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Abstract. The totality of all Zakharov-Shabat equations (ZS), i.e., the zero-curvature
equations with rational dependence on a spectral parameter, if properly defined, can
be considered as a hierarchy. The latter means a collection of commuting vector
fields in the same phase space. Further properties of the hierarchy are discussed, such
as additional symmetries, an analogue to the string equation, a Grassmannian
related to the ZS hierarchy, and a Grassmannian definition of soliton solutions.

0. Introduction.

We are accustomed to the fact that integrable systems appear not one at a time but
in big families called hierarchies. So, first of all, the KdV (n = 2) hierarchy was
invented (Gardner, Green, Kruskal, and Miura made the first and the most
important discovery, the KdV equation in the proper sense; later on all the higher
KdV were found by Gardner). Then this was generalized to every n (Gelfand and
Dickey, who used fractional powers of operators). Thus, infinitely many general-
ized KdV hierarchies were found. They were unified to a single one large KP
hierarchy (Kyoto school: Sato et al. [1]). Another line of developments was
connected with equations generated by a linear first order differential operator
with matrix coefficients linearly dependent on a spectral parameter (Albowitz,
Kaup, Newell and Segur for matrices 2 x 2 and Dubrovin in a general case, let us
call this hierarchy AKNS-D). Later this was generalized to operators with a poly-
nomial dependence on the spectral parameter. Thus, for every degree of a poly-
nomial, m, there is a hierarchy, a generalized AKNS-D.1

More than that, there is a very general type of equations proposed by Zakharov
and Shabat (see [2]): the equation of zero curvature, where matrices depend on
some spectral parameter as rational functions. (The above mentioned hierarchies
where operators depend on a parameter as polynomials, i.e., have a single pole at
infinity, represent special case of these equations). The ZS equations usually have
been treated individually, not as a hierarchy.

More detail can be found, e.g., in [3].
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Which property permits to consider a hierarchy as a single whole, as an entity?
Geometrically speaking, a differential equation is a flow in a phase space. We call
a family of differential equations a hierarchy if they act in the same phase space and
commute. Then each of equations determines a symmetry for each other. Let us
consider this as a characteristic property of a hierarchy.

We see our goal in this paper in the construction of a theory where all the
Zakharov-Shabat (ZS) equations can be considered as one hierarchy, in the above
sense.

We discuss also problems such as a Grassmannian approach to the ZS hier-
archy, the existence of additional symmetries and a definition of an analogue to the
string equation.

The study of integrable systems is interesting in several aspects. One is a desire
to expand the class of exactly solvable equations or to find new solutions to already
known integrable equations. This can be important in applications, though one
must realize that there are rather few integrable systems among all equations
significant for physics or engineering. The other aspect is that this area of mathe-
matics provides very rich algebraic structures which more and more find their way
to modern physical theories. The fact that there are large hierarchies of commuting
equations is of great importance just from this point of view.

1. Definition of the ZS Hierarchy.

Let βfc, k= 1, . . . , m be a given set of complex numbers. Let, for every /c,

be a formal series. The entries of nxn matrices wkh w fcί ία/? are just letters. We
consider the algebra <$/w of polynomials of all these entries and (det w^)"1- The
formal series wk can be inverted within this algebra. Let

where £α is a matrix with only one non- vanishing element, equal to 1, on the (α, α)
place.

We have two kinds of objects. Such quantities as wfc and Rkocι are formal series,
or jets, at the points ak. The algebra of all such jets will be called Jk and J = 0 Jk. If
jk^Jk is a Jet then jk symbolizes principal part, i.e., a sum of negative powers of
z-αk, and jk the rest of the series. Correspondingly, the jet algebras split into two
parts, Jk = Jk φJk lf the principal part contains a finite number of terms (and we
tacitly assume this unless the opposite is said or is evident from a context) it can be
considered as a global meromorphic function; the algebra of global meromorphic
functions is G. Global functions are objects of the second kind. A global function
gives rise to a jet at every ak. In particular, 77 can be considered as a jet at a point
akl, different from αk, more precisely, as an element of J^j.

Definitions, (i) A hierarchy corresponding to a fixed set [ak] is the totality of
equations

- ^ f c = f e 1,, . , Sm = ddtk^. (1)
otherwise
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In the second case Rkat is considered as an element of J^, see above; tkOLt are some
variables.

(ii) A ZS hierarchy is an inductive limit of hierarchies with fixed sets {%}, with
respect to a natural embedding of a hierarchy corresponding to a subset into
a hierarchy corresponding to a larger set, as a subhierarchy.

Further in this section, for simplicity of writing, we shall unite indices α and
/ into one subscript α = (α, /) and write dka and Rka instead of 3fcα/ and RMι.

(It would be possible to take its own spectral family £fcα, α = 1 , . . . , « , for each
point ak, those spectral projectors not necessarily commuting for different fc;
however, it is easy to see that this is not a real generalization since it can be reduced
to the same definition by a substitution wfc ι—> wkck

 1, where ck are matrices reducing
Ekα to the diagonal form, Eka = ckE0ίck

1.)

Lemma. Equalities

ι«ι i [[jR^χj, Rj^jJ , otherwise

hold.

Proof. It easily can be obtained from the definition of Rm. Π

Theorem. All operators dkaί commute.

Proof. One has to prove [^lfll, d/^J Wfc3 = 0 in 3 cases: i) all of fet coincide, ii) only
two of them coincide, iii) all are distinct,

i) We have

since K/CΛl and K/cα2 commute. A notation Ak means the principal part of an
expansion of A in powers of z — ak. Similarly, Ak .

ii) First we consider

which is zero since R^ and Rka2 with the same k commute.
Then we take
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In the parentheses there is a function [Rfc~ , K/~f lJ minus its principal parts in both
the poles, ak and αkl . Thus, this is a constant. This expression approaches zero when
z-»oo which implies that the constant is zero.

iii)

[^Mi , 3k2β2] Wfc3 = 3klβlΛk~2fl2wfc3 - 3k2β2Λk~βlWfc3

A~aΛ3 - (Iθ2)

The expression in the parentheses vanish by the same reason as in the previous
case. Π

2. Gauge.

If we let vk = cwkι where c is a matrix depending of variables {ίfcα/} in an arbitrary
way, then vk satisfy equations

- fc^fel 0X

,, (2)
otherwise

with new Rkχi = vkEa(z — ak)~1vk

1, and A^ι = d^ιc c~l which implies

δk&^Akd-dkaiAk^ + l^kab ^fe^/J =0 . (3)

Equations (2) are slightly more general than (1). We say that wfc and vk are
gauge-equivalent. Conversely, if some vk satisfy (2) with the property (3) for A, then,
integrating equations dkaic = Akaic (which are compatible by virtue of this prop-
erty), one can find a gauge-equivalent wλ satisfying (1). We can, e.g., normalize
a solution by a condition ^ ίw ί(α f) = /.

The following lemma can be useful:

Lemma. Given solutions of (2) with some Akΰ,\ not depending on zfor any (fcα/), being
Σivί(ai) = L Then there is some c such that Ak^ι = dk^c c~^ and, therefore, ΰ={ύi} is
gauge equivalent to a solution 0/(l) .

Proof. First of all from the assumption we get

)- Σ

thus, Akaι is a differential polynomial in elements of tVs. A new differentiation can
be defined in X,: d%OLιϋί = (dkaι — AkQίι)vi. The quantities vk satisfy the system (1) with
respect to new variables ί*α/ and, therefore, ^*α/ commute, i.e., dkθίι — Akθίι commute
which is equivalent to Eq. (3). The rest is clear. Π

Functions wk admit also the following transformations: multiplication on the
right by series in (z — ak)~ 1 with constant diagonal coefficients. This does not affect
the equations (1) (or (2)) at all.
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3. Differential Operators.

The following proposition readily can be proven by a simple straightforward
computation:

Proposition 1. A dressing formula

Wki (dkd -EΛ(z- 0*) ~ ^kkjwk^1 = dkai - Btei, Bkxl = Rkod (4)

is equivalent to Eq. (1).

The operator dkai — Bkocl is assumed to act in J^. However, it does not depend
on k1 at all and can be considered as a global function of z with the only pole of
the /th order at ak. Let

oo «

wk = wkexpξk, where ξk= £ Σ t^E^z-a^'1 .
Z = 0 α = l

Definition. The collection w = {wk} is the formal Baker function of the hierarchy.

Equation (4) can be written in terms of the Baker function as

WkβteiWk^δtei-BM . (5)

Proposition 2. All the operators dkolϊ — Bk!Xι commute.

Proof. This is a corollary of the theorem in Sect. 1. and Eq. (5). Π

One can consider arbitrary linear combinations of the above constructed
operators,

L= Σλ^(SM-Bkod) = d + U, (6)
/U,/

where δ = £ &, α, / Λ fcαAα/ and t/=—£*,«, AαAα/ Two such operators commute
which yields equations of the Zakharov-Shabat type

3£/1-fl1t/=[C/1,ί/] .

Functions U and U^ are rational functions of the parameter z.
Operators <9 and d1 can be interpreted as derivatives with respect to new

variables x and f, i.e., we have a change of variables tkxι = λkaιx + μ/cα/£ + . . ., where
dots stand for the rest of the new variables. It is also possible to prove that if for
some fe coefficients λfcα/ with the biggest / are non-vanishing and distinct for all
α then all elements of all Rkβm

 can be expressed as polynomials in elements of U and
their derivatives with respect to x. A similar statement is true for ί/i.

Remark 7. It is possible to give a group theory interpretation to these equations
considering a Lie algebra of jets J and, as the dual space, global meromorphic
functions with poles at {ak}. (See also [8]).

Remark 2. Here we have a special case of the ZS equation: the functions U and
(/! vanishing at infinity. If we make a gauge transformation w feι—>cw fe then
d + U\-+c(d + U)c~1 = d + cUc~ί— (dc)c~ί, the last term does not vanish at infin-
ity. This yields the general case.
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4. Additional Symmetry and the String Equation.

It is well-known ([5]) that the KP hierarchy has infinitely many symmetries
that are not contained in the hierarchy itself; their characteristic feature is an
explicit dependence on the variables t. They are called "additional symmetries."
The so-called "string" equation is nothing but a condition that our operators do
not depend on a parameter of an additonal symmetry ([6]). We are going to
suggest an additional symmetry and the corresponding string equation for the ZS
hierarchy.

Let

dz — Mi = Wf3z wΓ 1 = SZ- dzwt wf x = dz - dzwt vvΓ 1 - WiξizwΓ 1 ,

where ξiz = dξi/dz= -^a^=1tiΛlEJ(z---aiΓ
l~1 The quantity Mi = dzwr wΓ x +

W i & z W f " 1 is a jet at the point a{.
Dressing an obvious relation [δz, δfcα/] =0 with the help of wt at the point at we

have

i.e., dkθίιMί = dzBkΛι — [Mk9Bkolι']. Taking negative and positive parts, we get at the
point at

( 1 ) ί = k dkθίlMk = dzBkθίl - [Mk , Bto/]k" ,

διωMk

+= ~[Mfc,βfcα/]fc

+ ,

(2) i φ f c 3te/MΓ= -[Mί?^α/]Γ,

Ste/M^Mtoί-CM^B^jΓ. (7)

Definition. 77ιe additional symmetry is given by the system of differential equa-
tions

The same equation can also be written as

d*tf.= -3zwι/

Formally, there are infinitely many terms in this series. It is possible to freeze all
lid as zero, except for a finite number of them.

As it is easy to see, the equation of the additional symmetry implies

(8)
Φfc

This is an equality in Jk.

Proposition. The additional symmetry commutes with operators of the hierarchy,
[d*> dfca/] =0, i.e., it is a symmetry, indeed.
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Proof. We have to prove that for all) a relation [3*, 3 f c a/]wj = 0 holds. We consider
two cases. (1) fcΦj.

,̂, -M
iφ*

First, discuss the terms with zφfcj. These are

Γ,βte/l - Σ I MΓ,^J+ Σ
J fc iφfcJL J iΦfcj

This is a difference between a global function ΣΪΦ/C 7 [MΓ ? ^α/] and all its principal
parts, at ak and α f; it has to be constant. Taking into account that it vanishes at
infinity, we can conclude that this is zero. It remains to calculate

( - [Mk

+, βte/]Λ- + [M/, βte,]fc- + [M/, 5te/]7.

- [Mfe-, Btedj- [M,", Bte,]/ + [Mk, 5^]^)^ .

Notice that in the fourth term the subscript j can be skipped, this is a global term.
The first, the fourth and the sixth terms cancel out. The remaining terms are

[My, Bfcjfc- + [M/, Bfa/],— [M7, βte,]/

= [Mr, Bte/]fc- + [M/, βfcj 7 - [Mr, B,α/]/ .

The middle term vanishes. Now,

[Mr, B^]/ = [Mr, Bωlj- [Mr, βte/] r = [Mr, Bteί]fc-

by the same reason: a global function vanishing at infinity is a sum of its principal
parts. The obtained term cancels with the remaining one.

(2) k=j.

^+ - Σ MΓ, #,

iφ/c

Three terms cancel:

[M,+ , Rte;] + + lR^h M,+ ] - [M,, /fo] + = [M,+, Λ^] + - [M,+, Λω] + = 0 .
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The remaining terms are

- [MΓ, Rk^ - [Λώ, MΓ ]k + [M,, Rά]Γ

= - [MΓ, Rk^k ~ [Λώ, MΓ ]fc" + [MΓ, #/Γα/]Γ -

The middle term vanishes and [MΓ, R^ilk — [MΓ, ̂ /]Γ by the same reason as it
was in the first part, and the whole expression vanishes. Π

The variable ί* is independent of all tko[l. This implies

From the dressing formula 3fcα/ — ̂ ^w^^wΓ1 we have that

Mfc+ + £ MΓ, -3tel

i φ f c

Taking into account (7), this yields

*Bte/ = |
L

Take a linear combination with coefficients λkol/ of these equations. Then (see
Eq. (6))

(9)

Definition. A string equation is condition that U does not depend on t*. This yields

1 = 3,17. (10)

In terms of w7 , the string equation has the form

α/ iφj oil

and in terms of vv,-:

Λ x Λ + Ί Έ) — ί \ O^

id

We have found here an additional symmetry. A problem arises: are there other
symmetries, as it is the case with KP, where there is an infinite series of them labeled
with two integer indices? We have no answer to this question yet.

5. Grassmannian

We use the following notations: Ck are disjoint circles around fixed points
αfc, fc= 1,. . . , m, and Ω is the part of the Riemann sphere outside all the circles;
Hk are Hubert spaces of vector-functions fk(z)eC" on the circles, subspaces
Hk consist of functions on Ck which can be expanded in non-negative powers of
z — ak, and Hk contain expansions in negative powers. Now, H = @kHk, and H+

consists of {f fe} such that fkeHk under an additional constraint ]Γkffc(0fc) = 0.
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Finally, let H* consist of f={fk}eH such that fk are boundary values on the
circles Ck of a holomorphic vector-function in the domain £2; this function will be
denoted by the same letter f. It is easy to see that H = H*@H + . Indeed, let
f={fk}<EH be an arbitrary element. Then each fk can be decomposed into
ffc = f/Γ + C Elements fk are holomorphic outside the coresponding circles Q, and
elements fk are holomorphic inside the corresponding circles. Now,

where gk = ffc

+ ~Σ/Φfc f Γ and c = wT1£ fcg fc(ak) . We have, {£.ff +c}e/f* and
{gfe — c}e#+. The decomposition is unique. Let P* be the projector P*: H-+H* .

Definition. An element of the Grassmannian, WeGr, is a subspace of H with the
following properties: i) the projection P*: H^>H* restricted to W is a bijection, and ii)
(z-alΓ

1W=(z-<*2Γ
1Wr= . . = (z-am}~lW c W.

We think about vectors as vector-rows. A matrix is said to belong to W if all its
rows do also.

One can consider the following transformation of the Grassmannian. If
f={f k }e^,thenfexp£ = {f^
The set of all f exp£ is called Wexpξ. For almost all ίfeα/ the subspace W expξ is
a new element of the Grassmannian.

Definition. A Grassmannian pre-Baker function, corresponding to an element of the
Grassmannian W, is a matrix-function weW such that

P*wexp( — ξ) = c ,

where c is a constant in z (however, it can depend on variables t).

An element WeGτ is invariant with respect to multiplication on the left by
a matrix constant in z, since this leads to linear combinations of rows. The
projector P* commutes with this multiplication. Therefore, if w is a pre-Baker
function then so is a gauge-equivalent function ew, where e is any matrix indepen-
dent of z. All pre-Baker functions can be expressed in this way in terms of one of
them, e.g., corresponding to c = I (the normalized pre-Baker function).

Let w = {wfc} be a pre-Baker function and wfc = w f cexp( — ξk). This means that
Wfc has a form c 4- w^o + w^ \(z — ak) + . . . and ̂  w^o — 0. For a normalized function
c = I. Thus, the normalized pre-Baker function has expansions

These equalities are equivalent to the definition of the normalized pre-Baker
function. Let w be a pre-Baker function. We have

i=k (13)

Definition. A pre-Baker function is called a Baker function if for every (feα/) a relation
{dkyιWi}e(z — α,-)"1 W holds (in fact, this subspace does not depend on j, see the
definition of the Grassmannian).
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Proposition. A Grassmannian Baker function is a formal Baker function of the
hierarchy, in the sense of Sect. 3. Thus, a solution of the hierarchy equations is related
to any Grassmannian Baker function.

Proof. The left-hand side of (13), {δ^W -β^wJ, belongs to (z-ak}~lW. There-
fore, the expression in parentheses in the right-hand side, let it be gh is in
(z — ak)~lWexp( — ξ). Then {(z — aj)gi(z)}eWexp( — ξ) for every j. On the other
hand, this is an element of H+ plus, maybe, a constant. Let y7 be arbitrary matrices.
Then { Σ J y j ( z — aj)gί(z)}£Wexp( — ξ). It is easy to see that choosing matrices χ,- one
can achieve that YjίYjjyj(ai-aj)gi(ai) = Q. Then {^^(z-a^z)} is in H+ and,
therefore, in fFexp( — ξ)nH+. This implies that {ΣJγj(z — aj)gi(z)}=Q and gt = 0.
The latter means that wf satisfy the equations of the hierarchy. Π

6. An Example: Soliton-Type Solution.

First the soliton solution were found in the original paper by Zakharov and Shabat
[2]. Here a different construction is presented. This approach is known for a long
time: Manin [9], Date [10], maybe even earlier, since Manin refers to Drinfeld. We
just tried here to do this in the possibly most general form and connect it to the
Grassmannian and to a τ-function. In frameworks of the Grassmanian theory this
construction looks very natural.

One starts with a specification of an element W eGr. Consider a linear space
H*(D) of meromorphic vector-functions f in the domain Ω with a fixed divisor D of
simple poles bJ9 where 7 = 1,. . . , N. Collections of boundary values of these
functions, {f/J, on the circles Ck will be denoted by the same letter f, and the linear
space of them by the same symbol H*(D). This will not lead to any ambiguity.

Now, let W c ff*(D) be a subset of meromorphic functions in H*(D) satisfying
Nn conditions v(μi) ηi = Q, where i=l, . . . ,Nn9 μ/eΩ are arbitrary points, and
Ύ\i are given vector columns. Collections of their boundary values are symbolized by
the same letter W9 and this, generically, is an element of the Grassmannian. The
property ii) of the definition of the Grassmannian is self-evident. Notice that
(z — aj)~^W consists of those elements which are boundary values of meromorphic
functions vanishing at infinity.

Let us prove that the property i) is also satisfied. We have to prove that if there
is an element f={f fc}eH*, then a unique element g = {gfc}eJF can be found such
that h = f — g = {ffc — gk} = {hfc} is in H+, i.e., its analytical prolongation inside every
circle Ck exists, being ^khfc(αk) = 0. Given ffc are boundary values of a holomorphic
in Ω function f. Let g = f + b0 4- £ J= r bj(z — bj) ~ *, where bj are vectors that have to
be found, in all (N + ϊ)n unknown components. First of all we require that geJF
which is equivalent to Nn scalar equations g(μί) f7ί = 0. Then we impose one more
constraint X^=1(b0 + ̂ jLib^αjt — b<7 )~1) = 0 which gives n more equations for the
unknown coefficients, in all (N + l)n equations. Generically, this system can be
solved uniquely. After that, boundary values of bo + ̂ b/z — ft/)"1, call them hfe,
belong to H+, and g/c = ffc + hfc that implies P*g = f, as required.

We are looking for a Baker function in the form

j=ι

Here Bj are matrices. Then wk = (/ + XjΓ

= 1βχz-bJ )~ 1)expX ί φ kξ ί. We have the
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following equations for elements of the matrices Bj,

or, in coordinates,

519

where

Σ φaβ(μί)yβi=Q, α=ι,. . . ,w, ί=ι,. . . ,
j B = l

[ m oo "Ί

Σ Σ tkβi(μi-<*kΓl yiiβ
* = 1 I = 1 J

Matrices βj are determined by this equation uniquely. We have chosen a gauge
in which W; are boundary values of a function constant at infinity, therefore 3^/Wj
are boundary values of a function vanishing at infinity and {d/^/wJe^ — aj)~1W,
i.e. this is a Baker function.

Proposition. The solution to the system (14) is given by the formula

(z-bNΓlδiβ (μι-bN) 1yίl

Here A is the cofactor of the element δ^β.

(The structure of the determinant is the following. It has Nn+l rows and
columns. All the rows except the first one can be parted into N groups, n rows in
each of them. The rows, except the first one, can be labeled by j, y, where
j= 1,. . . , N and y = 1,. . . , n. The columns, except the first one are labeled by
i= 1,. . . , Nn. The non-zero entries of the first column are on the (j, β) places, i.e.,
on the jβth place in each group, and also the upper left element if α = β.)

Proof. Left-hand side of Eq. (14) is represented by a determinant where the first
column coincides with zth, hence it vanishes. Taking into account the division by Δ,
we see that Φ has a desired form / + Σjl i Bj(z — bj) ~1 Π

7. Expression of the Baker Function in Terms of τ-functions for Solitons.

The next very natural topic in this context would be a τ-function. According to the
comon definition of that, introduced by Sato et al., see [1], we could expect
a relation between the Baker and the τ functions something like
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(z-ak)
1)

τ(t)
(15)

We do not give here a general definition of a τ-function and restrict ourselves to the
soliton-type solutions. We show that in this case the formula (15) can be written for
some τ's, indeed.

In order to obtain wfc, one has to multiply Φ by expΣk ι Φ kξk ι(z) and expand it in
powers of z — ak. There are two cases i) a = β and ii) aή=β.

i) Let us transform the determinant adding the first row multiplied by
— (z — bj)~1 to allyβth rows, j= 1,. . . , N, i.e., annul all elements of the first column
except the first one. Expanding along the first column, we get that
Φββ = T \ 1 j = ί ( z ~ b j ) ~ 1 multiplied by an NnxNn determinant with the entries:
(z — μj(μf — bj) ~ lyβi on the ( β j , ί) place and (μf — bj) ~ ̂  on the (γj, i) place for γ Φ β.
An obvious identity

VL i

implies

tklβί(z-akl

where (Γ f ) with fixed k and /? is an Aίn x Nn matrix, γj is a number of a row and
ί that of a column,

fkββ _
ΊJΛ

V β '

μί-bj

yβ> '

1

ft-*/7"

if y = /i

otherwise

We denoted

kβ [ m GO i ~|

V V f Λ Λ ί \l\ί \~l

&! = !/=! * J

The factor Πj= i (z ~ ̂ j)~1 does not play any role in the dressing formula (4), it just
cancels out, Thus, except for the factor exp£fc ^,ιL\tk^ι(z — akl)~l the whole
dependence on z is in modified time variables tkίJιi->tkl7ι — δk^kδγβΓ1(z — ak)

1. This
is just what we need in order to obtain (15). Thus, a τ function for a matrix element

P, where

fkββ =

μί-ak

ft-*
yyt

if y = β

otherwise .

ii) Now the element Φαjg with α φβ. The (1/J) row multiplied by(z — b1)(z — bj)
must be subtracted from the (jβ) row, for all j= 1,. . . , N. We have

N

where
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if j=l γ = β

i f ;>i, y=β

521

(μ/-αk)(&,—&ι)~*

Ui-bjKμi-bί)
ΐ

otherwise .

The determinant detΓ^ is a τ-function for w/^, i.e., τ^^ where

otherwise.

In this particular example we obtained the following fact. There are matrix-
functions τk(t) such that Eq. (15) holds, being τ(t) = A.

It would be interesting to give a general definition of the τ-function in terms of
the Grassmannian similar to that given in a single-pole case in [4].
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