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Abstract: A quantum analogue of the group SC/(1, l)xZ2 - the normalizer of
SU(l, 1) in SL2(C) - is introduced and studied. Although there is no correctly
defined tensor product in the category of ^representations of the quantum algebra

)]β of regular functions, some categories of * -representations of
l, l)xZ2]g turn out to be endowed with a certain Z2-graded structure

which can be considered as a "super"-generalization of the monoidal category
structure. This "quantum effect" may be considered as a step to understanding the
concept of quantum topological locally compact group.

In fact, there seems to be a family of quantum groups SU(l, l)xZ2 para-
meterized by unitary characters βeT1 of the fundamental group of the two-dimen-
sional symplectic leaf of SU(l, 1)/T, where T is the subgroup of diagonal matrices.

It is shown that the quasi-classical analogues of the results of the paper are
connected with the decomposition of Schubert cells of the flag manifold SL2(C)R/B
(where B is the Borel subgroup of upper-triangular matrices) into symplectic leaves.

1. Introduction

The theory of quantum groups arose out from the quantum inverse scattering
method (QISM) developed by L.D. Faddeev's school. The fundamental concepts of
the theory were developed by V.G. Drinfeld (cf. [1]). Other approaches to quantum
groups can be found in [3,4, 15, 23].

Let us take the Hopf algebra of regular functions on a quantum algebraic
complex group. A Hopf *-algebra structure on it is referred to as a real (when
geR\{0}) or an imaginary (when \q\ = 1) form of the quantum algebraic complex
group2.

The notion of quantum topological real group is generally believed to involve
some topological Hopf *-algebras which could become the analogues of algebras of

1 Supported by the Rosenbaum Fellowship.
2 A more general approach to the notion of real and imaginary forms can be found in [14].
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continuous functions. Thus, S.L. Woronowicz found in [23] a successful axio-
matics for quantum compact groups in the language of Hopf C*-algebras.

As to the quantum non-compact groups, no axiomatics does still exist, although
some positive results have been obtained, those which do not require necessarily
any topological algebra of functions. One can mention, for instance, harmonic
analysis on the quantum group 5(7(1,1) developed in [9,10, 22].

Nevertheless, an attempt undertaken by S.L. Woronowicz in [24] to construct
the quantum group 5(7(1,1) on the C*-algebra level has led him to a result of
inexistence. Actually, this negative result is based on the fact that there is no
correctly defined tensor product in the category of *-representations of the quan-
tum algebra C[5(7(l, 1)]^ of regular functions.

Without giving any complete axiomatics in the present paper, I have tried
to look at the picture from a bit different point of view. The result is a certain
"quantum effect" observed in the paper which shows that, although a quantum
group 5(7(1,1) does not exist on the C*-algebra level, one can possibly consider
the quantum group 5(7(1, l)xZ2 in a certain sense. Let me explain the general
idea.

An intuitive reason why we would have been glad to have something like
a tensor product in a category of *-representations of the quantum algebra of
regular functions is a desire to have a quantum analogue of the group multiplica-
tion (as far as representations of the quantum algebra of functions correspond to
symplectic leaves).

As to quantum compact groups, the tensor product is obviously correctly
defined, since the quantum algebra of regular functions is represented always by
bounded operators. In the case of the quantum group M(2) of the motions of the
Euclidean plane (cf. [8,24]), the tensor product also can be correctly defined
(because of another reason, though), and this very fact made it possible to construct
in [24] the quantum group on the C*-algebra level.

When we go onto quantum non-compact groups, the problem becomes quite
untrivial because the quantum algebra of regular functions is represented usually
by unbounded operators.

While in the case of the quantum group M (2) this difficulty can be overcome, it
is impossible to define correctly tensor product of two infinite-dimensional irredu-
cible ^representations of C [5(7(1, 1)]^, since a certain symmetric operator cannot
be extended to a self-adjoint one in accordance with the other operators of the
representations, as was shown in [24].

However, there is a certain extension of the point of view. It involves two
principal steps. First, one should go onto the quantum group 5(7(1, l)xZ2, the
normalizer of 5(/(l, 1) in 5Z,2(C). Second, one should abandon, at least for a while,
the C*-algebra level and look for some already existing structure on the category of
^representations of C[5(7(l, l)xZ2]β.

Is there no natural monoidal category structure? Well, but there is another,
a bit surprising, structure which is worth considering. One should just notice it.

The Poisson Lie group NSZ/2(C)(5(7(1, 1))~5(7(1, l)xZ2, the normalizer
of 5(7(1,1) in 5Z2(C), is the union of two connected components

5(7(1, l)u5(7(1, l) w of 5L2(C) where w = f V But first a couple of nota-

tion remarks. v y

Throughout the paper we use the following shortened notation:
91+ =C[5(7(1, 1)] where <R+ =(<R, *), 9t = C[SL2(C)]β. The quantum analogue
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of the algebra of regular functions on the left coset SU(l, 1) w is the *-algebra
9ί_=(9ΐ ?#) introduced in Sect. 2. Then, S = $R+Φ9Ϊ_ can be equipped with
a Hopf *-algebra structure, and may be thought of as the quantum algebra of
regular functions on SU(ί, l)χZ2 (denoted also © = C[St/(l, l)xZ2]β).

The main observation of the paper is as follows. For each given βeR/Z, one can
consider a certain subcategory <£ft of the category of ^representations of 6. Given
infinite-dimensional irreducible ^representations πf , π2 of 91+ from ,̂ one can
define a He-representation

πί ®π 2 ®π~ ® π2 (1.1)

of 9ΐ + c= ® from ,̂ and a *-representation

π ί ® π 7 θ π ~ ® π + (1.2)

of 9ί _ G S from ̂ , although each direct summand in (1.1), (1.2) cannot be correctly
defined.

The arising structure might be treated, for instance, as follows. Given a pair
σ l s σ2 of ^-representations of © from ,̂ one can consider a set P(σ1? σ2) which
parameterizes "different" (in the sense of a certain equivalence relation) tensor
products of σi and σ2:

For instance, P(n\ 0 π^, π2 0 π^ ), as is easy to see, consists of just one
element. If P(σ± , σ2) = 0, this means that there is no tensor product of σ^ and σ2 . In
general, the "different" tensor products are parameterized by different "means" of
assignment a term of the form "π+ ® π±?' to each term of the form "π~ ® πτ."

Remark. The categories ^ are parameterized by unitary characters βeT1 of the
fundamental group of a non-degenerate symplectic leaf of the flag manifold GR/£,
where B is the Poisson subgroup of upper-triangular matrices (see the present
paper). In fact, β seems to parameterize a family of quantum groups SU(l, l)xZ2.

Now I would like to say a few words about the principal tool of the paper,
namely, the quantum adjoint actions of quantum algebra of functions. Thus, the
construction of the ^-representations (1.1), (1.2) is given through some geometric
realization where the quantum adjoint actions of 9ί+ (left and right) play a princi-
pal role.

Note that the quantum adjoint actions are defined for arbitrary Hopf algebra.
However, they are quite used to be considered only in the case of quantum (or
classical) universal enveloping algebras. That is why I would like to stress that
throughout the paper we consider the quantum adjoint actions only of a quantum
algebra of functions.

The *-algebra 91 _ mentioned above is an example of what I call a shadow of
9ϊ + -bimodule *-algebra in the present paper, a term which I use mainly for
convenience in order not to repeat too many words each time. This term means the
following. The left and right quantum adjoint actions ad^ and ad^ make 9Ϊ+ into an
9ϊ+-bimodule *-algebra3. Roughly speaking, that 9t_=(9l, #) is a shadow of

3 That is, both a *-algebra and an 91 + -bimodule with compatible structures, see [7,10,11]
and Sect. 3 of the present paper.
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9ί+ = (9ί, *) means that ad^ and ad^ make 91 _ into an 9l + -bimodule *-algebra as
well (although 9ί_ is not a Hopf *-algebra).

As to the general case of a real form G0 of a quantum simple complex Lie group
G, the shadows of C[G0]^ are shown to be parameterized by the finite abelian
group W = ΛfG(Go)/G0, where NG(G0)~ G0 x W is the normalizer^>f G0 in G. They
are "bricks" in the construction of the Hopf *-algebra C[G0x W~]q.

We will observe that the shadows are nothing but quantum analogues of
algebras of regular functions on the connected components of G0 x W.

The quasi-classical analogue of the left (or right) quantum adjoint action of the
quantum algebra of functions is the local right (or left) dressing action of the
Drinfeld's dual Poisson Lie group G* on G0 (or on G^xW) respectively. The
geometric realization of the He-representations (1.1), (1.2) constructed in the paper
implies the following quasi-classical picture.

Namely, the quasi-classical analogue of some important special case of the
^representation (1.1) is the global right dressing action of G* on a Schubert cell
(namely, C czCP1) of the flag manifold GR/B (namely, CP1) (or the global left
dressing action of #\GR), while that of each direct summand of (1.1) is the local
right (left) dressing action on the corresponding non-degenerate symplectic leaf of
the Schubert cell (namely, the inner and the outer part of the unit disc). The fact
that those direct summands cannot be correctly defined corresponds to the fact
that the above-mentioned local action cannot be extended to a global one (recall
that SU(l, 1)* acts on C by translations and dilations).

Remark. Note that, if G0 is compact, Schubert cells of the flag manifold are always
symplectic manifolds. But if G0 is non-compact, this is not the case.

The structure of the paper is as follows. First of all, note that throughout the
paper <?eR\{0}, \q\<l.

In Sect. 2 the main objects 9ί+ and Q are introduced, and their irreducible
*-representations are described.

In Sect. 3 the notion of module *-algebra and an auxiliary notion of its shadows
are introduced and studied. The results obtained here are applied in Sect. 4 to the
case of the quantum algebra of regular functions on a real form G0 of a quantum
simple complex Lie group G. The shadows of C[G0]^ are described and the Hopf
*-algebra C[G0x W\ is constructed.

Throughout Sects. 5 and 6 we suppose G0 = SU(l, 1). Here the geometric
realization of the "tensor products" (1.1), (1.2) is obtained. In Sect. 7 we consider the
quasi-classical picture. Appendix is devoted to the proof of Theorem 6.4 (about the
decomposition of the ^representations (1.1), (1.2) into irreducible ones).

Remark. A similar effect takes place in the category of He-representations of the
quantum universal enveloping algebra i/€su(l, 1) that certain sums of tensor
products can be correctly defined, while each of the summands cannot (announced
in [11]).

2. Algebras 91+, β and their ^-Representations

Throughout the paper geR\{0}, \q\ < 1.
Recall that the Hopf *-algebra 91+ = C[S£7(1, l)]β is the pair (9Ϊ, *), where

9ΐ = C[SZ2(C)]<z (cf [1]) is the Hopf algebra generated by all the matrix elements
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of finite-dimensional representations of the quantum enveloping algebra Uq*l2(C)
(cf. [1, 4]), * is the antilinear involutive algebra antiautomorphism and coalgebra
automorphism of 91 given below.

Recall that 9ί is generated by ttj (ij=l, 2) and the relations

22 — ̂ ^22^12? ^21 ^22 ~ ̂ 22^21 5

(2.1)

Λ = l , 2

1 *22

where A is the comultiplication, S the antipode and ε the counit (cf. [1]).
The antilinear involutive algebra antiautomorphism * given by

f*ι = *22, * 1*2 = #2i (2.2)

equips ${+ with a Hopf *-algebra structure, i.e. the following conditions are
satisfied (what is referred to as *'s being coalgebra automorphism):

(ab)* = b*a*, Δ(a*) = Δ(a)* ,

ω (a) =

for each α, be 91 where

(cf. [3,9,10,16]).
The quasi-classical analogue of 9ί+ is the algebra of regular functions on the

real Poisson Lie group SC/(1, 1) considered as the pair (SL2(C\ ω), where ω is an
involutive antiholomorphic Poisson Lie group automorphism of SL2(C) such that

Consider the *-algebra 5R_ =(5R, #) where $ is the antilinear involutive algebra
antiautomorphism of 9? given by

ίii = -ί*ι - -Ϊ22, tl2=-tΪ2=-qt21 (2.3)

(note that if is not a coalgebra automorphism, so that SR_ is not a Hopf *-algebra).
It is easy to see that the quasi-classical analogue of 9Ϊ_ is the algebra of regular

functions on the left Poisson coset 517(1, 1) weSL2(C) where w = (

We will see that ^-representations of 9ί± are usually given by unbounded
operators. That is why one should carefully introduce the notion of ^representa-
tion of 91+.
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2.1. Definition. Suppose that 91 is a *-algebra, £> a Hubert space. A left (right)
^-module V dense in § is called unitarizable left (right) ty-module i f 4

(a v1,v2) = (v1,a* v2) (2.4)

for each

Throughout the paper we put x = ί12 12\ . This element generates the subalgebra
of spherical functions (see [9, 10, 22]).

2.2 Definition. A unitarizable left (right) %{±-module V is called self-adjoint if the
operator defined on V by the action of a admits closure (denoted σv(a))for any αe$R± ,
and the operator σv(x) is self-adjoint.

2.3 Definition, (i) Two self-adjoint unitarizable left (right) 9? + -modules V and V are
said to be closure equivalent if σv(a) = σv>(a)for any αe$R±.

(ii) A ^-representation o/9ΐ+ is a closure equivalence class of self-adjoint unitar-
izable left 9l±-modules (right ones give rise to *-antirepresentations).

(iii) We say that a ^-representation σ is irreducible if any representative ofσ in the
corresponding closure equivalence class is irreducible, and that σ is unitarily equiva-
lent to σ' if there exist such representatives V and V ofσ and σ' respectively that V is
unitarily equivalent to V.

The category of unitarizable left 9ί+ -modules admits tensor product. Given two
unitarizable left 9^-modules V{ (it= ±, i= 1, 2), one can define the unitarizable left
9lίll2 -module FI <g) V2 as follows:

a: v1 ® v2\-^A(a) (vί (x) v2)

for each αe$R I l ϊ 2, t^-eK; (i = l,2).
But they are of no use if we want to construct a quantum topological group

because of an abnormally immense set of unitary equivalence classes of irreducible
unitarizable left 9ΐ± -modules.

However, ^-representations in their turn have a property which is able to drive
away from further investigations. As is shown in Sect. 6, given two * -representa-
tions π1 ? π2, the unitarizable module Kπι ® VΈ2 is not self-adjoint in general. More-
over, there does not exist a self-adjoint unitarizable left module V which extends
this tensor product within the same Hubert space, i.e. such that
V 6h V c-Vc-^—Ί/ 6d Vrπ ι 09 y K-i <— V *— Ό— vκ\ to' * π 2

The idea how to overcome this obstacle is outlined in the introduction and
realized below in this paper.

2.4. Proposition, (i) Each irreducible -^-representation 0/9Ϊ+ is unitarily equivalent
to one of the following:
• one-dimensional ^-representations ζφ (φe[0, 2π)), given by

n ίi2\ (eiφ 0

ι W V O e-

infinite-dimensional ^-representations πj' (^ ) (φe[Q, 2π), βe( — 2, 2)) given by

4 The dot is the notation for the action on the module.
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1 , (2.5)

where {el }fceZ is an orthonormal basis of the space of representation (called canoni-
cal).

(ii) Each irreducible ^representation o/9ί- is unitarily equivalent to one of the
infinite-dimensional ^representations πφ (<pe[0, 2π)) given by

πφ(ί2 2): ^^(<T 2 *-l)-ι , (2-6)

w/iere (efe~ }fcez+ is an orthonormal basis of the space of representation (called
canonical).

The proof is quite standard and based on the idea that, given an irreducible
* -representation π, the spectrum of π(x) is the closure of a segment of a geometric
progression with multiplier q2 (because of ί 1 ιx = ̂ 2xί11, £2 2x = q~2xt22)-

Thus, we see that

where W+ =

Remark. Denote Vφ'(β) and Vφ the self-adjoint unitarizable left modules gener-
ated by {4 1/cGZ and {eϊ }/ceZ+ respectively.

Consider the *-algebra S = 9ί+091_. It is easy to check that it can be
equipped with a Hopf *-algebra structure as follows:

A (a, 0) - X (4, 0) ® (αί', 0) + Σ (0, αί) ® (0, αί') ,*; &
J (0, α) = Σ (αί , 0) ® (0, αί ) + X (0, aί) ® «, 0) ,

k k

S(a,b) = (S(a),S(b)\

(α, be9i) whenever zl(a) = ̂ fc

 αfe ® ak
The Hopf *-algebra ® is a quantum analogue of the algebra of regular

functions on the Poisson Lie group SU(l, l)uSi7(l, 1) w^SC/(l, l)xZ2, the
action of Z2 on St/(l, 1) given by conjugation by w, which is nothing but the
normalizer of Sί/(l, 1) in SL2(C).

The general construction of 91 _ and S will be given in the subsequent two
sections.

We call a unitarizable left S-module ^representation, if its restrictions to both
91+ and 9ί_ give rise to He-representations of 91 +. It is easy to see that each
* -representation of S is the direct sum of its restrictions to 9Ϊ+ and 9{_ , and the set
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of unitary equivalence classes of irreducible ^-representations of ® is just the union
of those of <R+ and 9ί_.

Note that irreducible ^representations of 9ί+ and 9J_ are pairs (Σ9 βΣ\ where
Γ is a symplectic leaf of SU(l, 1) or St/(l, 1) w respectively, fc is a character of the
fundamental group π±(Σ) of the leaf. Their quasi-classical analogues are realized in
the sections of the corresponding linear bundles.

ίeiφ 0 λ
In particular, ζφ corresponds to the one-dimensional leaf I . 1, while

Kφ'(β) corresponds to the pair (Σφ,βeR/Z)9 where Σ+ is the two-dimensional
symplectic leaf of St/(l, 1) given by ί12 Φθ, arg t12 = φ (note that Σφ is equivalent to
the outer part ^+ = {zeC | |z| > 1} of the unit disc). At last, Uφ corresponds to the
two-dimensional symplectic leaf Σ~ of SU(l, 1) given by ίι2Φθ, argi12 = <p (note
that Σφ is equivalent to the inner part @-={zeC\\z\<l} of the unit disc).

It is a little bit more convenient to parameterize irreducible ^representations of
© by quadruples (</>, C, Σ, fe), where φ corresponds to a point of the maximal torus
T0 c 5(7(1,1) of diagonal matrices, C is a Schubert cell of the flag manifold
SL2(C)κ/B~CP1 (where B is the Borel subgroup of the upper-diagonal matrices),
namely, {00} or C, Σ is a non-degenerate symplectic leaf of C (that is, such that
dimΣ = dimC), namely, {00} or 2+ respectively, βΣ is a character of π1(Σ). The
non-degenerate symplectic leaves of the flag manifolds are the images of the
corresponding symplectic leaves of SU(1, l)xZ2 dSZ,2(C) via the canonical pro-
jection.

Remark. From now on we βx β and consider the subcategory Ήβ of such *-
representations of ® that the spectrum of σ(x) is a subset of 9Jl(/) u9Ml 1 u {0} for
each ^-representation σ from .̂ Sometimes β will be omitted for convenience in
such expressions as π<J'(/?), Vφ'(β) and the like.

3. Module *-Algebras and Shadows

The construction of 91 _ is based on the notion of module *-algebras and an
auxiliary notion of their shadows. Namely, as is shown below, 9Ϊ+ is equipped with
a natural 9ϊ+-bimodule *-algebra structure given by the left and right adjoint
actions adq and ad^. We will see that 91 _ is nothing but the only non-trivial shadow
of this 9ΐ+-bimodule *-algebra. We will show in the subsequent section how this
construction might be generalized to the case of arbitrary real form of a quantum
simple complex Lie group.

Recall first the notion of 2I0 -module *-algebra (which can be found also in
[7, 10, 11]). Throughout the paper we suppose that all the algebras are "good
enough" (that is, satisfy some very natural conditions).

3.1. Definition, (i) Suppose that 2F is both a *-algebra and a left (right) ^-module.
Then, 2F is called left (right) *H0-module *-algebra if

• the multiplication map m: 3F ® 3F -^>3F is an tyίQ-module morphism,
• The ̂ -structures in 9I0 and ̂  are compatible in the following sense:

(a f ) * = ώ(a) f* (3.1)

for each αeSIo*/^^ where ώ(a) = (S(a))*.
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(ii) Suppose that J^ and J^ we left (right) W^-module algebras. A map
A: 3F± -*3?2 is called left (right) tyi^-module *-algebra morphism if A is both an algebra
*-homomorphism and a left (right) W0-module morphism.

Remark. Suppose that 91 is a Hopf algebra, ̂  is both an algebra and a left (right)
2ί-module. The definition of left (right) ^-module algebra can be obtained by
removing all the symbols '*' and the condition (3.1) from the above definition.

3.2. Definition, (i) Let ^ be a left (right) ^-module algebra, (<F, *) a left (right)
WQ-module *-algebra. If a *-algebra (2F, #) equipped with the action of 21 on
^ becomes a left (right) ^-module *-algebra, we will call it left (right) pre-
semishadow of' (2F, *).

Two left (right) pre-semishadows are called equivalent if they are equivalent as left
(right) $l0-module *-algebras.

(ii) A left (right) pre-semishadow (2F, #) of(^, *) is called left (right) semishadow
if there exists at least one unitarizable left (right) (J ,̂ $)-module.

3.2.' Definition. Let (2F, *) be a ^Q-bimodule *-algebra. If a *-algebra (2F, #) equip-
ped with the left and right actions 0/2I0 becomes both a left and a right semishadow of
(2F, *), we will call it shadow of(3F, *).

One of the examples of 2I0-module *-algebra is the algebra of functions on
(quantum) real G0-spaces where G0 is a real Lie group.

Recall that in the reasonable examples one can take 930 ̂  ̂ o so that the Hopf
*-algebra structure on $X0 induces a Hopf *-algebra structure on 330 as follows:

>-<ξ, α*> , (3.2)

where α, be^I0, ξ, ^/eΦ0? <•>•>: ®o ® ί̂o ^^o ® ^o~^C is the natural pairing.
Recall the left and right 230 -module *-algebra structures on 910 given by the

well known right regular representation and the left regular antirepresentation
respectively:

ξ , Δ ( a ) y , ^(ξ)a = (ξ ® id,

where
When 9I0 — C[G0]^ is the quantum algebra of regular functions, we can put

®o = UqQo = (UqQ, *). In this case ̂  and JSf are the quantum analogues of the right
and left regular representations of G0 in functions on G0 respectively.

Remark. Note that the left or right semishadows of C[G0]β with respect to ̂  or
JSf are easily seen to be the quantum analogues of the algebras of regular functions
on Poίsson right cosets gG0 c= GR or left ones GQg (where #eGR) respectively.

Therefore, if we consider C[G0]g as the corresponding ί/5g0-bimodule *-
algebra, its shadows correspond to the connected components of the Poisson Lie
group JVG(G0), the normalizer of G0 in GR.

The following example of 9I0 -module *-algebra is of a particular interest for us.
The proposition given below is a direct consequence of the definition of Hopf
*-algebra.



442 L.I. Korogodsky

3.3. Proposition. Let 2Ϊ0 be a H°Pf *-algebra. The left and right quantum adjoint
actions &dq and ad'q 0/2I0 on itself given by

k k

whenever J(α) = ̂ f c αk® α('(α, be9l0) equip 210 vviίh an ^Q-bimodule *-algebra
structure.

This case is considered in the present paper for quantum algebras of regular
functions on real quantum groups. Some simple examples follow.

Example 7. It is easy to show that 9ί+=(9ί, *) and 9l_ =(91, #) are the only
pre-shadows (and shadows) of 9Ϊ+, and that they are not equivalent.

Example 2. Consider C[Sί/(2)]β = (9l, ti), where lq is given by
k) t)

ίll — ^22? ^12— ~9t>2\

It is easy to see that the only pre-shadows of (91, t|) are (9Ϊ, t|) and (91, b), where b is
given by

.b _ Λ _ b _ H _
t i l — ~~Γ11 — ~~z:22> Γ12 — ~Γ12 — <?t21

However, (91, b) is not a shadow because of

-l. (3-3)

We will see later that, when G0 is compact, C[G0]g has only one shadow,
namely, itself (the situation is trivial).

Denote X the subgroup of non-zero group-like elements of 21*, that is, X = {te
2ί* I ίΦO, Δ(t) = t ® t}. Denote X0 the subgroup of non-zero Hermitian group-like
elements of 21? , that is, X0 = {teX \t* = t}.

3.4. Theorem, (i) (21, #) is a left or right pre-semishadow o/2l0 = (2I, *) if and only if
there exists ί0e2o such that

* = *°^(ίo) or % =

respectively.
(ii) Left or right pre-semishadows (21, if) and (21, 4) are equivalent if and only if

there exists ίe3 SMC/I that

ϊ=@(t)*%°@(Γ1} or ϊ =

respectively.
(iii) (21, #) is a left (or right) pre-semishadow o/2l0 wiί/z respect to adρ (or ad^)

ϊ/αwd ow/y z/iί is a right pre-semishadow with respect to <£ (or a left one with respect
to dt\

The theorem immediately follows from the following easy lemma.

3.5. Lemma. Let 2ί be a Hopf algebra, and suppose that 21 is equipped with the left
or right ^-module algebra structure given by &dq or adq respectively. A linear map
y : 21 -> 21 is a left or right ^-module algebra automorphism if and only if there exists
ίeX such that y = $(t) or y = ^f(t) respectively.
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Remark. From now on we call left (right) (pre)-semishadows and shadows of
210 with respect to the left (right) quantum adjoint action simply left (right)
(pre)-semishadows and shadows without a special reference to the action.

3.6. Theorem. The left pre-semishadow (21, #,) is a left semishadow if and only if there
exists we21* such that ί = ω(w~ 1 )w, ε(u)=l5.

3.7. Corollary. (21, #) is a shadow if and only if there exists we21* such that
ώ(w~ 1)we3o where 3o is the intersection ofZ0 and the center 0/21*, and

4. The Normalizer of a Quantum Real Form

Let GO be a real form of a simple complex Lie group G such that there exists
a compact Cartan subgroup of G0

6, g0 and g the Lie algebras of G0 and G respec-
tively. Recall that ^ = {ξe^\ωQ(ξ)= -ξ* = ξ } and G0 = {#eG|ω(#)-#}, where
ω0 is an antilinear involutive automorphism of g, and ω is the corresponding
antiholomorphic involutive automorphism of G.

Choose a compact Cartan subalgebra t c g0, and let fy = t φ it be the corres-
ponding Cartan subalgebra in g. Let g = n + © ϊ) φ n_ be the Cartan decomposi-
tion of g with respect to t) (which depends, of course, on the choice of positive
roots).

Throughout the paper we consider the standard Poisson Lie group structure on
GO given by the Manin triple (g^, g0, g*) where g* = tι+ © it. Both g0 and g* are
isotropic with respect to the non-degenerate symmetric bilinear scalar product on
0R given by imaginary part of the Killing form (the definition of Manin triple can be
found in [1]).

The quantization of this Poisson Lie group structure is the quantum algebra
2lo = C[G0]β of regular functions. Recall that S10 = (2I, *), where 2ί = C[G]β is the
Hopf algebra generated by matrix elements of finite-dimensional representations of
the quantum universal enveloping algebra UqQ (cf. [1]), * = S°ώ, where ώ is the
quantization of ω0. Various concrete examples of quantum real forms (and imagi-
nary ones, that is when \q\ = 1) can be found in [3].

Remark. Note that, if we consider the standard Poisson Lie group structures
described above with respect to different choices of positive roots of f), we get, in
general, non-isomorphic Poisson Lie groups parameterized by W/Wi, where W is
the Weyl group of g with respect to f), W^ is a subgroup of W described below in the
section.

For instance, when G = $Lm + n(C\ G0 = SU(m, n\ the non-equivalent standard
Poisson Lie group structures on SU(m, n) give rise to non-isomorphic quantum
algebras of regular functions introduced in [3] and denoted there by

5 For right semishadows the condition looks as follows: t = uω(u 1).
6 This condition is necessary to consider a quantum real form (that is, when geR\{0}). For

instance, in the case G0 = SLn(R) (cf. [3]) we would have a quantum imaginary form instead (that
is, when \q\ = 1).
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C[SU(±l, ±1,. . . , ±l)]β, where the number of pluses and the number of
minuses are m and n respectively.

We consider the following real Poisson Lie group structure on the real group
GR. Namely, we see from the above Manin triple that gR is the double Lie algebra
with respect to g0. The induced real Poisson Lie group structure on GR is given by
the Manin triple (gR φ gR, gR, g0 Θ 9*)> where gR is embedded into gR © gR as the
diagonal.

Recall that the subgroup of zero-dimensional symplectic leaves of G0 is the
maximal compact torus Γ0 = expt, and that of GR is the maximal torus Γ=expf).
The center Z0 of G0 (which coincides with the center of G in the case when there
exists a compact Cartan subgroup of G0) is a finite subgroup of Γ0.

As is well known, there exists a natural isomorphism i:Z-+Tsuch that tϊ0 = Γ0

and t3o = Z0, where 3o is the intersection of X0 with the center of 2Ϊ*.
Given a left (or right) pre-semishadow (C[G]^, #t), (ίe£0> consider its quasi-

classical analogue (C[G], fly)> where tr = Ί(t\f^'(g)=f(ωt'(g)~l\ ωt>(g) = ω(gt') (or
ωt>(g) = ω(t'g) respectively). As follows from Theorem 3.4.(iii), the set of equiva-
lence classes of irreducible ^-representations of this Poisson algebra, i.e. the set
Xt> = {geGχ I ωt'(g) = g}, must be either empty or coincide with a Poisson left coset
G0u c GR (or a Poisson right coset uG0 respectively).

It is clear that the left (right) pre-semishadow (C[G]g,#ί) is a left (right)
semishadow if and only if Xt is not empty. Hence, shadows correspond to such
Poisson cosets that G0 u = uG0 which means that u belongs to the normalizer of G0.

We see that a left coset G0u is the set of fixed points with respect to
the involution g\-+ω(g u~1) u = ω(g) ω(u~i)u. Therefore, it is a Poisson
submanifold of GR if and only if ω (u ~ x ) u is a zero-dimensional symplectic leaf of G,
that is, ω(u~1)ueT (in fact, it belongs to Γ0), which is the direct analogue of
Theorem 3.6.

It is easy to show that it is equivalent to ueG0N(T), where N(T) is the
normalizer of T. Therefore, equivalence classes of left semishadows of C[G0]^ are
parameterized by G0\G0N(T)/T^ W0\W, where W is the Weyl group of g, WQ is
the subgroup of W (not normal in general) generated by simple reflections with
respect to compact roots. Analogously one can show that right semishadows are
naturally parameterized by W/W0.

As to the shadows, they correspond to such weGR that ω(u~l}u belongs not
simply to T0 but to Z0. This means that ugu~ί=ω(u)gω(u)~ί for each geG. It
follows that the conjugation by u commutes with ω, therefore, ueNG(G0), where
NG(G0) is the normalizer of G0 in G.

Thus, we see that shadows of C[G0]^ are parameterized by the finite group
W = NG(GQ)/GO. Note that W is in fact Abelian, since the homomorphism τ: W
-*Z0 induced by τ: JVG(G0)-»Z, g*-*ω(g~ί)g is easily seen to be injective.

Let us return to the quantum picture. One can show that the involution on
C[G]g which defines the left semishadow corresponding to W0w (weW) can be
given by

tf = ̂ (w~ 1)°*o <#(#), (4.1)

where w is the element of the quantum Weyl group corresponding to we if.
Analogously, for the right semishadow corresponding to wW0 one has

ί = ^(w" 1 )o*o^(w). (4.2)
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The quantum Weyl group was introduced in [20] and studied, for instance,
in [6,12,18-20]. Recall that the quantum analogue of we W is a certain
Gelfand-Naimark-Segal state weC[G]* with respect to certain irreducible repres-
entations of C[G]g and certain vectors in the spaces _of the representations.

As far as the shadows are concerned, note that W^W1/W0, where WΊ is the
subgroup of W which consists of the elements whose action on ϊ) commutes with
the Cartan involution Θ = ω0

oω0, comp and preserves roots o f t in ί). Therefore, the
involution on C[G]^ which defines the shadow corresponding to weW can be
given by either (4.1) or (4.2) where weWί represents w.

Recall that the homomorphism τ : W -» Z0 is injective. Therefore, the shadows
corresponding to distinct elements of W are not equivalent. Note also that, if G0 is
compact, W is trivial.

Let us summarize the obtained results in the following statements.

4.1. Theorem, (i) The equivalence classes of left semishadows o/C[G0]q are para-
meterized by WQ\W, with the involution on C[G\ given by (4.1), where w represents
the corresponding coset from WQ \ W.

(ii) The equivalence classes of right semishadows 0/C[G0]<z are parameterized by
W/W0, with the involution on C[G]^ given by (4.2), where w represents the corres-
ponding coset from W/W0.

(in) The equivalence classes of shadows ofC[G0~]q are parameterized by the finite
Abelian group W~ WI/WQ~ NG(G0)/G0, with the involution on C[G]β given by
either (4.1) or (4.2), where weW^ represents the corresponding element of

Remark, (i) The quasi-classical analogues of the left (or right) semishadows of
C[G0]g are the algebras of regular functions on the Poisson left (or right) cosets of
the form G0w (or wG0 respectively), where weN(T).

(ii) The quasi-classical analogues of the shadows of C[G0]g are the_algebras of
regular functions on the connected components of ΛfG(G0)~G0χι W, the nor-
malizer of G0 in G.

Now we are going to construct the quantum algebra C[G0x W~\q of regular
functions on the quantum disconnected group G0 x W. It is given by the following
proposition.

4.2. Theorem. Define a *-algebra C [G0 x W ~\q as the coproduct of all its shadows in
the category of *-algebras:

C [Go x W \ = © (C [G],, **) , (4.3)
weW

where $$ defines the shadow corresponding to weW. This means that all the sum-
mands in (4.3) are *-subalgebras of the coproduct, and the product of any elements
from distinct summands is zero.

Th% following formulae define a Hopf *-algebra structure on C[G0xι W\\

(4 4)

where weW, αeC[G]g, j^\ C[G]β -> C[G0x W\ is the embedding of the w-th
summand in (4.3).
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Remark. When G0 = SC/(1,1), the Hopf *-algebra C[G0x W\ is nothing but the
Hopf *-algebra 6 = C[Sί7(l, l)xZ2]β introduced in Sect. 2.

Remark. Note that the group fP is usually too small for the above construction to
be sufficient to obtain a result in the general case similar to the result obtained in
the following sections in the case G0 = SU(l, 1). For instance, when G0 = SU(m, n\
W~Z2tf™ — n and is trivial otherwise. So, while there are embeddings of S£/(2)'s
and SU(l, l)'s into G0 corresponding to the embeddings of sl(2)-triples into g, they
cannot be lifted to embeddings of the normalizers.

Recall, however, that we have several standard Poisson Lie group structures on
G0. They all induce the same Poisson Lie group structure on their double group
GR, so they can be considered as different Poisson Lie subgroups of GR. It seems to
be likely that a generalization of the result obtained in the present paper might
involve in some sense all those Poisson Lie subgroups and their normalizers.

5. Geometric Realization of Tensor Products of Unitarizable Modules

Throughout Sect. 5 and Sect. 6 we consider the case of S = C[Sί/(l, l)xZ2]^. In
this section we make use of the left quantum adjoint action in order to obtain some
geometric realization of tensor products of irreducible self-adjoint unitarizable left
^-modules. In the subsequent section this realization enables us to construct the
^-representations (1.1), (1.2) of S.

We call sometimes an S-module 91 ± -module if the action of 9?+ c S on it is
trivial.

Let Fun* be the *-algebra generated by ί̂  (i,j=l,2), functions of a real
variable x, relations (2.1) and

with the involution given by (2.2) on Fun * and by (2.3) on Fun ~ .
The 9ϊ + -module *-algebra structure can be obviously extended from

9ί± c Fun* to the whole Fun*.
Consider the 9ϊ+-module *-algebra Funpf )* of Fun* generated by y = ίnί12,

y* = q2t22t2i and functions of x. Note that the involutions * and it coincide on
Funpf)*, therefore, Funpf )+ -Fun(Jf)' which we denote simply Funpf)g

from now on.
Funpf )q first appeared in [10] as an algebra of functions on a quantum

two-sheet hyperboloid J f . One of its sheets can be realized as SU(ί, 1)/Γ0 and the

other one as St/(l, 1) w/Γ0, where w = (

What we consider is a quantum analogue of the transformation of the hyper-
boloid J f = {xeR, yeC| |y | 2 = x(x+l)} such that its symplectic leaf {x>0} turns
into ^+ = { \z\ > 1}, the leaf (x ̂  — 1} into 3) - = { \z\ < 1}, and the zero-dimensional
leaf {x = 0, y = ϋ] goes away into infinity aoeCP1~SL2(C)R/B^(SU(l, l)χι
^2) /To , where B is the Borel subgroup of upper-triangular matrices.
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Namely, consider the 9ί+-module *-algebra Fun(C)g generated by z = tίίt2i,
z* = t22tΪ2 and functions of r = x~l. In the new generators the relations look as
follows:

zf(r)=f(rq-2)z, zz* = \ + q~lr,

(5.1)

r

+ lf(r)-f(rq2)

(5.2)

where /ceZ (as follows from (5.1), z~ 1 =z*(l+^~ 1 r)~ 1 ).
There are the following unitary equivalence classes of infinite-dimensional

irreducible ^representations of Fun(C)^: π+ (the restriction of π^) corresponding
to ^+ and π~ (the restriction of π~) corresponding to 2-. There are also the
one-dimensional ^representations z\-*eιφ, z* \->e~ιφ,f(r)\- »/(0) corresponding to
the points of S1 = {\z\ = 1}.

Let Cc°°(^+)^) and Cc°°(^_)α be the ideals in Fun(C% generated by those
functions of r whose supports are finite subsets of the geometric progressions
Wl(+β} = {q2(k-β}}keZ and 9W_ -{-g2fc+1}/ceZ+ respectively (which are the sets of
eigen-values of r in the corresponding ^representations π + '(β} and π~).

It is easy to see that Cc°°(^±)q is an 91+ -module *-algebra. By the construction,
it can be thought of as a quantum analogue of the algebra of smooth functions in
Q)± with compact supports.

5.1. Definition. Suppose that 9X0 ^
 a Hopf*-algebra, 2F is an yL0-module *-algebra.

A linear functional v: 2F ->• C is called quasi-invariant integral on 3F if there exists
a positive group-like element χeSί* sucn

v(/*) = v(/), v(/*/)>0(/Φθ) (5.3)

for each
I f χ = 1, v is called invariant integral on 2F

5.2. Proposition. The linear functional v+ : Cc°°

is a quasi-invariant integral on C™(@ + )q, the associated element χelRΐ given by
χ = %o= ^0X0? where the group-like element χ0

 ίs given by

ll l2 0
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Proof. It is easy to see that

v±(z*/(r)) = δk i 0.(g-1-g) Σ f ( r ) r . (5.4)
re<m±

The remainder of the proof is just a straightforward computation with use of
(5.2) and (5.4). One can show that the quasi-invariant integral is unique up to
multiplying by a positive constant.

It is easy to see that the unique up to unitary equivalence irreducible He-
representation π1 of C?($)±\ is faithful. Therefore, C?(<2±)q may be identified
with the image

which is the algebra of such linear operators in Vφ that their matrices with respect
to the canonical basis [e^ } contain finitely many non-zero elements.

Let us equip ^(Vφ) with an 9ί + -module structure by twisting that on

where ae9l+,fEC^(^±)q and y = & ( χ Q 1 ) is an automorphism of 91.
Consider the scalar product on ^(Vφ) given by

5.3. Theorem. The 9ΐ+ -module ^(Vφ) is unitarizable and unitary equivalent to
Vφ ® Vπ+φ, a unitary intertwiner given by

, (5-7)

where r(

n

+} = q-2(Λ + t>e3R(+f\ r(

n~
} = -q2n+1eW-, and ̂ '(r) is theaδ-fimction" on

9W± which takes the value 1 at the point rn and 0 at all other points,~

Proof. That ^(Vφ) is unitarizable is provided by (5.3), (5.5) and (5.6).
Let us prove that ^(Vφ) is unitarily equivalent to Vφ 0 V^+φ. Consider the

conjugate 9?+ -module (Vφ)* defined as follows:

for each αe9ί+, \l/e(Vφ)*, veVφ . Note that (Vφ)* is not unitarizable.
Since the action of 5H + on Cc°° (@±)q comes from the quantum adjoint action, we

see that the 9Ϊ+ -modules C™(@±)q and Vφ (x) (Vφ )* are equivalent, the intertwiner
being given by the obvious identifications of these both to a space of finite-
dimensional linear operators in Vφ . As soon as we twist the action on Cc°°(^±)q so
as to get the action on ^(Vφ\ this intertwiner becomes a unitary operator.

Recall now that Δ(y(a)) = (\ά®y)Δ(a) for each αelR+. Therefore, ^(Vφ) is
unitarily equivalent to Vφ ®(Vφ)*9 where (Vφ)* is the unitarizable module ob-
tained from (Vφ)* by twisting the action of 91+ by γ. It is an easy computation to
see that (Vφ)* is unitary equivalent to Vπ+φ, the unitary intertwiner given by
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where {φ^} is the basis of (F^)* dual to the basis {e*} of Vφ (that is,
<*Am , Zn y = δmn). This proves our assertion.

The explicit expression (5.7) is obtained as follows. The right-hand side is equal

to (q~1-q)~* \r(*}\~~IEmn> where Emn is the operator in F* given by
Emn: ek^δknen Now we use the formulae (2.5), (2.6).

Let ^(Vφ2, F^) and ̂ (F^, F<^) be the vector spaces of such linear operators
from Vφ2 to Vφ^ and to F<^ respectively that their matrices with respect to the
canonical bases {e^ } contain finitely many non-zero elements. Consider the 91-
module structure on ̂ (F*2, F^) and ̂ (F^, F^) given by

)) and
k

«•/»-> Σ πίι(flί)/πφ2(S(y(Λk))) respectively
k

whenever A(a) = Σk «ί ® 4ί' (and, therefore, Λ(y(α)) = Σk «ί ® y (<$))•
Consider the scalar products on ^(Vφ29 F^) and J^(F^2, F«^) given by

(ΛJ2) = v±((/1J2)Fλ where (/1?/2)F-/2*/ι

is an ^(F^2)-valued scalar product which is ^(F^2)-linear with respect to the right
action of ̂ (F^).

The idea of the proof of the following theorem does not differ significantly from
that of the proof of Theorem 5.3.

5.4. Theorem, (i) The $R + -module ̂ (F^, F^J is unitarizable and unitarily equiva-
lent to V^®V^+ψ2.

_(ii) The 91- -module J^(F^2, FjJ is unitarizable and unitarily equivalent to

6. "Super-Tensor" Products of Irreducible ^Representations

Now we make use of the geometric realization of tensor products of irreducible
self-adjoint unitarizable Θ-modules obtained in the previous section in order to
construct the "super-tensor" products (1.1) and (1.2). But first we explain why we
cannot correctly define tensor products "without the quotes."

The following result (actually, its 91+ -part) was first obtained in [24]. We give
another proof based on the geometric realization what provides us also with a nice
quasi-classical analogues of the results.

6.1. Theorem, (i) There does not exist a self-adjoint unitarizable $1+ -module

V dense in the Hubert space § = F^ (x) F^ + φ and such that

(ii) There does not exist self-adjoint unitarizable yi±-modules V± dense in the

Hilbert spaces ξ>+ = Vφt (x) Vπ+φ2 and ξ>- = V^ ® Vπ + ψ2 respectively and such that

Vφt ® Vn+ Ψ2^V+, V^ ® V;+ Ψ2^V-.

Remark. In other _words, there are no correctly defined tensor products
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Proof of Theorem 6.1. (i) Consider the action of x = tί2t2i in the subspace of
§ generated by the vectors of the form e^ ® e^ . By (5.7), the closure of this
operator is unitary equivalent to the closure of the operator given by the action of
y(x) = x in the subspace of C?(S&±\ generated by functions /(r).

The L 2-closure of this subspace is L 2(9ϊl± , dv± ), where the measure dv± is given
by ί f ( r ) d v ± = v±(f(r)) and Wl + is supposed to be Wl(+β) (recall that r = x~l). By
(5.2), our operator is the minimal closed operator in this space given by the second
order g-difference expression

x:f(r)*-+-(q-l-q)2 D ( l + r ) D f ( r ) , (6.1)

where "
rq — rq

This operator is symmetric but not self-adjoint. Therefore, Vφ (x) Vπ+φ does not
give rise to a ^-representation of 91+. Assume that there exists a self-adjoint
extension V of Vφ (x) Vπ+φ, and come to a contradiction.

By the assumption, the closure σ(x) of the operator given by the action of x in
V restricted to Z2(SDt±, dv+) is a self-adjoint extension of the minimal closed
operator given by (6.8).

As is well known, any self- adjoint extension is given by a boundary condition of
the form

cosα /(±0) + sinα (D/)(±0) = 0 . (6.2)

L2(5CR±, dv±) is invariant also with respect to <τ(ί11), as follows from (5.2).
However, as (5.2) shows, σ(ίn) does not respect the initial domain of σ(x) as it is
given by (6.2). Thus, we have come to a contradiction.

(ii) This statement follows from the previous one in the following way. For
instance, assume that there exists a self-adjoint extension &(Vφ2, Vφ ) of

* ). +
Let ^(Vφ2) be the maximal algebra of operators in V~2 such that

Φ&(V^9 r£) for each ve&(V*2, V^)Jε&(V±2\ One can show that &(V±2]
can be equipped with an 9ί + -module structure which extends that of ^(Vφ2) so
that it gives rise to a He-representation of 9ί + , what contradicts with the assumption.

Remark. We will see in Sect. 7 that the quasi-classical analogue of the 9Ϊ+ -module
*-algebra structure on C™(@±)q is the local action of the dual Poisson Lie group

SJ7(1, 1)* (isomorphic to the group of the matrices of the form I _ ί 1) in 3t± by
translations and dilations. ^ /

Thus, the quasi-classical analogue of the above negative result is such an
obvious fact that this local action cannot be extended to a global one. The obstacle
at r = ±0 which prevents to construct a self-adjoint extension of the tensor product
in the proof of Theorem 6.1 corresponds to the obstacle atS'1 = {zeC||z | = l}.

However, although the local action of SU(19 1)* cannot be extended to a global
one on @+ and ^_ separately, it can be extended to a global action on

This observation prompts us what to do in the quantum case. Namely, one
should consider the problem of self-adjoint extensions of Vφ^ζ&Vπ+φl®
Vφ2 ® Vπ+φι using its realization as
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Let Cc°°(C)g be the extension of C?(2+\®C?(2-)q which is the ideal in
Fun(C)4 generated by those functions of r whose supports are compact subsets of
9K (~0 ) = SR(

+~/?)u50l_ u{0} and which are smooth at zero. Consider the extension

® 3?(Vφ2\ and equip it with the 9ί+ -module structure given by (5.5)
and with the scalar product given by (5.6).

6.2. Theorem. The unitarizable ${+ -module &φβ^φ2 is self-adjoint. We denote the
corresponding ^-representation 0/91+ by πJ;(/?) ® πj;+^ ® π^2 ® π^2+π.

Proo/. Indeed, the minimal closed operator in L2(y)l(~β\dv)9 where dv =
dv++dv-, given by the second order ^-difference expression (6.8) and the bound-
ary condition

0) (6.3)

is easily seen to be self-adjoint. The operators given by the action of x in other
x-invariant subspaces generated by elements of the form zkf(r) for each fixed fceZ
can be considered analogously (another way is to notice that all these parts of the
operator given by the action of x are intertwined by the action of powers of t12

or ί2ι).
Finally, it is easy to see that all operators given by the actions of ttj (ij= 1, 2)

respect the smoothness condition. This proves our assertion.

Remark. C™(C)q can be thought of as a quantum analogue of the algebra of
smooth functions on C with compact supports.

Consider now the problem of self-adjoint extensions of the unitarizable S-
module Vφv ® Vφ2 ® Vφ3 ® Vφ4 denoted for convenience by V+ .

Note that V± is endowed with an 6-equivariant Hubert (&φι,φ3, ^φ2,φ4)-
bimodule structure. This means that there are the left ^Φl5 ψ3 -module and the right
^φ2tφ4 -module structures m,: ^Φl,φ3 ® V± -> V± and mr: V±® ^φ2,φ4 -> V±

respectively given by

(/I ,/3)

where (v'9v")eV±9 (fi,fj)£&φ^φj as well as the ^,l5(p2-linear scalar product
(%•)*: V± ® V±-+&φι,φ3 and the J^4 -linear scalar product (-,-),: V± ® V± ->

((^1, V2), (V

such that mh mr, ( , )z and ( , )r are <3-module morphisms.
Let &+ be the maximal 6-equivariant Hubert ( 1̂5 ̂ 3, ̂ >2, φ4)-bimodule which

extends V+ . The following theorem can be deduced from Theorem 6.2.

6.3. Theorem. The unitarizable ${±-module 3F± is self-adjoint. We denote the corres-
ponding ^-representation 0/9Ϊ+ by π^ ® π^2 0 πφ3 ® π^4.
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Another way to do it is to construct explicitly these "tensor products" in a way
similar to the construction of the "tensor product" of Theorem 6.2. The key step
here is to find an appropriate self-adjoint extension of the operator given by the
action of x restricted to a certain x-invariant subspace.

For instance, the self-adjoint operator (π^\β) ® π*£β} © π~<->® π^-))(x) re-

stricted to the subspace generated by vectors of the form ek ® ek is unitarily
equivalent to the operator in L 2(Ώl(~β) dv) given by (6.8) and (6.3), the intertwiner

given by (5.7), where m = n = k, the right-hand side multiplied by (- i}k

e

ik^-^\
Also, the self-adjoint operator (πJ;(/?) ®Uφ2 0 π^3 ® n^4

(β^}(x) restricted to the
subspace generated by vectors of the form e±k® e^k(keZ+)is unitarily equivalent
to the operator in I2 (91, dV\ where 91 = 91+ u9l_ u{0}, 91+ - {±q2k~β}kez+, and

v' = (q~1—q) Σteyι tf(t\ given by the second order ^-difference expression

(6.4)

(where p(f) is a certain function) and the boundary condition (6.3), the intertwiner
given by

elk®e$k^(q-l-qΓτ ike*(φ™-φ?^

where φ +) = φ ί5 <Pi~) = (Pi+2> t(

k

±} = ±q2k~β, δ(

k

±} is the "^-function" on 91 at the
point ίfc±} and κ±(t) = ΣkeZ δk±}(t) is the characteristic function on 9l±.

The following theorem is proven in the Appendix. It confirms our right to fix
β and develop and independent theory for each fixed value of β.

Namely, consider the category ^ of ^-representations of S such that the
spectrum of the operator which represents x = (x, x) is contained in
SK^uϊRI^uίO}. Theorem 6.4 shows that <gβ is "closed" with respect to "tensor
products."

6.4. Theorem.

(6.5)

(6.6)
o

2π

πj;(/ ϊ) ® π-2 0 πψ3 ® 4;(/?)- 0 J πφ dφ . (6.7)
o

Remark. Note that, although the "super-tensor" products (6.6) (and (6.7)) are
unitarily equivalent for different values of β, there is no canonical unitary equiva-
lence, since the corresponding quantum Clebsch-Gordan coefficients depend on
β (see the Appendix).



Quantum Group SU(l, 1) x Z2 and "Super-Tensor" Products 453

7. The "Tensor Products" and the Dressing Action on the Flag Manifold

In this section we consider the quasi-classical analogues of the results obtained
above. First of all, we must consider the quasi-classical analogue of the left (right)
quantum adjoint action. This can be done on a more general level.

Let GO be a real form of a simple complex Lie group G such that there exists
a compact Cartan subgroup of G0. Consider the standard Poisson Lie group
structure on G0. This structure as well as the induced real Poisson Lie group
structure on GR are described in Sect. 4.

Note that one can consider two different quasi-classical analogues of the
quantum algebra C[G0]^ of regular functions. The first one is the Poisson Hopf
*-algebra C[G0] of regular functions on the Poisson algebraic group G0, the
Poisson brackets given by

where 2Ϊ0 — C[G0]^ ® C[[/z]] is the QFSH-algebra obtained as the quantization

of C[G0]^®0/Λ2I(>> according to [1] (we suppose g = e~2eC[[h]]).
The second analogue is the universal enveloping algebra UQ$ of the dual Lie

bialgebra. More precisely, these two analogues correspond to some QFSH- and
QUE-algebras respectively which are not isomorphic over C[[Λ]], but become
isomorphic over C once h is fixed.

As is well known from [1], there is a co variant functor which gives an
equivalence of the categories of QFSH- and QUE-algebras. For instance, the
QUE-algebra corresponding to the QFSH-algebra C[SC7(1, l)]β <g> C[[ft]] is gen-
erated over C[[/ι]] by tf

ij = h~διjtίj (1,7 = 1,2). Its quasi-classical analogue is
C/su(l, 1)*. The precise description of the functor can be found in [1].

To consider the quasi-classical analogue of the left (right) quantum adjoint
action of C[G0]^ on itself, one should combine the above two quasi-classical
analogues so that we get a left (right) action of t/g* on C [G0]. Let us show that it is
the local right (left) dressing action of G* on G0 made into a left (right) action in the
usual way. It is just what is called for convenience in this paper left (right) dressing
action.

Recall first the definition of the right (left) dressing action (cf. [17, 13]). Suppose
that gj is realized as the Lie algebra of right (left) invariant differential 1 -forms on
GO, the Lie brackets given by

where L stands for the Lie derivative, <•,•>: ΓG 0xΓ*G 0->C is the natural
pairing between the tangent and cotangent bundles, π: Γ*G0 -> ΓG0 is the bundle
map associated with the Poisson manifold structure on G0 .

For each ocegj, let ocr (α/ respectively) be the right (left) invariant differential
1-form on G0 such that αr(l) = α (α/(l) = α respectively). The map αι-> — παr ( — πα/
respectively) from g* into the Lie algebra of smooth vector fields on G0 is a Lie
algebra homomorphism (antihomomorphism).

The vector fields — παr (— πα/ respectively) are called right (left) dressing fields. They
give rise to a local left (right) action of G* on G0 called right (left) dressing action.

Consider the quasi-classical analogue of ad^ . When h tends to zero, the action
of C[G0]g on itself given by

α: b h-> h~1(adq-ε(a))b
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tends to the action of C[G0] on itself given by

a: b(g)\-+ {a(gg'),b(g)}\g,=g-ι .

It is easy to see that it is nothing but the differentiation along the right
dressing field — π((da)(l)r). The quasi-classical limit of ad^ can be considered
analogously.

At last, the quasi-classical analogue of the action of C[G0]β on its left (right)
semishadows is easily seen to be the local right (left) dressing action of G* on
GR restricted to the corresponding Poisson left (right) coset, since G* is canonically
embedded into G£ ~ G0 x GO* (see Sect. 4).

As follows from (4.4), the left (right) quantum adjoint action of C[G0 x W\ is,
in fact, a C[G0^-action. Its quasi-classical analogue can be considered also as the
local right (left) dressing action of (G0x W)*~G$ on G0x W.

Now we consider the quasi-classical analogues of the results obtained in Sect. 5
and Sect. 6. Suppose G0 = SC/(1, 1), G = SL2(C). Recall that in this case W~Z2 and
St/(l,l)xZ2 is embedded into SL2(C) as St/(l, l)uSC7(l, 1) w, where

0 Γ
w = I 1 . Recall also that SU(l, 1)* is isomorphic to the group of translations

and dilations of the plane and is embedded into SL2(C) as the group of matrices of

the form I _1\, where ί>0, zεC.

It underlines the negative result of Theorem 6.1 that the local right (left)
dressing action of S£/(l, 1)* on either SU(19 1) or St/(l, l)x Z2 cannot be extended
to a global one.

Let us compare our situation with the case of the compact real form G0 of G. In
this case Iwasawa's decomposition holds and the global right (for instance) dressing
action #_ : g+ *—>#+', where #+eG0, #-eG* can be given by

where g'~eG* provided by that the multiplication map G0 x G* ->GR is bijective.
In general, G0G* is not even dense in GR. However, there is still the following

fact.

7.1. Proposition. The multiplication map (St/(l, l)xZ2)xS£/(l, 1)*->S£2(C) is

injective and its image is dense in SL2(C).

In what follows we denote G0 = St/(l, 1), G = SL2(C), B^SL2(C) is the Borel
subgroup of upper- triangular matrices. We consider below only the case of the left
quantum adjoint action and the right dressing action. Another case can be con-
sidered analogously and does not contain anything new.

Since B is a Poisson Lie subgroup of GR, the flag manifold GR/£ is endowed with
a Poisson manifold structure, and the local right dressing action of G* <= GR on
GR induces a local action on GR/J5 which we call also right dressing action.

Note that, since GR/B is compact, this local action can be extended to a global
one. The G* -orbits of this action are the Schubert cells CΊ = {oo} and
Cw = CP1\{oo} parameterized, as is well known, by the Weyl group W9 G* acting
on Cw ~ C by translations and dilations.

If GO were SU(2\ the corresponding G* -orbits would be the same. How-
ever, while in this case they are symplectic leaves, if G0 is SU(l, 1), this is not the
case.
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Indeed, G0G$/B~@+ u{oo} and G0wG* /B^2- are Poisson submanifolds of
GR/B. It is easy to see that the symplectic leaves of Gχ/B~CPl are {oo}, ®+,
Q) - and each point of S1 = d@±.

Let us call a symplectic leaf of a Schubert cell non-degenerate if its dimension is
the same as the dimension of the cell. Recall the parameterization of irreducible
*-representations of 6 by quadruples (f, C, Σ, β\ where ίeΓ0, C is a Schubert cell of
the flag manifold GR/£, Σ is a non-degenerate symplectic leaf of C, /? is a unitary
character of the fundamental group π^Σ) of Σ (cf. Sect. 2). Thus, the one-dimen-
sional ^representations ζφ correspond to the leaf {oo}, the infinite-dimensional
ones πφ to the leaf 2±.

As follows from the geometric realization considered in Sect. 5 and Sect. 6, the
quasi-classical analogues of the tensor products Vζφ® Vζ , Vφ'(β}® Vπ+φ^ and
Vφ®V~+φ of unίtarizable 91+ -modules is the local right dressing action of
SU(l, 1)* on the symplectic leaves {oo}, & + and ^_ respectively, while the
quasi-classical analogues of the "tensor products" ζφ ® ζφ and
KφΊ(β} ® ftπ+φl θ π^2 (x) ππ+(p2 is the global right dressing action of SC/(1,1)* on the
Schubert cells {00} and C respectively. The negative result of Theorem 6.1 corres-
ponds to the obvious fact that the local action of SU(l, 1)* on 3)± by translations
and dilations cannot be extended to a global one.

A. Decomposition of the "Tensor Products"

This appendix is devoted to the proof of Theorem 6.4. Of course, (6.5) does not
require a special consideration. We prove (6.6) below, (6.7) can be proven analog-
ously and even much simpler.

Denote in short

π = <»<" ® πJ2 < * > ® πψ3 ® π~4 (A.I)

and consider the self-adjoint operator π(x). It is clear that what we really need to
obtain the decomposition of π is to know the spectrum of π(x). The subspace
Lm (weZ) generated by e^-m®^ (/ceZ) is easily seen to be π(x)-in variant. Let
π(x)m be the restriction of π(x) to Lm.

It is easy to show that π(x)^0, Kerπ(x) = {0}. The unitary operator

u = qϊπ(t12)π(x)~* intertwines π(x)m and π(x)m+1, therefore, all the self-adjoint
operators π(x)m (meZ) are unitarily equivalent.

Consider, for instance, π(x)0. It is unitarily equivalent to the operator A in
L2($i(~β\ dv) given by the second order ^-difference expression (6.1) and the
boundary condition (6.3).

First of all, it is clear that the spectrum of A is simple. It is clear also that it is
a union of some geometric progressions with ratio q2 because of

It is easy to show that π can be decomposed into a direct integral of the
irreducible representations of the form π£> ( / r ) (no one-dimensional ones, since
Ker A = {0}). Those geometric progressions which comprise the spectrum of A in-
dicate the possible values of βf for the irreducible components (note that if
πj' ( / r ) occurs in the decomposition for some β' and φ, this is the case for the same
β' and all values of φ).
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The following proposition immediately implies (6.6).

A.I. Proposition. The spectrum of A is simple and equal to ΪR+ u {0} (where β is the
same as fixed in (B.I)), Ker^4 —{0}.

Proof. The standard way to prove it is to study the asymptotic behavior of
eigen-functions of A at infinity. Consider the function

Λ(ί) = ιΦι^ *2 ;q2,q2λt], (A.2)

where (α)k = (l -α)(l -αg2). . . (1 -aq2(k~1}) and

» \ °o c ^ n f c ^ f c '
• Λ2 ^ \ V ^'^ » ί = λ -

is a basic hypergeometric function.
The function fλ(t) generates the one-dimensional space of solutions of

= (Df)(-0) .

Since ,4^0 and Kerv4 = {0}, we can suppose λ>0.
We compare ^4 with some operator A0 with known spectrum. The operator

AQ is given in L 2($Jl(+β\ d v ( + β } ) by the second order ^-difference expression

AQ=-(q-1-q)2 DtD

and the boundary condition

lim (f(q2(k~β))-f(q2(k~β + 1))) = 0 . (A.3)
k-» + oo

The eigen-functions of 40 are the so-called zero index Hahn-Exton g-Bessel
functions (introduced in [2])

and the spectrum of A0 is simple and equal to yR(+]u{0}9 Kerv40 = {0}.
This was announced in [8] where the operator A0 appeared in harmonic

analysis on the quantum group M (2) of the motions of the plane (note that the
same operator appears also in the problem of decomposition of tensor products of
irreducible ^representations of the quantum algebra of regular functions).

The proof which was not included in [8] is based on the fact that, when j8=i,
AQ can be approximated by some simpler operators A(Qm) = q2mT~mA(

0

0)Tm in the
sense that the operators A0 — A(™} are bounded and converge to zero as m-> + oo.
The operator T is the shift (Tf)(t)=f(q2t) and the operator A(Q} given in

^-m> dv+) by the second order ^-difference expression
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and the boundary condition (A.3) appeared in [21] in harmonic analysis on the
quantum group SU(2).

The spectrum of ^4o0) is well-known. It is simple and consists of the values
(q-i — qi\(q-i-i—qi+i)

λι= - -—i - ~2 - (ίeiZ) of the quadratic Casimir element in the finite-
W — #)

dimensional irreducible ^-representations of C/βsu(2). Therefore, we know the
spectra of the operators A(™\ hence the spectrum ofAQ. Note that, if we know it for
just one value of β, it is easy to obtain it for all values of β.

The following lemma can be proved by some straightforward calculations. The
convergence is always provided by terms of the form qk .

A.2. Lemma. The series in the right-hand side of the following identity converges to
the left-hand sides absolutely, uniformly in compacta:

0 2 2k \
2k;q'q x • (A'4)

A.3. Corollary. Pwί α= -qt~l

9 b = q2, x = q2λt into (A.3). We get

Consider the operator B:/(ί)

A.4. Lemma. 77ιe right-hand side of the following identity converges to the left-hand
side absolutely, uniformly in compacta:

<?

Proof. By the recurrence formula (cf. [2])

we obtain from (A.4) that

Σ

Proof of Proposition A.I (continued). Suppose λε$R(+\ By [8, Proposition 11],
fλ°\t) vanishes faster than ί~" for any neN as ί-^ + oo, ίe9M+~ . Note that
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Proposition 1 1 in [8] is a simple consequence of the orthogonality relation for the
matrix elements of irreducible He-representations of Uqm(2) which are expressed in
terms of the Hahn-Exton g-Bessel functions and the recurrence formulae for these
functions (cf. [2]).

It follows that the functions

i _ a \

also vanish faster than t~n for any neN as ί-> + oo, fe50t + .
Note that all the above lemmas remain valid when both sides of the identities

are multiplied by tn for any neN. Therefore, tnf£k\t) converge to tnfλ(t) for any
neN absolutely, uniformly in compacta as fc-» + oo. Hence,/λ(ί) also vanishes faster
than ί~" for any rceN as t-+ 4- oo, ίeSDt+~^).

This implies that each point of the geometric progression 501 ̂  is an eigenvalue
of A. To show that 501 (/ } u {0} is the whole spectrum of A note that, since for each
eigen-value λ of A0 the corresponding eigen-function /Λ

(0) vanishes faster than t~n

for any neN as £-» 4- oo, ίe$R+ ~β\ for any λ' which does not belong to the spectrum
of AQ the corresponding eigen-function /A

('0) grows faster than t" for any neN as

It follows in a similar way that, for each λ'φ9R+ ^ujO}, the corresponding
eigen-function fλ>(t) of A grows faster than any polynomial as f-> -f oo, ίe$R(+ β\
This proves Proposition A.I.

In conclusion, I would like to note that, according to (6.6) and (6.7), one can
define the Clebsch-Gordan coefficients for quantum algebra of functions ("even" and
"odd") as follows:

— y f £fc (φ}dφ , (A.5)
-̂ι J \ m VΊ k

keZ+ 0 L m n KJ<l,β

where e^(φ) stands for the canonical basis of F* given by (2.5), (2.6).
As follows from (5.7), (A.2) and (5.2), the "even" Clebsch-Gordan coefficients

are expressed in terms of the functions

Xt \ = const *(Bkfλ)(t) (A.6)

(fceZ+), where λeS«(/), te3Λ(+β\ This follows, by the way, that the Clebsch-
Gordan coefficients do depend on β (see the remark at the end of Sect. 6).

As was shown in [9,10, 16], the matrix elements ί/jβ6C[Sl/(l, 1)]* of irredu-
cible ^-representations of Uq$u(l, 1) are expressed in terms of the g-Jacobi func-
tions. As far as we know precise expression of the Clebsch-Gordan coefficients for
quantum algebra of functions, we can apply the technique of [5] to obtain an
addition formula for the g-Jacobi functions. Namely, one should apply the operator
given by the action of
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to the right-hand sides and the left-hand sides of (A.5). Therefore, the functions
(A.6) appear in that addition formula which involves the "even" Clebsch-Gordan
coefficients.
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