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Abstract: A number of modern mathematical and physical problems require the
study of delicate asymptotic properties lying "beyond" the power series asymptotics.
In this paper we suggest a link between these asymptotic problems and some analytic
properties of inverse Laplace transforms of the corresponding solutions. The main
result claims that these inverse transforms are holomorphic in an appropriately cut
complex plane. A direct consequence of this is the nonexistence of solutions to
the class of "asymptotics beyond all orders" problems, such as regular shocks of
the Kuramoto-Sivashinsky equation ([Gr]), needle crystal solutions of the simple
geometrical model of crystal growth ([KS]), solitary wave solutions to a class of
the fifth-order Kortveg-de Vries equations ([KO, Sect.8], [GJ])5 homoclinic orbits
of some singularly perturbed mappings ([Ec, HM]) and others.

I. Introduction

Let us consider a differential equation of the type

χι-ry\χ) =Λχ,y), x eC, y eCn, r eN, (l.l)

where the vector-valued function f(x,y) is assumed to be homomorphic at (oo,0) G
C x Cn. The particular equations

Pv(χ) -j 9

x - - < 1 3 >
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and
v""(x) + v"(x) + υ2(x) = 0 (1.4)

that are reducible to (1.1), are considered below.
Everywhere in this paper we will assume that Eq. (1.1) has a, formal power

series solution
oo

y(χ) = Σykχ~klp, PEN, noez. (1.5)
k=\

In what follows without loss of generality we set p — 1. The word formal means
that generally the series (1.5) is divergent, i.e., has zero radius of convergence.

The number r in (1.1) is called the Poincarέ rank of Eq. (1.1). This equation is
said to have the irregular singular point x = oo if r > 0. From the general theory
of equations with irregular singular points it is known (see [RS]) that for any sector
S of opening less than π/r the existence of the formal solution (1.5) implies the
existence of a proper solution y(x) of (1.1), that is holomorphic in S for sufficiently
large |x| and has the asymptotics

y(x)~y(x), x - + o o , xeS. (1.6)

Sometimes, if the sector S is sufficiently wide, this asymptotic expansion uniquely
determines yix).

Let some solution y{x) be uniquely determined by the asymptotics (1.6). The
considered problem is whether y(x) can possess some symmetry, say, can y(x) be
an antisymmetric (odd) function. The answer is definitely negative even if the for-
mal series y(x) contains one non-zero even term. However the question becomes
"asymptotically beyond all orders" in the case of odd y(x). Then a natural approach
(see [KS, Gr, HM]) is to find exponentially small terms of y(x), lying beyond the
power series asymptotics while x £ S (hidden exponents), and to examine whether
they are odd or not.

The essence of the problem here is to evaluate the prefactors of the hidden
exponents which are known as the Stokes constants. In [T2] we show that in fact
the Stokes constants are "generalized" residues of the corresponding inverse Laplace
transforms Y(p) of y(x). Thus we get explicit formulas for the Stokes constants in
terms of Y(p). Subsequently we show that in a certain particular case, one can use
formal Borel summation to evaluate the Stokes constants.

It turns out, however, that the evaluation of the Stokes constants is not a nec-
essary stage in the search for symmetries of y(x). Instead, in this paper we show
that if y(x) is indeed a symmetric or, respectively, an antisymmetric function then
the asymptotics (1.6) is valid in so wide a sector such that the formal series y(x)
must be convergent. Therefore, in the class of problems under consideration, the
existence of a solution with some symmetry is equivalent to the convergence of the
formal power series solution.

Thus the existence of an antisymmetric solution of Eq. (1.2) and symmetric
solutions of Eq. (1.3), (1.4), having the formal power series asymptotics

2 50 4 6104 6v(x) ~ ~-2 + y x " 4 - -^-x
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respectively, implies the convergence of (1.7), (1.8) and (1.9). However these series
are divergent (see asymptotic formulas for the coefficients of v(x) in [GJ, Gr];
also see below). The obtained contradictions serve to prove the nonexistence of
solutions of Eq. (1.2)—(1.4) with the required symmetries. This is the essential part
of the demonstration that for a sufficiently small positive ε the reduced Kuramoto-
Sivashinsky equation

e V " + (1 - 4 e V = l-v2 (1.10)

has no regular shock solutions ([Gr]), the simple geometric model of crystal growth

ε V " + vf = cos υ (1.11)

has no needle crystal solutions ([KS]) and the reduced fifth-order Kortveg-de Vries
equation

εV" + υ" + vι-cυ = 09 ce R+ (1.12)

has no travelling wave solutions ([GJ]) and no homoclinic orbits. (The latter prob-
lems were studied in [KO, Ec] by different methods.) The proposed approach is also
applicable to singularly perturbed difference equations, for example to the problem
of exponentially small splitting of separatrices of a standard mapping (see [HM]).

The divergence of formal series (1.7)—(1.9) can be rigorously shown using the
sign alternation of these series. Consider, for instance, Eq. (1.4). The convergence
of its formal solution (1.9) implies the existence of an entire solution V(p) to the
convolution equation

(p4+P1W(j>)+V(j>)*V(p) = 09

which is the inverse Laplace transform of (1.4). Suppose V(p) is an entire function.
Then V(ι) * V(ι) = 0. At the same time the sign alternation of (1.9) ([GJ]) implies
that iV(p) is real valued and positive along the positive imaginary semi-axis, so
V(i) * F(z)=t=O. The obtained contradiction proves the divergence of (1.9).

Let us provide some comments concerning the mentioned singularly perturbed

equations on the example of (1.11). A needle crystal solution of (1.11) is a so-

lution that satisfies the boundary conditions υ(s,ε) —> =b— as s —-> oo. The unper-

turbed equation υ' = cos v has a needle crystal solution v(s, 0) = \- 2 tan" 1 es.
The problem is whether this needle crystal solution survives the singular perturba-
tion.

In fact, this problem has been reduced to the existence of the symmetric solution

to (1.3), which possesses the asymptotics (1.8) in the left half-plane. (By the same

reason one could consider the right half-plane instead of the left.) The reduction

requires the technique of matching of properly defined outer and inner asymptotics

and is one of the principal points of the pioneering work [KS]. Unfortunately the

framework of this paper does not allow us to present this reduction. Let us only men-

-
ε ' k=o

asymptotics of v(s,ε) are matching near the pole s = — i of the unperturbed solution
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v(s,0) = vo(s), where s = -i + εx. Then vo(x) 4- ln(— x) satisfies (1.3) and possesses

the asymptotics (1.8) in the left half-plane.
The following section contains a number of the necessary assertions from the

theory of ordinary differential equations with irregular singularities. In Sect. Ill we
formulate the Main Theorem (Theorem 3) on Laplace originals and show the nonex-
istence of solutions to (1.2)—(1.4) with the required properties. Sect. IV contains the
proof of Theorem 3.

The author is very grateful to Roger Grimshaw for attracting his attention to the
subject.

II. Nonlinear ODE's with Irregular Singularities

The existence of the formal solution (1.5) of Eq. (1.1) implies that/(oo,0) = 0. Let
us represent (1.1) as

/ ( * ) = xr~x (λyix) +f(x9y(x))) > (2-1)

df
where A = ^-(oo,0) and/(ί,v) =f(t,y) - Ay. Then

dy

/(oo,0) = 0, |£(oo,0) = 0. (2.2)

Equation (1.1) is called nondegenerate if A is a nondegenerate matrix. In the
opposite case it is called degenerate. The nondegenerate equations were considered
in [Wa]. Our study of a degenerate equation in [Tl] is based on the reduction to an
equation of the "type" (2.1) with an invertible matrix A. Speaking more rigorously,
we showed there that any equation (1.1) which possesses the formal solution (1.5)
is reducible to

/ ( * ) - xR~J (Λy(x) +f(x,y{x))) (2.3)

by means of the transformations

n\
y(x) h+ y(x) - Σykχ-k

9 y(x) » x'"2T(x)y(x),
k=\

where n\,n2 are appropriate natural numbers and T{x) is an appropriate matrix
polynomial, such that det T(x) ψ 0. In Eq. (2.3) I is the identity matrix, R and A
are diagonal matrices with the entries

/ > G β Π [ 0 , r ] , λ, GC\{0}, 7 = 1,...,Λ,

respectively, where Reλj > 0 if η — 0. The vector-valued function f(x,y) is holo-
morphic at ( o o , 0 ) e C x C " and satisfies (2.2).

Let J denote the set of indicies {j:ηή=0}.

Definition 1. The exponentials erj* ,j eJ, are called characteristic exponentials
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The characteristic exponentials are uniquely determined by Eq. (1.1) and its
formal solution (1.5). For example, e±ιx are the characteristic exponentials of both
(1.2) and (1.3).

Theorem 1 ([RS]). 7/" (1.1) has a formal power series solution (1.5) then for any
sector S of opening less than π/r there exists a number xs > 0 and a proper
solution y(x) of (1.1) so that y(x) is holomorphic in S Π {x: \x\ ^xs} and y(x) has
the asymptotic expansion (1.6) in S.

Let Ψs denote the set of all solutions of (1.1) described in Theorem 1.

Theorem 2 ([Tl]). The dimension d$ of the manifold of solutions Ψs is equal to
the number of the characteristic exponentials decreasing in the whole S as x —> oo.
If ds — 0 then Ψ s contains no more than one solution.

Definition 2. A ray τ on the Riemann surface of In x is called a Stokes ray of
(1.1) if at least one of the characteristic exponentials is oscillating along τ.

Remark 1. Let S be an open sector and S be the extension of S in both directions
up to the nearest Stokes rays. Then it is well known that Ψ§ = Ψs, i.e., only a
Stokes ray is the lateral bound of validity of the asymptotics (1.6).

Definition 3. Equation (1.1) is called a one-level equation of order v if Rή=0 and
if all the characteristic exponentials of(lΛ) are of exponential order v.

Equations (1.2)—(1.4), for instance, are one-level equations of order 1. The fol-
lowing well known assertion is a direct consequence of Theorem 2.

Corollary 1. If (I A) is a one-level equation of order v and if for some sector S

of opening greater than — the set ΨsΦ®, then the formal power series (1.5) is

convergent.

Indeed, let for the sake of simplicity v = 1. If in the sector S y(x) =y(xe2πi),
then y(x) is holomorphic at infinity (see, for instance, [Wa], Th. 8.6). Otherwise,
let the S on the complex x-plane be the intersection of the projections of S from
different leaves. Then the opening of S is greater than π and y(x)9 y{xe2πi) G Ψ$.
This contradicts Theorem 2.

III. Nonexistence of Solutions of (1.2)-(1.4) with the Required Symmetries

Let τ be a Stokes ray of the one-level equation (1.1) of order v G N. Let ε > 0 be
so small that no other Stokes rays lie between τ and τe~iε. By S we denote the open
sector bounded by the rays τe~ιi and τe^~ε\ Then Ψ$ + Φ according to Theorem
1. Moreover, Ψ§ = Ψs, where the sector S D S is bounded by the rays τe~ιε,τeιv.
Then Ψsή=Φ and Ψs, according to Theorem 2, contains a unique solution y(x). In
what follows without loss of generality we assume that S is bisected by the positive
real semiaxis. This implies that argλyΦO for any j e J.
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λ λj π). By U we denote the complex /?-plane with the

cuts from points \ —-e 2 ι k ^, where j G J, k — 0,..., v — 1, in the directions arg/> =

-(arg — + (2k — l)π) respectively.

In what follows we use the standard direct and inverse v-Laplace transforms
defined by the formulas

oo

(^vV(p))(x) = v / e-χVPvpv

0

and

{2>-χυ{x)){p) = ~JePvx

respectively. Here the contour γ is obtained from the vertical line, which is situated
in the right half-plane, by means of the transformation x1/v. Note that <£±x = J^f1

are the usual direct and inverse Laplace transforms.

Theorem 3 (Main Theorem). Let (1.1) be a one-level equation of order v and let
y G Ψs. Then (^~ιy)(p) is holomorphic in U.

Let us now utilize Theorems 1-3 to show that the solution v(x) of (1.2) defined
by its asymptotics (1.7) in the right half-plane cannot be purely imaginary-valued
on any segment of the imaginary axis (and therefore cannot be antisymmetric).

1. The characteristic exponentials of (1.2) are e±ιx. Then according to Theorems
1, 2 the solution v(x) exists and is uniquely determined. Moreover, it possesses
asymptotics (1.7) in the sector |argx| < π according to Remark 1.

2. Suppose v(x) is purely imaginary-valued on some segment, say, of negative
imaginary semiaxis. Let us consider the complex x-plane with the cut along the
positive imaginary semiaxis. Then according to the reflection principle v(x) possesses

the asymptotics (1.7) in the sector — —- < argx < - . This sector can be enlarged

to —2π < argx < π by means of Remark 1.

3. According to Theorem 3 (J£~ιv)(p) is holomorphic at the origin of the p-
plane. Then, one can use the known relation between the power series asymptotics
of v(x) and the Taylor expansion of (J£~ιυ)(p) at the origin to demonstrate that
all the mentioned Taylor coefficients are real. So (^~ιv)(p) and thus v(x) are real-
valued on the corresponding positive real semiaxes.

4. The reflection principle can be utilized now once more to show that v(x) pos-
sesses the asymptotics (1.7) in the sector |argx| < 2π. Then according to Corollary
1 the series (1.7) is convergent. The obtained contradiction shows the nonexistence
of the antisymmetric solution to (1.2), which possesses the asymptotics (1.7) in the
right half-plane.

The arguments mentioned above could be as well applied to Eq. (1.3), (1.4). One
can get a number of generalizations of this scheme to different problems, including
differential, difference and possibly some other classes of equations.
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IV. Proof of Theorem 3

1. The General Approach. We first present the proof under the assumption that
v = 1 and Eq. (1.1) has n characteristic exponentials eλjχ, j — l,...,n. The case
v > 1 and the degenerate case (when the number of characteristic exponentials is
less than n) are considered later.

The holomoφhic vector-valued function f(x,y(x)) can be expanded in the uni-
formly and absolutely convergent series

f(x9y) = £ > > ) / ( * ) , (4.1)
|α|£0

in some neighborhood of x = oo. Here α is a multi-index. Then the series

converges absolutely and uniformly on any compact subset of R+ in the complex
p-plane. Here the convolution is defined as V\ * F2Q?) = JQ V\(p — τ)V2(τ)dτ, 7*α

denotes the αth convolution power and

Y(p) = (J^~V)O), Fa(p) = (^~ιfc

Therefore we can define ^~ι\f(x9y(x))] as F(p,Y(p)).
Here is the idea of the following proof: we represent

(4.3)
k=ι

and construct a majorizing series

oo

" (4.4)
k=\

which converges uniformly on any compact subset of U.

2. Properties of Z(p). The coefficients fa(x) in (4.1) are holomoφhic at infinity.
Therefore they can be expanded in the Taylor series

k=0

Let us define

k=0

and

f(x9z)= YJa(x)z*9 zeCn. (4.5)
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Here the entries of the vector \C\ are the absolute values of the corresponding
entries of the vector C. Then the vector-valued function /(x, z) is holomorphic at
(oo,0) eC xCn. According to (2.2) we get

/(oo,0) = 0, J^(oo,0) = 0. (4.6)

Let us represent U = [Jδ>0Us, where U$ consists of all points p such that the
segment [0, p] does not intersect any disk \λk + τ| :g<5, k = 1,...,w. Then if Y(p)
is holomorphic in any Us then it is holomorphic in U.

Let us define Z(p) by

Z(p)=l-F(p,Z(p)), (4.7)

where F(p,Z(p)) = Σ Fa(p) * Z?«γ Fa = i ? " 1 / ^ Let us also assume ZQQ?) = 0,

Lemma 1. Equation (4.7) has a unique entire solution given by (4.4), where
ΔZk+\(p) — Zk+\{p) — Zfc(p). The series (4.4) converges uniformly on any com-
pact subset of C. All AZk(p) are entire vector-valued functions and their vector
Taylor coefficients at the origin consists of nonnegative real numbers.

Proof The direct Laplace transform transfer (4.7) into

where z(x) = (j£?Z)(x). Then according to the implicit function theorem and to (4.6),
Eq. (4.8) has a unique solution z(x). This solution is holomorphic at infinity and
z(oo) = 0. So, according to the standard fixed point method z(x) can be represented

9 (4.9)
k=\

where ΔzM = zM - zk, zk+x = Ίf(x,zk)9 k e N, and z0 = 0. The series (4.9)
o

converges uniformly in some neighborhood at infinity. Now all the required prop-
erties of the series (4.4) can be immediately derived from (4.9). D
3. The Majorίzation of Y(p). The inverse Laplace transform transfers Eq. (2.1)
into

Y(p) = -{lp + Λ)-λF(j>9 Y(p)), (4.10)
where / is the identity matrix. Let us denote AYk+\ = Yk+\ — Yk> where Yo(p) = 0
and

Lemma 2. For any k £N the vector-valued functions AYk+\(p) are holomorphic
in Us and

\ΔYk+ι(p)\ <ΔZM(\p\). (4.11)

Proof For k = 0 the statements follow from the definitions of AY, AZ. Let us prove
these statements for some k+1 providing their validity for 1,...,k. To this end we
need the two following lemmas.
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Lemma 3. Let n eN,σ G R+ and functions V{ G C[0,σ], Wx G C[09σ],i = l,...,/ι.
Then if for all ί and for all τ G [0,σ] we have \Vi{τ)\^Wi{τ\ then

The proof can be given by induction by n.

Lemma 4. Let the entries of two pairs of n-dimensίonal vector-valued func-
tions V\(τ),W\(τ) and V2(τ),W2(τ) satisfy the conditions of Lemma 3. Moreover,
let \AV(τ)\^AW(τ) for all τ € [0,σ], where ΔV = V2 - VUAW = W2 - Wu and
where the vector inequality holds elementwise.

Then
\ΔF{σ,V)\^ΔF{σ,W), (4.12)

where

AF(σ9 V) = F(σ9 V2) - F(σ, Vx\ ΔF(σ, W) = F(σ, W2) - F(σ, Wx).

Proof We can make a C-continuation of W2(σ) on the whole R+ so that w2{x) =
(J£W2)(x) is defined and is of the order O(x~ι) as x —•> 00 in the right half-plane.
Since f(x,z) is holomorphic at (oc,0) G C x Cn, hence we can represent

(JϊT Vfc, w2(x)))(σ) = F(σ, W2(σ)) = ^ Fβ(σ) * ^ 2 * α (σ). (4.13)

The series (4.13) is convergent for any σ^O. Therefore it is enough to prove (4.12)
for each term of (4.13) independently.

Let us define w\(x) = {<£W\)(x) in the same way as w2(x). Let α be a multi-
index α = (αi,. . . ,α m ). Then

m j — 1 m

Δwa —w? — w? = / I I (w\ I * I I
j=\ k=0 k=j+l

0,-1

xΣ

where w ( ; ) means the yth entry of the column vector w and #α is the corresponding
row vector.

That means that we can represent

AW* = &-{Awa = G(X(W)*ΔW ,

where Gα = J£~ιg<x. For any τ G [0,/?] according to Lemma 3 we have

Using Lemma 3 once more we get the inequality

\Fa(σ) * AV**(σ)\ ^F α (σ) *



254 A. Tovbis

which completes the proof of Lemma 4. D
Let us return to Lemma 2. We have the inequalities \Yj(p)\^Zj(\p\) for ally 5̂  A:

and all p G Us as the assumption of induction. Then (4.11) follows from Lemma 4,
where V2(σ) = Yk(p\ Vλ(σ) = Yk-ι<j>), W2(σ) = Zk(\p\\ Wλ(σ) = Zk.x{\p\) and/? =

σe'
,ιφ

The vector-valued function Yk+\(p) is holomorphic in Us since the series

is majorized by the series

4. The Degenerate Case. In Subsects. 1-3 we proved Theorem 3 in the nonde-
generate case. Now let us consider the case when λj(x) = λj lnx, j^£ and λj(x) =
λjX, j > /. Here £ G N, £ < n and functions λj(x) are defined by (2.3).

Let us define the Laplace transform of the desired majorizing vector-valued
function Z(p) by the system

(4.14)

If we rewrite (4.14) as z(x) = φ(x,z(x)) then

follow from (2.2) and from (4.6). Now by means of the arguments of Subsect.
2 one can show that in the degenerate case Z(p) = {^~ιz){p) also possesses the
properties mentioned in Lemma 1.

If in the first £ differential equations of (2.3) we make the inverse Laplace
transform, differentiate in p and represent the obtained differential equations in the
integral form, then we get

γU\p) = p-h~\ ] τ 4 F ( Λ ( τ , Y(τ))dτ, j = 1 , . . . , / .
o

The corresponding equations on Z^j\p\ j = 1 ,...,£, are

Z^\p) =p-RQ λJ-ιJτ^ λjFU\τ,Z(τ))dτ .
o

Let ΉJ(p,Y(p)) and HJ(p,Z(p)) denote the right-hand sides of the latter equa-
tions respectively, j = 1,...,/. Then one can directly check that the inequality

for all τ G [0,/?], p G Us implies
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\HU\p,Y{p))\ύHU\\pVZ(\p\)) •

That means that Lemma 4 can be expanded on the degenerate case. So the remaining

part of the proof coincides with that of the nondegenerate case.

5. The Case v >1. Let us consider the nondegenerate case. Then the inverse v-

Laplace transform transfers Eq. (2.1) into

where F(p,Y(p)) = [&^lf(x,y(x))](p). A proof of Theorem 3 for v > 1 in both

the nondegenerate and degenerate cases just repeats the corresponding proof for

v = 1 replacing the usual Laplace transform by v-Laplace transform.
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