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Abstract. An expression for the p-determinant of the quotient of two differential
elliptic operators with boundary conditions is given in terms of the boundary values
of their solutions. Applications to physical examples are considered.

1. Introduction

An expression for the Fredholm determinant of the quotient of two elliptic operators
defined on a closed manifold with boundary in terms of pseudodifferential operators
defined on the boundary was given by Forman in [5]. In this paper, we aim to establish
an analogous expression for the so called p-determinant of the quotient of the operators
holding even in the case where it has not Fredholm determinant. This case is usually
found in Quantum Physics where the p-determinant can be taken as a regularization
technique for divergent determinants [9]. In order to describe it, let us recall some
definitions.

A compact operator A defined on a Hilbert space H is an element of the p™"
Schatten class .7, for p > 1 an integer, if |A[" is a trace class operator, i.e. if

(o]
Tr(|APP) =) ph(A) < oo,
j=1
where ;Lj(A), the singular values of A, are the eigenvalues of |A] = VA*A. In

particular .7 and % are the ideals of trace class and Hilbert-Schmidt operators on
H. If I denotes the identity operator on H, the Fredholm determinant, det,(I — A),

(o ¢]
is defined as [](1 — A;), where {),}, denotes the proper values of A when A is a
j=1
trace class operator. The p-determinant of I — A is defined, for A € yp, as [6, 4, 9]:

A2 Apr—1
detp([-A):detl{I—(I—A)exp [A+7+...+p_ 1]},
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or, equivalently [9]:
det, (I — A) =det,({ — R,(A)),

where 5 |
A AP~
R, (A)= (I — A)exp A-}-?-l-..‘—l-p_1 )

Note that R, () is an entire function on the complex plane C such that the expansion
of its logarithm is obtained leaving out the first (p — 1)-powers of the expansion
of In(1 — 2). It is easy to show that if A € .7 then R,(A) € 9 [9]. We will be
interested in differential operators of order m > 0 defined from the &> sections of a
complex vector bundle (E, M, ) to the ones of (F, M, ), both bundles with fiber
of dimension k, where M is a n-dimensional compact manifold with boundary X. We
will also be interested in pseudodifferential operators of order s defined from the &*°
sections of the complex vector bundle (E| x»X,Tg) to the ones of a vector bundle
(G, X, mg) over X. We assume that the full symbols of these pseudo-differential
operators have asymptotic expansions in homogeneous functions of the cotangent
&-variables for |£| > 1. This class of operators will be denoted by I3 (X).

A k x k matrix L of differential (respectively pseudodifferential) operators of order
m defined on M (respectively on X)) is (uniformly) elliptic in M (respectively in X)
if it has a principal symbol o (L) satisfying

|deta(L)| > Cl¢)™F, when [¢]> N,

for some positive constants C' and V.

In the case that L is a matrix of differential operators of order m, a (non-necessarily
orthogonal) projection onto the set of modified Cauchy of &> functions belonging
to the kernel of L is given by the Calderén’s projector @ ([2,7]). This is a km x km
matrix of pseudodifferential operators in the class 12(X ) and its principal symbol g
depends only on o,(L). It will be assumed that the km X km matrix g has constant
rank r. (This is always true for n > 3, see [2].)

A r x km matrix B of pseudodifferential operators belonging to IP(X),

B:Z¥°(X,E)® ... £°(X,FE) » (X, 0),

m-times

where G is an r-dimensional vector bundle over X, with principal symbol b, is an
elliptic boundary condition for the operator L if the matrix bq has constant rank equal
to 7 [2]. For such L and B the boundary problem L = (L, B) is said to be elliptic.
Actually, Ly is the closed unbounded operator on Z2(M), obtained as the closure
of L acting on & sections of E satisfying the boundary condition B on X [5, 8].
By L};l we mean the bounded operator which is the inverse of L, when it exists,
and in this case we say that the problem Ly is invertible.
We denote by T the linear map which gives the Cauchy data values

T:%°(M,E) — Z°(X,E)® °(X,E)®...® (X, E)
m-times

wz) = w@',z,) — Tu(x) = ('), d,u),. .., 0" Tu’)),

where v is the unitary outward normal vector to the boundary X. For z in a patch of
M with no empty intersection with X we write z = (2, z,,) € M with 2’ € X and
z,, the X-normal coordinate.
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The unique linear function
G(z,y): M x M — Hom(F, E)

satisfying
(i) L(G(z,y)) = 6(z,y), 6(x,y) is the Dirac delta function; and
(ii) T(G(z,y)) € Ker(B), (i.e. the Cauchy data values of G(z,y) as function of z
belongs to the kernel of the boundary operator B);
is called the Green’s function for the boundary problem Ly = (L, B) and it is the
kernel function of the inverse Lgl.

When no confusion arises, G(x,y) will be written as Lgl(:z:,y).
Another linear map we shall consider is the Poisson’s map

Py ®(X,G) — (M, E)
hw— Pg(h)=f,
where f satisfies Lf = 0 on M and BT f = h on X, when the data function h
belongs to Im(B).

For an elliptic problem L g = (L, B) the Poisson’s map is an isomorphism between
Im(B) and Ker(L), and verifies:

BT Py lIm(B)

= Illm(B) and PBBTlKer(L) = IIKer(L) : M

For two boundary elliptic operators A and B a bijection ¢ , 5 from Im(B) onto
Im(A) was defined in [5] as ¢ 4,5 = AT Pg.

According to (1) we obtain that TPy is a right inverse of B and belongs to [ g(X ).
The operators TPz B and TP, A also belong to IP(X) [7], just as & 4 5.

Our main result is the following:
Theorem 1. Let be G an open subset of the complex plane. Let {L,} , ; be an analytic
family in the Z*(M)-norm of matrices of elliptic differential operators of order m > 0,
with the same principal symbol for all z, and defined from the & ° sections of a
complex vector bundle (2, M, ) to the ones of (F, M, ), both with k-dimensional
fibers. Let z(t):[0,1] — G be a differentiable path in G, and write L, = L .

If A and B are two boundary conditions such that L,, and L,y are elliptic
invertible boundary problems for all t € [0,1], then for each t € [0,1] the
pseudodifferential operator L, Bl L, 4L, Al Lo has finite n-determinant and

det, (L LiaLoaLos) = dety (@54 5P1a5) -
In particular, I — L7z L, sLy2 Lo € 7.
Remark. If we drop the hypothesis about the independence of the principal symbol on

the parameter ¢ we cannot assert that (I — L; 3L, 4 LyA Log)? is a trace class operator
for p = n; but the equality remains valid

det, (Lyg LeaLoaLop) = dety(PoApPean), @)
for a value of p such that the Lh.s. is finite.
In particular, when I — L; 3Ly and I — Ly, L,, are trace class operators, we

have:
det,(LopLyp)- det; (L, 4 L,) = det,(Lop L;g Ly o Lo 4)

= det, (L3 Lya Lo Lop)
= dety( @545 Peap)
as it was proved in [5] under additional hypothesis.
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Now, let us consider the case of a fixed operator L and elliptic boundary conditions
A, and B, depending on t. Let us assume that A, = A%; ' and B, = B%; ' with
A and B two fixed elliptic conditions for L, and %, is locally a m x m block matrix

(5) B, s x C(Duyx 0 0
%, = (3)5’5““)( (?)Q/qu @qu 0 (3a)
(mo")ﬁi’“‘utlx (ml—l)afzn_zuux (mz—l)al’?"SUHX (,mn:})uﬁx

for u, a global section of the bundle Iso(Z, E). (We have denoted by Uy x the
restriction of the section u, to the boundary X.) Note that the inverse matrix of
%, is given by

[uy 1]X 0 e 0
(O10,ur '1x (Dluz '1x
vt =] Ok Doy ... 0 (3b)

("o tu 1k (M 1)[am 2y (0 )[ut "y

It is straightforward to see that %4, and % ! belong to I 9(X). We also have
2,T = Tu, and %; 'T = Tu; .

Without loss of generality we may suppose that u, = id, and then %, = id. Thus
the elliptic problem

Lf=0 in M
{A%—‘Tf =h in X (42)
is equivalent to
Lu,g=0 in M
{ ATg=h in X, (4)

where the dependence on the parameter ¢ has been transferred to the new operator
Lt = Lu,. In this context, we write L,, = (Lu,)4 and L7} = (Lu,);' =
L 1 -1 We have:

Theorem 2. Let L be a k X k-matrix of elliptic invertible differential operators of
order m > O which are defined from the %> sections of a complex vector bundle
(B, M, mg) to the ones of (F, M, ) both with k-dimensional fibers.

Let be {A,} and {B,} two families of elliptic boundary conditions for L, con-
sidered as elliptic pseudodifferential operators in I?L(X ), analytically depending on
the parameter z with z belonging to an open subset G of the complex plane and let
z(t): [0, 1] — G a differentiable path in G.

Furthermore, let us suppose that there exists a family 74,, of smooth sections of the
bundle Iso(E, E) analytically depeding on z, with u, = 1d satisfying A, = A%
and B, = B%! for each z € G, with %, defined from u, as in (3a), and A and
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B two fixed elliptic boundary conditions for L. Let us put u, = U, Uy = uz_(i),
%If: Uy and ;" = %5

(i) the action by w, preserves principal symbol of each element of the Calderon’s
projection operator Q) for the operator L, or else

(ii) the principal symbols of A and B are the same, then

det, fu; 'L} 1Lyl L} = det,(PapPeas)

where @,y = A% TPy, .

Remark. Note that hypothesis (i) is fulfilled if, for instance, this transformation
commutes or anticommutes with the principal symbol of L or Q.

The proofs of Theorems 1 and 2 are given in Sect. 2. Applications to physical
examples are presented in Sect. 3. Technical lemmas about the regularity of the
p-determinant are included in the appendix.

2. Proof of Theorems 1 and 2

We begin by proving the following lemma which gives an easy estimate for p.

Lemma 3. Under the hypothesis of Theorem 1, the operator I — &, fi 5®Piap belongs
to I \(X) and (I — D54 gDy up)" is trace class.

Proof. Let a, b, and ¢ be the principal symbols of the zero order pseudodifferential
operators A, B and () defined over X. (We drop the parameter ¢ because we are
going to consider each member L, of the family separately.) The ellipticity condition
for the problems (L., A) and (L, B) means that the principal symbols of AQ and BQ),
aq and bq, are v x km matrices with maximum rank r [2]. We claim that the 7 X r
matrices agq*a®, bgg*b*, and agq®b* are invertible. Indeed, for the first two the
proof is trivial. For the last one, note that r = rank(q) = rank(bg), implies that b
is injective on the Im(q), and so Ker(q) = Ker(bq). Analogously, Ker(q) = Ker(ag).
From this we have Im(¢*a*) = Im(¢*b*) and, finally, Im(aqq*b*) = Im(agq™a™).
This proves that rank(aqq®b*) = r. Then AQQ*B* and BQQ™* B* are zero order
elliptic pseudodifferential operators on X . Each of them admits a right inverse because
of the finite dimension of their kernels [2]. These right inverses will be denoted
by (AQQ*B*)~! and (BQQ™*B*)~!. Their principal symbols are (agg*b*)~! and
(bgq*b*)™! respectively.
Now, let us define
S, =QQ*B*(AQQ*B*)™' and Sz =QQ*B*(BQQ*B*)'.
They satisfy:
BSp=1, QSz=Sg,
AS, =1, QS4=5,.

Since S, and T'P, are right inverses of A, with T the Cauchy data operator and P,
the Poisson’s one, and because the matrix a is bijective on Im(g), it turns out that
TP, = S,4+R,, where R, is an integral operator with infinitely differentiable kernel

function [7]. Then, oo(TP,) = 0,(S4). Analogously we have 0y(T'Pp) = 0,(Sg)
for the boundary condition B.
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Note that for every ¢ we have:
00 ®;ap) = (Oo(@ap)) " = (G(ATPp))™"
= (0p(ADoy(TP,p) ™" = (a.0p(Syp) ™"

= (ag,q; b* (bg,q; b)) ™" = bg,q; b (ag,q; b™) ™!

So, the operator 9 fi 5®Piap is pseudodifferential, belongs to Ip(X) and its
principal symbol is

0o(PraB) = 00(Popa)on(Piap)
= bgqqq b* (agoqy ™) aq,q; b* (bq, g/ b™) ! =id,

since we are assuming that oy(L,) = o4(Ly), what implies that g, = 04(Q,) =
05(Qy) = gy [2,7]. Consequently the principal symbol of I — &, 3P, 45 is the null
matrix and so [ — QSO_AB@MB € Ih’l(X). For dim(X) = n — 1, we conclude that

I =P5,pPa5 €,
and det,,(Py1 3P, 4 ) is well defined. Q.E.D.

We recall two relations established in [S], that we will use below:

d o d
dt Pip= ’_LtBl it (L)P,g, (5.2)
P, ATL;; =Ly —L;,. (5.b)

Lemma 4. For any positive integer r we have:
(Lia = Lip) I = LyaLgaLog L) = (I = P BT Py, AT) (Lyy — Lyg) .

Proof. It will be enough to prove the case r = 1. For 7 > 1 the proof will follow by
induction on 7.
Since, from (5.b),

AT(L;, — L;3) = AT(~L;z) and BT(L;, — L;3) = BT(L;},).

Then | . | |
(Lya = Lyp) U = LypLop Lop L)

= (Lip — Lip) — (La = Lig) LyaLoa Lo Lip)
= (Lip — Lig) = PigBTL 4 LiaLos LopLig

= (L4 — Lig) = PipBT Ly, Lop L

= (LiA — Lip) = PipBT(Loa — Log)Lop Ly
= (L;A — Lip) = Pip BT Ry 4 AT(— Log) Lo L5
= (L;p — Lip) = Pig BT Ry, AT(~L;)

=(Ljs — Lip) — Pig BT Py AT(L; ) — Li)
=( ~ P,gBTPy4AT)(L;, — L;z). QED.

Now we are ready to give the proofs of Theorems 1 and 2.
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Proof of Theorem 1. We know from Lemma 3 that each member of the analytic family
I-& fi 5P ap>t €10, 1], is a pseudodifferential operator in the class I, 1(X ). (Recall
that X = OM is a (n — 1)-dimensional compact manifold without boundary.) From
(5.a), (5.b) and Lemma A.6 in the appendix, we have:

0, Indet, (DA P, a5)
= —Tr{( ~ PoupPiap)" " @oapPiap)” 0 ~ LoapPriap) i) }
=Tr{(I ~ PoupPiap)" " LiapPoanPors0i(Prap)| mm)
=Tr{(I — BTPy4ATP,5)" "' BT P, AT0,(P, )| 1)}
= Tr{(I — BT P 4ATP,3)" ' BT P,y AT(—L;5.0,(L,). P, )| 1)}
= Tt{(I — BT Py, ATP,5)" "' BT(P, y AT(~ L;)).0,(L,). P, g 1)}
=Te{(I — BT P4 ATP,3)" ' BT(Ly — L;3)-0,(L))-Py 1) } -
Since P, is an isomorphism betwee Im(5) and Ker(L,), we have
0, Indet,(Py AP, ap)
= Te{P,g(I = BT Py, ATP,5)" "' BT(L;y — L;3)-0,(L)| ker()
= Tr{(I = P,y BT PysAT)" ™' P, BT(L;{ — L;3)-8,(Ly)| ger(p)} -
By (5.b) and the definition of Green’s function, P,z BT'(L;, 51') = 0 and so,

9, Indet,, (D54 P, ap)
=Tr{(I - PtBBTPOAAT)n-I(Lt_A1 - Lt_Bl’)'at(Lt)) Ker(Lt)}
= Tr{(Liag — Lig) I = LiaLoaLog Lip)" ™ 0,1y er()} - (6)

On the other hand
O,Indet,, (LigLyaLoaLop)
= —Tr{(I ~ LipLiaLoaLop)" ' LopLoaLiaLis
x 0,1 — Lt_E}LtALO_AlLOB)[Ker(Lt)}
=Tr{(I ~ LigLyaLoaLop)" ' LopLoaliaLen
X [=Lg-0.(L)Lip L s Ly Lop + Lt_JBI'at(Lt)L(;_,;LOB]l Ker(Ly) )
=Tr{(I ~ Lz LiaLoaLop)" ' LopLoaliaLepLip-0,(Ly)
X Ly — L;Bl]LtALO—f{LOB|Ker(L1)}
=Tr{lL;4 — Lig)LiaLoaLop(I = LipLiaLoiLop)" ™"
X Lo’éLOALt_AI'at(Lt)] Ker(Lt)}
=Tr{[Lid = Lip) U = LiaLoaLopLip)" ' LisLos
X LogLogLoaLis -0/(Ly) kerinp}
=Tr{[Lia — Lip)( = LiaLoaLop Lip)" ™ 0uL) keriz)} - )
From (6) and (7), we see that
0, Indet, (L, L, s Los Log) = 0, Indet, (Py ) s Fiap) (8)
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for t € [0, 1]. In particular the Lh.s. of (8) is finite.
By integrating from O to ¢ and taking exponentials, we get the theorem. Q.E.D.

The following lemma will be used for the proof of Theorem 2.

Lemma S. Let g and q, be the principal symbols of the Calderdn’s projectors @ and
Q. for the operators L and L, = Lu,, respectively. Under the hypothesis of Theorem 2
we have (q,),; = u; ‘g u, for all bl =1,2,...,m.
Proof. As in the introduction, let us consider the family of the operators L, = Lu,,
where u, is the nonsingular multiplicative operator. Its principal symbol is the
matrix u,.

Recall that the principal symbol of L, is given by oy(L,) = oy(Lu,) =
oo(L)oy(uy) = oy(L)u,.

In each local chart (7, ¢), the principal symbol ¢,(2’, z,,,£’, €,,) can be computed
by means of the expansion of the principal symbol of L, in powers of the conormal
variable ¢, :

oo(Ly) @', 2,8 &) = 0g(L) (&, 2, € E )y = >0, (D@12, )6,

§=0
where each o, (t)(2',%,,¢) = 7,,_,0)(z',z,,§)u, and oo(L) (2, z,,§,&,) =

m

> O ;0) (@', z,,£&).E. The symbol g, is an m X m block matrix, each of one is
=0

a k x k matrix given by (see [2,7]):

(qt)hl = % /(Uo(Lt) (w,axn){/aé—n))_l
r

X Zam_J(t) (x/’xna5/)-§£_l+h_l-|§,|l~hd§n

J=1
= % /u;‘(ao(L)(x’,mn,é',fn))‘l
r

X Z(Tm_j(o) (x/’:En’g/)ut-g'rjl—l-}-h—]lglll_hdfn
j=1

= u; gy, ®
for hl = 1,2,...,m, where I is any simple closed contour oriented clockwise and
enclosing all poles of the integrand in Im§,, < 0 and o,,,_;(?) are the symbols of the
differential operators of order m — j in the tangential variables £’.

In particular, formula (9) tells us that the rank of the matrix g, does not depend
on t, that is, it remains equal to r, the rank of ¢. Q.E.D.

Proof of Theorem 2. Recall that 2, T = T, and %; 'T = Tu; ", for all t, and then
w2 = w7 %, = id.

Pick up the Poisson’s map Pp, of the problem Lg = (L,B,). (See near
Theorem 1.) Because of the nature of u;' and %' it is easy to show that

Im(B) = Im(B,) and Ker(L,) = u; '(Ker L). Let us consider Pp = u; 1PBt. It
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results that P, is the Poisson’s map of the problem L,z = (L,, B); recall that
L, = Lu,. In fact, P,y satisfies:

) BT P, immy = BT Pp,j1mis,) = B ' TPy, 15,
= BtTPBtIIm(Bt) = I| Im(By) — I; Im(B) »
and
. o _ -1 ~1
(i) PtBBT| Ker(Ly) — Ut PBt BT|u;1<Ke,(L)) = Uy PBt BTU’t| Ker(L)

-1 Py -1
= Uy PBtB%t TlKer(L) = Uy PBtBtT| Ker(L)
| —

= Uy I[ Ker(L) — Il Ker(Lyg) *

Now, the relationship between the Forman’s maps &, 45 and @ 4, , associated to
the problems L, and L, ,, respectively, is given by:

b, a5 = A% TPy = A TPy, =P 4,5, .

The proof continues now in the same way as the precedent one. The slight difference
becomes when it is necessary to show that I — @4z P,ap € I, '(X). Because this
operator belongs to IP(X), it is enough to see that its principal symbol is the null
matrix. Indeed, when hypothesis (i) is satisfied, the proof of Lemma 3 applies. When
hypothesis (ii) holds, a = 0,(A) = 0,(B) = b and then

oo — gp()_AlBQStAB) =id —UO@&JB)UO@MB)
= id —bgq*b* (aqq™b*) ' aq,q; b* (bg,q; b*) ™!
=id—id=0. QED.

3. Some Applications
3.1. The Laplacian in the Disc

Let us consider the differential operator
L=—-A+)\, (10)
acting on the functions f(r, #) defined in the disc
M ={(r0):0<r<R 0<6<2n} (11)
with boundary conditions:

ATf(R,0) = a0, f(R,0)+ (1 -ta)f(R,0),

(12)
B, Tf(R,0) = f(R,0).
If u,(r) is any smooth function such that u; YR) =1 and 0,uy Y(R) = —t, for
1
t > 0, the matrix %; ' given by (3b) is %; ' = (—t ?) We are interested in t’s

near —, because the first condition in (12) becomes a Neumann’s condition type.
a
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We see that the boundary conditions A4, and B, satisfy A, = A7, ', B, = B%,"",
with A and B the 1 x 2 matrices (I a) and (1 0) respectively.

Then, we have:
AT f(R,0) = a0, f(R,0) + f(R,0),

13
BTf(R,0) = f(R,0). -
As in Theorem 2, (10) is transformed into:
L, = Lu, = —Au, + \? (14)
with boundary conditions A and B.
If @, , ; is expanded in the basis {e**?}, _, of the kernel of L, we have:
/ I (AR)

(B, 45", ™) = |(1 —ta) +a )\I OB Skt » (15)

where I, (2) is the modified k-Bessel function for A # 0, and I,(z) = r!*l for A = 0
and k € Z [1]. The operator [ — &, z®, 4 is not trace class, but from Theorem 2,
we know that it is Hilbert-Schmidt. Note that hypothesis (i) of Theorem 2 is fulfilled
because o,(L) commutes with w,.

Finally, for A # 0 we obtain:

dety(uy 'L} _yu,Ly' L) = dety(PgApPiap)
“t

ta ta
I, (AR) I,(AR)

and, for A =0,

dety(uy 'L}, el Lip) = dety(@opP1a5)

t t
o 4|k 2 1+ k2
b= R R

1
3.2. Bosonic Field at Temperature — > 0

g

Let us consider the differential operator
L=-A-08*+m?, (18)
on the three-dimensional manifold
M= {(re??,t):0<r<R,0<60<2r,0<t< g}, (19)

with ¢ the temporal coordinate. L acts on periodic functions in the ¢-direction satisfying
AZ7'Tf =0and BZ;'Tf =0inr = R, with A and B the boundary conditions
defined in (12) and the transformations u, and %, as in the previous example. Now

we have that @ , 5 is diagonal in the basis of the functions {eikOrionsy | oy defined

2
on the boundary of M with w,, = =7

g
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Since 0,(L) and u, commute, we have from Theorem 2 that the operator (I —

PyApP,ap)’ is trace class if p = 3 = dim(M), as it was shown by means of hard
computation in [1]. Furthermore, we obtain:

- —1 _ - - sa
detylu, Ly o1 Ly ba L) = n:l_.[oo k_HOO - L+ QB
"I\, R)
2
‘e sa n 1 sa 20)
v 1+ al\ [O,B) 2 1+ aX L R)
" I,(\,R) " I\, R)
3.3. Variable External Field
We now consider (18) and (19) with an external field u (r, ) such that:
u (R, 0)=1,
usarus_l(R, 0) = —s Z Cleiw , @l

l=—00

with % (R, ) obtained from u, as in (3a).

For instance, we can take u(r,0) = €9/ where g(r) is a smooth function
vanishing in [0, €), for some small € > 0 and behaving like » — R in (R — ¢, R], and
f(6) is the 2w-periodic function given by f(6) = > Cle”‘g.

l=—00

Since only boundary conditions were modified, we can consider the same basis as

before for the kernel of L. As it was shown in [1] after a direct algebra it results:

saClr_y,
L,OWR)
" I\, R)

For o,(L) commutes u,, hypothesis (i) is satisfied and so we get that det,, is finite if
p =dim(M) = 3.

/
nn

(¢0*/iB¢sAB)k’k = b —

s (22)
1+ aA

3.4. Free Energy of a Four-Dimensional Chiral Bag

As in [3], let us consider a theory of free massless fermions confined to a spherical
cavity of fixed radius R and interacting at the boundary with a hedgehog configuration
of an external pionic field.

This theory can be described by the first order differential operator

3
L=ig=iy 7,0, (23)
2=0
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acting on t-antiperiodic sections over the manifold M = {z € R*:|z| < R}, for
3

t € [0,(3], with full symbol o(L)(z,&) = izfyjﬁj, where = = (x4, %, T,, T3),
7=0

§ = (§0,61,6:&3), 1d, the 4 x 4 identity matrix and ~; are 4 x 4 Dirac matrices
satisfying
{’Yj’7k}=25jkid4: j)k=071)273>

1 0 0 O
. 01 0 O (24)
Ts = 1NV = 00 -1 0 .
00 0 -1

The corresponding boundary conditions are:

AT =21 +iffe ™ ™)y =0 in r=R,

o | (25)
BTy =5(1+if)p =0 in r=R.

3
with 7 the outward normal to the bag surface and 7 -7 = > 77 n;, where 77 (j =
j=1

1,2,3) are the Pauli matrices. Let us take as u, the constant matrix u, = eI s,
It turns out that 77, is the same matrix.

We claim that the hypothesis (i) of Theorem 2 is fulfilled. To see this, note that
in a local chart intersecting the boundary OM = S°, with tangential coordinates
z' = (zy,z,,,), cotangential £’ = (&,,&,,&,) and conormal &, we have from (23):

o(L) = Uo(L) = a0($/>§l) + al(xl, 51)53 ’ (26)

2
with ag(z',£") = Y v;&; and a,(2’,£') = i,
7=0

Following [2] we write:

q(x,vé.’) = % /(Uo(L))_lal(Il,é’)d§3
r
= % /(al(ml, 5/)_1a0($/a §l) + 53 id4)_1d€3 s (27)
r

where I' is any simple close contour oriented clockwise and enclosing all poles of
the integrand in Im(¢;) < 0.

Taking into account that 5 I = 73, the integrand in (27) can be written as:

’ -1
(Z"/3’Yj§j + & id4> )

j=0
It is clear from (24) that it commutes with s and so ¢ commutes with 7.
Finally, we get that det4(us_1L;;/_1L _1u,L;'Lp) is finite and equal to

A
~1
dety(PoApPsap)-



P-Determinant Regularization Method for Elliptic Boundary Problems 407

4. Appendix: Some Technical Lemmas

We prove in this appendix technical lemmas related to the differentiability of the trace
and the p-determinant for bounded operators.

We will denote by £ (H) the space of bounded linear operators on a separable
Hilbert space H, by .7, the p™ Schatten class operators on H and by C the complex
plane.

The demonstration techniques we shall use are inspired in [6].

4.1. The case of trace class operators (4])

Lemma A.l. Let A(2):G — 9 a holomorphic map from an open subset G of
C to the ideal J, endowed with the norm of % (H). Suppose that the trace norm
of A(2), ||A(2)||, is bounded on every compact subset of G. Then the function
det,(I — A(2)):G — C is holomorphic.

Proof. Let {®,}5° be an orthogonal basis of H and for each n > 1, let P, be the

orthogonal projection onto the subspace spanned by {&,}7_
Let us define A,,(2) = P, A(z)P,. Since, for each ﬁxed z e G, A, (z) — A(z) for
n — oo in .7{-norm,

det;( — A(2)) = lim det;(J — A, (2)),
because det; is continuous in this norm.
For A(z) is holomorphic on G,
dety(I — A, (2)) = det(;), — (A(2)Py, 9))); k=1,

is holomorphic on G and det;(/ — A(z)) is a measurable function.
Then, for each n we have:

1 det,(1 — A
det,(I — A, (2) = — ety = A4, @) 4y (A1)
27t w—Zz
|lw—z|=r
where the path {jw — z| = r} C G, is nonclockwise oriented. If we denote by

/\j(An(z)) and zj(An(z)) the eigenvalues and the singular values of the operator
A, (z) respectively, we have

3

| det,(I — A, (2)| = H 1= X4,

3

<II1+ A,

<
—

n

IA

1+ z;(A,(2)
1

I

J

< J(An(z))

;:13

J

1

> 2j(An(2))
= 63’1

ellAn@lly < ellA@Ih ,

which is bounded by hypothesis for z € K, being K any compact subset of G.
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Finally, by applying the Lebesgue dominated convergence theorem we have from
(A.1) the integral representation

dety (I~ A()) = 5 / dey = Aw)
|lw—z|=r

which implies that det,(I — A(z)) is holomorphic in G. Q.E.D.
Lemma A.2. Under the hypothesis of LemmaA.l we have:

(a) the derivative operator of A(z) is trace class for all z € G;
(b) the function Tr(A(z)) is holomorphic in G;
(c) 0,[Tr(A(2)] = Tr[0,A(2)].

Remark. Since 7] endowed with the operator norm is not a closed subspace of £ (H),
the claim (a) is not obvious.

Proof. We will prove (a) by showing that the series Z(@ZA(Z)QSJ, (;5]) is absolutely
=1

convergent for all z € G and any orthonormal basis {qﬁj}f" of H. By hypothesis,
the functions a;(2) = (9,A(2)¢;,$,):G — C are holomorphic. Then the sequence

n

S, ()= > a;(z) of holomorphic functions in G tends to Tr(A(z)) and is uniformly

J=1
bounded in compact sets of G, because the hypothesis and the following inequality

1S, <Y la,()| <Y la, )] = [A@)]], -

1=1 j=1
For the path v = {w — 2| = r} C G, it is valid the integral representation
1 [ S (w)
S, (2) = — / o dw,

2mi w— 2z
v

and applying the Lebesgue dominated convergence theorem, we get:

1 [ Te(A
Tr(A) = 3~ / —%dw.
Yy

This shows that the function Tr(A(z)) is holomorphic in G and then

0,[THAG)] = lim 9,(5,()

= lim Y 0.(A()¢;,9;)
j=1

= lim > (0.A=);, ¢;)
j=I1

+o0

> (0.A(2)0,,9;) , (A2)

J=1
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1ndependently of the choice of the orthonormal basis {¢ }$°. In partlcular this
formula is independent of any rearrangement of the basis and the series is absolutely
convergent. So 0, A(z) is trace class and the equality (A.2) can be written as

0,[Tr(A(2))] = Tr[0,A(z)]. Q.E.D.
Lemma A.3. Under the hypothesis of Lemma A.1 we have:
0, In(det,(I — A(2)) = — Tr[(I — A(2))"'9_(A(2))].

Proof. Arguing as in Lemma A.2 for the function Indet, (I — A(z)), being 2z such that
det,(I — A(z)) # 0, we have:

In[det, (I — A(z))] = ler;o In[det, (I — A,,(2))]

and
0, In[det, (I — A(z))] = lim 0, In[det,( — A, (2))].
For the finite dimension matrices A, (2) of Lemma A.1 is valid that:
0, In[det;(/ — A, (2))] = 0, Tr[In(I — A, (2))]
=Til(] — A,(2)"'0,( — A, (2))]
= —Tr{(I — A4,(2)7'9,4,(2)],

and moreover ([ — A, (2))™" — (I — A(2))"" in .7.
Then by the continuity of the functional Tr in the ideal .7, we get

9, In[det,(I — A(z))] = lim —Tr[(I — A,,(2)7'0, A, (2)]
= —~Tr{(I — A(2))"'0,A(z)]. Q.E.D.
4.11. The case of operators in the Schatten’s ideal .Z), p>1)

Lemma A.4. Let A(z):G — /;', a holomorphic map from an open subset G of C to
the ideal .7, endowed with the norm of (H). Suppose that the p"-Schatten ideal
p 18 bounded on every compact subset of G. Then the function
det (I A(z)) G — C is holomorphic.

Proof. Following [9], we have

(A(2>) (AP !
Ry(A@) =1 — (I — Ape™ ™2 e
22 Zp——l
z+—+.4.+— . . . .
where R, (z) I —(1 -2k p=! is an entire function. By hypothesis

A(z) € 7, - then R (A(z)) € .7; and det (L — A(z)) = det, (I — R, (A(2))).
We are going to see that R, (A(z)) sausﬁes the hypothesm of Lemma A.1. In order
to show that R,(A(2)):G — J is a holomorphic function, we write

R (A(2)) = ; / R, () (A = A2))""dA,
I

with I", such that the spectrum o(A(z)) is contained in its interior. For instance, we
can take I', = {\ € C/|\| = 2||A(z)||}, nonclockwise oriented.
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If r > 0 is such that {z € C/|z| < r} C G and h € C with |h| < r/2, then
R, (A(z + h)) — R,(A(2))

n
1 (A= A@E+h)"' = (A= A@2)7"]
== | B, - dA
Iy
-1 / ROV - Az + byt BDZACHTR ( gipy-tan. a3
27 h
I

By the mean value theorem between Banach spaces we have:

|A) — AG + Mllgu < |l Jmax 10, (A + th)| g1, 1
< |h| Jmax 10, (AW | 7, 11
=Clh.
Since (A — Az +h) ' = (A — A@@) "' + (Az) — Az + h) (A — A(z)) 117!, we
have
[(A = Az + h))ﬁlllH,H
<N = A Mg, I + (A2) — Az + h) A = A g
<A = AN g gl = (AR — Az + W)l g gl — A@) ™ g )™
<2lA—A@) gy, forall Xel,.
In fact, by the continuity of A(z) in £ (H), therflz exists & > 0 such that if |h| < 6

1
h — A(z = . i
then || A(2) z+ Mgy > 3 max 10— A T Taking h such that
|h| < min{6,3r/2} we have || A(2) — A(z+ )| gz x| A= A@) g i < % uniformly
inAforAel,.

So, the function under the integral sign in (A.3) is bounded in £ (H)-norm by a
A-integrable function, for all h close to zero. By Lebesgue dominated convergence
theorem we have that the function R, (A(2)) from G to H is holomorphic.

Moreover, writing Rp(z) = 2zPh(z), with h(z) an entire function such that

h(0) = % # 0, it results R, (A(z)) = (A(2))Ph(A(2)). Since h(A(z)) belongs to
F(H) and (A(2))P is trace class, Rp(A(z)) is trace class and
| R,(A)I, < AP ITRAED .5 < TAIDNAACN &5 -

This inequality ensures us that R,,(A(z)) is uniformly bounded in every compact
subset of GG, because the first factor is so by hypothesis and the second one is a
continuous function in z restricted to a compact subset of G. Finally, by Lemma A.1
we conclude that the function det,({ — A(2)) is holomorphic. Q.E.D.

Lemma A.5. Under the hypothesis of Lemma A.4 we have:

(a) the derivative operator 0,A(z) belongs to the ideal 9, for all z € G;
(b) the function Tr[(A(2))P] is holomorphic on G;

(©) 0,[Tr[(A(z))P]] = p Tr{(A(2))P '8, A(2)].
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Proof. A(z) holomorphic implies that in the .4 (H )-norm,

1 A
0.(4) = 5 [ (_wj)z dw,
r

where I' = {|w — z| = r} C G is a nonclockwise oriented path and r > 0 is close to
zero. From the hypothesis of boundness of || A(z)|| on compact subsets, we have:

1 27r

16, (Al, < 5~ sup 4@, —5
1

= sup A, < oo.

Then 0,(A(z)) € 7,
The claim (b) is a direct application of Lemma A.2. To prove (c) note that according
to Lemma A.2 and the cyclic property of trace we have

0, Tr[A(2)P] = Tr[0,(A(2))"]

p
=Tr| ) A '0,(AR)ARP

j=1

Tr[A(z) 710, (A(2))A(z)P 7]

I
M=

j=1

<
1l

Tr[A(z)P 0, (A(2))]

I
M‘d

<
Il

= pTr[A(z)P 'O (A(z))]. Q.E.D.
Lemma A.6. Under the hypothesis of Lemma A.4 we have
9, Indet, (I — A(2)) = — Tr[(I — A(2))"'(A2))P 10, (A(2))].
Proof. For all z € G such that I — A(z) is invertible, we have
Indet,(1 — A(2)) = Indet;(1 — RP(A(z))),

with RP(A(Z)) as before.
From Lemmas A.3 and A.4, we get

8, Indet, (I — A(2)) = 8, Indet,(I — R,(A(2)))
= —Tr[(I — R,(A(2)))"'9,(R,(A(2))].
Let {¢;}72, be an orthonormal basis of H, and P, be the orthogonal projection

onto the subspace generated by {¢,,j = 1,...,n}. Then A(2) = lim A, (z) in the
n—oo

norm of .7, being A, (z2) = P,A(2)P,.
Note that for all positive infeger © such that 1 < r < p, A, (2)" — A(z)" for
n — oo in the ideal Z) /7-norm because A(z)" € Z) /v and A, (2)" = P, A(x)"P,.
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On the other hand, if h(z) is an z-entire function, for I" a path which surrounds the
spectrum of A(z), and z € GG, we have:

1A, (2)) = A | g, 1

- / ROV — A, ()" — O — A(z) 1A
T

r

H,H

1
< o [ IOV = A,) 7" = O = AG)
r
1
< o (IO IO = A, 614G = Al — AG) ™ liN
r
1
(; [ movfio - acn HHHldAl)ufuz) Al ———0,

since [|(A — A, (2) g < 2ll(A — A@2) 7| g for large n.
So, h(A,(2)) tends to h(A(z)) in the H-norm for n — oco. Applying the triangular
inequality we obtain

R,(A(2)) = nlim R,(a,(2)) inF

because Rp(A(z)) = g(A(2)), being g(z) = zPh(z), with h(z) an entire function.
Then

9. Indet,(I — A(z)) = — lim Tr{[I — R,(A, (D] '0,[R (A, ()T} (A4)

Now, for each positive integer n we have

Te{[I — R,(A, (D] 8, IR, (A, (N} = Tr{[T — g(A, ()], [9(A, (N}

_ 1 2_ 1 p—1
=Te{(I — A, ()" MO T2 AT AnD)

An(2y+y An(@ 4t = An(z>"“]}

O - - A, (2)e

An(2) == =15 An(2PP™!

—Tr {(I — AN e”

An(@+. 417 An(2)P T !

x [ —0,(A,(2)).e

An(2Hot -2y An(2) !

-
+T - A2 e

J=1

o 2 A e An(eP T L Ap (2P
a (e’ Yeat! p—l

z

L anzy

=Tr(I — A, (2))"'0,(A, (z))]—ZTr[e 5 AnY (e ). (A.5)

7=1
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(We have used the cyclic property of traces for finite dimensional matrices to get the
last equality.)
An(z)
Applying the Cauchy formula to the finite dimensional matrices e 7 , it is
straightforward to see that:

—An(z)‘7 An(Z)J —An(z)] An(2)?

Tife 7 de 7 )N=Tie 2 e 1 A,V '9,(A,(2)]
=Tr[A,, ()’ '0,(A, ()]

Then we have:

Tr{[l = R,(A,(2)))'0,[R,(A, ()]}
p—1
= Tr[(I — A, (2) "' 0,(A, ()] = Y TrlA, (2) ~',(A,(2))]

j=1

p—1
=Tr K(I ~ A, =) An(z)ﬂ—1> 82(An(z))}

j=1
=Tr((I — A, ()" 4, ()P 7'8,(A, ()] (A.6)

(In the last equality, Taylor’s formula was utilized with rest.)
It is easy to verify that

(I —A,(2)"" ——— (I — A(2))"" in the norm of ¥ (H),

and that

A, (z)P7' ——— A(2)P"" in the norm of the ideal 7,
n— o0

/p—1"
On the other hand, since
0,(A,(2)) = 0,(P,A(2)P,) = P,0,(Az))P,,

we have
0,(A,,(2)) — 0,(A(2)) in the norm of the ideal Ty -

Putting it all together, we get
(1= A=) A, )P0, (A,(2) —— (1 — A() ' A(2)P 10 (A(2))

in the trace norm.
From this, (A.4) and (A.6), we finally obtain:
9, Indet, (1 — A(2)) = — lim Tr[(1 — A, ()" 4,()""'8,(4,,(2)]
= —Trl(1 - A4,(2)"'A, ()" 0,(A, ()],

because of the continuity of the trace in the trace norm. Q.E.D.
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