
Commun. Math. Phys. 162, 633-647 (1994) CommUΠICatiOΠS IΠ

Mathematical
Physics

©Springer-Verlag 1994

Effective Action in Spherical Domains

J. S. Dowker

Department of Theoretical Physics, The University of Manchester, Manchester, England

Received: 28 July 1993

Abstract: The effective action on an orbifoided sphere is computed for minimally
coupled scalar fields. The results are presented in terms of derivatives of Barnes ζ-
functions and it is shown how these may be evaluated. Numerical values are shown.
An analytical, heat-kernel derivation of the Cesaro-Fedorov formula for the number
of symmetry planes of a regular solid is also presented.

1. Introduction

In an earlier work [1] we have shown that the C-function, ζΓ(s), on orbifold-factored
spheres, Sd/Γ, for a conformally coupled scalar field, is given by a Barnes ("-function,
[2], ζd(s,a\ d), where the di are the degrees associated with the tiling group Γ. The
free-ήelά Casimir energy on the space-time R x Sd/Γ was given as the value of the
C-function at a negative integer which evaluated to a generalised Bernoulli function.
In the present work we wish to consider the effective action on orbifolds Sd/Γ which
this time are to be looked upon as Euclidean space-times. In particular we will discuss
d = 2 and d — 3, concentrating on the former.

The simplifying assumption in our previous work was that of conformal coupling
on JR x Sd/Γ. This made the relevant eigenvalues perfect squares and allowed us to
use known generating functions to incorporate the degeneracies. From the point of
view of field theories on the space-times Sd/Γ, retaining this assumption would be
rather artificial. A more appropriate choice would be minimal coupling, or possibly
conformal coupling, on Sd/Γ. (These coincide for d = 2.)

The quantities in which we are interested are ζ^(0) and (Γ(0). The latter determines
the divergence in the effective action and the former is, up to a factor and a finite
addition, the renormalised effective action (i.e. half the logarithm of the functional
determinant).
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2. Eigenvalues, Degeneracies and Zeta Functions

For the aforementioned conformal coupling, the eigenvalues of the second order
operator -Δ2 + ξR (ξ = (d - I)/Ad) are

λn = I ( n + d - 2 ) 2 (1)

with degeneracies that we shall leave unspecified here.
In our previous work [1] we showed that the corresponding Neumann and Dirichlet

C-functions on Sd/Γ were,

(2)

- (d - l)/2 I d ) , (3)

where the general definition of the Barnes ^-function is

expC-αrH-T)*-1fJ aτ
2τr

L
i=\

oo .,

= X] Ί , Re 5 > d. (4)

This shows that the eigenvalues are given specifically by

the degeneracies coming from coincidences. The parameter a is id — l)/2 in the
Neumann case and comparison with the previous form shows that the integer
n = 2m.d + 1, m = 0 upwards. For Dirichlet conditions, a = Σ di~id— l)/2, and
then n = 2m.d — 1 with m = (1,1) upwards. The interpretation in two dimensions
is that the angular momentum is L = m.d for Neumann and m.d - 1 for Dirichlet
conditions.

Turning to minimal coupling, (ξ = 0), the eigenvalues of the Laplacian are

λ n = (α + m.d) , (6)

and the corresponding ^-function is

- V ι

m

The origin m = 0 is to be omitted for Neumann conditions, when the ζ-function is
denoted by ζ(s).

Consider a sum of the form

as) = y i ? ( 8 )
' j Ha -\- m.d) — a ~)s

m

so that

ξis) = COO - (α2 - a2Γs . (9)
For minimal coupling, a = (d — l)/2, while for conformal coupling in d-dimensions,
a = 1/2. We concentrate on minimal coupling.
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A standard way of obtaining information about an expression such as (8) is to
perform a binomial expansion to produce a sum of known ζ-functions, in the present
case a sum of Barnes C-functions,

C(S) = £ « * S ( S + 1 ) f + r - 1 ) Cd(2s + 2r, a | d). (10)
r=0 r'

From this, the value of ζ(s) at a nonpositive integer is easily found. For example the
important value ζ(0) is given by

2r

C(0) = Cd(0, a I d) + \ Σ ^Γ
u

and, more generally, we have

C(-n) = Σ (~α2)r ( ! ) C*<2r - 2 n ' ° I d )

n)!2 f

where u = d/2 if d is even and u = (d — l)/2 if d is odd.
Nr(d) is the residue defined by

ζd(s + r,a\d)^^^-+Rr(d) as s^O, (13)
s

where 1 < r < d. Expressions for the residue and remainder involve generalised
Bernoulli functions and can be found in Barnes [2]. For shortness, their dependence
on the parameter a is not indicated.

The form of the residues given by Barnes [2] is

where dS^+ (a) is the (r-fl) t h derivative of Barnes' generalised Bernoulli polynomial
dS^ά). The general relation with the more usual polynomials, [5], will not be given
here. Specific forms are

2 α ~ Σ ̂

Barnes also gives the values

ζd(-n, α|d) = t g A(a) = fl ^ w), ^ n ( α |d). (15)

From (9), (11), (14) and (15) we find, for two dimensions,

CD(0) = j ^ (3 - 3(d, + d2) + (d, + d 2 ) 2 + d ^ ) ,

CJV(O) = CD(0) - 1
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This corrects our previous expression [1] obtained by an incorrect manipulation
of the heat-kernel.

3. The Derivative of the Zeta Function

The derivative at s = 0 is a little more difficult to find. From (10) a first step is

C'(0) = 2^(0, a I d) + ]Γ — ( ΐ^r + \ N2r £ I )
r=i r V 2 l /

oo 2r

+ Σ ^rCd(2r,α|d). (17)

The integral representation of the Barnes C-function allows the final sum in (17)
to be written as

oo
V 2 r r ^2r-l e χ p ( _ α r )

r-n+l

7

a2r ί r 2 r - 1

Γ(2r) J r Π ( l -

7 (
= 2 / exp(-αr) coshαr -

J \\ ( 2 r ) ! / r Π ( l e x p ( ί r ) )

In the Neumann case α = a and there is an infrared, logarithmic divergenceat infinity
caused by the zero mode which will be taken care of by the transition to ζ, (9).

Although the integral converges nicely at r = 0, the individual terms of the
integrand do not. It is enough to introduce another ultraviolet analytic regularisation
and define the intermediate quantity,

2 J^(-ar)(co^ar-±^)U(/
d; ^ ^ (19)

J ^ ( 2 ) ! y Π ^ e ί d ) )

whose 8 = 0 limit gives (18).
After continuation, (19) integrates to

u 2r

Γ(s) (Cd(s, a - a I d) + ζd(s, a + α|d)) - 2 ̂  - ^ - Γ ( 5 + 2r)Cd(s + 2r, α|d). (20)

As s tends to zero, each term in (20) yields a pole and a finite remainder. The
poles must cancel and so

u 2r

Cd(0, a-a\ά) + Cd(0, o + α |d) - 2Cd(0, α | d) = ̂  ^ - N2r(d). (21)
r=l

This condition is an identity between generalised Bernoulli functions. Combined with
(11) it produces the symmetrical expression

C(0) = \ (Cd(0, a - a I d) + Cd(0, α + α | d)). (22)
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The finite remainder in (20) is

u 2r

Cί(0, a - a I d) + ζ'd(0, a + a | d) - 2ζ'dφ, α|d) - Σ V ^(d)
r=l

- 7(Cd(0, o - α I d) + Cd(0, α + α |d) - 2Cd(0, α | d))
u 2r

- Σ V ^(2r)iV2r(d) (23)
r=l

which, in view of (21), can be written

Cd(O, α - a I d) + Cd(O, α + α I d) - 2^(0, a\ d)
n a2r u a2r

- > RiΛd) - V (V>(2r) + Ί)N2Jd). (24)

r=l r=l

Combining this with (17) we have finally

u 2r

ζ'(0) = ζ'dφ, a - α|d) + Ci(0

5 α + o; | d) - ^ — (2ψ(2r) - ^(r) + η)N2r(d). (25)
r=l Γ

The fact that the remainders have cancelled, suggests that there is a more rapid route
to this result.

Apart from the final term, (25) is the expression that would have been obtained
by a naive application of the "surrogate" (-function method which is based on the
product nature of the eigenvalues, (a — a + m.d) (α -f a -j- m.d), in (8) followed by
an application of the rule lndet(AJ9) = lndet A + \ndetB. This method is suspect, as
discussed by Allen [3] and by Chodos and Myers [4]. Allen [3] derives a particular
"correction" term as in (25). He also points out that (22) could be expected on the
basis of the eigenvalue factorisation, being the average of the regularised dimensions
of the operator factors.

The final term in (25) can be rewritten

u nr u or r—1
v—r Oί v—> Oί v—^ 1

y j (2ψ(2r) - ψ(r) + y)N2r(d) = ^ N2r(d) ^ .
r=l r=l 0

In order to evaluate the effective action we must substitute the appropriate values
of a and a for Neumann and Dirichlet conditions into (25). In the former case it is
also necessary to remove the zero mode, i.e. to use ζ. The relevant quantity then is
the .Γ-modular form ρ, defined by, [2],

lim ζ'r(0, ε|d) = - In ε - In ρr(ά). (26)
£—>0

We find the following basic expressions

u 2r r~i i

ζ'N(0) = - In ρd(d) + ζ'd(0, d - 1 | d) + ln(d - 1) - V — N2r(d) V — — - (27)
r=i r o 1 K + l

and

2r i

ζ'D(0) = ζ'd(0, do\d) + C(0, do + d - l | d ) - 5 ] — N2r(d) Σ ^Γ—Γ (28)
r

r=l 0
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where d0 = ^ <i2 — d + 1 is the number of reflecting planes in Γ. We recall that
i

a = (d— l)/2 for minimal coupling and that in (27), N is evaluated at a = (d — l)/2
and in (28) at a = d0 + (d - l ) / 2

In the case of the two-sphere, (27) and (28) become

ζ'Nφ) = - In ρ2(ά) + ζ2(0,1 | d) - ^- (29)

and

ζ' (0) = ^(0, do | d) + ^(0, ^o + ! I d) - 7- , (30)

where we have set g — dxd2, the order of the rotational part of Γ.
For the three-sphere

ζ'N(β) = - In ft(d) + Cs(0,2| d) + In 2 + ^ , (31)

and

COCO) = CsCO, d0 I d) + C3(0, d 0 + 21 d) - ^ , (32)

where g = dxd2dy We note the change of sign in the last term.
Equations (29) to (32) are the calculational formulae we shall use in the rest of

this paper. It is also possible to evaluate the derivative of the C-function at negative
integers, ζ'(—ή). This would be relevant if we were interested in the effective action
on product spaces like I x l f c x 5 d /Γ. A few details are presented in the appendix.

Although our main interest is in minimal coupling, it should be mentioned
that the result (25) can be used immediately for massive fields, assuming that the
appropriate value of a is real. This means that the mass K is restricted to the region
0 < K < (d — l)/2. For larger masses a slightly different continuation is needed.

4. The Derivative of the Barnes Zeta Function

We turn now to the evaluation of the derivatives needed in (29) and (30). A preliminary
step is to remove any common factors of the degrees dι and d2 by setting di = cei

with ex and e2 coprime so that the denominator function in (4) equals c(b + m.d),
where b = a/c.

The summation in (4) is rewritten by introducing the residue classes with respect
to e. On setting

m l — n l e 2 + Pi J m2 ~ n2e\ + P\ '

where 0 < pτ < ei - 1, the denominator function in (4) equals c(b + eιe1{nι + n 2) +
p2ex +p je 2 ) and the sum over m becomes

d _ c _ _ ^ i + n

c 2 -

9 V,n



Effective Action in Spherical Domains 639

where

TV = e{e2n + p2eι + pxe2 , and wb = f- — + — .
e i e 2 e i e2

Consider the integer N = eλe2n + p2eι + pxe2. As n ranges over 0 to oo, and
the pτ over their domains, N will likewise run over this infinite range with the
exception of some integers < exe2 at the beginning, specifically those integers that
equal p2eλ + p 1 e 2 mode 1 e 2 for p2e{ +pλe2 > exe2. We denote these missing integers
by v%. Apart from these terms, the first sum in the second line of (33) will immediately
give a single Hurwitz ζ-function,

Σ^-^^^n)- (34)

Equation (34) is a convenient form for numerical evaluation. It provides an explicit
analytical continuation of this integral Barnes ("-function.

For the derivative at s — 0 we find, after inserting the known values of the Hurwitz
ζ-function and its derivative,

C2CO, a I d) = - (ζ'R(-1, b) + Σ (Vi + b) ln(i/, + b)

+ Σ (1 - wb) (\n(Γ(wb)/ V(2π)) - (1 /2 - wb) \n(g/c)). (35)
p

Letting α tend to zero in (35) and comparing with the definition of lnρ, (26), one
finds that

- V ' ( l - wo)(ln(Γ(ωo)/v/(2π))

\n(g/c)) - 1 ln(5/2πc), (36)

where w0 = Pχ/ex + p2/e2 and the dash means that the term px = p2 = 0 is to be
omitted from the sum.

Barnes gives a formula in terms of the multiple Γ-function,

( 3 7 )

Formal expressions for the functional determinants are thus

( 3 8 )
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and

e e
Γ2(d0)Γ2(d0 + 1)

Our results, (34) and (35), (36), can be thought of as computational formulae for these
functions in terms of simpler ones.

It is not necessary to rearrange the summation as in (33). We have done so in
order to extract the term ζR(s — 1,6). If the summation is left as in the first line of
(33), it can immediately be turned into a sum of Hurwitz ζ-functions,

Σ (CΛ( > &) ( n K β ( , wb)). (40)
y

Then we have the alternative form

, a\ά) = ln(c/g) ] Γ (ζR(-l,wb) + (1 - wb)ζRφ, wh))
p

= ^ (6a2 - 6a(d0 + 1) + (d0 + I) 2 + ^) \n(c/g)

ΛC- 1 ' n ) + (1 - n ) l n ( A n ) M 2 π ) ) . (41)

In this way we do not need to find the missing integers (nor even the common factor
c) but the price is the multiple evaluation of ζR(—l,wb) by a numerical procedure.
There is no difficulty in this but (34) is faster and more accurate. Equation (41)
constitutes a useful check.

5. The Point Groups

A limited test of our formulae is provided by the dihedral case, Γ — [q] in Coxeter's
notation 17,8]. (Schδnflies would\write Cqv and it is Cq[Όq in Polya and Meyer
[9,10]. Table 2 in [11] has a complete list of equivalents.) The degrees are d{ = q,
d2 = 1, so c = 1, g = q and d0 = q. There are no missing integers v% and, furthermore,
p2 = 0. The fundamental domain is the lune, or digon, (qql).

For q = 1 there is a single, equatorial reflection plane, the fundamental domain
being a hemisphere, (111) (a spherical triangle with every angle equal to π). An
alternative notation for this domain is A1? [7]. In this extreme case, p1 is also zero
and the expressions rapidly collapse to

In £2(1,1) = - C β ( - D + In

and

Thus, on the hemisphere, from (29) and (30),

CN(0) = 2Cβ(-D - In >/(2π) - \ , ζ'Dφ) = 2Cβ(-l) + In V(2π) - \ , (42)

which agree with the results exhibited by Weisberger [12].
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Fig. 1. Effective action, W, for [q]. + Dirichlet; • Neumann; o Rotation

The sum of the Neumann and Dirichlet expressions should reduce to the full-sphere
result derived by, e.g. Hortaςsu, Rothe and Schroer [13] and later by Weisberger [14].
We find

Csi(0) = 4ζf

R(-\) - \ « -1.161684575 ,

agreeing with these earlier calculations. There are many discussions on spheres
bounded equatorίally by spheres.

We give the explicit formulae for the next value of q, q = 2, corresponding to a
quartersphere,

CN(0) = C H ( - D - In y/~(.2π) - I, Cί)(0) = Ck(-D + l n I (43)

Adding these expressions gives half the full-sphere value.
The results for higher values of q are shown in Fig. 1, where we plot the effective

action W = —ζ'(0)/2. It is shown in the appendix that

for all [q], as born out by the numbers.
For completeness we record the value of ζD(0) obtained from (16), relevant for

the conformal anomaly,

Cπ(0)= (1 +<72). (45)

We turn now to the extended dihedral group, [#,2], or order 4q, obtained from
[q] by adding a perpendicular reflection. It is the complete symmetry group of the
dihedron. (In [9,10] this group is Όqι (q even) and D J D ^ (q odd). The Schδnflies
equivalent is Dqd.)

If q is odd, c = 1, d{ — q, d2 = 2, d0 = q + 1 and g = 2q, while, if q is even,
c = 2,e{= q/2 and e2 = 1. For odd q, the missing integers are 1,3,..., q - 2. There
are no missing integers if q is even.

The fundamental domain is the spherical triangle (22q). When q—\ this domain
is the quartersphere lune and the results coincide with (43). The group isomorphisms
are [1,2] 9* [2] ^ [1] x [1] (or C2[D2 ^ D ^ since C 2 ^ D^.

Generally one has [g,2] ^ [q] x [1], in particular, [2,2] ^ [1] x [1] x [1]
which corresponds to three perpendicular reflections with the eightsphere, (222), as
fundamental domain.
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Fig. 2. Effective action, W, for [q, 2]. -f Dirichlet; • Neumann; o Rotation

The hemisphere, quartersphere and eightsphere are the intersections of S2 with
(M+ x R2), (R+ x R+ x R) and (R+ x l + x R + ), respectively. The positive real axis,
R+, is the positive root space of the 517(2) algebra, Ax (cf. [6]). Figure 2 displays
values of W for bigger orders.

The rotation part of [q, 2] is the complete symmetry group of the regular q-gon,
{q}, and is the dihedral group in its guise as a group of rotations. Coxeter denotes it
by [q, 2]2 and Polya and Meyer by D . As stated, its structure is [q, 2]2 = S) When
q is odd there is the curious isomorphism [2q] = [2, q].

It is only a matter of substitution to work out the values of (29) and (30)
for the other reflection groups which are the complete symmetry groups of the
spherical tessellations {3,3}, {3,4}, and {3,5}. We find ~C'(0)/2 for (Dirichlet,
Neumann)-conditions to be (0.45603,-0.34216) for Td = [3,3], (0.2508,0.001915)
for Oh = [3,4] and (-0.10538,0.45014) for Ih = [3,5].

The fundamental domain of [p, q] is the spherical triangle (pqr). The rotational
part of [p, q], i.e. [p, g]+, is often denoted by (p, q, r).

7. The Cesaro-Fedorov Formula

It is interesting to check the formula (16) by remembering that ζ"(0) is a local object
related to the constant term in the short-time expansion of the heat-kernel. The general
formula for a two-dimensional domain, Λ&, with boundary d^M — | J d^Mi is

C(0)
24π J 12 4 ^ J 24π

π 2 - α 2

a
(46)

where the a sum runs over all inward facing angles at the corners of .
In the present case R = 2 and the extrinsic curvature, K, vanishes since the

boundaries of the fundamental domains are geodesic. Therefore

1 (47)

where we have used the standard formula for the area of a spherical triangle. This
agrees with (16) if the formula

2 d o ( d o - l ) = (48)
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is taken into account. In fact our derivation can be thought of as an analytical proof
of this relation which is a slight generalisation of Eq. 4.51 in [7]. (Coxeter has r = 2
Άnάg = 2NV)

Coxeter indicates a purely geometric proof and points out that (48) is equivalent
to a formula discovered numerologically by Cesaro [15] and is a special case of an
earlier result of Fedorov [see 16]. Equation (48) is virtually identical to the equation
on p. 177 of [15] with the correspondances X — d0, n = r, p = p, and q = q.
An extension to higher dimensions is possible using the generalisation of (46) that
includes the results of Fedosov on polyhedral domains, [17].

7. Scaling and Limits

The results given so far are for a unit sphere. For radius R, simple scaling gives the
relation

C ' (49)

where C'(0) = ζ'(0; 1) and C(0) = C(0; 1) = C(0; R).
The effective action should incorporate an arbitrary scaling length, L, by

WL = -\ ζ'(0; R) + lnLζ(O) = -\ ζ'(0) + ln(L/fl)ζ(O).

The figures show just the first term.
Consider the dihedral case [6] and let q and R tend to infinity in such a way that

the equatorial width of the fundamental domain (qql) remains fixed at β = πR/q.
From (49) and (45), whence ζ(0) -> q/12, we have

C'(0; R) -+ lim C'(0) + f In (^) . (50)
q—>oo 0 \ 7Γ /

The area of (qql) is Aq = 2β2q/π and requiring the density, ζf(0;R)/Aq, to
remain finite as q —> oo entails the leading behaviour

(51)
o

Numerically we find

C;(0) _^ _ £ i n g + 0.497509g « - | ln(g/19.79) (52)
6 6

so that the density becomes

C'(0; R) π

12/32 ln(6.299/?). (53)

Geometrically, it might be imagined that in the limit R = oo, since the sphere becomes
flat, the rescaled lune, (ooool), would be an infinite strip of width β. Defining the
strip coordinates x = Rφ and y = R(π/2 — θ), the spherical Laplacian does become
the usual Cartesian one as R —> oo. However, the influence of the infinitely sharp
corners at the poles persists, even though they are infinitely distant, producing an
anomaly density of π/12/?2. On the rectangular strip, infinite or not, the integrated
anomaly equals 1/2 and so the density vanishes in the infinite case.
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8. The Three-Sphere

The expressions for the three-sphere are (31) and (32). Then we require,

, aid) = V*
(a + πiγdγ + τn2d2 + m3d3)

s

We will not attempt to extract a single C-function as we did previously but will just
reduce the sum to a finite one over Hurwitz ζ-functions in a not very symmetrical
nor economic fashion.

The residue classes

m2 = dιn2 + Pi, m{ = d2nγ + p2

are introduced so that the denominator function reads (α + dιd2{nλ + n2) + p2dx +
pxd2 + m3d3). The sums over nx and n2 can be transformed by defining n — nxΛ-n2

and doing the sum over n 1 — n2 to yield the intermediate form

c ( \ά) - 1 + n

(α + did 2n

The further residue classes

m3 = dxd2n3 + p3, n =

are introduced and the sum and difference defined by

n+ = n4 + n3, n_ — n 4 — n3.

The denominator is independent of n_ while the numerator equals 1 Jrd3(n++n_)2-h
p 4 . Since the range of n_ is symmetrical about zero (from —n+ to n + in steps of 2)
the n_ term gives nothing and there is a factor of (1 + n + ) multiplying the rest. The
sum may therefore be written

^ ' " fx (f + gny

where p = (p 1 ? p 2 ,p 3 ,p 4 ), / = a + d^p^ + ί>2 î + ^1^2 + ^3^3* 0 = dxd2d3 and we
have set n = n + for notational simplicity.

The numerator is reorganised to

d,
(1 + n)(lH- d3n/2 + p4) - - % (F + G(f + 5m) + (/

where

F = (A- g + dxd2p4) (A - dxd2p4 -2dxd2), G = g + 2dxd2 - 2A

with A being the combination A = a + d ^ + ^2^1 + ^3ft
Thus, finally, we arrive at a finite sum of Hurwitz ζ-functions,

< 5 4 )

which constitutes a possible, but inefficient, continuation of the Barnes ζ-function.
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9. The Honeycomb Groups

The three-dimensional analogues of the polyhedral tessellations, {p, q}, of the two-
sphere are the spherical honeycombs {p, g, r}, [7, 8, 18]. The reflection groups [p, q, r]
are their complete symmetry groups, the fundamental domains being subspaces of the
honeycomb cells. A numerical calculation using (54) and (32) produces the following
typical results for the Dirichlet effective actions. For [3,3,3], W ~ 44.4 and for
[3,3,4], W ^ -All.25.

10. Conclusion

The results of this paper are strictly technical. We have achieved our aim of presenting
calculable formulae for the functional determinants of minimally coupled scalar fields
on the fundamental domains of finite reflection groups. The problem has devolved
upon an evaluation of the derivative of the Barnes ζ-function.

We could also extend our previous results on the vacuum energies [1] to minimal
coupling using the expressions for ζ(—n). (12), and ζf(—n). This straightforward
exercise will not be done here.

The Cesaro-Fedorov formula for the number of symmetry planes of a (regular)
solid proved in Sect. 6 is one of a number of similar relations in higher dimensions
derivable from expressions for the coefficients in the short-time expansion of the
heat-kernel. The details will be presented elsewhere.

The conformal transformations taking a fundamental domain into the upper half-
plane are known, and so the results here described should also be obtainable using
standard conformal techniques. This will be recounted at another time.

Appendix

In this appendix we first work out an expression for the derivative of the C-function
(8) at negative integers, ("'(—n). For brevity we do not display the dependence of the
Barnes ζ-function on the d.

Differentiation of (10) first of all leads to

r=0

1
2ζ'd(2r - 2n, a) - ζd(2r - 2n, a) J2 -

k=n-r+l

r—n—1Λ r—n—i .

k=n+\ /

(55)

r—u+l+n

We substitute the integral form of the Barnes ζ-function into the last term and find
it as the s —> -In limit of 2 n ( - l ) n n ! times

exp(-αr) coshαr - Vcoshαr V ζ ^
I ^ (2r)!

(56)
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which equals

u+n 2r

Γ(s) (Cd(s, a-a) + ζd(s, ̂ « ) ) - 2 ^ ^ Γ ( S + 2r)Cd(s + 2r, α). (57)
r=0

The pole cancellation gives the condition

Cd(-2ra, o - α) + Cd(~2n, α + a) - 2ζd(-2n, a)

έ ϊ - a o + j Σ °»(2r-*-i>v,.
r=l ^ ' r=n+\

Extracting the finite remainder yields, after using (58),

1
(2n)!

(Cd(-2n, α - α) + ζ'd(-2n, a + a) - 2ζ'd(-2n, a))

x ζd(2r - In, a) - ζ'd(2r - 2n, a)]

ψ (2r-2n-l)l

- 2n) + ^(1 + 2n))iV2r_2n + J R 2 T . _ 2 Λ ] . (59)

Multiplied by 2 n ( - l ) n n ! , (59) must be substituted into (55) to yield a calculable
formula for ζ'(—n). Doing so reveals that the remainder terms ΐlιr-in cancel but,
apart from this, there are no other simplifications apparent and we leave the analysis
at this point.

We next derive the result (44) starting from (38) and (39) whence

)
Γ 2(l)

It is necessary to use some properties of the multiple Γ-function.
From (26) and (37) it is obvious that

lim Γr(a) = - . (61)

The other properties we need follow from the important recursion formula satisfied
by the Barnes ^-function,

Cr(β, α + djd) - Cr(s, a\ d) = -C r_i(s, a\ά'), (62)

where d' stands for the set of degrees d with the dt element omitted.
If this equation is differentiated, it quickly results that, [2],

Setting a equal to zero in (63) and using (61) it follows that

Γ(di) = ρrΛάl). (64)
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For the group [g], we recall that the degrees are d = (g, 1). Then, choosing

di = dι = q and setting a = 1, we have from (63),

Γ2(l) = Γλ(l)

Γ2(l + q) ^(1) '

which is clearly independent of q since the quantities on the right-hand side are

calculated for the degree d' = (1). Further, from (64), it is likewise clear that Γ2(q)

is independent of q. Therefore the quantity in (60),

Γ2(q)Γ2(q+l) = ρ\(\)

Γ2(l) Γ{(\) '

is independent of q. The actual value is 2τr, agreeing with the particular cases (42)

and (43).

Incidentally, from the general formulae (2), (3) and (62) it easily follows that the

[q] conformal ζ-functions are related by

) = ζR(2s,l/2), (65)

so that, in particular,

for all [ql
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