon is easily understood in terms of the holomorphic differentials associated

to T and R. In the hyperbolic case, the inequality ( - H 1— ) < 1 ensures that μ9
VP q rj

is never zero, and the same applies to the t differentials of the first kind obtained
by replacing the μi9 i — 0,1,2,3 by {vμ^, i = 0,1,2,3, where v is admissible.
Hence, for each x these t differentials give rise to differentials of the first kind on
Jac(X(x)). Although these t differentials do not yield a full basis, they are sufficient
to determine it. For more details see [CoWol, Wo3]. By contrast, in the euclidean
case, the admissibility condition gives rise to differentials of the first kind of the same
form as those in the hyperbolic case, but with μ2 = 0, so that the dependency on x
in the integrand disappears and the differentials lie only on the Jacobian of ΣR.

However, one can still associate to the rational billiard a family of abelian varieties
as in the hyperbolic case. One applies the construction of Proposition 1, Sect. 1 of
the present paper to the pair (Σ, β) = (ΣR, βR), where R is, as above, the euclidean

triangle with angles π^ = ττ-A π^ = π-A π^ = π-^. The Belyi function
0o Q 0ι Q 0oo Q

β has ramification points x — y = 0 of order g0 over β = fy x = 1, y = 0 of
order q{ over β = 1; and x — oo, y = oo of order q^ over β = oo. Therefore,
Σ is the quotient of f) by a subgroup of finite index in a Fuchsian triangle group
of signature (%?0u000) The integer t of Theorem 1, Sect. 2 is in this case the
number of admissible v G (Z/ζ)2)* for this signature, as defined in the above
discussion of the present section. By this same theorem, the vertices /?-1{0,1,00} of
the triangulation are sent by the morphism φ : Σ ι—» V, where V is a Shimura variety
of dimension £, onto points of complex multiplication by a subfield of the cyclotomic

field

As explained in Sect. 4, the curve Σ may also be represented as a quotient of
by a subgroup of finite index in the Fuchsian triangle group with signature (Q,Q,Q).
Once again the construction of Proposition 1, Sect. 1 and Theorem 1, Sect. 2 can be
applied, this time for p = q = r = Q. There are now tQ, say, admissible elements of

(z/gz)*.
Notice that the integers t and tq are not necessarily equal. For example, when we

make, for Q = 18, the choice (P0, Pl,P00) = (9,8, l), the triangle group of signature
(g, g, g) = (18,18,18) is non-arithmetic and tQ = 2, whereas the triangle group of
signature (g0, q^q^) = (2,9,18) is arithmetic, so that t = 1.
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