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Abstract: A general theorem is proved concerning the convergence of decomposi-
tions of exponential operators in a Banach space (or normed space). As a corollary,
the convergence of fractal decompositions is proved. The convergence of general-
ized Trotter-like formulas is also shown to result from the general theorem.

1. Introduction

In the present paper, we investigate the convergence of some systematic series of
decompositions of exponential operators [1~5] such as Q*p[x(A1 + A2 + ' • +
Aq)~\ for non-commutable operators {Aj} in a Banach space. In this note we mean
an operator by a bounded linear operator on a Banach space.

As is well known [1 ~ 11], the first-order decomposition Q(x) is given by

Q(x) = exA*exA* . . . e^'-'e304', (1.1)

i.e.,

e*u1 +Λ2 + +Λ)=ρ(x)+o(x2), (1.2)

and the second-order symmetric decomposition is given by

n / \ ^Ml ^Mβ-1 Y/4 ^Mβ-1 ^Ml (T 3^S(x) = Q2 . . . e2 q e «e2 9 . . . e2 ' v '
i.e.,

ê ι + + ̂ ) = S(x) + O(x3) . (1.4)

The above symmetry is characterized by the relation

S(x)S(-x) = l orS(-x) = S'l(x). (1.5)

In general, the mth order exponential decomposition Qm(x) is given in the form
[1-5]

Qm(x) = eX T i l A leX T l 2^2 . . . QXτl9A9QXτ2lAlQXτ22A 2 ^ ^ ^ Q^2qA.q t t m } Π β)
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with some appropriate parameters {τί7 } determined by the requirement that

+ 1). (1.7)

It is more convenient to get the mth order approximant Qm(x) of ex(^1 + ' " + AJ as
a decomposition in terms of β(x), S(x) or an sth order approximant Qs(x) as

P2X) - . Qs(PnX) (1-8)

for some appropriate parameters {pj} which satisfy the condition

+Pn = l, (1-9)

and some other relations [1 ~ 5]. Here n depends on m and n tends to the infinity as
mπ+cx). In (1.8), βι(x) = β(x) and β2(x) = S(x).

A systematic scheme to derive higher-order decompositions even up to infinite
order is given by the following recursive method [1 ~5]:

β2»(x) = β2«-2(ί»,l*)β2m-2(ί«,2X) - - - β2*-2(ίm,r*) (1-10)

with β2(x) = S(x) and

*m,l+f»,2 + * +ί».r=l and ίmΓΓ'+ίmT' + ' ' + #V * = 0 . (Ul)

For example, for r = 5, we have β2m(x) = S2m(x) for

^W = ̂ 22

m-2(ίmx)^2m-2((l-4ίm)x)S2

2

m_2(ίmx) (1.12)

with S2(x) = S(x), where the parameter ίm is given [1~5] by

It should be noted that ίm > 0 but (1 - 4ίm) < 0. Consequently, the above decomposi-
tion (1.10) shows a fractal property [1 ~ 5] in the parameter space { p m j } defined in

S2m(x) = S(pmlx)S(pm2x)S(pm3x) . . . S(pmnx) (1.14)

with n = n(m) = 5m~ 1. Namely, from the above recursive scheme (1.10), for r = 5, we
obtain

{P2j}=(t2,t2, l-4t2, t2, tz),

{Pij} = {p2j} ® (ί3, is, 1 -4ί3, is, is)

ι jί»-ι,l-4ίw-1,ίm-1,ίm-1). (1.15)

Since £m->i for m->oo, we find that \pmj\~3~m-^Q as ra->oo for any
j (7 = 1,2, . . . , 5). Thus, the decomposition parameter {pmj} in (1.14) decreases
exponentially in our fractal decompositions of exponential operators. This prop-
erty is essential in the proof of the convergence of the fractal decompositions, as will
be seen later.

Our problem is to study the convergence of the general mth order decomposi-
tion βm(x) in the limit w-»oo. Is it possible to prove, for example, the convergence



Convergence of General Decompositions of Exponential Operators 493

of (1.14) to the operator e*(Al + '" + ̂ ? If the parameters {pmj} satisfied the
condition

n(m)

£ \pmj\ is bounded, (1.16)
7=1

as in complex decompositions [1~5], then it would be rather easy to prove the
convergence. However, it is not the situation. For example, for the parameter {pmj}
in (1.14), we find

n(ni) /l\m /5\m

Σ \Pmj\~ U x5 m = - - > σ o a s m - > o o , (1.17)
j=ι W V V

because n = n(m) = 5m~1. This corresponds to the fact that the dimensionality D of
the above decomposition (1.12) with (1.13) is given by

6 . . . > l . (1.18). . . . .
log 3

Thus, the above decomposition is called the "fractal decomposition."
In general, the decomposition with parameters { p m j } is called "fractal," when

the parameters { p m j } satisfy the following conditions:

(ί) Pml+Pm2 + -'Pmn=l , (1-19)

(ϋ) \Pmj + Pmj+l + '-+Pπm\ (1-20)

is bounded uniformly for both m and j, and

n

(nϊ) ]Γ I /V/ 1 -> oo as w-»oo . (1.21)
7=1

Here, the parameter n depends on the index m, namely n = n(m). We also say that
the mth order decomposition is "of index m."

In Sect. 2, the main theorem on the convergence of decompositions is given
under some general conditions. As a corollary of the theorem, the convergence of
the decomposition (1.8) for s = 1 and s = 2 is shown under some general conditions
on the parameters {pmj}. In Sect. 3, the proof of the main theorem is given. Some
applications of the theorem are presented in Sect. 4. Summary and discussion are
given in Sect. 5.

It should also be mentioned that the above higher-order decompositions are
very useful in quantum physics, statistical physics, nonlinear dynamics, astrophys-
ics, quantum chemistry and many other fields [12~27].

2. Main Theorem

In the present section, we give a general theorem concerning the convergence of the
decomposition (1.8) or more general non-uniform decompositions in the limit
w->co. First we define an approximant of index s as follows.

Definition. A family of operators βs

(Λ(x) depending on xeC and

\'+1 (2.1)
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uniformly for any j for \x\<ε9 with some ε>0, with a positive number s and with some
positive constant Ks, all independent ofj, is called an approximant of index s.

We shall be using such a uniform family of approximants for an 5th order
decomposition of the original exponential operator ex^ with ffl given as the sum of
operators {4/}ιgjg«»

. (2.2)

Then, we have the following theorem.

Theorem. Let {Q(

s

j)(x)} be approximants of index s for the exponential operator
Qxp(x3#?) = Qxp[x(Aι + A2 + ' ' m + Aq)'] with the operators [Aj] in a Banach space.
A systematic series of approximants {Fm(x)}for exp(χjf ) constructed by the ordered
product

pm2x) - βTdux) (2.3)

converges to exp(x=?f ), namely

lim || Fm(x) - e*^ || = 0, i.e., lim Fm(x) = exj^ (2.4)
m->oo m-^oo

for all xeC under the condition that

n(m)

lim X |Pmj |
s + 1=0 (2.5)

m->oo j= 1

together with the conditions (1.19) and (1.20). The limit (2.4) is uniform provided \x\ < δ
for any positive number δ, namely in any compact region of x.

Conversely, if Qi1)W = ' ' = βίn)M = βs(x) for a strictly 5th order Qs(x) and
[Fm(x)} converges uniformly to exj^ for any operators {Aj} in a Banach space, then

lin/jrV^O. (2.6)
m -> oo j ' = 1

Remark 1. There are many different choices of sth order approximants Q(

s

l\
Q(

S

2\ . . . . As the first-order approximants

Q{1} = Q(1}(x)9 Qi2)Ξβ(2)(x), . . . , we may choose, for example,

Q^(x) = exAiexA2 . . . Q(2}(x) = exA>eA^ . . . , ____ (2.7)

Furthermore Q^ may depend also on m.

Remark 2. Here, Fm(x) is not necessarily an operator of index m.

Remark 3. This theorem can be applied to fractal decompositions in which £ . | pmj\
diverges in the limit m-»oo. It is easy to confirm the condition (2.5) for fractal
decompositions, as will be discussed later explicitly.

Remark 4. The parameter n in Eqs. (2.3) and (2.5) increases as m increases, namely
n = n(m)->ao as w->oo. The parameters {pmj} go to zero as m goes to infinity, as is
required from (2.5). However, it does not necessarily imply the boundedness of
the summation X/|pmj-|, as is easily seen from the example (1.12) in which

but |
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Remark 5. Actually the above theorem is more general. This holds for any kind
of βs( x) for s>0 and for any exponential operator exp(xJf) (not necessarily
of the type Qxplx(Aί+A2 + - ' - + Aq)']). For example, (l+xA)(l+xB),

1 and(l-x^)~1(l-xJ5)~1 can be used as βiM

Corollary 1. If we construct Fm(x) as

Fm(x) = Q(1\pmιx)Q(2\pm2x) . . . Q^(pmnχ) (2.8)

with {Q(j)(x)} of the form (1.1), namely of first order, then

limFm(x) = exjr (2.9)
m-*oo

under the condition that

lim Σ |pm/ = 0, (2.10)
m -> oo 7=1

together with (1.20).

Conversely, if ρ(1)(jχ) = - - = β<")(χ) = ρ(χ) and Eq. (2.9) holds, then

n(m)

lim ΣP£/=O (2-11)
m -> oo 7=1

Furthermore, for the real decomposition (i.e., for real { p m j } ) satisfying Eq. (1.20),
Eq. (2.11) is a necessary and sufficient condition of the convergence (2.8).

Corollary 2. For the decomposition

S2m(x) = S(pmix)S(Pm2x) - - S(pmnx) , (2.12)

we have

lim S2m(x) = ex(Al + '"+A«) (2.13)
m-»oo

under the condition that

lim £ |pmj|
3 = 0, (2.14)

m ~* oo 7=1

together with (1.20).

Conversely, if (2.13) holds, then

lim X p .̂ = 0 . (2.15)
m ->• oo 7=1

Corollary 3. ί̂ e consider the following non-uniform decomposition

?; {ί.}, {5,}) = eίlV1 VV2* . . . e^e^ (2.16)

/or ί/ιe operators A and B in a Banach space. This converges to the exponential
operator eA+B, namely

(2.17)
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if

(ί) Σ^Σ^ 1 . (2 18)
j=ι .7=1

(ii) \Pj + Pj+ί + ' ' * + P2n- ι l is bounded (2.19)

for any j and n,

and
2n~ί

lim V \pk\
2 = Q. (2.20)

«-» oo fc= 1

fe- 1 fc

Σ (*/— a/) and P2k= Σ (sj— fj) (2 21)
J = l J = l

The proof of Corollary 3 is given as follows. It is impossible to express Eq. (2.16)
as a uniform decomposition Q ( p ι ) Q ( p 2 ) Q(pτ) with Q(p) = QpAepB. However,
(2.16) can be rearranged in the following non-uniform decomposition [4]

. . . Q(p2n-1) (2.22)

with the tilde operator

(2.23)

and with the relations (2.21). Then, our main theorem can be applied to (2.22) and
we arrive at Corollary 3. From (2.20), we find that, at least, limί^lims^O for
n— >oo.

Conversely, we assume the convergence of (2.22). Then we obtain the following
necessary condition:

lim £ (p2Vι-/4HO. (2.24)
w-*oo /c= 1

In order to derive this result, it should be noted that if we can choose R(p) such that

Q(p) = Qp(A+B}ep2R(p) , (2.25)

then

(2.26)

Thus, the tilde operators {Q(p2k)} contribute to the second-order correction with
negative sign as { — pf/t} and consequently we obtain the necessary condition (2.24).

3. Proof of the Theorem

Let Q(

s

j)(x) be an exponential decomposition which is an 5th order approximant of
erf We can put ρω(x) in the form

ρ<Λ(x) = e**e*'+1Jtf.ίι<*) (3.1)

for an appropriate operator R(

s

j^(x) with (2.2). Indeed we obtain the following
lemma.
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Lemma 1. There exists an operator RS+I(X) satisfying (3.1) at least in the region
\x\ <xs (xs a suitable positive number) which is defined by the inequality

\\e-**QP(x)-n<l (3.2)
for any j.

The proof of this lemma is easily given as follows [7]. The operator xs+ 1R^ ± (x)
exists under the condition (3.2) as follows,

^βP (3.3)

Next we show that there exists a positive xs. From (2.1) and from the condition of
the theorem, Q^(x) is of index s, and we have

(3.4)

for small |x | and for any j. Thus, at least, in the region |x| <xs where xs is given by

K5x;+ 1eJ C-» j r« = l , (3.5)

there exists the operator xs+1R$ x (x). For more precise determination of the region
of x for Eq. (3.2) to hold, see Appendix. Furthermore, it is easy to show that
||K$!ι(x)|| is bounded as

(3.6)

with some appropriate upper bound Ks larger than Ks in some fixed region |x| :gxs

(which is smaller than xs). Here, xs is the solution of the following nonlinear
equation

(l-Kβ |xs |
s+1el^»^ll)e^.Γ+1 = l . (3.7)

Thus, xs depends on Ks (>KS\ and it is smaller than xs. Conversely Ks is given
by Ks = Ks(xs). Here we have used the inequality (3.4) and the following norm
inequality.

Lemma 2. For an arbitrary operator A in a Banach space,

||log(l + x^)| |^-log(l-|x|M||) (3.8)

in the region \x\ \\A\\ <1.

Using the representation (3.1) of Q^\x\ the operator Fm(x) can be written as

with the abbreviation Pj = pmj-
First we exchange the factor exp(pnχj^) with exp(pw-1x)s+1Λs

(+~1

1)(pn_1x)) in
(3.9). For this purpose, we introduce an operator W^^x, y) satisfying the relation

(3.10)

Then we have the following lemma.
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Lemma 3. There exists an operator Ws+ι(x, y) satisfying the relation (3.10) in the
region \x\<xs. It is also bounded as

II - (3.11)

The proof of this lemma is given as follows. From (3.10), we obtain

x), (3.12)

where δ#> is the inner derivation defined by

= ̂  XR (3.13)

with Kubo's notation ffl x [28]. Thus, W$ι(x, y) exists in the region |x| <xs and
the norm of W$ι(x9y) is bounded as (3.11), because

ll^(ίι(*,jOIIHIe-y*^^ (3.14)
Now we exchange the factor exp(pMxJ-f) with the exponential operator
Qxp((pn-1x)s+iR^+~1

i}(pn-1x)) as follows:

eίA-ixi ^j&Y'ίA-i*)^^ ? (3.15)

using Lemma 3 in the region |pπ-ιx|<x s, namely

|x |<x β / |p B -ι | . (3.16)

Then the factor exp(pMxJf ) can be combined with Qxρ(pn-1x^f) in (3.9) as
exP[(Pn- 1 + pw)x^] Next we exchange this new factor exp[(pn_ ± +pπ)χjf ] with
the operator exp[(pM_2x)s+1^s

(+"i2)(p«-2^)] as

e(pπ-2*)s+1^Vι2)(P,,-2*)e(^ 9 (3.17)

using again Lemma 3.
Thus, we can repeat this procedure (n — 1) times and consequently we arrive at

the following result

Fm(x) = e(pι+' ' +pn^QγίMQY2(χ) . β > QΎn(X) ? (3<18)

where

Yj(x)=(pjxY+1W$i(pjx,(pJ+1 + ' ' +pa)x) , (3.19)

for l^ j^n— 1, and

Yn(x) = (p*xY+lRftι(pnX) . (3.20)

Now, we can derive the following norm inequality

7=1

Σ II ̂ W II ^P Σ II YJ(X) II (3 21)
j = l
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Then, from (3.19) and (3.20), we obtain

pjX,(Pj+ι + ' +Pn)x)\\
7=1 7=1

\8 + 1\\RΆι(pnX)\\ - (3.22)

Here it should be noted that the parameter |p j+1 + - + pn\ in (3.22) is bounded
owing to the condition of the theorem and consequently

e2l^ι+ + Λ l W I I ^ « g £ ( χ ) (3.23)

with some upper bound E(x) for any j and m. Since || R^iM II ̂ ^s? as shown in
(3.6), we obtain the inequality

Σ \Pj\'+1(Ks\xΓlE(x)) . (3.24)
7=1

From (3.21), we arrive finally at

7=1 / \ j = l

(3.25)

The condition (2.5) of the theorem yields the desired result

lim ||e-**Fm(x)-l||=0, (3.26)
W-+00

that is,

lim ||FM(x)-e**l=0 (3.27)
m-> co

uniformly in any compact region of x, because all the parameters | PJ \ go to zero and
consequently \pjX\<xs<xs for any x, in the limit m-»oo.

If we assume the uniform convergence of Fm(x) to ex^, then the product
Qγ,(X) Qγn(X) jιas to approach the unit operator 11 for any value of x. The
(s+ l)th-order term of the product with respect to x is given by

Σ (psxr+lR$ι(0), (3.28)
7=1

because W$1(Q90) = R$ι(Q). This is reduced to

Σ pΓ l x s + 1 ^ s + ι(0) (3.29)
7=1 /

in the case when ρs

(1)(χ) = ' = Q^}(x) = Qs(x) and consequently Λs

(+)ι(0) = • =
R$1 = Rs+i(Q). Thus we obtain

n(m)

lim X piΓ=0. (3-30)
m -* oo 7=1

using PJ = pmj, because Rs + ί (0) =j= 0. If JRS + 1 (0) = 0, then Rs + 1 (x) is a decomposition
of higher order than the sth order. This contradicts our assumption.
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The above necessary condition will be also easily derived by considering the
following two-dimensional solvable Lie algebra {A, B} satisfying the commutation
relation [5, 11]

[_A,B] = aB; α φ O . (3.31)

It is well known that the following relations hold:

Qx(A + B)_ QxAQf(ax)xB _ Qf( - ax)xBQxA β 3 2)

with
ι _e~ x Y

/ W = i - - = l - + (3-33)

The representation (3.1) in our case is written as

e*VB - QX(A +1V2jR(x) . (3.34)

Equivalently

KWJ^B, (3.35)

using (3.32). Furthermore, the operator W(x, y) defined in (3.10) is given by

Qx2W(x,y) = Q-y(A + B)Qx2R(x)Qy(A + B) β 3^

in the present case. Then, we obtain

W(X, y) = Q-«y 1~/(αx) B , (3.37)
x

using the commutation relation | A + B, B\ = \_A, 5] = δAB = uB and its consequent
formula

Q-yAR(x)QyA = Q-yδ^R(x) = Q~ayR(x) . (3.38)

Thus, we arrive at the representation

J = I
" Ί

X (pJ.χ)(l-/(αpJ.χ))e~α(^1 + "' + ̂ B (3.39)
j=ι J

with the notation that pn+i+Pn = ®> Here we have used the commutability of
{W(x, >')}. By expanding the second exponential factor in (3.39) with respect to x,
we obtain

pf x2B + O(x3) (3.40)
ι / J

using (3.33). Therefore, our necessary condition is given by

n
lim Σ Pf = Q f o τ n = n(m). (3.41)

n — >• oo 7=1

The present argument using the Lie algebra can be easily extended to the case Qs(x)
to derive the necessary condition (3.30).
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4. Some Applications

In the present section, we present some applications of our general theorem to the
ordinary Trotter formula, the generalized Trotter-like formula, the unitary de-
composition and the complex decomposition. The general scheme of higher-order
decompositions is also discussed.

4.1. Trotter Formula. It is well known [7] that the Trotter decomposition

Γm(x) = (e^e^Γ (4.1)

converges to the exponential operator QX(A + B) in the infinite limit of m, namely

lim \\Tm(x)-ex(A+B>\\=Q (4.2)
m-> oo

in a Banach space.
It is interesting that this convergence (4.2) is an immediate consequence of our

general theorem. In fact, we have

with

Q(x) = QxAQxB . (4.4)

The parameters {pmj} in the theorem or more explicitly in Corollary 1 are given by

Pml=Pm2 = ' '=Pmm=- (4.5)
m

in the present case. Thus, we find that

n(m) m l

Σ |pmjl 2 = — = --»Oasm->oo . (4.6)

Clearly, {I pmj + +pmm\} are uniformly bounded for any m and j. Thus we obtain

lim Qm(x) = ex(A+B} (4.7)
m-* oo

from our general Theorem in Sect. 2. In this case, the sum J\ IPmjl is finite (namely
equal to unity) and consequently the proof of the convergence is quite easy as is
well known [7].

4.2. Generalized Trotter-Like Formulas. If we know an 5-th order decomposition
Qs(x) (i.e., of index s), namely

l ), (4.8)

then we can construct the following generalized Trotter-like formula [29, 30]

Γ / x \ Ί
>= βs -L WJ

+0 . (4.9)m
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The convergence of this formula can be also shown immediately from our general
theorem, as in the case of the ordinary Trotter formula in Sub-sect. 4.1. In fact, the
condition (2.5) of the main theorem is satisfied as follows:

n(nί) ι

lira Σ |pm/+1= lim -JTΪ= lim -=0 (4.10)
m-> o o . / = l m-»oo W m->oo ̂

for s > 0. The case 5=1 corresponds to the ordinary Trotter formula.

4.3. Fractal Decomposition. It is easy to confirm explicitly the condition (2.5) for
fractal decompositions [1~5, 22, 24, 25, 32]. For example, the symmetric de-
compositions {S2m(x)} in (1.14) with (1.15) converge to erf with J^ = A1 +

' + Aq in the limit m-»oo, because

(4.11)

as has already been discussed in Remark 4 in Sect. 2.
A more rigorous confirmation is given as follows:

n(ni) m / 5

Σ lίv>l 3 =Π Σ
j = l fc=3 \j=ί

-Π (4_4W.-.y<5

since 4i/w-u^2

2/5<2 and 43/(2*-ι><26/5<3 for fc^3 τhus we arrive at the

desired result

lim f>mj |
3=0 (4.13)

m-> oo j= 1

It is also easy to confirm that { | PJ + PJ + x + -f pn \ } are all bounded for any m and
j. They are all smaller than unity. This confirmation yields the convergence of the
fractal decomposition.

This kind of confirmation can be easily made for any other fractal decomposi-
tion as follows. In general, we consider the recursive scheme (1.10), namely

with Q2(x) = S(x) and with the parameters {tmj} determined by (1.11). Then, the
2mth order decomposition β2mW is expressed as the product of the second-order
symmetric decomposition S(x), namely

Q2m(x) = S(pmιx)S(pm2x) . . . S(pmmx) . (4.15)

Here, the parameters {pmj} are given by the "direct" product of {tktj} as {p2j} =
{t2J} and

{Pu} = { p k - ι j } ® { t k . j } , (4.16)

similarly to the explicit example (1.15).
The fractal decompositions to be considered here satisfy the condition (1.20)

and the condition that

. (4.17)
J = l J = l
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Therefore, we obtain

7 I P m / l 3 =Γ/ ,̂ I if mj I 1
7=1 k = 2 \j=l

( r \ r n - l

Σ Iί2,, l3 -0. (4.18)
7=1 /

This yields the convergence of the fractal decompositions (β2m(x)} constructed by
the recursive scheme using the parameters {tktj} or {pkj} satisfying the conditions
(1.20) and (4.17). Namely, we arrive at the uniform convergence

lim ||β2w(x)-eχjf i| =0 , (4.19)
m— >• oo

in any compact region of x for the bounded operators {Aj}.
As an example of non-uniform decompositions [4, 5], we consider here the

following multiple tilde decomposition [5]

βmW-Cδm-l(Pm^]Λ[βm-l(^x)]μ[βW-l(pmx)]' (4.20)

with the tilde operator β(x) [4,5] defined by β(x) = Q ~ 1 ( — x). Here the parameters
pm and qm are given [5] by

They have the following limits

lim p2m= lim q2m =
m-»oo m-»oo ~" t^ Γ4 99"i

lim p2m-ι = - lim q2m-ι = .
m—^ oo m—> oo r^

Here 2Λ. — μ > 1. Thus, the fractal dimensionality [31 ] of this decomposition is given
[5] by

l ' '

As was pointed out in the previous paper [5], we have 1 <D<2 and

lim£> = l . (4.24)
λ-* oo

The above decomposition is reduced to the ordinary Trotter formula in the limit
λ -»oo. The condition (2.5) in the decomposition (4.20) is reduced to

m / r
2 i , . | x , | 2\

Σ IP»/= Π Σ IPwl 2 = Π (2λ\Pk
j = l

for 2λ — μ> 1. Thus, we obtain

lim ||βm(x)-e^1+ "+^)||-0 (4.26)
m—> oo

uniformly in any compact region for x for the bounded operators {Aj}.
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4.4. Unitary Decomposition. In quantum mechanics, the unitary operator
G\p(itJ^/h) with the hermitian operator 3? plays an important role and it is often
decomposed in the form (2.3) with x = it/h. The condition (2.5) is the same for real
fractal decomposition and for unitary decomposition. Of course, the proof of the
convergence for the unitary decomposition is easily found [22] without using our
general theorem, because ||exp(zίJ f/ft)|| = 1.

4.5. Complex Decomposition. We consider the following recursive scheme

β»(*) = β«-l(PmlX) - . . βm-l(PmrX) (4-27)

withβ2(x) = S(x),

ΣP«J=! and Σ p £ = 0 . (4.28)
j = l 7 = 1

In particular, we discuss the following complex solution [1~3, 22]

P«ι =P«=

1+e. π/m = 1 ~p™2 (429)

for r = 2, or more generally we consider the situation [22] in which s parameters of
{Pmj} take the same value pm and the remaining (r — s) parameters are equal to p'm.
Then, from (4.28), we obtain

l/m gί'π/w

(4JO)

with
f r — s

(4.31)

Clearly, these parameters approach the Trotter limit:

lim pm= lim p'm = - . (4.32)

Now the condition (2.5) is confirmed as

Π Σ I P w l 3 = Σ
k=3j=ί k=3

l+fl f c

(1 + α,)3 cos3(π/2k),

(4.33)
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where we have [22]
oo 1

M = Π - 7 — N- is finite > (4 34)
fc = 3

even in the limit m-»oo. On the other hand, we have

>0. (4.35)
/C-+QO S

Then, we arrive at the result

lim I I > I DI I — Π f4 ^6^11 Z-i \"kj\ —u 5 ^t.ju;
m-» oo k = 3 j= 1

because
m ι I «3

= 0 (4.37)
m-oo fc = 3

for 0<α f c<oo.
It is also easy to confirm the condition (ii) in (1.20) in the above decomposition.

Thus, we arrive at the uniform convergence

lim \\Qm(x)-ex(Al+'" + A }\\=0 (4.38)
m-» oo

in any compact region of x for the operators {Aj} in a Banach space.

5. Summary and Discussion

In the present paper, we have found a general theorem concerning the convergence
of decompositions of exponential operators in a Banach space. The general the-
orem gives the proof of the convergence of the Trotter formula, generalized
Trotter-like formulas, the real fractal decomposition, the unitary decomposition
and the complex decomposition. Namely, our general theorem gives a unified proof
of the two limits m-»oo and s— > oo for the approximants {\Qs(x/m)']m} The first
ordinary type of convergence is easy to prove. The second new type of convergence
has been studied for the first time in the present paper.

Since the convergence of the fractal decomposition (1.11) is proved, a more
accurate bound is obtained easily in the form

for small |x| with some approximate constant L2m, using the recursive scheme
(4.14).

The present theorem can be easily extended to the following non-uniform
decomposition



506 M. Suzuki

under the condition that

Mm Σ^m/+min(5l *' '^ = 0 . (5.3)
m ->• oo 7=1

It should be remarked here that the condition (2.5) with an index s is stronger
than that with an index s' larger than s. Namely, if lim^^|pϊn<; |

s+1=0, then
Pmj\s> + 1=Q f°r s<s\ as it should be.

The general theory to construct higher-order decompositions has been pro-
posed by the present author [3, 5] to give equations to determine the parameters
{Pmj} using Kubo's symmetrization operation [28] and the time-ordering opera-
tion. The minimal number rmin of the products of decompositions is given in this
theory in terms of the free Lie algebra and the Mobius function [3, 33].

It is rather difficult to determine the parameters of non-uniform decomposi-
tions such as (2.3) and (5.2), even if we use the general theory of decomposition [3],
except for multiple tilde decompositions of the form (4.20).

The fractal decomposition has always some negative parameters [1 ~4] among
[Pmj}> but it can be applied even to irreversible processes such as nonlinear
diffusion processes described by the Fokker-Planck operator. Even if the oper-
ators {Aj} in (1.7) are not bounded, the present higher-order decomposition (1.7)
can be defined in a restricted space such as the L2 space in which operands or
functions are restricted so that the relevant operators may be well defined [34].

The present higher-order decomposition may be called the "exponential per-
turbation expansion," which preserves the symmetry of the original exponential
operator such as the unitarity in quantum mechanics and symplectic property in
Hamiltonian dynamics. Our theorem can also be applied to the inner derivation

δ# = **
The present theorem gives the foundation of the fractal path integral [1 ~5]

based on the fractal decompositions (4.13) and (4.20).
It will also an interesting problem in the future to study explicitly the magni-

tude of the correction term (Fm(x) — e*^) in the whole range of x.
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Appendix: On Lemma 1

Here we discuss the condition (3.2) more explicitly.

A-l) If Qι(x) = Q(x) = exAί . . e*\ then we have

) . (A.I)

Here ̂  denotes the projection operator [7] defined by

oo f(W(Γ)\

&nf(χ)= Σ -τrχίl <A 2>
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The notation \\Jtf* \\q is also defined by

\ \ ά f \ \ q = Σ \\Aj\\ (A.3)
7 = 1

Thus, the region of x for the inequality (3.2), namely

\\Q~XJ^Q(x) —ft1| < 1 (A.4)

to hold is, at least, given by |x |<x 1 ? where x1 is given by the solution of the
equation

Clearly we have

2 q

A-2) For Q2(x) = S(x\ we have

1
, (A.7)

and consequently we obtain y2>yι >0.

A-3) In general, for Qs(x), we obtain

— ll^sV^ c n Je 2e 21 . . . j II

/ ^ \
^s(ey(x)); y(x) = x ( ||«#ΊI + Σ \τu\ Mj l l ) - (A 8)

Thus, we have
s 1

e » = l + Σ jyt f (A.9)

Then, we have ys > ys _ i > y2 > yi > 0.
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