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Abstract. An expression for the p-determinant of the quotient of two differential
elliptic operators with boundary conditions is given in terms of the boundary values
of their solutions. Applications to physical examples are considered.

1. Introduction

An expression for the Fredholm determinant of the quotient of two elliptic operators
defined on a closed manifold with boundary in terms of pseudodifferential operators
defined on the boundary was given by Forman in [5]. In this paper, we aim to establish
an analogous expression for the so called p-determinant of the quotient of the operators
holding even in the case where it has not Fredholm determinant. This case is usually
found in Quantum Physics where the p-determinant can be taken as a regularization
technique for divergent determinants [9]. In order to describe it, let us recall some
definitions.

A compact operator A defined on a Hubert space H is an element of the p t h

Schatten class 9p, for p > 1 an integer, if \A\P is a trace class operator, i.e. if

where μj(A), the singular values of A, are the eigenvalues of \A\ = VA*A. In
particular 9[ and 92 are the ideals of trace class and Hilbert-Schmidt operators on
H. If / denotes the identity operator on H, the Fredholm determinant, det^J — A),

oo

is defined as Y[(l — Xj), where {λ } denotes the proper values of A when A is a
.7 = 1

trace class operator. The p-determinant of / - A is defined, for A e 9p9 as [6, 4, 9]:

Γ Γ A2 Ap~ι

detp(J - A) = det! | / - (/ - A)exp U + — + . . . + — -
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or, equivalently [9]:
detp(I-A) = detι(I-Rp(A)),

where
Γ A2 Ap~ι

Rp(A) = (I - A)exp \A + — + . . . + — ^

Note that Rp(z) is an entire function on the complex plane C such that the expansion
of its logarithm is obtained leaving out the first (p — l)-powers of the expansion
of ln(l - z). It is easy to show that if A e &p then Rp(A) G 9[ [9]. We will be
interested in differential operators of order m > 0 defined from the W°° sections of a
complex vector bundle (E, M, πE) to the ones of (F, M, π F ) , both bundles with fiber
of dimension k, where M is a n-dimensional compact manifold with boundary X. We
will also be interested in pseudodifferential operators of order s defined from the W°°
sections of the complex vector bundle (E\X,X, πE) to the ones of a vector bundle
(G,X,π G ) over X. We assume that the full symbols of these pseudo-differential
operators have asymptotic expansions in homogeneous functions of the cotangent
ξ-variables for \ξ\ > 1. This class of operators will be denoted by /^(X).

Akxk matrix L of differential (respectively pseudodifferential) operators of order
m defined on M (respectively on X) is (uniformly) elliptic in M (respectively in X)
if it has a principal symbol σo(L) satisfying

| d e t σ o ( L ) | > C | £ P f c , when \ξ\ > N,

for some positive constants C and N.
In the case that L is a matrix of differential operators of order m, a (non-necessarily

orthogonal) projection onto the set of modified Cauchy of W°° functions belonging
to the kernel of L is given by the Calderόn's projector Q ([2,7]). This is a km x km
matrix of pseudodifferential operators in the class I^(X) and its principal symbol q
depends only on σo(L). It will be assumed that the km x km matrix q has constant
rankr. (This is always true for n > 3, see [2].)

A r x km matrix B of pseudodifferential operators belonging to

B'.W°°(X,E)®...® W°°(X, E) -> W°°(X, G),

where G is an r-dimensional vector bundle over X, with principal symbol 6, is an
elliptic boundary condition for the operator L if the matrix bq has constant rank equal
to r [2]. For such L and B the boundary problem LB = (L, B) is said to be elliptic.
Actually, LB is the closed unbounded operator on ^ 2 ( M ) , obtained as the closure
of L acting on W°° sections of E satisfying the boundary condition B on X [5,8].
By L^1 we mean the bounded operator which is the inverse of LB, when it exists,
and in this case we say that the problem LB is invertible.

We denote by T the linear map which gives the Cauchy data values

T: gP°°(M, E) -> W°°{X, E) Θ ̂ °°(X, E) Θ ... Θ W°°{X, E)

m-times

u(x) = u{x\ xn) h+ Tu(x) = (u(x')> duu(x')>..., d?~ιu(x')),

where v is the unitary outward normal vector to the boundary X. For x in a patch of
M with no empty intersection with X we write x — (x\ xn) e M with xr e X and
x^ the X-normal coordinate.
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The unique linear function

G(x, y):M x M -* Hom(F, E)
satisfying

(i) L(G(x, y)) = δ(x, y), δ(x, y) is the Dirac delta function; and

(ii) T(G(x,y)) G Ker(i?), (i.e. the Cauchy data values of G(x,y) as function of x

belongs to the kernel of the boundary operator B)\

is called the Green's function for the boundary problem LB — (L,B) and it is the

kernel function of the inverse L^1.

When no confusion arises, G(x,y) will be written as L^ι(x,y).
Another linear map we shall consider is the Poisson's map

PB: gf°°(X, G) -* r ° ° (M, E)

h»PB(h) = f,

where / satisfies Lf — 0 on M and BTf — h on X, when the data function h
belongs to lm(B).

For an elliptic problem LB = (L, B) the Poisson's map is an isomorphism between
lm(B) and Ker(L), and verifies:

\lm(B) = W , a n d P B ^ T | κ e r ( i ) = 7 | κ e r ( L ) . (1)

For two boundary elliptic operators A and B a bijection Φ^B from Im(J3) onto
lm(A) was defined in [5] as ΦAB — ATPB.

According to (1) we obtain that TPB is a right inverse of B and belongs to
The operators TPBB and TPAA also belong to I^{X) [7], just as ΦAB.

Our main result is the following:

Theorem 1. Let be G an open subset of the complex plane. Let {Lz}zeG be an analytic
family in the 2?2(M)-norm of matrices of elliptic differential operators of order m > 0,
with the same principal symbol for all z, and defined from the W°° sections of a
complex vector bundle (E, M, πE) to the ones of(F, M, πF), both with k-dimensional
fibers. Let z(t): [0,1] —> G be a differentiable path in G, and write Lt = Lz^ty

If A and B are two boundary conditions such that LtA and LtB are elliptic
invertible boundary problems for all t G [0, 1], then for each t € [0,1] the
pseudodifferential operator L^BLtALQAL0B has finite n-determinant and

In particular, I - L^LtAL~}L0B e &n.

Remark. If we drop the hypothesis about the independence of the principal symbol on
the parameter t we cannot assert that (/ — L^BLtALQAL0B)p is a trace class operator
for p — n; but the equality remains valid

^ ^ } ( 2 )

for a value of p such that the l.h.s. is finite.
In particular, when / - L~BL0B and / - L^ALtA are trace class operators, we

have:
άQh(LOBL7B)'άttl(LtALθl) = ά^ΛL0BLWLtAL0A)

= detλ(LtBLtAL0AL0B)

= άziι(

as it was proved in [5] under additional hypothesis.
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Now, let us consider the case of a fixed operator L and elliptic boundary conditions
At and Bt depending on t. Let us assume that At = A%^1 and Bt = B%^1 with
A and B two fixed elliptic conditions for L, and %>t is locally a m x m block matrix

/ uflγ 0 0 ... 0 \
•ί|X

(!K|x

0

0

H\X H\x

0

0

0

t\X ( T 1 ) ^

(3a)

t\X t\X '"

for ut a global section of the bundle Iso(E,E). (We have denoted by ut\X the
restriction of the section ut to the boundary X.) Note that the inverse matrix of
%t is given by

/ - I

K J] 0 0

0

0

\

m-l\
VI o

αm_l -1 (m-\\ — l η

(3b)

It is straightforward to see that %t and ^ t belong to IJJi
^ t T = Tw£ and ^XT = Tu^1.

Without loss of generality we may suppose that u0 = id, and then
the elliptic problem

J Lf = 0 in M

\ ^ ι ^ Γ l τ / = Λ in X

is equivalent to
Γ L^t^ = 0 in M
\ AΓ^ = h in I ,

We also have

^ 0 = id. Thus

(4a)

(4b)

where the dependence on the parameter t has been transferred to the new operator
and L^1 = (Lut)~^ =Lt = Lut. In this context, we write LtA = (Lut)Λ

—l We have:

Theorem 2. L ί̂ L be a k x k-matrix of elliptic invertible differential operators of
order m > 0 which are defined from the W°° sections of a complex vector bundle
(E, M, πE) to the ones of(F, M, πF) both with k-dimensional fibers.

Let be {Az} and {Bz} two families of elliptic boundary conditions for L, con-
sidered as elliptic pseudodifferential operators in l\{X\ analytically depending on
the parameter z with z belonging to an open subset G of the complex plane and let
z(t): [0,1] -> G a differentiate path in G.

Furthermore, let us suppose that there exists a family <2όx of smooth sections of the
bundle Iso(E,E), analytically depeding on z, with u0 = id satisfying Az = A%~1

and Bz = B^~ι for each z e G, with %z defined from uz as in (3a), and A and
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B two fixed elliptic boundary conditions for L. Let us put ut = uz^ty u^1 = u~^ty

If

(i) the action by ut preserves principal symbol of each element of the Calderon 's
projection operator Q for the operator L, or else

(ii) the principal symbols of A and B are the same, then

where

Remark. Note that hypothesis (i) is fulfilled if, for instance, this transformation
commutes or anticommutes with the principal symbol of L or Q.

The proofs of Theorems 1 and 2 are given in Sect. 2. Applications to physical
examples are presented in Sect. 3. Technical lemmas about the regularity of the
p-determinant are included in the appendix.

2. Proof of Theorems 1 and 2

We begin by proving the following lemma which gives an easy estimate for p.

Lemma 3. Under the hypothesis of Theorem 1, the operator I —

to I^l(X) and (I - Φ~^\B

φtAB)n is t r a c e class-

Proof Let α, 6, and q be the principal symbols of the zero order pseudodifferential
operators A, B and Q defined over X. (We drop the parameter t because we are
going to consider each member Lt of the family separately.) The ellipticity condition
for the problems (L, A) and (L, B) means that the principal symbols of AQ and BQ,
aq and bq, are r x km matrices with maximum rankr [2]. We claim that the r x r
matrices aqq*a*, bqq*b*, and aqq*b* are invertible. Indeed, for the first two the
proof is trivial. For the last one, note that r = rank(g) = rank(6g), implies that b
is injective on the Im(g), and so Ker(<?) = Ker(6g). Analogously, Ker(g) = Ker(αg).
From this we have Im(g*α*) = Im(g*6*) and, finally, Im(α<?g*6*) = Im(αgg*α*).
This proves that rank(αg<?*6*) = r. Then AQQ*B* and BQQ*B* are zero order
elliptic pseudodifferential operators on X. Each of them admits a right inverse because
of the finite dimension of their kernels [2]. These right inverses will be denoted
by (AQQ*B*)~l and (BQQ*B*)~ι. Their principal symbols are (aqq*b*)~ι and
(bqq*b*)~ι respectively.

Now, let us define

A ~ k&W -^ V^i^/S; -D / anu >jn = Ĉ /(̂ / x) \±j(^/LJ ±j )

They satisfy:

Since SA and TPA are right inverses of A, with Γ the Cauchy data operator and PA

the Poisson's one, and because the matrix a is bijective on Im(g), it turns out that
TPA — SA+RA, where RA is an integral operator with infinitely differentiable kernel
function [7]. Then, σQ(TPA) = σQ(SA). Analogously we have σo(TPB) = σo(SB)
for the boundary condition B.
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Note that for every t we have:

°U*7) = (^O(^ΛB))"1 = (σo(ATPtB)Γι

= (σ o (A)σ o (ΓP t β ))- 1 = ( α . σ 0 ( 5 ί β ) ) - '

= (aqtqtb*(bqtqϊb*ΓlΓl = bqtqΐb*{aqtq*tb*Tι

= b.σo(StA) = σo(B)σo(TPtA)

So, the operator ΦoABΦtAB *s pseudodifferential, belongs to I^(X) and its
principal symbol is

= bqoQob*(aqo<lob*) ^ 3 ? &*(&%?*&*) 1 = i d ,

since we are assuming that σ o (L t ) =• σ o (L o ) , what implies that qt = σo(Qt) =

σo(Qo) — % [2,7]. Consequently the principal symbol of / — Φ$AB
φtAB i s m e n u ^

matrix and so / — Φ^\BΦtAB £ I^ι(X). For dim(X) = n - 1, we conclude that

1 ~~ φ0ABφtAB e Jn

and detn(ΦQABΦtAB) is well defined. Q.E.D.

We recall two relations established in [5], that we will use below:

d i d

p — _ £ ~ 1 (X \p (5 a)

P ATL~ι = L" 1 — L" 1 (5 b)

Lemma 4. Ft>r any positive integer r we have:

(j— 1 Γ ~ l \ / Γ Γ T ~1 Γ Γ~lΛ r /Γ 73 D T D /tTΛΐVΓ^l Γ~l\(^+ 4 ~ Lι+τ}) \ί ~ ίj+ Δ^JΠA L n D L i D = ( i ~ Γ + τ>£>± Γ^AΛI ) {±J. Λ — Li.τy) .v t/\. tJΰ' v t/x KJ/Λ. \J D t ΓJ ' ^ X i5 VJ/Λ. ' ^ Z/x ZLS'

Proof. It will be enough to prove the case r = 1. For r > 1 the proof will follow by
induction on r.

Since, from (5.b),

AT(L~A - L~J) = ATi-L^) and

Then

- LtB) (LtAL0AL0BLtB)

tA — LtB) - PtBBTLtALtAL0AL0BLtB

tA ~~ LtB) - PtBBTL0AL0BLtB

tA - LtB) — PtBBT(L0A - L0B)L0BLtB

tA — LtB) — PtBBTP0AAT(—L0B)L0BLtB

ΓΛ -

iΓi) PBTPAT(L;ι- PtBBTP0AAT(L;A

ι - L^)

= (7 - PtBBTP0AAT) {L~i - L-J). Q.E.D.

Now we are ready to give the proofs of Theorems 1 and 2.
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Proof of Theorem 1. We know from Lemma 3 that each member of the analytic family
I — Φ^ABΦtAB, t G [0,1], is a pseudodifferential operator in the class I^\X). (Recall
that X = dM is a (n — l)-dimensional compact manifold without boundary.) From
(5.a), (5.b) and Lemma A.6 in the appendix, we have:

= -Tr{(7 -

= Tr{(7 - BTPQAATPtBr-lBTPtAATdt(PtB)llm(B)}

= Tr{(7 - BTP0AATPtB)
n-iBTPtAAT(-L^.dt(Lt).PtB)\mB)}

= Tr{(7 - BTP0AATPtBr-'BT(PtAAT(-L;B

ί)).dt(Lt).PtBllm(B)}

= Tr{(7 - BTPQAATPtBr~lBT(L;A

l - ^ ) . 9 t ( L t ) . P t β

Since PtB is an isomorphism betwee Im(J5) and Ker(Lt), we have

dtlndetn(Φ^BΦtAB)

= Ύv{PtB(I - BTP0AATPtBr~ιBT(L;A

ι - L^).dt(Lt]

= Tr{(7 - PtBBTPMAT)n-χPtBBT{L~A

x - L^).dt(Lt)]KaίLt)} .

By (5.b) and the definition of Green's function, PtBBT(L^B) = 0 and so,

dtlndctn(Φ^BΦtAB)

= Tr{(7 - PtBBTP0AAT)n-\L-A

ι - L^).dt(Lt)]Ker{Lt)}

= Tr{(7^ - L-B

ι)(I - LtAL-χ

ALQBL^)n-'.0t(Lt),Ker(Lt)} . (6)

On the other hand

dt lndetn(L t^L t ΛL^}L 0 J 3)

— ~Tr{(/ - LtBLtAL0AL0B)
n LQBL0ALtALtB

x dt(I - LtBLtAL0AL0B)\Ker(Lt)}

= Tr{(7 - LtBLtAL0ALQB)
n L0BL0ALtALtB

x [~LtB.dt(Lt)LtBLtAL0AL0B + LtB.dt(Lt)L0ALQB]\K}

= Tr{(7 - LtBLtAL0AL0B)
n LQBL0ALtALtBLtB.dt(Lt)

x f̂  L ] L L L }

~ LtB]LtAL0AL0B(I - LtBLtAL0AL0B)
n

t Λ - L t β ] (7 — LtAL0ALQBLtB)
n LtAL0A

- L ί β ] (7 - LtAL0ALQBLtB)
n dt(Lt)\ Ker(Lt)} 0)

From (6) and (7), we see that

dt lnάttn(L;^LtAL-^L0B) = dt \ndetn(Φ^BFtAB), (8)
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for t G [0,1], In particular the l.h.s. of (8) is finite.
By integrating from 0 to t and taking exponentials, we get the theorem. Q.E.D.

The following lemma will be used for the proof of Theorem 2.

Lemma 5. Let q and qt be the principal symbols of the Calderόn ys projectors Q and
Qtfor the operators L and Lt = Lut, respectively. Under the hypothesis of Theorem 2
we have (qt)hι = u^ιqhlut, for all h,l = 1,2,..., m.

Proof As in the introduction, let us consider the family of the operators Lt = Lut,
where ut is the nonsingular multiplicative operator. Its principal symbol is the
matrix ut.

Recall that the principal symbol of Lt is given by σo(Lt) = σo(Lut) =
σo(L)σo(ut) = σo(L)ut.

In each local chart (^, φ), the principal symbol qt(x', xn,ξ\ ξn) can be computed
by means of the expansion of the principal symbol of Lt in powers of the conormal
variable ξn:

m

σo(Lt) Or', xn1 ξ', ξn) = σo(L) (*', xn, ξf, ξn)ut = ] £ σm_ά{t) (x;, x n , ξf).ξJ

n ,

where each σm_ j(Q(x /,x n,O = σm_ J(0)(x /,xn,ξ>t and σo(L)(x',xn,ξ',ξn) =
m

σm-j(®) ( χ / ' xn > ζf)'ζJn- The symbol qt is an m x m block matrix, each of one is
3=0

a k x k matrix given by (see [2,7]):

{qt)hl = ^ j{σϋ{Lt){x',xn,ξ>,

Γ
m

x Σ σ — ,

for /ι/ = 1,2,... ,m, where Γ1 is any simple closed contour oriented clockwise and
enclosing all poles of the integrand in Imξ n < 0 and σrn_j(t) are the symbols of the
differential operators of order m — j in the tangential variables ξ'.

In particular, formula (9) tells us that the rank of the matrix qt does not depend
on t, that is, it remains equal to r, the rank of q. Q.E.D.

Proof of Theorem 2. Recall that %T = Tut and <%^ιT = Tu^\ for all t, and then

$6t%tl = %tl% = id-

Pick up the Poisson's map PBt of the problem LBt = (L,Bt). (See near

Theorem 1.) Because of the nature of u^1 and ^ ~ 1 it is easy to show that

= ImCBt) and Ker(Lt) = ^ ( K e r L ) . Let us consider PtB = u^ιPBt. It
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results that PtB is the Poisson's map of the problem LtB = (LVB)\ recall that
Lt = Lut. In fact, PtB satisfies:

(i) BTPtB]lm(B) = BTu~ιPBt]lm{Bt)

and

- iΓιT — T
— at i I Ker(L) ~ i | Ker(Lt)

Now, the relationship between the Forman's maps ΦtAB and ΦAtBt associated to
the problems LtB and LtA, respectively, is given by:

ΦtAB = A^TPBt = AtTPBt = ΦAtBt .

The proof continues now in the same way as the precedent one. The slight difference
becomes when it is necessary to show that / — Φ^AB^tAB ^ ^ ( ^ O Because this
operator belongs to I^(X)9 it is enough to see that its principal symbol is the null
matrix. Indeed, when hypothesis (i) is satisfied, the proof of Lemma 3 applies. When
hypothesis (ii) holds, a = σo(A) = σo(B) = b and then

σθCΓ - Φ0ABΦtAB) = i d ~σθ(ΦOAB)σθ(ΦtAB)

= id ~bqq*b*(aqq*b*ylaqtqfb*(bqtq?b*yl

= id - id = 0. Q.E.D.

3. Some Applications

3.1. The Laplacian in the Disc

Let us consider the differential operator

L = -Δ + λ2 , (10)

acting on the functions /(r, θ) defined in the disc

M = {(r,6>):0<r < R, 0 < θ < 2τr} (11)

with boundary conditions:

AtTf(R, θ) = adrf(R, θ) + (1 - ta)f{R, θ),

) ( }

If ut(r) is any smooth function such that u^ι(R) = 1 and dru^ι(R) = — £, for

t > 0, the matrix %^x given by (3b) is ^ x = ί ). We are interested in ί's

near - , because the first condition in (12) becomes a Neumann's condition type.
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We see that the boundary conditions At and Bt satisfy At = A?^1, Bt —
with A and B the 1 x 2 matrices (1 a) and (1 0) respectively.

Then, we have:
ATf(R, θ) = adrf(R, θ) + /OR, θ),

) ( j

As in Theorem 2, (10) is transformed into:

Lt = Lut = -Δut + λ2 (14)

with boundary conditions A and B.

If ΦtAB is expanded in the basis {eιkθ}keZ of the kernel of L, we have:

*β, e'M> = [(1 - to) + αλ | g | ] δfcfc,, (15)

where /fc(^) is the modified /c-Bessel function for λ φ 0, and Ik(z) = r^ for λ = 0
and k G Z [1]. The operator / — ̂ QAB^tAB ι s n o t t r a c e class, but from Theorem 2,
we know that it is Hilbert-Schmidt. Note that hypothesis (i) of Theorem 2 is fulfilled
because σo(L) commutes with ut.

Finally, for λ φ 0 we obtain:

/fc(λi2) )

and, for λ = 0,

= d e t 2 ( Φ ^ B Φ ί y l B )

ta I I tα .

3.2. Bosonic Field at Temperature — > 0

Let us consider the differential operator

L=-Δ-dl+m2, (18)

on the three-dimensional manifold

M = {(re*V):0 < r < R,0 < θ < 2π,0 < t < β} , (19)

with t the temporal coordinate. L acts on periodic functions in the ^-direction satisfying
A%-ιTf = 0 and B^-^Tj = 0 in r = R, with A and £ the boundary conditions
defined in (12) and the transformations us and %8 as in the previous example. Now
we have that ΦsAB is diagonal in the basis of the functions ^e

lke+^nsy^ ^ G Z defined

on the boundary of M with ωn = —-.
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Since σo(L) and us commute, we have from Theorem 2 that the operator (/ -

^oAB^sABy *s t r a c e class if p = 3 = dim(M), as it was shown by means of hard
computation in [1]. Furthermore, we obtain:

σo oo

Π sa

x exp
sa

αλ^
Ik(λnR)

sa

V
αλnIk{\nR)J

(20)

3.3. Variable External Field

We now consider (18) and (19) with an external field us{r,θ) such that:

(21)

Z=-oo

with $SS(R,Θ) obtained from ws as in (3a).
For instance, we can take us(r,θ) = eS9(r)f{θ\ where g(r) is a smooth function

vanishing in [0, ε), for some small ε > 0 and behaving like r - R in (i? - ε, iZ], and
oo

/(61) is the 2π-periodic function given by f(θ) = Σ Cxe
%w.

l=-oo

Since only boundary conditions were modified, we can consider the same basis as
before for the kernel of L. As it was shown in [1] after a direct algebra it results:

(22)

For σo(L) commutes us, hypothesis (i) is satisfied and so we get that detp is finite if
p = dim(M) = 3.

3.4. Free Energy of a Four-Dimensional Chiral Bag

As in [3], let us consider a theory of free massless fermions confined to a spherical
cavity of fixed radius R and interacting at the boundary with a hedgehog configuration
of an external pionic field.

This theory can be described by the first order differential operator

(23)
3=0
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acting on t-antiperiodic sections over the manifold M = {x e R 4 : \x\ < R}, for
3

t e [0,/?], with full symbol σ(L)(x,ξ) = iΣjjξj, where x = ( x o , x 1 , x 2 , x 3 ) ,

ζ — ( ^ O ' ^ i ' ^ ' ^ ) ' i^4 m e 4 x 4 identity matrix and 7^ are 4 x 4 Dirac matrices
satisfying

{7j, 7/J = 25 i f c id4 , j , fc = 0,1,2, 3 ,

/ I 0 0 0

0 1 0 0 I (24)

0 0 - 1 0

\0 0 0 -1

The corresponding boundary conditions are:

- 2 + 2 e ~ i n

 ( 2 5 )

= r ( l + i^)^ = 0 in r = R.

with η the outward normal to the bag surface and r η = J ] r J ^ , where τJ (j =

1,2,3) are the Pauli matrices. Let us take as us the constant matrix us = e~tsτ'ηΊ5.
It turns out that %s is the same matrix.

We claim that the hypothesis (i) of Theorem 2 is fulfilled. To see this, note that
in a local chart intersecting the boundary dM = 5 3 , with tangential coordinates
x' — (xo,xlyx2)9 cotangential ξf — (ξo,ξ>ι,ξ2) and conormal ξ3, we have from (23):

σ(L) - σo(L) = αo(x', ξf) + ax{x>', ξ% , (26)

2

with α ^ O = i X] 7 6 and ax{xf^') = ij3.
j=0

Following [2] we write:

q(x',ξ') = ̂  Uσo(L)yιaι(x/

iξ')dξ3

a{(x\ ξ'Γla0(xf, ξf) + ξ3 iά4y
ιdξ,, (27)

where Γ is any simple close contour oriented clockwise and enclosing all poles of
the integrand in Im(ξ3) < 0.

Taking into account that 7 ^ = 73, the integrand in (27) can be written as:

. 3=0

It is clear from (24) that it commutes with 75 and so q commutes with %s.

Finally, we get that άeί4(uJιL~] XLAi?.-ιusL^ιLB) is finite and equal to
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4. Appendix: Some Technical Lemmas

We prove in this appendix technical lemmas related to the differentiability of the trace
and the p-determinant for bounded operators.

We will denote by 5%(H) the space of bounded linear operators on a separable
Hubert space if, by J?p, the pih Schatten class operators on H and by C the complex
plane.

The demonstration techniques we shall use are inspired in [6].

4.1. The case of trace class operators {9[)

Lemma A.I. Let A(z):G —» 9[ a holomorphic map from an open subset G of
C to the ideal 9[ endowed with the norm of 3§(Ή.\ Suppose that the trace norm
of A(z), \\A(z)\\ι is bounded on every compact subset of G. Then the function
άetx(I - A(z)):G -» C is holomorphic.

Proof. Let {ΦA™ be an orthogonal basis of if and for each n > 1, let Pn be the

orthogonal projection onto the subspace spanned by {Φ }™=1.
Let us define An(z) = PnA(z)Pn. Since, for each fixed z e G, An(z) -> A(z) for

n —> oo in J^-norm,

= lim detx(I - An(z)),
n—»-oo

because detτ is continuous in this norm.
For A(z) is holomoφhic on G,

det^/ - An(z)) = άQt(δjk - (A(z)Φk,ΦJ))j^ι_

is holomorphic on G and detj(/ - A(z)) is a measurable function.
Then, for each n we have:

2πi J w — z
\w — z\=r

where the path {|ίt; — ^| = r} C G, is nonclockwise oriented. If we denote by
\-{An{z)) and Zj(An(z)) the eigenvalues and the singular values of the operator
An(z) respectively, we have

1 + Zj(An(z))

n

TΊ ezi(An(z))

which is bounded by hypothesis for z e K, being K any compact subset of G.
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Finally, by applying the Lebesgue dominated convergence theorem we have from
(A.I) the integral representation

άQt^I -A(w))

2πi J w — z
\w-z\=r

aw,

which implies that det^/ — A{z)) is holomorphic in G. Q.E.D.

Lemma A.2. Under the hypothesis of Lemma A.I we have:

(a) the derivative operator of A(z) is trace class for all z £ G;

(b) the function Tr( A{z)) is holomorphic in G;

(c) dz[Ύτ(A(z))] = Ίΐ[dzA(z)}.

Remark. Since 3{ endowed with the operator norm is not a closed subspace
the claim (a) is not obvious.

oo

Proof. We will prove (a) by showing that the series ^2{dzA(z)φJ,φJ) is absolutely

convergent for all z e G and any orthonormal basis {φj}f of H. By hypothesis,

the functions a^{z) — (dzA(z)φ^φJ):G —> C are holomorphic. Then the sequence
n

Sn(z) = Σ aj(z) °f holomorphic functions in G tends to Ύr(A(z)) and is uniformly

bounded in compact sets of G, because the hypothesis and the following inequality
n oo

3 = 1 3 = 1

For the path 7 = {w - z\ = r} C G, it is valid the integral representation

7

and applying the Lebesgue dominated convergence theorem, we get:

2πi J w — .
7

This shows that the function Ίτ(A(z)) is holomorphic in G and then

dz[Ύτ(A(z))} = lim dz(Sn(z))
n—»oo

= Mm J2{dzA(z)φJ,φj)

+00

5^(0) ,̂̂ ), (A.2)
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independently of the choice of the orthonormal basis {φA^°. In particular this
formula is independent of any rearrangement of the basis and the series is absolutely
convergent. So dzA(z) is trace class and the equality (A.2) can be written as

dz[Ίx(A(z))} = Ύr[dzA(z)]. Q.E.D.

Lemma A.3. Under the hypothesis of Lemma A.I we have:

dz lnίdet^/ - A{z)) = - Tr[(/ - A(z)Γιdz(A(z))].

Proof. Arguing as in Lemma A.2 for the function In detj (/ - A(z)), being z such that
det^J - A{z)) φ 0, we have:

I - A(z))] = lim lntdet^/ - An(z))]

and
dz lnfdet^/ - A(z))] = lim dz lnfdet^I -

n—>oo

For the finite dimension matrices An(z) of Lemma A.I is valid that:

dz ln[det,(/ - Λn(z))] = dz Tr[ln(/ - Λn(z))]

= Ύτ[(I - An(z)Γ'dz(I - An(z))]

= -Ίτ[(I-An(z))-ιdzAn(z)],

and moreover (/ - An(z))~ι —> (I - A(z))~ι in .7λ.
Then by the continuity of the functional Tr in the ideal ^[, we get

dz ln[det,(J - >1(Z))] = lim - Tr[(/ - An{z)Γ'dzAn(z)}

= -Tr[(/ - A(z)ΓldzA(z)]. Q.E.D.

4.II. The case of operators in the Schatten's ideal ,7p, p > 1)

Lemma A.4. Let A(z) :G —̂  ,7p a holomorphic map from an open subset G of Q to
the ideal ,7p endowed with the norm of %{H). Suppose that the pth-Schatten ideal
norm of A(z), \\A(z)\\p is bounded on every compact subset of G. Then the function
detp(/ - A(z)):G —> C is holomorphic.

Proof. Following [9], we have

Rp(A(z)) = / -

where Rp(z) = 1 - (1 - z)e 2 p~ι is an entire function. By hypothesis

A(z) e J?p, then Rp(A(z)) e .7X and detp(/ - A(z)) = det^/ - Rp(A(z))).

We are going to see that Rp(A(z)) satisfies the hypothesis of Lemma A.I. In order

to show that Rp(A(z)):G —> j ^ is a holomoφhic function, we write

with Γz such that the spectrum σ(A(z)) is contained in its interior. For instance, we
can take Γz = {Λ e C/|λ| = 2||A(z)||}, nonclockwise oriented.
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If r > 0 is such that {z e C/|z| < r } c G and h eC with \h\ < r/2, then

Rp(A(z + h)) - Rp(A(z))

2πiJ
D , λ J(A - A(z + h)Γι - (A - A(z)Γι] ^
np(λ) aλ

(A.3)
n

By the mean value theorem between Banach spaces we have:

\\A(z) - A(z + h)\\HiH < \h\ max \\dz(A(z

< \h\ max \\dv(A^))\\H,H
\v\<3r/2

= c\h\.

Since (λ - A(z + h))~' = (λ - A(z))~l[I + (A(z) - A(z + h)) (A - A(z)Γι]"', we
have

< ||(λ - A(z)Γι\\H<H\\[I + (A(z) - A(z + Λ))(λ -

< ||(λ - A(z)Γι\\HH[l - \\(A(z) - A(z + h)\\HiH\\(X - A(z)Γι\\HίHΓι

<2\\(\-A(z)yx\\HH, for all A e Γ 2 .

In fact, by the continuity of A(z) in J^(ϋΓ), there exists δ > 0 such that if \h\ < δ

then ||Λ(z) - A(z + h)\\HtH > \ ^ | | ( Λ _ ^ ) r M | Taking Λ such that

|/ι| < min{ί,3r/2} we have \\A(z)-A(z + h)\\HίH\\(\-A(z))-ι\\H^H < \ uniformly

in λ for λ G Γz.
So, the function under the integral sign in (A.3) is bounded in J^(ϋf)-norm by a

λ-integrable function, for all h close to zero. By Lebesgue dominated convergence
theorem we have that the function Rp(A(z)) from G to H is holomorphic.

Moreover, writing Rp(z) — zph(z), with h(z) an entire function such that

h(0) = - φ 0, it results RJA(z)) = (A(z))ph(A(z)). Since h(A(z)) belongs to
P

3§(H) and (A(z))p is trace class, Rp(A(z)) is trace class and

| | i^(*))lli < \\(A(zn\\KA(.h))\\H,H < \\A(zψp\\h(A(z))\\HtH.

This inequality ensures us that Rp(A(z)) is uniformly bounded in every compact
subset of G, because the first factor is so by hypothesis and the second one is a
continuous function in z restricted to a compact subset of G. Finally, by Lemma A.I
we conclude that the function detp(/ — A(z)) is holomorphic. Q.E.D.

Lemma A.5. Under the hypothesis of Lemma AA we have:
(a) the derivative operator dzA(z) belongs to the ideal ^pfor all z G G;
(b) the function Ύr[(A(z))p] is holomorphic on G;
(c) 1
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Proof. A(z) holomoφhic implies that in the J&(H)-norm,
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(w -

where Γ = {\w — z| = r} C G is a nonclockwise oriented path and r > 0 is close to
zero. From the hypothesis of boundness of ||^4(^)|| on compact subsets, we have:

— sup
r Γ

< oo.

Then dz(A(z)) e &p.
The claim (b) is a direct application of Lemma A.2. To prove (c) note that according

to Lemma A.2 and the cyclic property of trace we have

\p-j

Lj=i

= pTτ[A(z)p~ιdz(A(z))]. Q.E.D.

Lemma A.6. Under the hypothesis of Lemma A A we have

dz lndetp(J - A(z)) = - Tr[(/ - A{z))-\A{z)f-ιdz{A{z))}.

Proof For all z G G such that / - A(z) is invertible, we have

lndetp(l - A(z)) = lndet^l - Rp(A(z))),

with Rp(A(z)) as before.

From Lemmas A.3 and A.4, we get

dz Indeed - A(z)) = dz lndet^/ - Rp(A(z)))

= -Tr[(J - ϋ p U ί z ) ) ) " 1 ^ ^ ^ ^ ) ) ) ] .

Let {φj}^Z{ be an orthonormal basis of H, and P n be the orthogonal projection
onto the subspace generated by {φ^j = 1,... ,n}. Then A(z) = lim ^L(» in the

norm of :7p being An(z) = PnA(z)Pn.
Note that for all positive integer r such that 1 < r < p, An{z)r —•» ^4(z)r for

n -^ oo in the ideal i^-norm because A(z)r G ̂ / r and An{z)r = PnA(z)rPn.
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On the other hand, if h(z) is an z-entire function, for Γ a path which surrounds the
spectrum of A(z), and z G G, we have:

\\h(An(z))-h(A(z))\\HiH

— I h(λ)[(λ-An(z)Γ[-(λ-

r if,//

-hi
έ

- ( λ ~

< (- ί \HX)\\\(X- A(z)Γι\\2

HiH\dX\\\\A(z)- An(z)\\HtH >0,

\ Γ )

since ||(λ - An{z))-χ\\H^H < 2||(λ - A(z))-γ\\HtH for large n.
So, /z(τ4n(z)) tends to h(A(z)) in the iJ-norm for n —> oo. Applying the triangular

inequality we obtain

= lim Rp(an(z)) in 9X

because Rp(A(z)) = ̂ (τ4(^)), being g(z) = zph(z), with /ι(z) an entire function.
Then

dz lndetp(J -

Now, for each positive integer n we have

Tr{[/ - Rp(An(z))Γιdz[Rp(An(z)))} = Tr{[/ -

= Tr{(/ - An(z)r^-An(^An(z)1--^A

.dzU - (/ - An(z))eAniz)+lΐ Λ » ^ + - + ^ ϊ ^

(A.4)

V

x - dz(An(z)).eAn(z)+-+i

.dz(ei An(z):))ei+ί An(z)3 +

= Ύΐ[(I-An(z)Γιdz(/ (A.5)
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(We have used the cyclic property of traces for finite dimensional matrices to get the
last equality.)

Applying the Cauchy formula to the finite dimensional matrices e 3 , it is
straightforward to see that:

-Λn(z)J An(z)3 -An{zγ An{zγ

Tr[e o dz(e * )] = Tr[e ' e * An(Zy-χdz(An(z))]

= Ύτ[An(zγ-ιdz{An(z))].

Then we have:

Tr{[/ - Rp(An(z))ΓXdz[Rp(An(z))]}

= Tr[(J - An(z)Γιdz(An(z))] ~

= Tr Ul-An(z)Γι-^2An(zy-ιjdz(An(z))^

= Tr[(/ - An(z)rιAn{zf-χdz{An{z))]. (A.6)

(In the last equality, Taylor's formula was utilized with rest.)
It is easy to verify that

(/ - An{z))~x > (I - A{z))~x in the norm of i£{ΪΓ),
n—>oo

and that

An(zγ~x > A(zf~ι in the norm of the ideal .Z,Ό_{ .
n—*oo '

On the other hand, since

dz(An{z)) = dz(PnA(z)Pn) = Pndz(A(z))Pn ,

we have

dz(An(z)) > dz(A(z)) in the norm of the ideal :7 .
n—>oc

Putting it all together, we get

(1 - An(z)ylAn(zf-ldz(An(z)) >{l-A(z)rιA(zf-ιdz(A(z))

in the trace norm.
From this, (A.4) and (A.6), we finally obtain:

l - A(z)) = - ^limJrKl - An{z)Γx An{zf-χdz{An{z))]

- An(z)ΓxAn(zr-χdz(An(z))],

because of the continuity of the trace in the trace norm. Q.E.D.
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