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Abstract: Orthogonal polynomial random matrix models of N x N hermitian
matrices lead to Fredholm determinants of integral operators with kernel of the
form (φ(x)φ(y) — ψ(x)φ(y))/x — y. This paper is concerned with the Fredholm
determinants of integral operators having kernel of this form and where the
underlying set is the union of intervals J= [J™=1 (βij-u Λ2 J ) The emphasis is on
the determinants thought of as functions of the end-points ak.

We show that these Fredholm determinants with kernels of the general form
described above are expressible in terms of solutions of systems of PDE's as long as
φ and φ satisfy a certain type of differentiation formula. The (φ, φ) pairs for the
sine, Airy, and Bessel kernels satisfy such relations, as do the pairs which arise in
the finite N Hermite, Laguerre and Jacobi ensembles and in matrix models of 2D
quantum gravity. Therefore we shall be able to write down the systems of PDE's for
these ensembles as special cases of the general system.

An analysis of these equations will lead to explicit representations in terms of
Painleve transcendents for the distribution functions of the largest and smallest
eigenvalues in the finite N Hermite and Laguerre ensembles, and for the distribu-
tion functions of the largest and smallest singular values of rectangular matrices (of
arbitrary dimensions) whose entries are independent identically distributed com-
plex Gaussian variables.

There is also an exponential variant of the kernel in which the denominator is
replaced by ebx — eby, where b is an arbitrary complex number. We shall find an
analogous system of differential equations in this setting. If b = i then we can
interpret our operator as acting on (a subset of) the unit circle in the complex plane.
As an application of this we shall write down a system of PDE's for Dyson's
circular ensemble of N x N unitary matrices, and then an ODE if J is an arc of the
circle.

I. Introduction

It is a fundamental result of Gaudin and Mehta that orthogonal polynomial
random matrix models of N x N hermitian matrices lead to integral operators
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whose Fredholm determinants describe the statistics of the spacing of eigenvalues
[28, 36]. Precisely, if a weight function w(x) is given, denote by {pk(x}} the sequence
of polynomials orthonormal with respect to w(x) and set

φk(x):=pk(x)w(x)1/2 .

Then E(n; J\ the probability that a matrix from the ensemble associated with w(x)
has precisely n eigenvalues in the set J (n = 0,1, . . .), is given by the formula

E{n; j ) = ̂ ^ d e t ( / - A K N ) | A ϊ a l , (1.1)

where KN is the integral operator on J with kernel

N-l

KN{x,y):= X φk{x)φk(y) .
k = 0

It follows from the Christoffel-Darboux formula (cf. (6.3) below) that λKN(x9 y) is
a particular case of a kernel of the general form

{ i y ) ( )

x-y
This paper is concerned with the Fredholm determinants of integral operators

having kernel of this form and where the underlying set is the union of intervals

m

J:= U (a2j-i9a2j) .

The emphasis is on the determinants thought of as functions of the end-points ak.
If we denote the operator itself by K then it is well known that

/ - l o g d e t ( / - K ) = (-l) k- 1iί(α k,fl k) (fc=l,. . . , 2m), (1.3)
dak

where R(x, y), the resolvent kernel, is the kernel of K(I — K)~ι. This requires only
that λ=l not be an eigenvalue of K and that K(x, y) be smooth. Jimbo, Miwa,
Mori and Sato [25] showed for the "sine kernel"

sin(x — y)

x-y
that if we define

then the R(ak, ak) are expressible in terms of the rkt± and that these in turn, as
functions of the α 1 ? . . . , α 2 m, satisfy a completely integrable system of partial
differential equations. They deduced from this that in the special case when J is an
interval of length s the logarithmic derivative with respect to s of the Fredholm
determinant satisfied a Painleve differential equation. (More precisely, s times this
logarithmic derivative satisfied the so-called σ form of Pv of Jimbo-Miwa-
Okamoto [24, 33].) We refer the reader to [37] for a derivation of these results in
the spirit of the present paper. The discovery that Painleve transcendents can be
used to represent correlation functions in statistical mechanical models first ap-
peared in the 2D Ising model [1, 26, 41].
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The sine kernel arises by taking a scaling limit as N -+ oo in the bulk of the
spectrum in a variety of random matrix models of N x N hermitian matrices. But if
we take the Gaussian unitary ensemble (also called the Hermite ensemble; see
below), and others as well, and scale at the edge of the spectrum then we are led
similarly to the "Airy kernel"

Ai(x)Aϊ(y)-Aϊ(x)Ai(y)

x-y

where Ai(x) is the Airy function [6, 19, 30, 38]. For this kernel the authors found
[38] a completely analogous, although somewhat more complicated, system of
PDE's, and showed that for J a semi-infinite interval (5, 00) there was also a Pain-
leve equation associated with the determinant - this time Pπ. Similarly, if we scale
the Laguerre ensemble at the left edge of the spectrum or the Jacobi ensemble at
either edge (see below for these ensembles also), then we obtain yet another kernel,
the "Bessel kernel," where in (1.2) φ(x) = Ja(^/x\ φ(x) = xφf(x) with Ja the usual
Bessel function. Again we found [39] a system of PDE's for general J and, for
j = (0, s), a Painleve equation associated with the Fredholm determinant - this time
Pv (actually a special case of Pv which is reducible to PIΠ\

In looking for (and finding) analogous systems of PDE's for finite N matrix
ensembles we realized that all we needed were differentiation formulas of a certain
form for φ and ψ, namely

m{x)ψ'(x)= -C(x)φ(x)-Λ(x)φ{x) , (1.4)

where m, A, B and C are polynomials.
The (φ,ψ) pairs for the sine, Airy, and Bessel kernels satisfy such relations

(m(x)= 1 for sine and Airy, m(x) = x for Bessel) as do the pairs which arise in the
finite JV Hermite, Laguerre and Jacobi ensembles (m(x) = 1 for Hermite, m(x) = x for
Laguerre and m(x)= 1 — x2 for Jacobi) and therefore we shall be able to write down
the systems of PDE's for these ensembles at once as special cases of the general
system. An analysis of these equations will lead in the cases of the finite N Hermite
and Laguerre ensembles to explicit representations in terms of Painleve transcen-
dents for the distribution functions for the largest and smallest eigenvalue. A conse-
quence of the latter is such a representation for the distribution functions of the
largest and smallest singular values of rectangular matrices (of arbitrary dimen-
sions) whose entries are independent identically distributed complex Gaussian
variables; for these singular values are the eigenvalues of a matrix from an
appropriate Laguerre ensemble [17].

There is also an exponential variant of the kernel (1.2) in which the denomi-

nator is replaced by ebx — eby I or equivalently sinh-(:x — y) j , where b is an arbit-

rary complex number. With an appropriate modification of (1.4) we shall find

a completely analogous system of differential equations. Observe that if b = ί then

we can interpret our operator as acting on (a subset of) the unit circle in the

complex plane. As an application of this we shall write down a system of PDE's for

Dyson's circular ensemble of N x N unitary matrices, and then an ODE if J is an

arc of the circle. In case b is purely real our results have application to the so-called

g-Hermite ensemble [9,31].
Here, now, is a more detailed description of the contents of the paper.
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A. The Differential Equations. In Sect. II we derive our general system of partial
differential equations. To describe these equations we first define the functions

β:=(/-«ΓV P :=(/-*)" V, (1.5)

which depend also, of course, on the parameters ak, and then

l pk:=P(ak)(k=l, . . . , 2m), (1.6)

where the inner products are taken over J. These are the unknown functions in our
system of PDE's. We shall see that for any operator with kernel of the form (1.2) we
have for the resolvent kernel the formulas [22]

qjPk-pjqk (1.7a)

(1.7b)
vuk uuk

for the qj and Pj the differentiation formulas

(1.8)

and for the uj9 ^ , ŵ  differentiation formulas of the form

—-, -τ~^-, —^ = polynomial in pk, qk and the various uh ι;ί5 wf .

These equations are universal for any kernel of the form (1.2). What depends on
(1.4) are the remaining differential formulas

m(aj)—i- = polynomial in qh p, and the uh vi9 wf
daj

rn(aj)—J- = polynomial in qj9 pj and the ui9 vh wf

and the representation

m(aj)R(aJ9 cij) = polynomial in #7 , p7- and the ui9 vh wt .

The polynomials on the right sides are expressed in terms of the coefficients of the
polynomials m, A, B, C in (1.4). We mention that in [25] no "extra" quantities ui9 vi9
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Wi appear, but this is quite special. In general the number of triples (wi? vi9 Wj) which
occur is at most

max(deg^4, degJ5, degC, degm —1),

although in practice fewer of these quantities actually appear.

B. The Examples. First in Sect. Ill we quickly derive, as special cases, the systems
of equations for the sine, Airy and Bessel kernels. Then in Sect. IV we derive and
investigate the equations for kernels "beyond Airy". To explain this we replace the
variables x, y in (1.2) by λ and μ, think of (a completely new variable) x as
a parameter, and observe that for each x

A
, μ)'=

λ — μ

has the same properties as the Airy kernel. (In the differentiation formulas (1.4) the
variable is now λ and x is a parameter in the coefficients.) Observe also that
k\(x + λ) is, as a function of x, an eigenfunction of the Schrόdinger operator with
potential ξ(x)= — x corresponding to eigenvalue λ.

In the hermitian matrix models of 2D quantum gravity [8, 7, 13, 12, 21]
solutions to the so-called string equation

determine the functions φ and φ. In the simplest case of the KdV hierarchy, the
operator =2 is the Schrόdinger operator (note our convention of sign of Dl)

and the differential operator & (in x) is

0> = (&2l-»i2)+ ( Z = l , 2 , . . . ) .

where ( )+ is the differential operator part. The potential ξ then satisfies a differen-
tial equation determined by the string equation and φ(λ, x) is the eigenfunction

satisfying

Setting

the kernel [6,

( •

30] is then

Dx+ξ(x))φ(λ,x) = λφ(λ,x)

φ{λ,x) = D M λ , x )

φ(λ, x)φ(μ, x) — φ(λ, x)φ(μ, x)
1 λ-μ

00

= f φ(λ,y)ω(μ, y)dy .

(1.11)

(1.12)

(1.13)

(1.14)
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These are the kernels which we say are "beyond Airy" since for 1=1, £P = DX,
ξ(x)=—x9 (1.14) reduces to the generalized Airy kernel (1.10). From (1.11) and
(1.12) it follows that for general / the functions φ(λ9 x) and φ(λ, x) satisfy differenti-
ation formulas (in λ) of the form (1.4). (Again in the differentiation formulas (1.4) the
variable is now λ and x is a parameter in the coefficients.) In Sect. IV we illustrate
these methods for the case / = 2.

In Sect. V we study in some detail the finite N Hermite, Laguerre, Jacobi, and
circular ensembles. In orthogonal polynomial ensembles one is given a weight
function w(x) and then, for any symmetric function/on RN, we have

E(f(λl9 . . . , λjv)) = c N J J/(x i , . . . , X j v ) Π w ( χ i ) Π l*i-*/l 2 dxi . . dxN 9

(1.15)

where " E " denotes the expected value, λl9 . . . , λN are the eigenvalues, and cN is
a constant such that the right side equals one when/= 1. In the Hermite ensemble
w(x) = e~χ2 and the integrations are over R, in the Laguerre ensemble w(x) = xae~x

and the integrations are over R + , and in the Jacobi ensemble w(x) = (1 — x)α(l + x)β

and the integrations are over ( — 1,1). In the circular ensemble w(x)=l and the
integrations are over the unit circle.

The size parameter N will appear only as a coefficient parameter in the
equations we obtain; and we find that the equations for both bulk and edge scaling
limits emerge as limiting cases. Our equations also make the study of large
N corrections to the scaling limits tractable.

For the Hermite, Laguerre and Jacobi ensembles there are natural intervals
depending upon a single parameter s - for Hermite J = (s9 oo) or ( — 00,5), for
Laguerre J = (s, 00) or (0, s), and for Jacobi J = (s,1) or J = (— 1, s) - and in all these
cases we shall find an associated ordinary differential equation. For Hermite and
Laguerre these will be of Painleve type. Observe that taking n = 0 in (1.1) shows that
the Fredholm determinant in each of these cases is precisely the distribution
function for the largest eigenvalue, or 1 minus the distribution for the smallest
eigenvalue.

C. General Matrix Ensembles. In this final section of the paper we show that there
are differentiation formulas of the form (1.4) when Hermite, Laguerre, or Jacobi
weights are multiplied by e~V{x\ where V(x) is an arbitrary polynomial. (Of course
it must be of such a form that the resulting integrals are convergent.) It is the finite
N matrix models corresponding to certain V(x) which, in an appropriate double
scaling limit at the edge of the spectrum, lead to the kernels beyond Airy. (Strictly
speaking this is true only for the universality classes 1=1, 3, 5, . . . as it is well-
known that the cases Z = 2, 4, 6, . . . require coefficients in V(x) that make e~V{x)

unbounded.)

II. The General System of Partial Differential Equations

In this section we derive the system of partial differential equations that determine
the functional dependence of the Fredholm determinant det(J — K) upon the
parameters ak where K has kernel (1.2). After some preliminary definitions and
identities in Sect. ΠA, in Sec. ΠB we derive those equations which are independent
of the differentiation formulas (1.4). In Sect. IIC we assume φ and φ satisfy the
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differentiation formulas for the case m(x)=l. Then in Sect. IID we indicate the
modifications necessary for the general case of polynomial m. Finally, in Sect. HE
we derive the exponential variant of the system of equations.

A. Preliminaries. Our derivation will use, several times, the commutator identity

r r / r £M~1~1 ( T F \ - 1 ΓΓ X<ΓΛ( J Ί<r\~ 1 n n
L^> v*—-**• / J — V * — * ^ ) L ^ s - ^ J v ^ — ^ ) •> V"̂  V

which holds for arbitrary operators K and L, and the differentiation formula

da da

which holds for an arbitrary operator depending smoothly on a parameter a.
It will be convenient to think of our operator K as acting, not on J, but on

a larger natural domain Q) and to have kernel

K(x9y)χj(y)9 (2.3)

where χj is the characteristic function of J and K(x,y) is the kernel (1.2). For
example, for the sine and Airy kernel ^ = R, for the Bessel kernel @ = R+, and for
the Jacobi kernel ^ = (— 1,1). The set J will be a subset of Q). We will continue to
denote the resolvent kernel of K by R(x, y) and note that it is smooth in x but
discontinuous at y = ak. We will also need the distributional kernel

p (x, y) = δ(x — y) + R(x, y)

of (1 — Ky1. The quantities R(aj, ak) in Sect. IA are interpreted to mean

lim R(aj9 y) ,

ye""

and similarly for Pj and q^.
The definitions of uh etc. must be modified. Before doing this it will be

convenient to introduce

which for j = 0 reduce to (1.5) (Q0 = Q, Po = P) Then we define

(2.5a)

(2.5b)

(2.5c)

where the inner product ( , ) is now over the domain Q). That these definitions for
uj9 Vj and Wj are equivalent to those of Sect. IA and the above equalities are left as
exercises. They follow from the fact that

7 °n ' (2-6)
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for any smooth/. Here K* is the transpose of the operator K. (Note that K takes
smooth functions to smooth functions while its transpose takes distributions to
distributions.) We also observe that ϋo = υo. A final bit of preliminary notation is

L=L(x9y)9

which means the operator L has kernel L(x, y).

B. The Universal Equations. In this subsection M denotes multiplication by the
independent variable. If we consider the commutator of M with K and use the
representation (2.3), we have immediately

and so by (2.1)

^ ' ) . (2.7)

(The transpose here arises from the general fact that if L~U(x)V(y) then
= TX U(x)V2V(y).) It follows immediately that

and hence referring to (2.6), we deduce

x y

In particular we have deduced (1.7a) (recall definitions (1.6)) and the representation

) = Q'(x)P(x)-P'(x)Q(x) (xeJ). (2.8)

We remark that the generality of this expression for R(x, y) was first, as far as the
authors are aware, stressed by Its, et al. [22] though it appears, of course, in the
context of the sine kernel in the earlier work of JMMS [25].

We have the easy fact that

dak

and so by (2.2)

(2.9)

At this point we use the notations Q(x, α), P(x, a) for P(x) and Q(x\ respectively, to
remind ourselves that they are functions of a as well as x. We deduce immediately
from (2.9) and (1.5) that

/ - Q(x, a) = (-l)kR(x, ak)qki ^ - P{x9 a) = (-l)kR(x, ak)pk . (2.10)
oak dak

Since qj = Q(aj9 a) and Pj = P(aj, a) this gives
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These are Eqs. (1.8) and (1.9). We record for use below

dqj (δ d dpjjd , d

41

(2.11)

To obtain (1.7b) observe that (2.8) gives

R(ak,
 ak) = - , a)pk-P(x, α)

But the expression in brackets above vanishes identically when x = ak and so the
above is equal to

If we use (2.10) in the computation of this partial derivative, (1.7b) results.
We now show that the vk can be expressed in terms of the other quantities M, , vt

and Wi (we could do vk just as well) and that the Pk and Qk can be expressed in terms
of these quantities and P, Q. From

xk — yk

χ~~y i
= Σ

we get

and so

-pi(x)(i-κty1yjφ(y)xΛy))

Applying this to φ shows that

i + j = /c - 1

and applying it to φ shows that

Pk(x) = xkP(x) -

(2.12)

(2.13)

These are the recursion relations for Qk, Pk. Taking the inner product of both sides
of the first one with φχs gives

vk = vk- Σ (vjVi-UjWi), (2.14)

recursion formulas which can be used to express the ϋk in terms of the wί5 vh wt.
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Finally, using the definition of Uj in (2.5a), the fact

and (2.10) we find that

dak

= (-l)k(p{x,ak),xjφχj)qk

( Λ\k /Λ 1 C\

— 1) qjkqk. (z.ljj

where qjk = Qj(ak) (qok = qk\ Similarly,

(2.16)

(2.17)

(2.18)
υak

where pjk = Pj(ak) {pok=pk). From (2.12), (2.13) and (2.14) we recall that qjk and
pjk are expressible in terms of the qj9 p7 , ut, Vi, and wt.

C. The Case m(x) = 1. In this section we derive those partial differential equations
that depend upon the differentiation formulas (1.4) in the special case m(x) = 1. We
let D denote the differentiation operator with respect to the independent variable
and recall that if the operator L has distributional kernel L(x, y) then

Using the differentiation formulas it follows that

x—y x—y

Let us write

A(x) = Σ *jχS, B(x) = ΣβjXj, C(x) = Σ 7jx
j. (2.21)

Then

Λ(x)-Λ(y)
= Σ αy-Hfe-MX-y, e t c .

χy
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and we obtain the identity (recall (2.3) and (2.19))

[ D , κ ] = Σ *J+k+dχjφ(χ)ykΨ{y)+χJΦ(χ)ykφ(y))xΛy)
j,k^O

+ Σ βj+k+χχiΨ(χ)ykΦ(y)χj(y)

+ Σ yj+k+ί
j,k^O

from which it follows that

+ pj(χ)(i-κrίykφ(y)xΛy))

Σ ' ) . (2-22)

We now use this last commutator to compute Q'{x) and P'{x):

and similarly

-Σ(-ί)kR(x,ak)pk.

Finally we use the differentiation formulas (1.4) and representations (2.21) to
deduce

and so substituting into the above gives

δ ' W = Σ ( a J + Σ oLj+k+l
fcSO

Σ \βj+ Σ «j+k

2m

Σf (2.23)
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p'(χ)= Σ ( - y j + Σ (χj+k+iWk+ Σ yj+k+iVk ]Qj(χ)
7^0 \ fe^O fc^O /

+ Σ ( -<*/ + Σ αj+fe+i^+ Σ A +fc+iWfclPyM
7^0 \ fc^O fc^O /

2m

- Σ ("!)**(*.fl*)ft (2 2 4 )
k = ί

From (2.10), (2.11) and these last identities we deduce the equations

Σ ( ^ + Σ αJ + fc+l%+ Σ βj + k+lVk jPjί
k^O fc^O /

T- 1 ^ Σ ( -yj+ Σ αi

+ Σ ( ~ α ; + Σ αj+fc+i^+ Σ j

(2.26)

Using (2.28), (2.23), and (2.24) we deduce

R(ahat)= X j

Σ \βj+Σ (χ

fe^O

+ Σ (Vj- Σ Uj

Σ α J - Σ a j + fc+i^k- Σ

(2.25)

( 2 2 7 )

We end this section with two differentiation formulas for R(cii, at). From (2.9)
and (2.22) we deduce that for x, yeJ,

-Σ(-lfR(x,ak)R(ak,y).
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Hence, using the chain rule,

—-R{a u di) = 2 Σ + Σ β

+ Σ
j,k^O kφi

A variant of this follows from it and (2.9) by the chain rule:

— RtJ(tai,tai) = 2aί Σ Uj+k + iQjίPki + ai Σ βj+k + iPjίPkί

+ ai Σ yj+k+iqjiqki+Σ (-l)k(ak-ai)Rtj{tahtak)
2 . (2.29)

Here the subscripts tJ indicate that this is the underlying interval.

D. The Case of Polynomial m. Now let us see how the above derivation has to be
modified if m(x) is an arbitrary polynomial. In this section M denotes multiplica-
tion by m(x) and D continues to denote differentiation with respect to the indepen-
dent variable. In place of the commutator [D, K ] we consider the commutator

[MD, K]±(m{x)^ + m(y)-^ + m'(y)\ K(x9 y)Xj(y)

-Σ(-l)km(ak)K(x,ak)δ(y-ak),

while using (1.4) we compute that

m(x)— + rn(y)-- + m^~mi<yΆκ(x,y) = thQ right hand side of (2.20) . (2.30)
ox oy x — y J

Therefore if m(x) is linear and we replace D by MD on the left side of (2.22), then the
right side has to be changed only by insertion of factors m(ak) in the last summand.
It follows from this that (2.25) and (2.26) require only the following modifications:

Insert on the left sides of (2.25) and (2.26) the factor ra(α,) .

Insert in the last summands on the right sides of (2.25) and (2.26)

the factors m(ak) , (2.31)

while (2.27) and (2.28) require the following:

Insert on the left sides of (2.27) and (2.28) the factor m(«f) in front of R(ah at).

Insert in the last summands of (2.27) and (2.28) the factors m(ak) . (2.32)

For general m(x), if

then

γ λ m(x)-m(y)\

x-y\ x-y
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It follows from this and (2.30) that

d d \
m(x) — + m(y) — + m'(y) )K(x,y) = the right hand side of (2.20)

ox oy )

So for m(x) of degree greater than 1 the right sides of (2.23) and (2.24) must also be
modified by the addition, respectively, of the terms

The upshot is that in this general case (2.25) and (2.26) require, in addition to (2.31),
the following modifications

Add to the right side of (2.25)

- Σ ( H l ) / i j W 2 f e f e - ¥ j i )

j + k^dΐgm-2

Add to the right side of (2.26)

Σ (k + l)μj+k+2(Wkqji-vkpji) . (2.33)

j + kίtdegm-2

And for general m(x) we must modify (2.27) and (2.28), in addition to (2.32), by the
following:

Add to the right side of (2.27)

j + fc^degm-2

+ Σ (k+l)μj+k + 2(wk(lji — vkPjί)qi. (2.34)

j + k^degm-2

Add to the right side of (2.28) Σ (J~~^)μj+k + 2Pji(lkί (2.35)

j + k^ deg m — 2

The identity (2.29) also requires modification if we do not have m(x)= 1, but since
we shall only use it in this special case there is no need to write down the
modification.

E. The Exponential Variant. Here we consider kernels of the form

(2.36)

where b can be an arbitrary complex number. Because of the different denominator
it turns out that the differentiation formulas should now be of the form

m(xW(x)=-C(x)φ(x)-(A(x)-^rn(x)jψ(x), (2.37)
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where A(x\ Z?(x), C(x) and m(x) are "exponential polynomials," finite linear
combinations of the exponentials ekbx (fe = 0, ± 1 , ± 2 , . . . ). We compute, as the
analogue of (2.30), that

d b (m(x)

~δy + 2

= the right hand side of (2.20) with denominator x — y
replaced by ebx-eby . (2.38)

Now, of course, we write

j

the summations summing over negative and nonnegative indices, and

Λ{t~Λίy)= Σ α J + t + 1 ^ * ^ - Σ α, + t + 1 ^*^,etc . (2.39)
e e j , k ̂  0 j , k ̂  - 1

What arise now are functions Qk, . . . , wk defined, for negative as well as non-
negative values of k, by replacing xk by ekbx in the earlier definitions. Analogues of
(2.12) and (2.13) hold for negative as well as positive values of k so all the Qk and Pk

are expressible in terms of β 0 , Po, as well as the ΰk in terms of the uk, vk, wk.
Notice that if m(x) is constant then the third term in the large parentheses in

(2.38) vanishes and so we obtain in the end the analogue of (2.25) and (2.26); in
addition to the change in the range of indices now and the fact that the double sums

have two parts, as in (2.39), we must in the single sums over j add - μ7- to the terms α,-

and βj in (2.25) and the terms — y7- and — α7- in (2.26). For general m(x) we must
insert factors m(α )̂ on the left sides of (2.25) and (2.26) and factors m(ak) in the last
summands on the right, and then add terms coming from the difference

, (2.40)

as at the end of the preceding section. We shall not write these down since in the
only case we consider later we have m{x)=\. Two of the equations involving
jR(x, y) must also be modified. We see first that in (1.7a) the denominator must be
replaced by ebaj — ebak. Second, (2.8) must have the factor bebx inserted on the left
side, with the result that (2.27) must have the factor b ebaι inserted on the left side.
Note that (2.29) is unchanged.

Remark 1. The product of the first two factors in (2.40) is an exponential poly-
nomial in ebx and eby. It was precisely to achieve this outcome that we required the
formulas (2.37) to have the form they do.

Remark 2. In case b is real the change of variable x i—• ebx transforms the operator
with kernel (1.2) acting on the set ebJ to an operator with kernel of the form (2.36)
acting on J, with the new (φ, φ) pair satisfying (2.37). So we see that there is more
than simply an analogy between the two situations. In fact we could have allowed
the various coefficients in (1.4) to be linear combinations of negative or nonnegative
integral powers of x, and then the two situations would have been completely
equivalent for real b.
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III. Sine, Airy and Bessel

A. Sine Kernel. The simplest example is the sine kernel

λsm{x-y)
K(x,y) = ,

π x — y

where we take

φ (x) = - sin x, φ (x) = /- cos x .
V π v π

The differentiation formulas hold with

m(x)=l, 4(x) = 0, B(x)=l, C ( x ) = l .

(It is useful to incorporate a parameter /le[0, 1] into K; cf. formula (1.1).) The
partial differentiation equations are (1.8), (1.9) (the universal equations along with
universal relation (1.7a)), and the specialization of (2.25) and (2.26) which now read,
respectively,

^-qi-Σi-if^^Pk, (3.2)

along with the specialization of (2.27),

R^a^pl + qt+Σi-lf^'^2- (33)
fcΦΐ cti — ak

These are the equations of JMMS [25] though they appear here in a slightly
different form due to our use of sines and cosines in the definitions of φ and
φ rather than the alternative choice of e±ιx, which we could have taken just as well.
(They also appear slightly different in [37] due to out convention here not to put
a factor of π into the definition of the sine kernel.)

For the case of a single interval J = ( —ί, ί), s = 2ί, these equations imply that
σ(s; λ):= —sR(t, t) satisfies the Jimbo-Miwa-Okamoto σ form of Painleve V. We
refer the reader to the literature for a derivation of this, properties of the solution of
this equation, and the implications for random matrices [2, 16, 25, 29, 27, 37, 40].

B. Airy Kernel For the Airy kernel we have (again inserting a parameter λ into K)

from which it follows that

m(x) = l, A(x) = 0, B(x)=l9 C(x)= - x ,

since Ai/;(x) = xAi(x). For notational convenience we write u = u0 and v = υ0. In
addition to the universal relations (1.7a)-(1.9), we have two additional equations
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for u and v, viz. (2.15) and (2.16) for j = 0. Using the recursion relation (2.12) for
k= 1, we deduce that (2.25) and (2.26) reduce to

^=-uqi + Pi-Σ (-lΫRfa, ak)qk, (3.4)

d-~ = {ai-2υ)qi + u P i - Σ ( - W<h9 ak)pk, (3.5)

and (2.27) reduces to (again using the recursion relation (2.12) for k= 1)

R(ai9ai) = pf-aiq?-2uqipi + 2vq?+ £ ^^liEϊZMϊl . ( 3 . 6 )

These are the equations derived in [38]. We mention that in addition to these
equations, two first integrals were derived which can be used to represent u and
v directly in terms of the qj and Pj (see (2.18) and (2.19) in [38]). We also remark that
in the case J = (s, oo), the quantity R(s, oo) was shown to satisfy the second order
nonlinear σ DE associated to Painleve II. Again we refer the reader to [38] for
details.

C. Bessel Kernel. For the Bessel kernel

from which it follows (using BessePs equation) that

m(x) = x, A{x) = 0, B(x)=l C(x)=^(x-a2) .

Again using the recursion relation (2.12), we deduce that (2.25) and (2.26) become,
with the additional insertions (2.31),

ai~da=4Uqi + Pί~Σ (-^kR^i^khk,

ai^
1 = -(oc2-aί + 2v)qi--upi- £ (-l)kakR(ahak)pk,

Odi 4 4 kφί

and (2.27) with insertions (2.32) becomes

aiR(ai9ai)=~(*2-ai + 2v)qi + \uqi ^
4 2 jgi iu

(As before, u = u0 and cv = υ0.) These are the equations derived in [39]. As was the
case for the Airy kernel, two first integrals were derived which can be used to
express u and v directly in terms of the qj and pjm For the case J = (0, 5), the quantity

( ) = sjR(05 5) was shown [39] to satisfy the σ DE for Painleve III [23, 35].

IV. Beyond Airy

In this section we give as an example of our general system of partial differential
equations the simplest case "beyond Airy' in the sense discussed in the Introduction.
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In the language of 2D quantum gravity matrix models (see [7] for a review), we are
considering the case of pure gravity. Thus we take

where Dx is differentiation with respect to x. The string equation implies that ξ(x)
satisfies

ξ'"(x) + 6ξ(x)ξ'{x) + 4 = 0

which when integrated is Painleve I [8, 13, 21]:

(Without loss of generality we may set the constant of integration to zero since it
corresponds simply to a shift in the variable x. And, of course, the " 3 " and "4" can
be changed by scale transformations to give the canonical form of Painleve I.)
Exactly what solution ξ(x) one chooses for pure gravity is still of some debate (on
this point see [11] and references therein). The function φ(λ, x) satisfies (1.11) and
(1.12) which implies that if we define ψ(λ,x) by (1.13), then the differentiation
formulas are

m(λ) = l9 A(λ)=~ξ'(x), B{λ) = λ+l-ξ{x),

C(λ)= -λ2Λ-\ ξ(x)λΛ-\ ξ2(x)+\ ξ"(x) ,

where we remind the reader of the change of notation in the independent variable
(see Introduction).

Since C(λ) is quadratic in λ, the equations will involve uj9 vj9 and Wj for 7 = 0, 1.
Using the recursion relations (2.12), (2.13), (2.14), Eqs. (2.25) and (2.26) specialize to

where M(a^) is the 2 x 2 matrix whose elements are given by

Jΐii(ai)=--ξf-w+-ξu + uv-uί-aiu ,

-ξ2--ξ"-2aίv + 3v2-2vί-2uw--ai



Fredholm Determinants, Differential Equations and Matrix Models 51

Similarly, (2.27) specializes to

( h d i l ( ί ) q i p i i 2 ( i ) p ? 2 ί ( i ) q ? + Σ ( f

The universal equations are (1.7a)-(1.9) and (2.15)—(2.18).
For the case J = (s, 00) (this should be compared with the analogous case in Airy

[38]), we are able to find two first integrals that allow us to eliminate the quantities
Ui and υx. (It is natural to take the boundary condition that all quantities evaluated
at 00 vanish.) We denote by q = q{s\ etc. the quantities corresponding to the first
endpoint aι = s. The first relation is quite simple,

q2-2uu1 + v2 + 2v1+-ξu2 + ξv--ξ/u = 0 ,

but the second one we found is rather messy,

— p2 + sq2 + u + 2pqu-\-xu2 + q2u2 —2u3u x — u\ — 2xv

— 4q2υ + 6uu1 v + 3u2v2 — Sv3 — 2u3w — 2u^ w + 6uv w — w2

q2+~u4 + 2uu1-6v2 + 2uw--ξu2--

+ ξ'(--u3~-u1+-uv--w+-ξu) = 0,

where q, p, M, etc. have argument s and ξ has argument x. (The variable x appears
since we used Painleve I to eliminate ξ"{x) in our equations.)

Using the first integrals to eliminate uγ and vx (note that w also drops out) we
obtain the system of equations:

q" = (xs + s3 +- xξ + - ξ3 +~ OΠ
Y 2 o 16

+ (4s-4v-ξ)pq2 + 4uqp2-2p3 ,

and, of course, we still have the universal equations

uf=-q2, υ'=-qp.

Letting R(s) = R(s9 00) we find from (2.28) and (2.35) that

Clearly, further analysis of these equations is needed to be able to analyze the
associated Fredholm determinant. For example, can one derive a differential
equation for R itself?
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V. Finite N Hermite, Laguerre, Jacobi and Circular

A. Hermite Kernel

1. The partial differential equations and a first integral It follows from the
Christoffel-Darboux formula that the kernel λKN(x, y) for the finite N Gaussian
Unitary Ensemble (GUE) is of the form (1.2) provided we choose

ivV/4 /jv\1/4

-\ φ N ( x ) , φ(χ) = λ ^ 2 ( \

with φk(x) the harmonic oscillator wave functions

and Hk(x) are the Hermite polynomials [18]. This is well-known and we refer the
reader to [28] for details. From the differentiation and recurrence formulas for
Hermite polynomials it follows that the differentiation formulas for φ and φ hold
with

m(x)=l, A(x)=-x,

We can therefore immediately write down the equations

Σ ( ) P ,
k + J . Uj — ak

along with

R(aj, a}) = - 2ajPjqj + (^2N~ 2ύ)pf + (J2N + 2w)qf

(5-1)

(5.2)

J E ^ - 9 (5.3)

~R(aJ9aj)= -2Pjqj- £ (-lfR(aj9 ak)
2 , (5.4)

— Rtj(taj9 taj)= -2ajpjqj+ £ (-if{ak-aj)RtΛtaJ9 tak)
2 . (5.5)

at fcφj

These follow from formulas (2.25)-(2.29).
We now derive a first integral involving u, w, pj and qy9 namely we show

-Σi-iyPiQj' ( 5 6 )
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Observe that

and

Multiplying the first equation by (— 1)J and summing both equations overy, results
in

It follows that the two sides of (5.6) differ by a function of (α l 5 . . . , a2m) which is
invariant under translation by any vector (s, . . . , s). Since, clearly, both sides tend
to zero as all αf -• oo, their difference must be identically zero.

2. Bulk scaling limit of finite N equations. We now show how (5.1)—(5.3) reduce to
the sine kernel equations (3.1)—(3.3) in the "bulk scaling limit." For a fixed point z,
i.e. independent of JV, the density ρ(z) in the GUE is asymptotic to y/lN/π as
N -> oo. The bulk scaling limit corresponds to measuring fluctuations about this
fixed point z on a stretched length scale proportional to y/ΪN and then taking
N -> oo. Denoting for the moment the bulk quantities with a superscript B, this
means we set

L

and consider the limit N -• oo, α,- -• z such that αf is fixed and 0(1). In this limit we
deduce from the asymptotics of the harmonic oscillator wave functions (see, e.g.,
Appendix 10 in [28]) that both φ and ψ are 0(1) quantities in the bulk scaling limit.
From this and the fact that it is K{x, y)dy which is 0(1), we deduce that both qj and
Pj are 0(1) quantities in the bulk scaling limit. An examination of the inner
products defining both u and v shows that these too are 0(1) quantities. Thus if we
formally replace

in (5.1)—(5.3) (and replace all derivatives by derivatives with respect to αf), take
N -* oo, we obtain (3.1)—(3.3).

3. Semi-infinite interval and Painleυe IV. In this section we specialize the finite
N GUE equations to the case of m~ 1, a1 =s and a2 = oo, i.e. J = (s, oo). We write
g(s), p(s\ and R(s) for ql9 p l 5 and R(au a^\ respectively, of the previous section.
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The differential equations reduce to {' = d/ds)

q'= —sq + (-s/2N — 2u)p , (5.7)

(5.8)

(5.9)

(5.10)

( 5 . 1 1 )

2N(u-w) + 2uw = pq. (5.12)

We proceed to derive a second order differential equation for R(s) and show
that it is a special case of the Jimbo-Miwa-Okamoto σ form of Painleve IV
[24, 34]. Relation (5.4) is now

R'=-2pq, (5.13)

while (5.7) and (5.8) give

(5.3)

and

reduces

the first

to

R(s) =

integral is

u' =

w' =

— 2spq +

now

-q2

- P 2

Differentiating one more time gives

(pq)» = 2s(^/2N -2u)p2 + (^/2N + 2w)q2 -8pq(N +

where we used the first integral (5.12) to obtain the second equality. Referring back
to (5.11) we see that the term in curly brackets in the last expression is R + 2spq.
Using (5.13) to eliminate all terms involving pq in the last equation we find

Rf" = -4s(R-sR')-SNR' -6(R')2 .

This third order equation can be integrated (the constant of integration is zero) to
give

R)2 = 0 . (5.14)

Comparing this with (C.37) of [24] (see also [34]), we see immediately that this is
the σ version of Painleve IV with parameters (in notation of [24]) v x = 0 and
v2 = 2N. Explicitly in terms of the Painleve IV transcendent y = y{s) we have

R(s) = Ny~y~y2~y*+^(y')2 (5.15)

with PJV parameters α = 2JV— 1 and β = 0. Recall that w = w(z) is a Painleve IV
transcendent with parameters α and β if it satisfies the PIV equation

d2w 1 fdw\2 3 , Λ 2 ^ 2 Λ β
Z Γ Ί V \ 1 ) + w + 4 z w + 2 z α w + .
dz 2w\dzJ 2 w

We are, of course, interested in the family of solutions that vanish as s -• + GO.
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This particular PIV has been studied by Bassom, et al. [3] (see also [10]). To
make contact with their notation define

(y is the above PIV transcendent) so that η satisfies

with v = iV— 1. They analyze the one-parameter family of solutions ηk(ξ; v) satisfy-
ing the boundary condition 77(00) = 0. The parameter k is defined uniquely by the
asymptotic condition:

4

In terms of our parameter λ we have

λ
k2=-

(This identity is derived by examining the large positive s asymptotics of R(s\
which is easy because of the rapid decrease of the kernel as s-> +00.) These
authors prove that for all positive integers N> 1 the solution nk(ζ> N — 1) exists for
all ξ whenever λ<l, and that ηk(ξ, JV — 1) blows up for a finite ξ whenever λ>\.
These results are in complete agreement with what one expects from the spectral
theory of the Fredholm determinant. There are formal, but not rigorous, results
that solve the connection problem for the aysmptotics as ξ -> —00; in particular,
for ,1=1,

/ Al/2

ηk(ξ;N-l)~l-ij as ξ-> -00 . (5.16)

Using (5.16) (and computing higher order terms by using the differential
equation) we find that

N N2 N2{l+9N2) JV3(10 + 27JV2)
R(s)=-2Ns + — Γ 5—-= - + — ~ - = - + • as s^ -00 .

s sό 4s As

(5.17)

4. Distribution functions for λmΆX and λmin. If we denote the smallest and largest
eigenvalues of a matrix from the GUE by λmin and Λ,max, respectively, then in the
notation of (1.1) we have

) = det(/-X) .

Thus, using (1.3) we deduce the representation

- j R(t;l)dt},
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where R(s; λ) denotes the function R(s) of the preceding section with parameter
value λ. This is our representation of the distribution function for λmax in terms of
a Painleve transcendent. There is of course a similar representation for the distribu-
tion function for λmin.

The authors of [3, 10] give an algorithm to compute the quantities ηk(ξ, v),
v = positive integer, of the last section exactly in terms of the error function

That such elementary solutions of the PIV transcendent exist, at least for the case
λ=l, is now clear from the random matrices point of view since £(0; (s, GO)) is
expressible in terms of integrals of the form

} xje~χ2dx.
— 00

This follows from (1.15) with/the characteristic function of (— oo, 5).

5. Edge scaling limit from Painleve IV equation. The edge scaling limit [38]
corresponds to the replacements

^ a n d R

in (5.14) and retaining only the leading order term as N -• 00. The result of doing
this is

(R")2 + 4{R')3 + 4R'(R-sR') = 0 (5.18)

which is the equation derived in [38]. We remark that (5.18) is the σ form for
Painleve II, see (C.17) in [24] and Proposition 1.1 in [34].

6. Symmetric single interval case. In this section we specialize the finite N GUE
equations to the case of m = l , aχ= — t and a2

 = t, i.e. J = { — t, t). We denote by q(t)
and p(ί) the quantities q2 and p2, respectively. Since φN( — x) = (—l)NφN(x) and
K(-x, -y) = K(x, y), we have q^i-ΐfq and px = -(-Ifp. We further set

R(t):=R(t,t) = R(-t, -ί), R(t):=(-l)NR(-t,t) = (-l)NR(t, -t)

and record that

dlogD(J λ)

dt
'-=-2R{t).

Now φ is even or odd depending on whether N is even or odd, with ψ having the
opposite parity. It follows from this fact, and our choice of sign in the definition of
R, that (1.7a) specializes in this case to
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while (5.3) and (5.5) specialize to

R(t)= -2tpq + (^2N-2u)p2-h(^2N + 2w)q2--p2q2 , (5.20)

dR

— = 2tR + 2R2 . (5.21)
at

The last is the finite N analogue of the Gaudin relation. (See, e.g. [28, 37].) The
differential equations specialize to

ΎΓ - δ ^ + ^ = 2Rq-tq + {^-2u)P , (5.22)
at dai oa2

^=-2Rp + tp-(^2N + 2w)q, (5.23)

£-v •
And the first integral (5.6) is now

y/ΪN(u - w) 4- 2uw = - 2pq . (5.26)

7. Differential equations for R and R. It follows easily from (5.19), (5.20) and (5.21)
that

(tR) nr), (5.27)

^ ( t R ) \r\ + 4 t R , (5.28)
dt

where

Equations (5.27) and (5.28) are the finite N analogue of those derived by Mehta
[29]. (See also discussion in [37].)

We now eliminate the quantity r. For this derivation only, we write a(t) := tR(t)
and b(t):=tR(t). We begin with the obvious

)2 . (5.29)

Now

= 4p2q2{2N + 4pq)

= 4b2{2N-4b). (5.30)
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We now use (5.27) and (5.28) to obtain expressions for 9ϊ(r 2) 2 and |r | 4 , respectively,
and the above identity for 3( r 2 ) 2 . These expressions, when used in (5.29), give an
equation for α, /?, and their first derivatives. If we use the generalized Gaudin
relation (5.21) to eliminate the appearance of da/dt (the one appearing to the first
power), we obtain

and together with (5.21), which in the a and b variables reads

(5.32)

we have two differential equations for JR and R.
Eliminating α, we obtain a single second order equation for b and therefore R:

(5.33)

This last equation is the finite N analogue of (1.18) of Mahoux and Mehta [27]. We
could, in a similar way, eliminate b and so obtain a second order equation for R,
but the result is messy and we shall not write it down.

8. Small t expansions of R and R. The boundary conditions at f = 0 for (5.21) and
(5.33) follow from an examination of the Neuman expansion of the resolvent kernel.
Setting p 0 :=K(0, 0), the density of eigenvalues at 0, we find

^ ( 2 S S p % + 4 0 p ( ( l ) 2 N ) l 2 ( l ) N 3 ) t + O(t) (5.34)

and

. (5.35)

9. Level spacing probability density pN{t). For m= 1 if we let EN(0; α l 5 a2) denote
the probability that no eigenvalues lie in the interval (α1 ? a2) and PN(0', au a2)da2

the conditional probability that given an eigenvalue at ax the next one lies between
a2 and a2 + da2, then the two quantities are related by

1 d2EN(0;aua2)pN(ΰ; au a2)=—— — ,
p ( a ± ) daxda2
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where p(«i) is the density of eigenvalues at ax. From the expression for the
logarithmic derivative of the determinant (with λ= 1), we have

d2EN{0;aua2) dR{auai)-z—z = τ EN~R(au aί)R(a2, a2)EN .
δa1da2 oa2

Differentiating (5.3) (with m= 1 and j= 1) with respect to a2 we obtain

δR(au ai) = ί

da2 \ aγ-a2

which when evaluated at a1 = — t, a2 = t becomes

Calling Pn{i)\-=pn(0\ — ί, t) we thus obtain

pN(t)=-^(R2(t)-R2(t))EN(t),

where EN(t) = EN(0; - ί , t) (we used also p( —ί) = p(ί)).
Using the expansions of R, R and EN(ή we find

Not only does this hold for fixed N and t, but it also holds uniformly in N and t as
long as t = O(N~112). The reason is that in this range of the parameters the
operator K has norm less than a constant which is less than 1 and has bounded
Hilbert-Schmidt norm. Thus the Neumann series for the resolvent kernel con-
verges to trace norm.

To compare with the bulk scaling limit we replace t by t/p0, and deduce (recall

as N -> oo) that

N-ooPo \PoJ 3 45 315

which is the well-known result [28]. Observe that the large JV corrections to these
limiting coefficients are 0(1/N). (Note that we inserted a factor of π in our
definition of the new t variable so as to have the same normalization as in [28].)

B. Laguerre Kernel

1. The partial differential equations. Again by the Christoffel-Darboux formula it
follows that the kernel for the finite N Laguerre Ensemble of N x N hermitian
matrices is of the form (1.2) provided we choose

φ(x) = jλ(N(N + a ) ) 1 ' 4 ? * - ! (x), φ(x) = y/λ(N(N + oc))ί/4φN(x) (5.36)
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(aN in (6.3) is negative now) where

and Ll(x) are the (generalized) Laguerre polynomials [18]. See Chap. 19 of [28]
and [32] for further details and references. From the differentiation and recurrence
formulas for Laguerre polynomials it follows that we have differentiation formulas
(1.4) for φ and ψ with

We therefore have the equations

(5.37)

Q aj

-Σ(-VfakR(aJ,ak)pk, (5.38)

ajR(aj, aj) = {aj-a - 2N)qjPj + (^N(N + cή + u)pf + (jN(N + oή - w)qf

(5.39)
cij-ak

ajR(aj, aj) = qjPj- Σ ( - ίfakR(aj, ak)
2 . (5.40)

These follow from formulas (2.25)-(2.28) as modified by (2.31) and (2.32).

2. Single Interval Cases (0, s) and (s, oo). We consider first the interval (0, s). We set

α i = 0, a2 = s, q2 = q, P2=P, R(s, s) = R{s) and find that Eqs. (5.37)-(5.40) with; = 2
specialize to

(5.41)

(5.42)

(5.43)

(5.44)

(sR(s))' = qp (5.45)
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(notice that the terms corresponding to k = 1 in the double sums on the right sides
of (5.37)-(5.40) are equal to zero), while (2.15) and (2.18) specialize to

Tedious

s2(pc

but

?)" =

straightforward

— {(^JN(N + ot)

uf = q2, w

computation

N(N + UL) + U)I

using

(N + G

(5.41)-(5.46) gives

v)q2}

sp2q2

(5.46)

(5.47)

} (5.48)

Now it follows from (5.45) and (5.47) that

sR(s)-sqp (5.49)

has derivative

But it follows from (5.46) that

uw + y/N(N + α) (w - u)

has exactly the same derivative. Hence the two must differ by a constant. This
constant must be 0 since (5.49) clearly vanishes when 5 = 0, and so do u and w. Thus
we have derived the identity

uw + y/N(N + α)(w - u) = sR(s) - sqp . (5.50)

Now we can see that that every term in (5.48) can be expressed in terms of R(s)
and its derivatives (up to order 3). By (5.45) this is clear for all products pq and its
derivatives. This is true of the first expression in curly brackets in (5.48) by what we
just said and (5.44), of the first expression in curly brackets by (5.47), and of the last
expression in curly brackets by (5.50).

Thus we have derived a third-order differential equation for R(s). In terms of
σ(s):=sR(s) it reads

. (5.51)

It follows from this that the two sides of a purported identity

(σ')2-4σ(σ')2 (5.52)

differ by a constant. (The third-order equation is equivalent to the two sides' here
having the same derivative.) Now it is clear that if α is sufficiently large then σ is
twice continuously differentiable up to 5 = 0 and σ(0) = σ'(0) = 0. Hence both sides
of (5.52) vanish at 5 = 0 and so the difference in question equals 0. Thus the identity
is established for α large. But both sides of the identity are (for 5>0) real-analytic
for α > — 1 and so if they agree for large α they must agree for all α.

Comparing (5.52) this with (C.45) of [24] we see that —σ(s) satisfies the
σ version of Painleve V with parameters v0 = vx = 0, v2 = N and v3 = N + α.
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The boundary condition at 5 = 0 for σ depends, of course, on the parameter λ in
(5.36), and we write σ(s; λ) instead of σ(s) to display this dependence. With the help
of the Neumann series for the resolvent kernel, we compute the small s expansion

σ(s;λ) = λcos«+1 (l-^P^ s +
\ 2 + α

S

1+α V (2 + α)2

where

Γ(N + α +
C° Γ(N)Γ(α +

And now, as in the case of the GUE, we have a representation

\ l ^ (5.53)
I 0 r J

There are only minor changes required in the above analysis when we take
J = (s, 00) and this leads to an analogous representation for the distribution
function of λmax.

3. Singular values of rectangular matrices. If A is an N x M rectangular matrix
(N^M) whose entries are independent identically distributed complex Gaussian
variables with mean 0 and variance 1 then the JV x N matrix A A * (whose eigen-
values are the squares of the singular values of A) belongs to the orthogonal
polynomial ensemble associated with the weight function

w(x) = xM~Ne~x/2 .

(See [17], Cor. 3.1.) It follows that the distribution of the smallest singular value of
A is given by the right side of (5.53) with s replaced by -yJs/2 and, of course,
oc = M — N. There is a similar representation for the distribution function of the
largest singular value of A.

C. Jacobi Kernel. The situation here is so similar to the preceding that we shall
only indicate the main points. For the finite N Jacobi ensemble

with α, β> — 1 and we must take in (1.2),

where
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From the differentiation and recurrence formulas for the Jacobi polynomials we
have the differentiation formulas (1.4) with

m(x)=l-x2, A(x) = ao + a1x, B(x) = β0, C(x) =

where

cc0--

α 1 = = - N +

Using these the interested reader could without difficulty write down the Jacobi
analogues of the general equations (5.37)-(5.40) in the Laguerre ensemble. We shall
restrict ourselves here to the case J = (— 1, s), the analogue of the interval (0, 5) in
Laguerre, and find the following Jacobi analogues of (5.41)-(5.46):

(5.54)

, (5.55)

(5.56)

(5.57)

υ' = pq, (5.58)

where

From (5.57) and (5.58) we deduce

(l-s2)R(s) = 2a1v (5.59)

(note that both sides here vanish when s= — 1) and (5.54) and (5.55) give

(\-s2)(pq)' = s/-ai . (5.60)

Another differentiation gives

4
l - s 2 ) p 2 q 2 s/& . (5.61)

pq

Now (5.57) and (5.59) show that pq and v are expressible in terms of R and its first
derivative. And so, using (5.56) and (5.60), we deduce that jtf and 3 are expressible
in terms of R and its two derivatives. Finally, using (5.61), we obtain a third order
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equation for R. Instead of this we write down the analogue of (5.51). If we define
now σ(s):=(l— s2)R(s), then we have

s2)σ" -2(1 -s2){σ'f
G

—25(1 -s2)σ" -2(1 -s2){σ'f

(5.62)

For the boundary condition at s = — 1 we compute the small s +1 expansion to
be (with an obvious notation)

Λ ι2 + 6β + 3β(3 + 2β)(2N + 2Noc + 2Nβ + ocβ)n ,

2(2 + W ( '

where

We have not been able to find a first integral for (5.62), in other words a second
order equation which is analogous to (5.52).

D. The Circular Ensemble.

1. The partial differential equations. If %(N) denotes the group of N x N unitary
matrices, then the finite N circular ensemble of unitary matrices (sometimes
denoted CUE) is this set %(N) together with the normalized Haar measure. Just as
for the orthogonal polynomial hermitian matrix ensembles, the level spacing
distributions are expressed in terms of a Fredholm determinant of an integral
operator defined now on the unit circle. All of this is well-known and we refer the
reader to either Dyson [14] or Mehta [28] for details.

The integral operator for the finite N CUE is

• - ( -
λ s m 2 ( x y) Φ{χMy)-Ψ(χ)Φ(y) , ,

χΛy)= έ^Jy χ Λ y ) 'ϊ
sin-(x-y)

where
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Thus the differentiation formulas (2.37) hold with b = i and

m(x)=ί9 A{x)=l-N9 B(x) = C(x) = 0,

and so from the considerations in Sect. HE we deduce that

£Ξp (5-63)

ieίaJR(aj, aj) = iNP)q}- £ ( - l)*Λ(«j, ak)(qkPj-pkqj), (5.64)

and

P=-i^Γ:Pj- Σ {-VfR(aj9ak)j>k . (5.65)
ϋa j L kz¥j

2. Single interval case. N o w w e specia l ize t o J = ( — t9t) a n d t a k e ax= —t, a2 = t.

Write p, q for p2, q2 and note that since φ(x) = φ( — x) and K(x, j/) is even we have

Pi=P> qι = q Let's also write

R{t):=R(t9t), R(t):=R(-t9t) = R{t9 -t) .

Then (2.29) with J = ( - l , 1) and ί = 2 gives

(4) (5.66)

(5.64) gives

eitR(t) = Npq-iR(t)(qp-pq) , (5.67)

whereas (5.63) with7 = 2, k=\ gives

qp-pq = 2isintR . (5.68)

Substituting (5.68) into (5.67) and using (5.66) give

euR(t) = Npq-smtRf(t) . (5.69)

Now
, N+ί ~ , JV-1

q =i—^—q + Rq, p =-i—^—

Using these and (5.68) we get

\ ( N—l

- I —i—— p + Kp]q-p\ —ι-

= iN(qp-pq) .
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This and (5.68) may be written

sin tR =

and (5.69) may be written

Thus (taking the square of the absolute value of both sides)

(costR(t) + smtR'(t))2 + sm2tR(t)2={smtR)'2 + N

Using

R>J-R>, R'R=\R", « " = ! £ ,

which follow from (5.66), we get the second order equation

R(t)2 + 2sin t cos t R(t)R'(t) + sin2ί R'{t)2

(5.70)

From the Neumann expansion of the resolvent kernel R(t; λ) = R(t) we obtain
the expansion

R(t,λ) = Po + 2p2t + 4p*t2+ί(l-N2 + 36P

2

:)p2t3 + ' •• , (5.71)

where

AN

If we denote by EN(0; s) the probability that an interval (of the unit circle) of length
s contains no eigenvalues (modifying here the notation of (1.1)), then

EN(0; s) = exp j - 2 } R(x, l)dx\ (s = It) .

Using the expansion (5.71) with λ=l (and additional terms computed from the
differential equation (5.70)) we find that

IN2 IN'

6 / 1/1 7 ι[0

17640 V 3iV2 JV4

where we have replaced s by — 5 so that the N-+oo limit is clear. This converges
JV

uniformly for all N and bounded s. Observe that the corrections to the limiting
coefficients are O(l/N2) as N-+00.
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VI. Generalizations of Hermite, Laguerre and Jacobi

In this final section we shall show that there are differentiation formulas of the form
(1.4) for very general orthogonal polynomial ensembles, and that if the weight
function is the standard Hermite, Laguerre, or Jacobi weight function multiplied by
the exponential of an arbitrary polynomial then the coefficients m(x), A(x), B(x)
and C(x) in (1.4) are themselves polynomials. Some, but not all, of our derivation
can be found in the orthogonal polynomial literature [4, 5] but our presentation
will be self-contained.

Throughout, we shall write our weight function as

As stated in the Introduction, the polynomials orthonormal with respect to w(x)
are denoted pk(x) (fc = 0,1, . . .), and we set φk(x) = pk(x)w(x)1/2 so that {φk} is
orthonormal with respect to Lebesgue measure. The underlying domain ώ of all
these functions we take to be a finite or infinite interval. We are interested in
differentiation formulas (1.4) when, up to constant factors,

φN-1(x). (6.1)

It is well-known that if kN denotes the highest coefficient in pχ(x)9 and if

a N = ,
κN

then there is a recursion formula

xpN(x) = aN+1pN+1(x) + bNpN(x) + aNpN-1(x) (6.2)

as well as the Christoffel-Darboux formula

pk(χ)Pk\y)—^N (6.3)
' Y -i;

k = 0 ./

(See Chap. 10 in [18].)
We shall always assume that our weight function satisfies

xkw(x) is bounded for each fc = 0,1, . . . ,

and that V(x) is continuously differentiate in the interior of Q). And we assume
that

lim w(x) = 0 (6.4)

although this will be relaxed later. We define [4, 5]

x-y

AN{x) = an j φN(y)φN-i(y)U(x9y)dy9 BN{x) = an f φN{y)2U{x,y)dy .
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Proposition. 7/(6.4) holds and φ and xjj are given by (6.1) then we have (1.4) with

m(x)=l, A(x)=-AN(x)~V'{x),

Proof. If

N - l

K(x,y):= X Pk(x)Pk(y),
k = 0

then for any polynomial π(x) of degree at most N—l,

π(x) = \ K{x,y)π{y)w(y)dy .

Apply this to π(x) = p'N(x) and integrate by parts, using (6.4) to eliminate any
boundary terms. We obtain

PN(y)w(y)dy + $ K(x,y)V'(y)pN(x)w(y)dy .

Now both dK/dy and K, as polynomials in y, are orthogonal (with respect to w)
to pN(y) since they have degree at most N — l. It follows that the first integral above
vanishes and that we can write the resulting identity as

p'N{x) = i K{x,y)(V'(y)-V'(x))pN{yMy)dy

by (6.3) and the definition of U(x, y). We have shown

PN(X)= -^ivWPivW + ̂ ivWPiv-iW (6.5)

It follows from this, of course, that

PN-I(X)= -AN-1(x)pN-1

We use the recursion formula (6.2) (which holds also if each pN is replaced by φN)
and find that this is equal to

-$ (pN-i(y)Ly(pN-i(y)-aN(pN(y)-bN-1(pN-1(y)]U{x,y)dypN-1(x)

+ f φN-i{y)U(x,y)dy[xpN-1{x)-aNpN{x)--bN-1pN-.1(x)']

x ) p ( x ) B

The last integral on the right side equals

The last integral vanishes, as we see by integrating by parts and noting that pf

N-1 is
orthogonal to pN-ι. Thus we have shown

^ ! M p , W . (6.6)
aN-1
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The statement of the proposition now follows from (6.5) and (6.6) if we use the
fact that

1/2 i 1/2

i + - — pNw ί

2 wand similarly for

Remark. The assumption (6.4) is not just a technical requirement. The conclusion
of the proposition is false without it. (Consider, for example, the Legendre poly-
nomials on (—1, 1), where V(x) = 0 and the conclusion of the proposition reads
φ'n(x) = Q.) Nevertheless, we shall be able to handle some cases where (6.4) fails.

Example 1 (generalized Hermite). Here V(x) is a polynomial of even degree (at least
2) with positive leading coefficient and ^ = (—00,00). The conclusion of the
proposition holds and so we have (1.4) with m(x)= 1, with A(x) a polynomial of
degree at most deg V— 1, and with B(x) and C(x) polynomials of degree at most
degF-2.

Example 2 (generalized Laguerre). Here

where α > — 1 and W is a polynomial of degree at least 1 with positive leading
coefficient, and ̂  = (0, 00). In this case

^ W { x ) - W ' { y ) . (6.7)
xy x — y

Now (6.4) is satisfied if a > 0 and the proposition tells us that in this case we have
(1.4) with

m(x) = x9 A{x)=-xAN(x)+~^W'{x),

B{x) = xBN(x), C(x) = ̂ -xBN^(x); (6.8)
aN-1

now A(x) is a polynomial of degree at most deg W while B(x) and C(x) are
polynomials of degree at most deg W— 1.

To extend this to all α > — 1 we see that there are problems in the integrals
defining ΛN(x) and BN(x) arising from the term a/xy in (6.7). The contribution of
this term to the integral defining AN(x)9 say, equals (we assume now α>0)

Integration by parts shows that this equals

This expression is well-defined for all α > — 1 and in fact represents a function of
α which is real-analytic there. (The coefficients of the pN are clearly real-analytic
functions of α.)
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This argument shows that both sides of (1.4), with the coefficient polynomials

given by (6.8), are (or extend to be) real-analytic for α > — 1. Since they agree for

α > 0 they must also agree for α > — 1.

Example 3 (generalized Jacobί). Here

where α, β> — 1 and Wis a polynomial, ^ = (—1,1). In this case

«

and the proposition tells us that for α, /?>0 we have (1.4) with

B(x) = {l-x2)BN(x), C(x)=-^-(l-
aN-x

now A(x) is a polynomial of degree at most deg W+l while B(x) and C(x) are

polynomials of degree at most deg W. The identity can be extended to α, β> — 1 as

in Example 2. (It is convenient to express the integrals defining ΛN(x) and BN(x) as

sums of integrals by using a representation

where u = 1 in a neighborhood of x = — 1 and u = 0 in a neighborhood of x = 1; this

separates the difficulties at the two end-points. The details are left to the reader.)

Remark. It is clear that the last examples can be generalized to any weight function

of the form

l\\x-ai\aie-W{x\

where W(x) is a polynomial and for each α, which is in the closure of Θ we have
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