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Abstract: We prove that the size of the finite-dimensional attractor of the damped
and driven sine-Gordon equation stays small as the damping and driving amplitude
become small. A decomposition of finite-dimensional attractors in Banach space
is found, into a part 3B that attracts all of phase space, except sets whose finite-
dimensional projections have Lebesgue measure zero, and a part W that only attracts
sets whose finite-dimensional projections have Lebesgue measure zero. We describe
the components of the JF-attractor and W, which is called the "hyperbolic" structure,
for the damped and driven sine-Gordon equation. 33 is low-dimensional but the
dimension of W, which is associated with transients, is much larger. We verify
numerically that this is a complete description of the attractor for small enough
damping and driving parameters and describe the bifurcations of the ^-attractor
in this small parameter region.
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1. Introduction

Dissipative nonlinear wave equations on a finite domain possess finite-dimensional
attractors and if the equations are driven by an autonomous force a complete
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qualitative analysis of these attractors is possible, see Babin and Vishik [BV], Temam
[T] and Hale [Ha]. That is, the equations have Lyapunov functions and if the stationary
solutions of the undamped and undriven equations are non-degenerate, then the
attractors are regular and can be explicitly described, see Babin and Vishik [BV].

The damped sine-Gordon equation,

u t t - u x x + s i n ( u ) = ε f ( x , t ) - δ u t , 0 < x < L , ί e M , (1.1)

driven by a time-periodic force on a finite spatial interval, and with periodic boundary
conditions, models the phase-difference between two superconducting layers in a
Josephson junction, see Pedersen [P], It is a nonautonomous, dissipative, nonlinear
wave equation, so the above methods do not directly apply. In addition, the
unperturbed (ε = 0 = δ) sine-Gordon equation, which is completely integrable, see
Takhatajan and Faddeev [TF] and McKean [McK], has degenerate (non-hyperbolic)
stationary solutions.

The attractor of the damped and driven nonlinear wave equations, with a discrete
number of stationary solutions, is trivial, see Temam [T], with Dirichlet boundary
conditions. Then it typically consists of a sink close to the origin u = 0. In distinction,
numerical experiments, see Lomdahl and Samuelsen [LS], Bishop et al. [BF1-4],
Mazor et al. [MB], Reinisch et al. [RF], Taki et al. [Ta], Grauer and Birnir [GB],
Overman et al. [O] and McLaughlin and Overman [MO], indicate that the damped
and driven sine-Gordon equation has much more complicated solutions, that persists
as time becomes large.

Ghidaglia and Temam [GT] proved that the sine-Gordon equation with Dirichlet
boundary conditions has a finite-dimensional attractor. Temam [T] extended their
results to include periodic boundary conditions. The estimates on the dimension of the
attractor obtained by these authors indicated that the dimension could go to infinity as
the damping went to zero. Presumably, this was caused by the complete integrability
of the sine-Gordon equation itself. It has solutions which are infinite-dimensional
tori. In this paper, we show that this not the case, that the size of the attractor in an
appropriate complete metric space does not grow as ε and δ become small, and for
δ fixed as ε —• 0, the physically important part of the attractor is simply a periodic
orbit close to the origin.

Many dissipative nonlinear PDE's share the feature of the damped and driven sine-
Gordon equations that the estimates of the dimension of the attractor are much larger
than the dimension observed in numerical simulations and physical experiments. This
is particularly common among equations describing (weakly-) turbulent fluids, see
for example Temam's [T] estimates for the dimension of the attractor of the two-
dimensional Navier-Stokes equation. The resolution of this apparent contradiction for
the sine-Gordon equation is that the attractor <A decomposes, J ^ = JFu W, see Milnor
[Mi] for the finite-dimensional case, into a (smaller) attractor J? and a "hyperbolic"
structure £P, so that 3B attracts all of phase space, except sets whose projection onto a
finite-dimensional space, see Mane [M], has Lebesgue measure zero. W only attracts
sets whose finite-dimensional projection has Lebesgue measure zero and is associated
with transient dynamics. Thus only J8 is relevant to the long-time asymptotics and
since this decomposition of J& is perfectly general this may resolve the problem for
other nonlinear PDE's as well.

The bulk of the paper is devoted to proving the existence and finding the stability
of the components of 3B and W. The upshot is that with even spatial symmetry
.%} has only three components: a "flat" periodic orbit close to the origin, and two
breathers, one at the center, the other at the end of the spatial interval. W has many
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more components but they are all unstable and play a limited role in the dynamics.
We resort to numerics to show that we get a complete description of ^ — J$ U W,
however, see Birnir [B4] for an analytic proof of this.

The parameter region that we consider is 0 < ε, δ < 10" \ we will denote this
by ε, δ = &(\0~2). In this region the breather components of JS do not interact
(interaction requires symmetries, a short spatial interval and strong driving, see
Armbruster, Birnir and Buys [ABB]) and their spatial structure remains the same.
The temporal evolution, on the other hand, shows bifurcation cascades to strange
attractors, that we describe. In Grauer and Birnir [GB], it was shown that the breathers
have a six-dimensional center-manifold, where these bifurcations take place.

Bishop et al. [BF1, 2, 3, 4] and Overman et al. [O], [MO], have explored the sine-
Gordon attractor numerically for the parameter region 10"1 < ε, δ < 1. There the
breathers interact and qualitatively the dynamics seem to be captured by a four mode
truncation, see Bishop et al. [BF3, 4] and Kovacic and Wiggins [KW]. In principle,
this ought to be provable by the center-manifold reduction of Grauer and Birnir [GB].
However, the resulting six-dimensional ODE's are unwieldy and the analysis remains
open.

The sine-Gordon equation can be thought of as a model for the continuum limit of
a chain of coupled pendula, Eq. 1.1 describes the damping and driving of this chain
and u(x, t) is the angle from the vertical down position of the pendulum at the point
x along the chain. This means that u(x, t) must be construed modulo 2π and in Sect.
2, we find a complete metric space, following Temam [T], where the mean of u lies
on a circle Sι = [0,2τr). Factoring the decay rate e~δt/2, of the damped harmonic
oscillator that we expect close to the origin, out of the energy of the sine-Gordon
equation gives us a good estimate. In fact, we get an absorbing set in any Sobolev
space with zero mean. We use this in Sect. 2 to get a compact and spatially smooth
absorbing set.

We develop the theory of finite-dimensional attractors for the Poincare map of
periodically driven dissipative nonlinear PDE's in Sect. 3, following Hale [Ha],
Temam [T] and Babin and Vishik [BV]. We conclude that the Poincare map of the
damped an driven sine-Gordon equation has a smooth finite-dimensional attractor
whose size, in the complete metric space on which the energy induces a metric,
depends only on L the length of the pendulum chain and the ratio ε/δ of the driving
and damping amplitudes.

We use Mane's theorem, see Mane [M], to state and prove the decomposition
theorem for finite dimensional attractors in Sect. 3. This is a generalization of
a theorem by Milnor [Mi] who proved the decomposition of attractors in finite-
dimensions.

The straight down position of the pendulum chain, u = 0, perturbs into a stable
periodic orbit called the flat. The straight up, u = π, perturbs into an unstable periodic
orbit. The existence of these periodic orbits is proven in Sect. 4 and their stability
explored. In addition, we find finitely many periodic orbits which flap (along the
x-direction) into both directions from the straight-up position. These are accordingly
called flappers and their existence is proven in Sect. 4. The flappers are unstable but
have in addition a one dimensional center-manifold, where bifurcations take place.
The center-manifold analysis is placed in the Appendix but the results are stated in
Sect. 4.

Section 5 contains the analysis of the breathers which are the most interesting parts
of J$. They are born in pairs for ε sufficiently large, one stable and belongs to 3B,
the other is unstable and belongs to W. The existence of the breathers is proven and
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their stability found in Sect. 5. Then we verify numerically that the description of
J? U ^ is complete and describe the bifurcations of J?. To summarize: The method
gives a detailed description of ^ because it combines local and global analysis. For
ε sufficiently large and spatially even functions (we make this restriction on the initial
data),

38 = flat + 2 breathers,
W — straight-up + 2 breathers

+3n flappers and their unstable manifolds,

n = [L/2π] is the integer value and this describes the spatial structure. The
components of <A are connected through the unstable manifolds, which lie in W
according to Proposition 4.6. Thus the spatial structure is regular. On the other hand
the temporal evolution of the breathers can be very complicated, as discussed in Sect.
5. It is clear that 38 is low-dimensional, but the dimension of W is relatively large.

2. Energy Estimates

We need to find a priori estimates for the damped and driven sine-Gordon equation to
prove global existence of solutions and show that all initial data is eventually absorbed
by a set, that does not grow as the damping becomes small. Numerical experiments
indicate that the pendulum chain can roll over continuously. However, since u is an
angle variable there is no difference between u before and after the chain rolls over
and we can compare the two values by subtracting the mean of u

L

1 f

u = — / u dx ,

o

L being the length of the chain. Temam [T] introduced the spaces
- 2 - 2
L = {u e L2, u = 0} , H = HιΠL.

We let ΰ = u — u, v = v — v, denote the solution and its velocity with zero mean and
work in the space

J%ί Ήl Z 2= Ήl xZ2[0,L] x Sι x R ,

to keep track of the mean and its velocity. This is not a linear space but it is a
complete metric space with metric induced by

v2 + v2 + ~
— + 1 — cos(u) > dx

L o

v2 + v2 + ΰ2

Lo

— + 1 — cos(ΐi + u) > dx

1/2

is well defined on 3$ since it measures w mod 2π, and it satisfies the triangle
inequality by the addition formula for sine, since

1 - cosCw) = 2 sin I - I .
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We write the damped and driven sine-Gordon equation as a PDE

ut = v

vt = ΰxx — sin(u -\-u)-\- ύn{ΰ + u) + εf(x, t) — δv , (2.1)

I 2

f o r t h e c o o r d i n a t e s ( u , ϋ ) e H x L , c o u p l e d t o a n O D E ,

u+ — v

— _ - ^ ( 2 2 )
vt = — sin(u + δ) + /(ί) 5ί\

for ( S , ΐ ) G ^ x M. This system is obtained by first taking the mean of the PDE to
get the ODE and then subtracting the ODE from the PDE to get the PDE with mean
zero. We use the notation υ = ut and remark that the systems (2.1) and (2.2), and
Eq. (1.1) are equivalent initial value problems for smooth data.

The PDE system is defined on Ήl x Z2[0, L]Π@(W), where @(W) is the domain
2 2of the wave operator in L2 x L2[0, L]. We will show that these equations have an

attractor in 3@ whereas the mean keeps increasing in Hι x L2. This was already
shown in Temam [T] but here we use the "natural" metric induced by ί?1/2, on 3@,
to get an absorbing set that does not increase in size as the damping (δ) decreases.
The estimates are actually obtained for a slightly different "energy"

} ί 117_ δ_\2 7 δ2n~\ 1
T?,(ΊIΛ — I < i ?) -4- ii I - I - 7/ -1-1 ccs^iiiΛ > ΓIΎ

J UIΛ 2 / 4 j j
o

This quantity is well defined on 3@ for the same reason as W and its square root is
also subadditive. It is not clear whether E(u) is always positive definite but this is
the case for δ not too large.

Lemma 2.1. The two energies & and E induce equivalent metrics on 3@, since

for δ < 2π/L.

Proof.

L

E=

0

= / {\V2 + δvΰ + v2 + u2

x]/2 + 1 - cos(u)} dx ,

where u = u — u is the solution with zero mean. Now by the Cauchy-Schwarz and
Poincare inequalities

L

/ vudx < |ϋ|2|ϊi|2 <

0

<(L/2π)(\v\2
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since ab < (l/2)(α2 + b2). This shows, since ux = ΰx, that

L

E < (1 + (δL)/2π) ί {(ϋ2 + υ2 + u2

x)/2 + 1 - cos(w)} άc

The other inequality is similar. D

Our main estimate uses the energy E and combines the energies of the PDE (2.1)
and the ODE (2.2) so as to avoid producing the factor l/δ, except in the combination
ε/δ. We use the notation

|/ | 2 ° °=esssup |/ | 2 ,
tt

where \f\2 denotes the L2 norm. The idea is to factor out the (exponential) decay rate
of harmonic oscillations, that we expect in a neighborhood of {u, v) = (0,0), to get
good estimates. This transformation

S = we~6tl\ v = wte~st'2 - ^ ,

allows us to factor the decay out of E(u)

Eι'\u) = Eι/\w)e-6t'2,

and we are left with the energy

L

E(w) = ί\\[wt+ eδtu2

t +w2

x- -T-w2 J + eδt(l - cos(ιz))| dx.

o

Lemma 2.2. The energy (E) of the damped and driven sine-Gordon equation satisfies
the global estimate

E1/2(t) < E1/2(O)e~δt/2 + Ko(\ - e~δt/2), (2.3)

where

Ko = ]

L is the length of spatial interval, f is the mean-value of the driving force and

Remark 2.1. All the terms in the estimate have the dimension L1/2 (L is length)
except one which has the dimension L3/2. However, this is dimensionally correct
because if the (pendulum chain's) coupling constant, that was set to unity, is put back
in, then the L3/2 term gets the new dimension 1/2
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Proof. We first get an estimate for the mean value of the velocity ut. Multiply the
mean (2.2) of the damped and driven sine-Gordon equation

utt + δut -f sin(u) = εf ,

by ut, to get

d ίuί

F {~Ft {2 J + * =

The inequality is integrated to give

\ut(t)\l < \ut(0)\le~6t + -Λl + εl/iooXl - e""**).
o

This is an unsatisfactory estimate because of the term l/δ. However, the equation
above implies that

) /2] = eδt [ — sin(w) + εf\ut,i i t-^ ' 11 . i / y i ^

dt

and this we will use below to get a good estimate. Consider the damped and driven
sine-Gordon equation

ΰtt — ΰxx -f 6ΰt ~h sin(n) — sin(u) = εj(x, t),

where bar denotes zero mean. Now let

then the equation becomes

δ2

Wtt ~ Wxx - "4-1

We multiply by tϋt and integrate x over [0, L] to get

r £

• + eδt/2(ύn(u) - sinCu)) = εeδt/2f .

d

dt

L

fί(w2
J I K 1
0

f ^ - — wz

x 4 y
A]

/ J
> da: + eδt'2

Γ

/ sin(u)wt dx - sin(u)Lwt

L 0
L

= εeδt/1 ί fwt dx .

o

The change of coordinates gives

so that

6t/2 δt - -(- δΰ
poτ/Δin — β θ τ

d

s i n ( u ) e δ t / 2 w t = e δ t ή n ( u ) ( ΰ t \

7 r [ e ( l cos(w))] δeδ\\ - cos(tt)) - eδt sin(u)ut

+ -e s i n ( φ ,
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and
L

wt = eδt/2 / ί ΰt + -ΰ ) dx = 0,

o

since ΰ and ΐi ί have mean zero. We substitute the above for ύn(u)eδt/2wt to get

L

έ / { ( w * + ™ 2 " δ~4w2) A + e ' ί ( 1 " c o s ( u ) ) ) d x

o
L L

= δ eδt(l- cos(u))dx - eδt/2- / sin(u)wdx

o
L

+ Leδts\n(u)(ut) + εe*5^2 /

o

Then we add the equality from above

| )2/2} = Lest [ -

o
L

to get the essential cancellation of the terms involving sin(u). The upshot is that

d [(( 2 <52

 2 St~2\/2

0

L L

/
δ ί

eδt(l — cos(u))dx - e ' 2 - I sin(u)wdx

o o
L

ί
o

and we get the estimate

by the Cauchy-Schwarz and Poincare inequalities, where

L

E(w) = ί I ( w2

t +w2

x-
 8—w2 + e ^ S 2 J A + e^(l - cos(u)) 1 dx .

o

The differential inequality is solved to give

Eι/2(w) < El/2(w)(0) + K0(eδt/2 - 1),

where
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Finally the relationship

E(w)(t) = eδtE(u)

gives 2.3. D

The local existence and uniqueness of solution to 2.1 and 2.2 is a straightforward
application of a fixed point theorem since the nonlinearity is Lipschitz, see for example
Reed [R], or Temam [T] and Lions [L] for a different method. Lemma 2.1 allows us
to prove global existence and the existence of an absorbing set, see Coddington and
Levinson [CL], in addition.

Proposition 2.1. The damped and driven sine-Gordon equation has a global solution,

if \f\T and I/loo < °°> and a n absorbing set in

J? = Ήl xL2[0,L] x Sl xR,

defined by

Eι'\t) < V2[(L1^2 + L3/2/2π) + (ε/«)(|7|f + L1 / 2 |/L)] + Λ , (2.4)

where K is an arbitrarily small constant.

Proof. The global existence follows from the a priori estimate 2.3. The energy is a
j 2

continuous function of t9 on H x L [0, L] Π &(W), and the a priori estimate allows
us to extend the interval of a local existence to the whole t axis, because the length of
this interval only depends on the 3@ distance of the solution to the origin. Moreover,

when

t>(2/δ)\n[\Eι'\θ)-Ko\/κ],

where n is arbitrarily small. This shows that 2.4 defines an absorbing set. D

Remark 2.2. It is easy to see that the terms \/2£ 1 / 2 and (ε/δ)( |/ | f + £ 1 / 2 |/loo)
must be present in Ko. The unperturbed sine-Gordon equation has two distinguished
stationary solutions (u,v) — (τr,O) and (u,υ) = (0,0) which perturb into nearby
periodic orbits as will be proven below. ^ ! / 2 ( π , 0 ) = Λ/ΪL1/2 and the latter term
above is the energy of a resonant periodic orbit around (0,0), see Proposition 4.2
below. This leaves only the term L3/2/\/2π, which represents the pendulum chain's
ability to store energy in spatially localized solutions, unaccounted for. This term is
associated to the spatially localized breathers. It is not clear that L3/2/Λ/2TΓ is optimal
for all values of L, but it can be verified numerically to be attained by the energy of
perturbed breathers, whose existence is proven in Sect. 5, for a range of L values.

We now generalize the estimates in Lemma 2.1 to every Sobolev space with zero

mean H [0, L] = Hn Π L . H is closed linear subspace of Hn and consequently a
Hubert space. First we show that the two energies that will provide the norm
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and

ς = (i/2)J [{dyf + (d:+ιu)2} dx, n > o,

are equivalent, on H .

Lemma 2.3. The energies Sn and En,n>\, are equivalent on H ,for δ < 2π/L,

(1 + 6L/2πΓιEn < Wn < (1 - 6L/2πΓιEn;

and En,n> 1, satisfies the global estimate

+ ϋr n ( l-e- ί t / 2 ) , (2.5)

/ : n = (i/ί)^( " "

α«J 5^ (j = 1,2) <2Γ£ polynomials in the indicated constants.

Proof.

En = (1/2) / ( \dζ ( v + r t ί ) I + O: + 1 u) 2 - ^ r ( ^ u ) 2 !> dx

= (1/2) /{(δ

0

L

»2
2 + δd^υd^u + (d^u)2} dx

< (1 + δL/2π)(l/2) / [(<9»2 + (3™+1 u)2] cfcr

o

= (1 + δL/2πWn ,

by the same inequalities as in Lemma 2.1. The other inequality is similar.
We differentiate the damped and driven sine-Gordon equation n times with respect

to x,

make the change of variables u = e~δt/2w and multiply the equation by dt(dxw).
Then an integration in x gives

L

dx

0

L L

/
Γ

X X t X J X

0 0

Now by the Poincare inequality,

Ψx

+xu\2<Λl}l2E\l2{t).
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Moreover, if the energies Ek, k < n — 1, satisfy the inequality

El

k

/2(t) < El

k

/2(0)e-6t/2

where @f, is a polynomial in the indicated constants, then given h > 0, there exists
a time tk so that

| 9 ^ | o o < v ^ L 1 / 2 l f J f e + /ι, (2.6)

for t>tk. These uniform estimates and the Cauchy-Schwarz and Poincare inequalities
give the inequality

2—E ιJ2{w) < 2d

Then integration and the relationship

give 2.5, with a straightforward induction argument. D

Now we get global existence of solutions and the existence of an absorbing set in
every Sobolev space, with zero mean.

Proposition 2.2. The damped and driven sine-Gordon equation has a global solution,

if IΘJ/I20 and \f\oo < 00, and an absorbing set defined by

Eι/2(t) <K0 + κ,

El/2(t) <K3

in every Sobolev space with zero mean

El/2(t) <K3+κ, 1 < j < n,

W = Hn+ι χ 5 n [ 0 , L ] n > l ,

where K is an arbitrarily small number. Ifn>2, this solution is strong and unique.

Proof. The global existence follows from the estimate 2.5 and the equivalence of the
energies En and &n by the same argument as in Proposition 2.1. We define the norm

on ~3%n to be

Notice that this is the usual Sobolev norm on the components (ΰ,v). Then the
equivalence of Ek and Wk, 1 < k < n, shows by 2.3 and 2.5 that there exists a
t0 such that

for t > t0, since ^ 0 < ^ , and & < (1 - δL/2τx)-^2E(t). This defines an absorbing

set in J?Γ\ D



550 B. Birnir, R. Grauer

The reader may be wondering why we used E(t) as a metric on 3@ but
%k(k — 1, . . . , n) (and &0) to give a norm on 3@ . These are of course equivalent
to W and Ek(k = 1 , . . . , n) respectively by Lemmas 2.1 and 2.3, but we get a better

estimate on E(t) than & in J ^ and it is cleaner to use the <§ffc's on 3$ because the
mean appears in E(t).

We cannot expect the solutions to a hyperbolic nonlinear PDE to have more
smoothness than their initial data. But now we prove that there exists a global
absorbing set that is spatially smooth. Moreover, we get a nice bound on its size
in 3@.

Theorem 2.1. The damped and driven sine-Gordon equation has an absorbing set,
if the driving function f is spatially smooth, in

C°° xC°°[0,L] x Sι x l .

Its bound in 3$ is given by

where K is arbitrarily small.

Proof Suppose the initial data of the damped and driven sine-Gordon equation 2.1
lies in 3$ . We will split ΰ into a part z which remains in the n t h Sobolev space with
zero mean, but decays exponentially, and a part w which lies in the ( n + l) t h Sobolev
space with zero mean. Let

u = e~δt/2(w + z),

where w gets the nonlinearity and z the initial data, see Hale [Ha] and Temam [T],
so the w equation has zero initial data

d^+ι = -d%[cos(u)dx(w + z)]

and the z equation is linear

The (n + l) t h derivative on w will be justified by its global estimate, but first we
estimate z. We multiply the z equation by dt(d™z) and integrate with respect to x to
get the estimate

L

{dn

x

+ιzf - j ( 3 » 2 ] /2J dx < 0

An integration in t, then gives

or the z part of ΰ decays exponentially. The estimate of the w part of u is very similar
to the estimate in Lemma 2.3. We multiply by (dtd™+ιw), integrate in x, and use the
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Cauchy-Schwarz and Poincare inequalities, along with the sup norm estimates 2.6,
and the estimate of z above, to show that

J^ ^ \ / 2 φ \ K » i < n)te'δtl2 + Kn+ι{\ -

The important difference between this estimate and 2.5 is that the initial condition

En+ι(0) is missing, because the initial data of w is zero. This means that w has global

existence in S@ if Ek' O)(0), k < n, is finite.
Now we bootstrap the above argument to show that

ΠW[(U,ϋ)(t)] £ W*, for any m £ Z+ ,

where Πw denotes the projection onto the (eventual) w part. Then the Sobolev
embedding theorem implies that

Πw(ΰ,ϋ)<=Cm+ιxCm[0,L],

for any integer m, or Πw(ΰ,v)(x,t) is smooth in x. The bound in 3$ follows from
Proposition 2.1. D

In Sect. 3 we will construct the attractor as the omega limit set, see Hartmann
[H], of the absorbing set. That we have an absorbing set in 3@ , which is compactly
embedded in 3@, will be used to prove the compactness of the attractor. The regularity
of attractors with autonomous driving and hyperbolic stationary solutions of the
unperturbed equation is treated in Babin and Vishik [BV], see also Hale [Ha] and
Temam [T]. We will see in Sect. 4 that not all the stationary solutions of sine-Gordon
equation are hyperbolic. Solutions called flappers have a one-dimensional center-
manifold. Moreover, with non-autonomous driving, which we are considering here,
these methods fail and one must resort to Theorem 2.1 to prove regularity.

3. The Attractor of the Poincare Map

A non-autonomous PDE acting on some complete metric space does not generate a
semi-group. However, if the time dependence of the PDE is periodic, with period Γ,
then the Poincare map, see Hartmann [H] or Arnold [A],

has the same properties as the time-Γ map, see Hale [Ha], of an autonomous PDE.
This means that the notions of limit sets, attractors, etc., carry over for the Poincare
map. We collect the definitions of these structures for Poincare maps below.

Definition 3.1. A subset X of a complete metric space is invariant under a map P
if it is both positively and negatively invariant,

PnX CX and X c PnX ,

for n £ Z+.

Definition 3.2. If X and Y are two subsets of a complete metric space 3% with metric
d and

d(PnY, X) = sup{d(Pnw, X):w£Y}->0,

as n —>• oo, then X attracts Y (uniformly).
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Definition 3.3. Λ? is an v4-attractor if it attracts a neighborhood of itself (point-wise)
and is invariant. If ^4 is compact and attracts every bounded subset of 3@, ̂ & is
called a universal A-attractor.

Universal attractors are also called global attractors and the books of Hale [Ha],
Temam [T] and Babin and Vishik [BV] can be consulted for more information about
them.

Remark 3.1. Universal attractors are unique and maximal among attractors and
invariant sets.

Now let

MC(X) = inf{ε > 0 : X can be covered by finitely many ε-balls}.

Mc is a measure of (non-)compactness, due to Kuratowski [K], and has the properties,

MC(X UY) = max[Mc(X), MC(Y)],

MC(X) = Mc (closure X)

and

MC(X) = 0, if and only if X is precompact.

If 3$ is a Banach space, then

MC(X + Y) < MC(X) + MC(Y).

All these properties of M c, except the third one, are obvious. The third follows
from the observation, that X is totally bounded if MC(X) = 0, which means that X
is relatively compact.

Theorem 3.1. Assume that X is an absorbing set of a complete metric space S¥

under the map P and that lim Mc( \J Pn(X)\ = 0. Then the ω-limit set of X
m-+°° \n>m )

n>0 ra>n

= {w G β& : 3wn G X, n —> oo and P n w n —> w;}

is a universal attractor for

Proof. We show that w(X) is nonempty, compact and invariant. If Kn = (J PmX,
K = ω(X), then by the hypothesis m ^ n

MC(K) < lim Mc(Kn) - 0.
n—^oo

Recall that MC(X) = Mc (closure X). Thus K is compact. If wn e Kn, then {wn}
is precompact because

Mc({wn}) = max[Mc({wn, n < N}),Mc({wn, n > N})].

Mc({wn, n > N}) < Mc(Kn) -> 0 when n -> oo. Mc({wn, n < N}) = 0, because
a set with finitely many members is totally bounded. This says that Mc({wn}) = 0.
We pick a convergent subsequence, then w = lim wn G K, so K is not empty.
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K is obviously positively invariant. If w G K, then there exists a sequence
zn = Pnwn -> w and ifm + n 3 Pm+nwn = P m £ n . This shows that

P m w = lim P m + n ^ n e i ί .
n—>oo

But J^ is also negatively invariant. If Pnwn —» u>, then {Pn~mu>n} has a convergent
subsequence and if z — lim Pn~rnwn, then

n > o o

Finally we show that K attracts bounded subsets of 3@. If not then there exist wn G X,
such that

d(Pnwn,K)>ε>0.

But {Pnwn} has a convergent subsequence

w = lim Pn™ G if,
n—>-oo

which is a contradiction. D

Remark 3.2. The u -limit set u CX") under a continuous Poincare map of a vector field
is connected if 3@ is a Banach space and X is convex, see Babin and Vishik [BV].

We now state sufficient conditions on the map P that imply P has a universal
attractor.

Proposition 3.1. Let 3%n be compactly embedded in 3%n~x, where 3$k, k = n—1, n,
are Banach spaces and assume that P : j ^ f c —» J^ f c can fre split

such that Z and W satisfy the following conditions:

i. Z contracts bounded subsets of 3$k> k — n— l ,n, uniformly, to zero.
ii. W : 3^n~ι Π ̂ ( P ) -> Jgί™, w continuous, where @(P) is the domain ofP, and
ifXc 3%n~ι Π ̂ ( P ) is bounded, then W(X) is bounded in .

Now if X C 3@n~ι is an absorbing set for P, then

lim Mcf I I Pn(xΛ - 0 .
n>m

Proof. The splitting of P defines a sequence of nonlinear maps Wm : ^ n ι Π
^ ( P ) —> ^ n , which we will show have the same property (ii) as W. The Wm 's can
be defined by iteration

Wm+ι(x) = ZWm{x) + W(Zmx + Wm(x)), m > 2,

Wx(x) = W(x), W0(x) = 0, x G X .

This iteration formula shows that W m + 1 : ^ n - 1 Π ^ ( P ) -^ ^ n , if Wm :
^ n - i π ^ r ( p ) -^ ^ n ? a n d t h a t W m + 1 (X) is bounded in 3%n, if Wm(X) is bounded
in J¥n~1, because Z is a contraction on 3$n~ι. Notice that V^ = W\

The rest is straightforward.

( J Pn(X) = P m ( U P n (X)\ C Z m ί\J Pn(X)\ +Wmί\J Pn(X)
n>m \n>0 J \n>0 J \n>Q
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and

But

(J Pn(X)\ < Mc (Zm ί (J Pn{X)\ )+Mc(wm(\J Pn(X)) ) .
n>m J \ \n>0 / / \ \ n>0 / /

Mc (zm ( U pn(χA ) < θmMc(X), 0 < θ < 1,

because Z is a contraction and (J P n ( X ) C X. Moreover,
n>0

n > 0

because W m ( (J P n ( X ) \ is bounded in ̂ n and consequently compact in J¥n *,
\n>0 J

by (ii). We conclude that

lim Mc( \\ Pn(X)\ < lim θmM(X) = 0. D
\ n>m /

Proposition 3.1 applies to the time-T map of damped and driven nonlinear wave
equations, see Babin and Vishik [BV] who treat the autonomous case, and the Poincare
maps of the non-autonomous equations. It implies that such equations have a universal
attractor by Theorem 3.1. We apply Theorem 2.1 to prove that the periodically (in
time) driven and damped sine-Gordon equation, with periodic (in space) boundary
conditions, has a universal attractor. This was originally proven by Ghidaglia and
Temam [GT] for Dirichlet boundary conditions and Temam [T] for periodic boundary
conditions, the improvement here is that the size (in the 3% metric) of the attractor
does not grow with 1/δ.

Proposition 3.2. The Poincare map P of the damped and driven sine-Gordon
equation has a universal A-attractor ω(X) in the complete metric space,

1 -Λ

GfrP TT v/ T YΓ\ 7" 1 w C l v/ TCP
^yτ? — -ΓZ A LJ \}J^ -L/J A O X iPL 5

and in every Sobolev space with zero mean,

Consequently, ω{X) is spatially smooth.

Proof. First we consider the Hubert spaces

_ n - l = - n χ J J " - 1 [ O J L ] ^ n e Z +

The hypotheses in Proposition 3.1, describes the splitting u = z + w, in Theorem 2.1,
where z gives a linear contraction, but w is a solution to a nonlinear PDE with initial
value zero. The corresponding mappings Z and W satisfy conditions (i) and (ii) in

Proposition 3.1. In addition, 3& is compactly embedded in 3$ . Consequently,

lim il/f
c

>0O

in 3@ and Theorem 3.1 says that ω{Xn_ι) is a universal attractor in 3@
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We have an absorbing set Xo, when n = 0, in the complete metric space

GW fj w T ΓΠ Π v c l vlU
j?ΐ? — ±± x j-j \\j) LJ\ A O x IK. ,

defined by Eι/2(ΰ, ϋ, 2, υ) < Ko-\- K,. This gives a bound on the mean velocity υ and

the bounded subset Xo of Sι x R1, defined by Lι/2\v\/V2 < Ko. Xo is obviously

compact. Consequently,

lim Mc( {] Pk(X0)\ =0,
\ k>m

where the Poincare map is defined by the ODE 2.2. This implies that ω(X0) is a

universal attractor in Sι x R. The argument for 3@ — H x L [0, L] is the same as
above so the attractor of the Poincare map of the coupled PDE (2.1) and ODE (2.2)
is

ω(XQ) = C J P D E ( X 0 ) x ω O D E (X 0 ).

Finally, we define by Proposition 2.2 an absorbing set in

by the (energy) condition:

(δ, ϋ) G Xn, if Eι/2(t) < Kj + K,, 0 < j < n,

then ω(Xn) is a universal attractor in 3@ . But the norm in 3@ is stronger than the

norm in 3@ , k > m, consequently ω(Xk) is also a universal attractor in 3$ .
However the universal attractor is unique, so ω(Xk) = ω(X)9 Vfe. The Sobolev
embedding theorem now says that ω(X) is spatially smooth. D

A-attractors are unsatisfactory objects both from mathematical and physical
standpoints. They contain hyperbolic fixed points and periodic orbits which only
attract their stable manifolds, which are of "measure" zero. In addition, the A-attractors
contain the unstable manifolds of hyperbolic objects. These manifolds are frequently
associated with transient dynamics and although these are sometimes of physical
interest, most of the time they are not. The real interest is in the long-time dynamics;
in numerical computations, the first few thousand iterates are typically ignored, and
we would like to dissociate the "true" attractor from this extraneous "hyperbolic
structure." This was done by Milnor [Mi] in finite dimensions and we present below
an amplification of his ideas.

The idea is to define the real (basic) attractor to consist only of those parts of the
A-attractor that attract sets of measure greater than zero.

Let 3$ be a separable complete metric space possessing an A-attractor ^ of a
continuous map P : 3$ —> 3%. The (topological) dimension of ,Λ is bounded by
the Hausdorff dimension which is in turn bounded by the limit capacity, or fractal
dimension,

dim ^ < dim^ ^ < c(y$).

A theorem by Mane [M] tells us that if the limit capacity of ^β is finite there exists
a finite dimensional subspace which gives an honest, but perhaps "flattened," picture
of ^4.
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Theorem 3.2. If 3% is a Banach space, P : 3& —> 3@ a map satisfying the hypothesis
of Proposition 3.1, and Λ> the universal A-attractor of 3$ under P, then

oo.

Moreover, ίfY is any linear subspace of 3$ with dimension

dim(Y) > 2c(Λ) + 1,

then there exists a residual set V of all projections of 3$ onto Y, such that Π £ V
is one to one on y&.

The ίiniteness of c ( ^ ) is proven in Temam [T] and Babin and Vishik [BV]. The
latter statement in the theorem is proven in Mane [M], see Sauer et al. [SYC] and
references therein for more information.

We use Mane's theorem to define the basic attractor JB which captures the essential
part of ^? and separates from it the extraneous structure W. The realm of attraction
M{^) of a set J& consists of all x such that ω(x) £ ^ , if it is open, it coincides
with the basin of attraction of .A.

Definition 3.4. An attractor J?(C J@) is called a B-attractor if it satisfies the two
conditions:
(1) The projection of its realm of attraction Π(J8(&)) has positive Lebesgue measure
inYJorallΠ £V.
(2) There exists no strictly smaller attractor J%}' C JIB such that the realms agree
&>(&) = J%(JBr), up to sets U whose projection Π(U) has zero Lebesgue measure
inYJorallΠ eV.

The first condition says that any point in the projection of JS counts and the second
condition says that JB is minimal in this respect. Our probe space Y, see Sauer et al.
[SYC], will be chosen to be Mn. We can now state the decomposition theorem.

Theorem 3.3. Let ^ be a universal attractor of a continuous map on a Banach
space 3$ and V the residual set of projections Π : 3% —> W1, where n > 2c(^) + 1,
which are one to one on ^/&. Then J& can be decomposed into a B-attractor J$ and
a "hyperbolic" structure W,

with realms of attraction M{J$) and M(W), such that for every Π G V and every
open set U C &>{JB), Π(U) has positive Lebesgue measure in Rn; whereas for every
sufficiently small U c Sδ(ff) \ 38(J8) there exists a Π eV such that the Lebesgue
measure of Π(U) in Rn is zero.

Proof Let Π £ V be a projection Π : 3@ —• Rn which is one to one on ^ . Let
D b e a closed bounded subset of R n with Lebesgue measure μ(D) < 0, such that
Π(J@) C D and let {Uk,k £ Ω} be a countable open covering of D. We choose a
subset Ω' of the index set Ω such that

Uk Π Π(ω(x)) = φ, for all k £ Ω',

except for x £ U C 3@ such that Π(U) is of Lebesgue measure zero in Rn. That is,
we do not exclude open sets Uk containing α -limit sets of sets in 3$ whose projection
has Lebesgue measure zero. Now let

u =
k€Ω'
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then
B = D\U

is a closed set which contains Π(ω(x)) for almost every Π(x) £ D. Then we refine the
covering and consider the set Bπ which is the intersection over all such refinements
of the covering. This set is non-empty because Π(J8(^@)) = Rn so that ^ must
have at least one connected component J&x such that interior of &(^x) = Uγ is
non-empty. Now by the open mapping theorem Π{UX) is open, thus it has Lebesgue
measure μ(Π{U{)) > 0. Moreover, Bπ is independent of the covering of D, and
since Π is one to one on Λ> and Bπ C Π(^),Π~ι is well defined on Bπ. We
define the J3-attractor to be

39= f| n~\Bn).
πev

38 is closed by construction and compact because 38 C *A and Λ> is compact. It
is non-empty by the open mapping theorem because if z attracts an open subset of
M(^x) then Π(z) e Bπ for every Π e V. Finally

μ(Π(M(38))) > (Π(U{)) > 0, for all Π e V,

and by the same argument as above μ(Π(U)) > 0 for every open set U C M(J%>) and
every Π eV. Thus since 38 is also minimal with respect to Condition 2, in Definition
3.4, by construction, 38 is a jB-attractor and it must contain all ^-attractors of the
map.

The "hyperbolic" structure is defined to be

W = l̂ J 11 \\ΊJ) '
πev

where Cπ = Π(,/&) \ Bπ. By the construction of Bπ,

μ(Π[3B(Π-ι(Cπ)\Π-\Bπ))}) - 0 , forall Π e V .

We denote Wπ = Π-\CΠ), 38n = Π~ι(Bπ), and first prove that

U
πev J \πev

c y
πev

U ^π\\^( ΓΊ ̂ 77^) t n e n t n e r e ex i s t s a s e q u e n c e x n e ^ s u c h
,πev J \πev J n

that Pnx - xn -^ 0 as n —> oo, where P n x are iterates of x under the map. The
sequence {xn} C (J Wπ C ^ has a convergent subsequence xn —> y G ^

as /c -^ oo by the compactness of ̂ . Now y ^ f] J$π because that would imply
πev

Ήπ).Ύhusye [J %h\ Π ^π= Ό ^π\^ώ bYD^ Morgan's
/ /7GV iiev πev

law, so y G {^fπ\^π) for some 77, but this implies that # G M((§?

Π\J9Π) for some
J7, or x e U ^ ( g ^ \ J9Π). Now if

C ( J
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is sufficiently small, then by the continuity of the map U must be attracted to a
connected component of Wn \ 3BΠ for some Π. Then

μ(Π(U)) < μ(Π[JB(^π \ ^ π ) D = ° • D

Corollary 3.1. The A-attractor of the damped and driven sine-Gordon equation
decomposes into a B-attractor SB that attracts of all phase space, except sets U with
associated Lebesgue measure in R n μ(Π(U)) = 0, for all Π G V and a "hyperbolic"
structure W consisting of hyperbolic orbits and their unstable manifolds.

Proof. Let X C J& be the absorbing set from Theorem 2.1. Then <A — ω(X) —

ω{X) x ω(X) is the global attractor of the Poincare map of the damped and driven
1 <2

sine-Gordon equation from Proposition 3.2, where X = XxX,XCH x L [0,1]

and X C S[ x R. By Theorem 3.3, ZS = ω(X) can be decomposed; ZΛ = J& U ~W,
γ 2

because H x L is a Hubert space, into a 5-attractor and a "hyperbolic structure"

respectively. Moreover, since ^S = ω(X) lies in a finite-dimensional space (the

cylinder) it can be decomposed by Milnor's theorem [Mi]; ,Λ = 3Θ U W, into a

jB-attractor and a "hyperbolic" structure respectively. Now let 3B — ,9B x JS and

W = W x # , then,

It remains to show that JB is a 5-attractor and W a "hyperbolic structure." First let

U C 3B(J&) be an open set, then U = U xU, where U C M{J5) and U C ^
The Lebesgue product measure is

μ(Π(U) xU) = μ{Π{Ό))μφ) > 0,

since J? and ^ are 5-attractors and therefore,

μ(Π(U)) > 0 and μ(U) > 0.

This shows that JJB is also a 5-attractor. Secondly, if U C ^ ( ^ ) \ J ^ ( ^ ) is sufficiently

small and U = C7 x £7, where C7 C Jg(^) \ ^ ( ^ ) and U <Z &(ff)\ &<β), then
either there exists Π e V such that

μ(Π(U)) = 0 or

where 77([7) x U C Rn~2 x Sι x R. In either case, the product measure vanishes

μ(i7(t7) x U) = μ(Πφ))μ(U) = 0. D

In the remainder of the paper we describe the components of J$ and £f, for the
damped and driven sine-Gordon equation.

Definition 3.5. A compact subset SB of 3$ is a minimal B-attractor if it is a B-
attractor and there exists no strictly smaller B-attractor J8' C 38.
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It is not possible in general to decompose the jB-attractor into minimal 5-attractors,
see Milnor [Mi], but if

&%, n < oo ,

where the JB^% are minimal, then the whole space decomposes

where

up to sets who have a projection of measure zero in W1.

Remark 3.3. The terminology should be taken with a grain of salt because W contains
unstable manifolds which are not hyperbolic. Moreover, yl-attractors and B-attractors
is a cumbersome terminology and it would simplify things to call <A, that attracts
everything, the global attractor and J?, that attracts "almost" everything, the basic
attractor.

4. Periodic Orbits

The recipe for the construction of the I?-attractor and the "hyperbolic structure"
W for small perturbation parameters, is to start with the stationary solutions of the
unperturbed PDE. These should turn into periodic orbits with time-periodic driving
and the stable periodic orbits belong to the ^-attractor, the unstable ones to W for
generic values of the perturbation parameters. In this section we prove the existence
of periodic orbits perturbing from the stationary solutions of the sine-Gordon equation
and find their stability. In addition we must consider what happens to the simplest
time-periodic orbits of the unperturbed equation and this will be done in Sect. 5.

The stationary solutions of the unperturbed sine-Gordon equation perturb into three
different kinds of periodic orbits under the influence of periodic driving and damping.
The first one is the origin (0,0) which perturbs to a stable periodic orbit, that we
will call "the flat," for moderate driving amplitudes. The second one is the "straight-
up" position (π, 0) which perturbs to an unstable periodic orbit. The third type of
periodic orbits arise from elliptic stationary solutions of the unperturbed sine-Gordon
equation which flap in the two direction from the straight-up position and are called
"flappers." They are unstable but have a marginal direction. Recall that &(W) denotes
the domain of the wave operator in L2 x L2[0, L],

Proposition 4.1. The unperturbed sine-Gordon equation has three types of stationary
solutions in @(W) C Hι x L 2[0,L]:
(1) The flat (u,υ) = (0,0),
(2) The straight-up, (u, v) = (π, 0), and
(3) n = [L/2π], circles of flappers (um(x + #0),0), x0 e Sι,

π, (4.1)

where sn is the Jacobi elliptic function and k = (L/2πή) — 1, 1 < m < n.
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Proof. The stationary solutions are determined by the (spatial) inverted pendulum
equation

uxx - ύn{u) = 0,

with the energy
ul/2+ 1 + cos(w) = ft.

The flat (u,ux) — (0, 0) and the straight up (u,ux) — (π,0) are obvious solutions of
these equations, with energy ft = 2 and ft = 0, respectively. In addition, when ft < 2,
we get (translation) circles of solutions

u(x + x0) = 4 tan - 1

where ft, = 8fc/(l + k)2, k > 0 and sn is the Jacobi elliptic function, see du Val [PV],
with modulus k. These solutions flap in opposite directions from π and are called
flappers. They are periodic in x, and 2/(1 + k) = 4πra/L, because we can choose the
real period of sn to be 2π and their number is the integer value n = [L/2ττ], since 1
is the frequency of the linear oscillation around (τr,O), so that 2πn/L < 1. Solutions
with ft > 2 have a twist. They are either nonperiodic kinks or kink-antikinks which
do not have a second derivative and fit, therefore, not into &(W). •

We linearize the sine-Gordon equation around the stationary solutions to examine
their stability. The linear system can be written

wt = Aw,

where

A=
d2/dx2 + q -δ

and

- 2(ρ(x + iω2 + x0) - e2) + 1

for the stationary solution

(0,0)

(π, 0).

a flapper

p is a Weierstrass p-function, see du Val [PV], e2 one of its stationary value and iω2

is half its imaginary period. The transformation in Lemma 2.2 that gave the good
energy estimates enables us to decompose the linear system into a conservative and
a dissipative part. Let

(Γ
1

then
A = Δ(A - {δ/2)I)Λ-\ (4.2)

where
1
0
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Fig. 4.1. The spectrum of the flat, the straight-up and the flappers

Lemma 4.1. The spectrum of the damped undriven sine-Gordon equation linearized
about,
(1) The flat, {u,v) = (0,0), is

\^. = ~ δ / 2 ± i [ l - <5 2 /4 -1- 4 π 2 j 2 / L 2 ] 1 / 2 , j e Z + U { 0 } .

( 2 ) The straight up, (u, v) = (π, 0), w

λg. = -δ/2 ± [1 + 62/4 - 4πj2/L2]1 / 2.

(3) The flappers, (u,υ) = (um(x),0), m < n = [L/2π], is

\V\ = -δ/2 ± ((m/n)2(e1 - e3) -f δ2/4)ι/2,

\f3 = -δ/2 ± i((m/n)2(e3 - e2) - £/4)1/2,

λj_j = —δ/2 db i((m/n) (μ — (1 + 2e2)) — 6 /4) ' , j ' > 4,

where the eτ's are the stationary values of the Weierstrass p-function

Sπn ( 2πn\
eλ — e 3 = 1 —- 1 —- , e e - 1

Λ̂  μ^'^ «r^ the simple periodic and anti-periodic eigenvalues of the Hill's
operator with a Lame potential

—d jdx + 2ρ(m(x + iα;2)), periods L/2, 2ZCJ2

Remark 4.1. The eigenvalues λ̂  in the first case above lie on a line parallel to the

imaginary axis, but in the distance δ/2 to it, in the left-half plane. In the second case,

n + 1 of the eigenvalues λ^2) lie on the positive real axis, n + 1 on the negative real

axis and the rest on the line above in the left half-plane. In the third case λj ^ is on

the positive real axis A_{ and λ^2

 o n the negative real axis, λ2

3^ at zero and the rest

on the line above in the left-half plane, see Fig. 4.1.
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Proof. The spectra in the flat and the straight-up cases are found by a straightforward
computation using the identity 4.2.

We write the flappers in an alternative (to 4.1) form

um(x) = 2 cos" 1 [ns(x + iω2, k)]

and exploit the relationship

ns2{x + iω2) = ρ(x + iω2) ~ ei>

where ns is the Jacobi elliptic function, p is the Weierstrass p-function and the real
period of p is 1/2 that of ns. We denote the operator A as

0 1

x } + δ2/2 0,

where
Q = d2

x - cos(u) = d2

x + 1 - 2cos2(u/2)

= d\ - 2ρ(x + iω2) + (1 + 2e2).

This operator is a constant translate of the (negative) Lame operator, see Magnus and
Wrinkler [MW],

d2

x - 2p(x + iω2).

The periodic spectrum (period L) of A corresponds to the periodic and anti-periodic
(period L/2) spectrum of the Lame operator which is

with the corresponding eigenfunctions

ίcs(x + ίω2) = i(p — ex)
1'2,

ids(x + iω2) = i(ρ — e3)
1 / / 2,

ns(x + ioj2) — (p — e2)
1/2.

These are Jacobi elliptic functions and we have followed the convention, ex > e3 > e2,
in du Val [PV] in labeling the stationary values e (j = 1,2,3). The remaining
spectrum of the Lame operator is negative and double. The corresponding first three
eigenvalues of Q are

e i

e3 +
+

2e2

2e2

2 β 2

+
+
+

1

1

1 = e2

- e 3 :

- e 3 <

>o,

CO,

using
e1 + e2 + e3 = 0 and eι — e2 = 1.

The last identity is a permissible normalization. Then the identity 4.2 produces the
eigenvalues of A, in Case 3. This was for m — n, where the formulae for the
eigenvalues ex — e3 and e2 — e3 use the identities

fc = L / 2 π n - l , if = 4fc/(l + A;2), and k2 = ^ ~ β 2 ,

where if is the modulus of the p function (and ns), k is the modulus of sn and the
identity relating k and if is obtained from the energy, see the proof of Proposition 4.1,
if2 = ft/2. For m < n, the homogeneity of the Weierstrass p-function and Q produces
the multiplicative factor (m/n)2. D
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Consider the sine-Gordon system linearized about the stationary solutions in
Proposition 4.1,

wt = Akw + ε/, (4.3)

where / = (0, /(x, t)) and k = 1,2,3.
The driving used in physical experiments is simply / = cos(ωt). The analysis

is similar for a general smooth function f(x,t) but to make things concise we will
assume here that / has the simple time dependence /(#,£) = f(x)cos(ωt).

Proposition 4.2. Let f(x,t) = f(x)cos(ωt), T = 2π/ω, be T-periodic in t. Then
there exist (linear) periodic solutions of 43 of the form,

(1) The flat (u,v) = (0,0) + w{(x,t),
(2) The straight-up, (u, υ) = (π, 0) + w2(x, t) and

(3) n = [L/2π], flappers, (um(x), 0) -f wψ(x, t), m<n.

If the non-resonance conditions

(1) ωφ{\+ 4π2j2/L2Ϋ?2, j e Z + U {0},
(2) ω φ (4π2j2/L2 - I) 1 / 2 , j > n,
(3) ω φ (m/n)(e3 - e2Ϋ'2, (m/n)[μj - (1 + 2e2)]1/2, j > A,
where the μ^s are the eigenvalues of the Lame operator in Lemma 4.1, hold
respectively, then

wk = ^(ε), fc = 1 , 2 , 3 ,

otherwise
wk = &(ε/δ).

Proof We write the forcing function in the form

/ oo \

f(x,t) = Y^akck(2πx/L) + bksk(2πx/L) I cos(α ί),
\k=o J

where ck, sk are the usual Fourier components for Case 1 and 2, but the eigenfunctions
of the Lame operator -d2/dx2 + 2ρ(x + ω2), in Case 3. We substitute

oo

u(x, t) = ε^2 dk(t)ck(2πx/L) + ek(t)sk(2πx/L),
k=0

v(x,t) = du(x,t)/dt,

into the linearized equations 4.3 and choose the initial conditions so as to get the
solution

oo

u(x, t) — ε ^[α f cc f c(2τπr/L) + bksk(2πx/L)]Ak cos(ωt - α fc),
k=0

where

ak = tm-ι(ωδ/(β2

k - ω1)), Ak = ((β\ - ω2) + (5V) 1/ 2

and

/3fc = (4ττ2k2/L2 + D 1 / 2 , (4π 2 ^ 2 /L 2 - I) 1 / 2 , (m/n)(μfc - (1 4- 262))1/2

respectively. If β\ ^ ω2 for any k, then Afc = <^(1), for all fc, otherwise the presence
of damping gives Ak = 1/α δ, for some k.
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In the case of the flappers the existence of u requires that the forcing function is
perpendicular to the eigenfunction

c 2 = ίds(n(x + Xγ+ iω2))

of the operator linearized about the flapper. This means that the only flapper, out of
the circle, that survives, is the one which is completely out of (spatial) phase with
the driving. Then we must add ac2(x) to the solution u(x,t), where a is a constant
to be determined by the initial conditions. The other flappers (for 1 < m < ή) are
similar. D

Now consider the Poincare maps associated to the time periodic equations 4.3.
The spectra of these maps are easily computed.

Lemma 4.2. The spectra of the linear Poincare maps associated with the linearized
equations 4.3 are

σ(e^) = {e"f)τ} (A =1,2,3), (4.4)

where the λj's are the eigenvalues of the three cases in Lemma 4.1.

Proof In each of the three cases the linearized operator A can be written as a function
of an essentially self-adjoint operator Q = d2

x — cos(w), on &(W) C Hι x L2, with
periodic boundary conditions

by (4.2) where / is the two-dimensional identity matrix. In other words there exists
a similarity transformation A so that

but then (4.4) follows by the spectral theorem. D

We can now spell out the stability of the periodic orbits in Proposition 4.2.

Proposition 4.3. (1) The flat linear periodic orbit

(0,0)+ wι(x,t)

is stable.
(2) The straight-up linear periodic orbit

(π,0) + w2(x,t)

is unstable. The corresponding fixed point of the linear Poincare map eAlT has
unstable Eu and stable Es subspaces, such that dim Eu — n + 1 = [L/2π] + 1 =
QθάimEs,

Eu xEs = Hι xL2[0,L].

(3) The flapper linear periodic orbits

(um(x + xm), 0) = w^(x, ί), 1 < m < n,

are all unstable. The corresponding fixed points of the linear Poincare map eA?>τ

have an unstable subspace E^, a center subspace E^ and a stable subspace E^
such that

dim E^ = 1, dim Ec

m = 1, codim Es

m = 2,

E^xEc

mxEs

πι = Hιx L 2 [0 ,L] , 1 < m < n.
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Proof. We apply Lemmas 4.1 and 4.2. They show that eA{T has only eigenvalues
strictly inside and in the distance 1 — e~δ/2 from the unit circle, eAlT has n + 1
positive real eigenvalues outside the unit circle, the rest are inside and at least in
the same distance as above from it, and that eA™τ has one positive real eigenvalue
outside the unit circle, 1 is a simple eigenvalue and the rest lie inside the unit disk,
and at least in the distance 1 — e~δl2 from it. D

We can now prove that the flat and the straight-up stationary solutions perturb
into nonlinear periodic orbits under the influence of the driving. The existence of
the periodic orbits stemming from the flappers is a bit more complicated due to the
eigenvalue 1 of the linear Poincare map eA^τ in Lemma 4.2. It represents a marginal
direction that will cause a bifurcation of each flapper.

Theorem 4.1. (1) There exists a flat (nonlinear) time-periodic solution

of the damped and driven sine-Gordon equation in Hι x L2[0,L].
(2) If L φ 2πj, j e Z + , then there exists a straight-up (nonlinear) time-periodic
solution

of the damped and driven sine-Gordon equation in Hι x L2[0, L],

Proof We consider the operators

on &(W) C 3% where Jgί = Hι x L2(Sι x S1), i.e., we look for solutions periodic
in both x and t, and &(W) is the domain of the wave operator in L2 x L2(Sι x Sι).
The damped and driven sine-Gordon equation can be written in the form

A(u, v) = ±(0, u - ύn(u)) + ε/,

where / = (0, /) and we have changed the coordinates u —> u + π in the case of the
straight-up (A2, ~). The spectra of these operators on 3@ are

by Lemma 4.1. Proposition 4.2 says that there exist periodic solutions of the linear
equations

Aι(u,υ) = εf,
2

and if we subtract this equation from the one above, we get

Axw = ± ( 0, w1 + w\ - sin ( w1 + w\ ) ) , (4.5)
2 V 2 V 2j J
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where w = (u,v) — (u,v), and the superscript 1 means the first coordinate (u). The

operators A are invertible on L2 x L2(Sι x Sι), in fact

by the above formulae for the spectrum. We apply the implicit function theorem to
the equation

w =p A~ι(0, wι +w} — ύn(wι + w})) = 0.

The w Frechet derivative is

\ = I at w = 0, ε = 0.
— cos(κr +wi)) 0 /

Therefore there exists a solution u>(ε) of 4.5 in &{W) c i??, in a neighborhood of
ε — 0. This solution is a smooth function of ε. D

Remark 4.2. The hypothesis L ^ 2τr? excludes 0 as an eigenvalue of A2. If 0 is an
eigenvalue, we could expect bifurcations on a one-dimensional center manifold.

Corollary 4.1. Suppose that the driving and damping amplitudes are of the same
order, ε/δ — (9(X), so that parametric resonances are not present. Then the flat
(nonlinear) periodic orbit is stable. The straight-up (nonlinear) periodic orbit is
unstable. It corresponds to a fixed point p of the nonlinear Poincarέ map P and with
the assumption (2), in Theorem 4.1, p has an unstable Wu and a stable manifold Ws

so that
dim Wu = n + 1, codim Ws = n + 1,

where n = [L/2π].

Proof. The periodic orbits in Theorem 4.1 correspond to fixed points pλ and p2

respectively of the Poincare map of the damped and driven sine-Gordon equation.
The stability of the periodic orbits is determined by the spectrum of DP(p) the
Poincare map linearized about the fixed points. We linearize the vector field about
the periodic orbits and do the infinite dimensional Floquet Theory of the resulting
time-periodic linear system to determine the spectrum σ(DP).

The damped and driven sine-Gordon vector field linearized about the periodic
orbits (0,0) + wv and (π, 0) + w2 is

° l

where w = (wι, w2). We expand cosine to get the scalar PDE

utt + δut + (1 - (w\x, t)f/2)u - d\u =

We assume, for simplicity, that the driving function is such that the periodic orbit can
be written as

w\x, t) = εf(x) cos(ωt - a)

with f(x) an even function. Then we let

(2πkx
a^C0S[

k=0



Global Attractor of Damped and Driven sine-Gordon Equation 567

and get the equations

± 1 + - ^ ~ ) ak - £- cos\ωt - a) ] Γ fkjaά =/ ̂  ~ ~2 C 0 S ( ~a)2^ Jkjaj
' 3=0

for the Fourier components, where

L

fkj ~ T / f2(X)COS I γ I C O S I γ I OX, fc,j G Z + U {0}.

0

If f(x) is odd, we get similar equations for the sine Fourier components and in general
we get a coupled system of the two, however the analysis is similar in that case.

We write the above equations as an infinite dimensional system of Mathieau's
equations

ε2 ^ s

άh -f oάu + ωhah -[1 + cos(2α;ί — 2ά)] > f̂  α,, = &(s).

This system is analyzed in Birnir and Smereka [BS], or Nayfeh and Mook [NM]. The
conditions for stability (and instability) are

m n m n ^ n ^ m n

at Ω = 2ω = ωm + ωn, where

mn JmnJnm/m n '

At Ω = 2ω = 2ωrn, this becomes

The above are secondary parametric resonances, whereas at a primary parametric
resonance Ω = 2ω — ωk, we have the condition

for stability, where c < 2 is a constant. All the higher order resonances are weaker.
Now with the above conditions satisfied, the spectra

σ(DP(pk)) and σ(e A f c T ), jfe = 1 or 2,

are qualitatively the same. The latter spectra is spelled out in Lemma 4.2. Then the
existence of the stable and unstable manifolds of p2 are given by the stable-and
unstable manifold theorem for maps, see Hartman [H]. D

We apply the center-manifold theorem, see Bates and Jones [BJ] and Carr [C], to
show that each flapper can give three periodic orbits because a pitchfork bifurcation
takes place as one eigenvalue of the Poincare map crosses the unit circle at 1, under
the influence of the nonlinearities and the driving.

The center-manifold computations for the flappers and carried out in the Appendix
which contains the proofs of Proposition 4.4 and 4.5.

We now restrict the forcing further to get a form exhibiting the bifurcations of the
physical forcing cos(ωt - φ).
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Proposition 4.4. Suppose the forcing function has the form

where f(x) is even. Then the damped and driven sine-Gordon equation at a flapper
can be split into two ODΈ's,

a — aa3 + βa2ε cos(ωt - φ) + ηaε2 cos2(ωt - φ)

+

b= -δ

+ με3 cos3(ωt - φ) + ^ ( α , 6, ε)4,

and a PDE

Έ = A(U-)y + ( -lids'{aids + If cosM - φ)γ ) +

where

A(u )=
m -d2

x+cos(um(x)) -δ

ds is the Jacobi elliptic function, dsr its derivative, and the coefficients a, β, 7, μ
are given in Table A.I.

Proof See the Appendix.

Proposition 4.5. The time-periodic solutions, T = 2π/cj, of the ODE

a = aa3 + βa2ε cos(ωt — φ) + jaε2 cos2(ωt — φ) + με3 cos3(ωt — φ) + ^ ( α , 0, ε)4,

bifurcate by a pitchfork bifurcation into three branches as 0 < ε increase, ifj(f) < 0.
Γw<9 <?/ ί/zβ.ŝ  branches are stable, one is unstable. If η(f) > 0, there is only one
unstable branch.

Proof. See the Appendix

Now we can prove that the flappers undergo a pitchfork bifurcation, for f(x) = 1.

Theorem 4.2. For every m, 1 < m < n = [L/2τr], r/zere ex/sί ί/zr̂ β (nonlinear)
time-periodic flapper solutions

(urn(x),0) + w[

3

k\x,t,m), k= 1,2,3,

6 > / ^ damped and driven sine-Gordon equation in Hι x L2[0, L], if η(f) < 0, m
Γα£/e Λ.7. Γ/z^e are all unstable but two correspond to a fixed point Pi+jm °f tne

nonlinear Poincarέ map P with unstable W™ and stable manifolds Wfj,

dim W? = 1, codim W? = 1, j = 1,3,

whereas the third corresponds to the fixed point P2+2m w^n

dim W? = 2, codim Wf = 2.

^ 7(/) > 0, only one flapper exists for each m < n, with unstable and stable
manifolds of dimension and codimension 1, respectively.



Global Attractor of Damped and Driven sine-Gordon Equation 569

Proof. We apply the Lyapunov-Schmidt method, see Chow and Hale [CH], to the
equation

ι

x + cos(?im) dt

which was derived in the proof of Proposition 4.4. Recall that z — w — w and

N(z,w3) = (0 - [sin(zx - (um + εu3)) - cos(um)zι - εcos(um)u3]).

The linear operator acts on the space S$ = Hι x L 2 (5 1 x 5 1) and is defined on
C ^ , where &(W) is the domain of the wave operator. By Lemma 4.1 the

operator

A =
m

has the eigenvectors (n, υ) = {\,\(^))fje
2'πikt^τ, where the λ^3)'s are the eigenvalues

in Lemma 4.1 and the /^'s are the eigenfunctions of the Lame operator —d2

x + 2ρ

with eigenvalues (m/n)2μ . The corresponding eigenvalues of A m are

77fcj = 2πik/T - λJ

- - ί / 2 + [2πk/T ± ((m/n)2(μj - ( 1 + 2e2)) - (52/4)1/2]i, j , A; € Z.

Only one of these eigenvalues vanishes

and the projection onto the corresponding dual vector is

T

,υ) = /Π(u,

o

where Πι is the projection in the proof of Proposition 4.4. Now we split Eq. (4.6)
into

and

ΠN(x + y,w) = 0. (4.7)

Here z — xΛ-y, where

x — ai I ids

lies in kernel Am and ?/ G kerA^ The latter equation (4.7) is just the bifurcation
equation in Proposition 4.4, it gave us three branches of periodic solutions in the
kernel, by Proposition 4.5. Now the operator Am is invertible on ker A^9 the subspace
orthogonal to the kernel. By the formula for the eigenvalues ηkj above we have

on i
We apply the implicit function theorem to the equation

y - A-'α - Π)N(x + y,w) = 0. (4.8)
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It has the solution y = 0 at the origin x = 0 = y9 ε = 0, recall that w = (9(ε).
Moreover, the Frechet derivative of N is

y \ cos(zx - (um + εu\)) - cos(um) 0

so that

DyN(0,0) = 0 and ||L>y7V|| < 2.

Therefore

Dy(y - A^\I - Π)N(x + y,w)) = I- A^(I - Π)DyN(x + y,w) = lφθ,

at x = 0 = y, ε = 0. By the implicit function theorem there exists a smooth solution
y{x{ά), ε) of 4.8 in S%, for each branch of a. D

Now recall from Theorem 3.3 the decomposition of the global attractor ^ into the
basic attractor 38 and the "hyperbolic" structure W. We summarize the components
of 38 and W that we have so far.

Proposition 4.6. Lei px be the fixed point of the Poincarέ map of the damped and
driven sine-Gordon equation corresponding to the flat periodic orbit, p2 the fixed
point corresponding to the straight-up periodic orbit and P2+rnj> tne fixed points
corresponding to the flapper periodic orbits. Then

PιeJ@ and P 2 , P 2 + m j G ^ , l < m < n , 1 < j < 3.

Moreover, the unstable manifolds Wu(p2) and Wu(p2+mj) belong to W.

Proof. pλ is stable by Corollary 4.1. Thus px attracts a full neighborhood U of pλ

in Hι x L2[0, L] (with periodic boundary conditions). However, for u small the

metric on 3$ = H x L x S 1 x K is equivalent to the norm on Hι x L2, because
1 — cos(u) = u2/2 + &{uA). Now let hat denote the mean and bar mean-free as in

^ j _ 2

Sect. 2 and 3. Then px — ipnPγ) and U = U xU, where pλ and U lie in H x L and

Pj and U lie in 5 1 x R. Moreover, ̂ , ^ and W split as in the proof of Corollary 3.1;

if m > 2c(J&) + 1 and Π any projection onto Rm, then by the open mapping theorem

Π(U) is open in R m . This means that the Lebesgue measure in Mm,

μ(Π(U)) > 0, for all Π e V,

where V is the residual set of projections which are one to one on ̂ , see Theorem 3.3.
Consequently,

PiG f| Π-\BΠ) = &
πev

Moreover, μ(U) > 0, where μ is Lebesgue measure in Sι x l , s o p G i 1 and

Pi = (PvP2) € J& x -&'= ^

The straight-up fixed point p2 is unstable by Corollary 4.1 and the flappers p 2 + j m ' s
are all unstable by Theorem 4.2. All of these points belong to the global attractor
,& because they have a stable manifold of codimension < 2. However, all of these
points also have an unstable manifold Wu of dimension > 1, see Corollary 4.1 and
Theorem 4.2. Now let p = (p,p) be one of these points and W and W its stable
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and unstable manifold respectively in H x L . If dimVF^ > 1, then it is easy to

see, since W is a manifold, that for a sufficiently small neighborhood U of p in

W , we can find a 77 G V such that the Lebesgue measure μ(Π(U)) — 0, in W71,

m > 2c(^4) + 1. If on the other hand d i m ϊ ^ = 0, then dimWw = 1, because

dim Wu — dim Ws, by Corollary 4.1 and Theorem 4.2. Consequently, μ(U) = 0, for

any U C Ws. In either case the product measure in Rn, n = m + 2 > 2cO^) + 1, is

zero

μ(Π{Ό) xU) = μ{Π{Ό))μφ)) = 0,

so p = (p, p) G £T x if = ^ . We conclude that

P2iP2+jm £^i 1 < m < n, 1 < j < 3.

The stable and unstable manifolds of p2 and p2+jm n a v e global existence since
the perturbed sine-Gordon flow and consequently its Poincare map is reversible and
the nonlinearity is Lipschitz, see Bates and Jones [BJ]. By Remark 3.2, the A-attractor
is connected, therefore its hyperbolic components must be connected by their
unstable manifolds which also belong to ^ . The 5-attractor contains no unstable
manifolds since unstable manifolds do not attract a full neighborhood up to projected
measure zero. Therefore, W the complement of JS in ^ must contain the unstable
manifolds. D

Unstable components of ^ and their unstable manifolds can conceivably form a
closed cycle, since such heteroclinic connections are structurally unstable one expects
these only at isolated parameter values. In the presence of symmetries heteroclinic
connections may be structurally stable. However, their existence requires strong
forcing because even small damping accumulates along the connection and the orbit
does not "make it" up to the same energy level again without strong driving. The
parameter values (of ε) that we are considering do not allow for the stabilization
of any heteroclinic cycles. However, for much larger driving amplitudes such a
nonperturbative stabilization takes place and this is explored in Armbruster, Birnir
and Buys [ABB].

The above analytical results hold for ε and δ small enough and a class of forcing
functions including the physically relevant / = cos(u t). We have not used any
numerical information except to guide the analysis, but one can explore how large ε
and δ can become so that the above results persist. Moreover, one can find all the
components of $B (this is easy because they are attracting) and at least some of the
components of W (this is harder but possible because of the presence of the stable
manifolds).

Remark 43. It is easy to see that Proposition 4.6 gives a complete description of the
global attractor for sufficiently small damping and driving parameters. The reason is
that for δ fixed and ε sufficiently small the energy <% in Sect. 2 is a Lyapunov function
for the damped and driven sine-Gordon equation and we can use the results of Babin
and Vishik [BV] to show that

^ = Pi, r = p 2 U ^ U { p 3 + m j U ^ + m j } l < m < n , 1 < j < 3,

and

We must allow for the fact that the flappers are not hyperbolic but this is easily
taken care of using the center-manifold in the Appendix. Numerically we can show
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that this is a complete description of the attractor below the line Γ in the δ — ε plane
on Fig. 5.1. It is remarkable that in this region closest to the completely integrable
unperturbed sine-Gordon equation, none of the integrable tori survive in the long-time
asymptotics.

5. The £?-Attractor and the Hyperbolic Structure

In Sect. 4, we described one component of the 5-attractor, the stable flat, and 3n + 1
components of the "hyperbolic" structure, the straight-up and 3n (n = [L/2π])
flappers.

In this section we investigate other components of the J^-attractor, that exist above
the curve Γ in Fig. 5.1. These are the most interesting components of 3B consisting
of spatially localized breathers that exhibit very complex bifurcations, see Grauer and
Birnir [GB], as ε and δ vary.

The breather on the interval can be expressed, see Date [D], as

C ) ' (5.1),t) = -2 log

where θ is the theta function associated to a Riemann surface R of genus 2, see
for example Birnir [Bl] and Siegel [S] for more information on such surfaces and

theta functions. w(£P) = / [ ω j (i = 1,2,3,4) is a four vector whose entries are a
•n

basis of differentials of the first kind on R, S? is a divisor consisting of points on
R, c is the Riemann constant and 1/2 is the four vector with entries 1/2. In general
u may have irremovable singularities, see Birnir [B2, 3], but here u is smooth (in
fact analytic) due to the symmetry of R, see Date [D], that also makes u real. w(S^)
constitutes the Jacobi map, see Siegel [S], from the four fold symmetric product of
R onto β — C4/Λ, the Jacobi variety of R. This is a four torus, A is the period
lattice of R, which constitutes an action-angle manifold of the unperturbed sine-
Gordon equation. On β, translation and the sine-Gordon flow proceed along straight
lines with constant speed, see McKean [McK] and Forest and McLaughlin [FM],
and w(^°) = xtx + tt2, where tx and t2 (the tangent vectors of translation and the
sine-Gordon flow respectively) are constant vectors. This gives us the formula

u(x, t) = —i log ^ = (5.2)
θ{xtλ +U2 + 1/2+ c)

for the breather.
This function has four parameters x0, t0, tx(ω)9 t2(υ), parametrizing spatial and

temporal translation, amplitude scaling and the Lorentz boost. We restrict ourselves
to the subspace of even functions

Y = {w e H1 x L2[0, L] I w(x) = w(-x)},

for simplicity. This amount to posing the initial value problem for the PDE with
even initial data. Then spatial translation and the Lorentz boost are eliminated and
we are left with only two parameters tQ and ω. We will prove the existence of the
breather solutions of the damped and driven sine-Gordon equation, but first we need
a technical lemma.
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Lemma 5.1. The kernel of the sine-Gordon equation

V - < 9 2 + c o s ( ^ ) dt ) W ~ '

linearized about the breather, in Hι x L2[0, L]ΠY, is spanned by dt(u, v)B, dω(u, v)B

and the functions (ψ^d^^), where

rβ = exp \i ( ^ ± ωnt)} x θ(Xt' + " 2 + C J

"- x ' J ©(x^ + ί t 2 + ^ + Cn)

1/2 w the four-vector with entries 1/2, ί/ze ^ ' ^ are constants and ωn = (4π 2n 2 +

Proof It is a general fact of inverse spectral theory that the product of the eigenfunc-
tions of the linear spectral problem associated to the PDE span (here Hι x L2[0, L]
with periodic boundary conditions), and satisfy the variational equation of the PDE.
The reason is that the variation of the solution to the PDE can be written in terms of
the product of eigenfunctions, see McKean [McK] and McLaughlin and Scott [MS].
Now

Ψn — J\ J2 '

where (/j^, f^) is the solution to the linear spectral equation. We write the latter as
an exponential function times a quotient of theta-functions, see Date [D], and simplify
the latter. Evenness in x, is imposed by freezing x0 = 0 or L/2. D

We will need a bound on the damped Poincare map to prove the existence of the
spatially symmetric breathers. First we scale t by ω to make the t-period 2π.

Lemma 5.2. The Poincare map of the damped sine-Gordon equation linearized about
the breather

ω d t - 1 ^

is DP — \, on the one-dimensional subspace of Hι x L2[0, L] Π Y spanned by
dt(u,υ)B + Sh0; is DP = exp(—δT) on the one-dimensional subspace spanned by
dω(u,υ)B + δhγ; and is

0 exp(—ιωn2

on each two dimensional subspace spanned by

{Ψt,dtψ±)+δ2ht, neZ,

where T = 2π/ω and ω'n = (ω2

n - δ2/4ω2)^2.
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Proof. We use the radiation ψ^ = e±iωntg^, in Lemma 5.1, to compute a basis of
solutions to the damped equation. The g's are periodic in x and t and satisfy the
equation

since the ^'s satisfy the equations

We look for solutions of the damped equation

( - <92 + cos(u β ))^ = -ω2d2ψ - δωdtφ (5.4)

of the form

φ(6) = J2 ®k9keβkt + δhι + δ2h\ , (5.5)

where the superscript means first component and we normalize the functions gk,
g0 = dtuB and gx — dωuB, to be of norm 1 in M = Hι x L2(Sι x Sι):

2π L

j Jg2

kdxdt=l.
o o

?2A substitution of (5.5) into (5.4) produces β\ + βkδ/ω = —α;| and the remainder

ot ~ δa\ω9n 2 J^

+ [ω2d2 + δα;at - d£ + c o s i ^ ) ] ^ 1 + 52ft^) = 0,

where ω'n - ωn — @{δ2) and h = (ft1, ft2). Now we let ft1 = αoftQ -f α ^ } , then ftQ
must satisfy the equation

[ω2d2

The right-hand side of this equation is orthogonal to g0 and gx which span the
kernel of [ω2d2 - <92 + cos(wβ)] in H\Sι x 5 1),

L 2π L 2π

/ / 9ot9o dtdx = 0= I I gotg{ dt dx.

0 0 0 0

The first orthogonality is by periodicity in t and the second is obtained by differenti-
ating

2π L

ί f
/ g^dxdt = 1

o o
with respect to ω.

We use that both {^}and {dtφ^} span Hι by Lemma 5.1 and express

oo

k=2

where the Fourier coefficients bk and ck are periodic with period 2τr. A relationship
between the 6fc's and cfc's will be established in a moment. The orthogonality above



Global Attractor of Damped and Driven sine-Gordon Equation 575

oo

allows us to omit g0 and gv Then let ^o ~ Σ ak9k a n c * substitute into the equation
fc=2

for /IQ using the equation for the gk's above. We end up with two equations

έ
δ 2 bk

ά+ —k k k k ,

ω ω
for the coefficients ak. Now we expand the periodic functions of t

oo oo

r — V^ r

npιnt h — V^ hnpint
Ck ~ 2^Cke ' °k~ 2^°ke '

and obtain a solution of the above equations if

[i(n-ωk)
C

namely,

where

^ ω((ω\ - n2) -f inδ/ώ)

is periodic with period 2ττ. Thus

fc=2

The equations
[ω2d2

t + δω0t - 3* + cos(nβ)]/ιl = -ωgu

and

[ω2d2 + δωdt — d^ •

OO

where h\ = X] <̂ A;̂ 2/C » a r e s o i v e ( i similarly to give
k=2

k=2

and

The upshot is that we can absorb the coefficients α^, d°k and e^ into αk and express
Ψ as

oo

φ(f) — 2^ αkeβkb9k + ^(αo^o + <^i^i) + δ2h\ ,
fc=0
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where the /ι's are periodic functions. The only thing one needs to be careful about is
that the /ι's are &(l/δ), but not (9{X) because of the resonances, n ~ ωk, fc = 2,...,.
The form of the Poincare map is now immediate

ψ(t + 2π) = go(f) + V

Now we assume that the forcing is an even function of x (to freeze translation
in x),

oo

f(x^ t) = 2_] &&(£) cos(kωt) + bk(x) sin(kωt)
k=\

and state and prove the existence of the breathers for

f(x,t) = f(x)cos(ωt - φ),

for simplicity. The proof is the same for the more general form of / above. We scale
t by ω as in Lemma 5.2 to fix the space 3% = H1 x L2(Sι x Sι).

Theorem 5.1. Let f(x,t) = /(x)cos(ί — 0/ω), /(x) ^ven, cmd suppose that

L/2 π L/2 π/ π /

/ I v2

Bdtdx I I f(x)cos(t)υBdtdx, (5.6)

/ /-L/2 - π -L/2 - π

θ(xtλ + ίt2/u; + c)
= — -J- log

dt L β ( x t 1 + t ί 2 / u ; + \ + c)

is the derivative of the breather. Then there exist two pairs of breather solutions, one
stable the other unstable, of the damped and driven sine-Gordon equation in ,

Proof. We write the damped and driven sine-Gordon equation in the form

A ( 0 V /
AEw = + ε/,

\ — sin(u) + cos(uB)u )
where / = (0, /(#, t)), K; = (w, υ), and AB is the linear operator

ωdt - 1

The breather itself satisfies the equation

/4 Ίl) —

B B ~ \ - ύn(uB) + cos{uB)uB

We subtract this equation from the one above to get

where z — w — wB, and

N(z, δ) — (0, — UΆ{ZX + uB) + ύn(uB) + cos(uB)zγ + δvB).
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We will use a periodic version of the Lyapunov-Schmidt method to prove the existence
of periodic solutions of the last equation. By Lemma 5.2, AB has a one dimensional
kernel in the subspace 3$C\Y of even function in 3@. Let z = s+y, where s G kern AB

and y G kern AB. If Π denotes the projection onto kern AB, then the equation above
can be written as two equations

and Π(N(z, δ) + εf) = 0. (5.7)

First consider the second equation. It can be written

L/2 n

/ / {εf(x) cos(t — φ/ω) - δvB - sin(z1 + uB)

-L/2 - π

-f ύn(uB) -\- cos(uB)zι }vB dt dx = 0,

where z — (z1,z2). dt(u,υ)B is the function spanning the one dimensional kernel of
AB. At z — 0, we get the equation

L/2 π L/2 7r

/
( if

/ f(x) ύn(t)vB dxdt = δ / v2

B dx dt, (5.8)
- L / 2 -7Γ _ L / 2 -7r

by expanding cos(t - 0/α;) and using that Θ is even with respect to sign reversal of
both x and t9 see Date [D], this makes the cos(t) term drop out. [If for L large we
approximate the spatially periodic breather by the breather on the line

for details of this see Grauer and Birnir [GB], then the above conditions reduce to

L/2

/

fix)
^ ; dx = 8(5.]

cosh(αx)
-L/2

The relationship (5.8) fixes the phase of the breather and shows that (5.6) is a
necessary condition for the existence of a breather. It is also sufficient. The derivative
of the second equation in (5.7), with respect to ε, is

L/2 7Γ

ί f
sin(φ/ω) / / f(x) sin(t)υB dx dt ^ 0,

j J-L/2-7Γ

by the oddness of sine and υB in t, and the evenness in x of / and β, at z = 0,
6 = 0. That the integral can only vanish at isolated values of L is clear from
the approximation for L large above and the analyticity in L. Therefore, by the
implicit function theorem there exists a smooth function ε(z, δ) in a neighborhood of
(ε, δ, z) = 0, such that

The breathers are created by a saddle-node bifurcation, or there are two phases giving
the same value of sin(0/α;), one phase giving the stable, the other the unstable breather.
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There are two such pairs of breathers because the initial breather can either be centered
in the middle or at the ends of the spatial interval, to be spatially symmetric.

We rewrite the first equation in (5.7), in integral form by use of a Greens function.
The Greens function for the undamped operator AB(δ = 0) was computed in
McLaughlin and Scott [MS]. It is formed by the functions in Lemma 5.1,

(λn -

t L/2

f ί

where ζf — (ω =F ia)/4, ζ ^ = — (ω =F ia)/4. A Greens function for the damped
operator is given by a similar formula using the functions in Lemma 5.2. However,
we want to solve the first equations in (5.7) on kernel AB, so we first exclude g0 and
then make the rest of the eigenfunction orthogonal to it. This is with respect to the
inner product in Hι x L2[0, L]. Then the resulting Greens function gives the solution
of (5.7),

L/2

y(t)= / G(ar,t,r,0)y(0)dr

L/2

t L/2

G(x, t, r, r)(/ - Π)N(s + y, δ, ε) dr dr,

0 L/2

where N(z, <5, ε) = N(z, δ) + εf. The Poincare map of (5.7) is

y(t + 2π) = DPy(t) + JV\t, δ, ε),

where the Poincare map of the damped vector field linearized about the breather is

L/2
f

DPy(t)= / G(x,t + 2π,r, t)y(r,t)dr
J

L/2

and
ί+2τr L/2

Jf(t, δ,ε)= / / G(x, t + 2τr, r, r)(I - Π)N(s + y, δ, ε) dr dr

t L/2

lies in kern AB C Hι x L2[0, L] . Now y(t) is periodic in t, if and only if

(I-DP)y(f)=jr(t,δ,ε).

However, by Lemma 5.2, kern(/-DP) = kern AB is one dimensional and (I—DP)~ι

exist on kern(i - DP)^, because \\DP\\ < e~δτ/2 on kern(/ - DP)L. Then we fix
δ and apply the implicit function theorem to the equation

y-(I- DP)-lJT{y + s, ε) = 0. (5.9)
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Fig. 5.1. The bifurcation curves of the breathers in the 6 — ε plane

First, iV(0,0) = 0, so that ^ ( 0 , 0 ) = 0. Secondly,

579

DyN(s
0

uB)

so the Frechet derivative of JT is bounded \\DyyV\\ < 2| |G||, and £ ^ ( 0 , 0 ) = 0.
This implies that the Frechet derivative of (5.9) is / φ 0, at s = 0 = y, ε = 0.
Consequently, by the implicit function theorem there exists a smooth function y(s, ε)
such that

y(s, ε, t) = (I - DP)~ιJf\s + y(s, ε), ε),

in a neighborhood of (s, ε) = 0. The uniqueness of the solution of (5.7), for either the
stable or the unstable breather, now follows because ε is a function of z = y(s) + s,
by the above, for δ fixed. D

The actual curve Γ in the δ — ε plane, above which the breathers exist is shown
on Fig. 5.1. It is computed for L = 80 and f(x) = 1, in Condition 5.6.

We collect the pieces of the global picture, whose existence we have proven, in
Table 5.1

Table 5.1

Stable Unstable

Localized spatially

Not spatially localized

2 breathers

The flat

2 unstable breathers

The straight-up

3n flappers

The Global Attractor for Spatially Even Functions. We have seen that the I?-attractor
of the damped and driven sine-Gordon equation contains three components

k=\
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J5j is the stable flat, periodic orbit, J?2 is the stable breather located at the center of the
spatial interval, whereas J%}<$ is the stable breather located at the ends of the interval.
The "hyperbolic structure" on the other hand contains 3 -f- 3n, where n = [L/2π] is
the integer value, components

3+3n

w= (J % + wχ,
fc=l

Wx is the unstable straight-up periodic orbit, W2 and ^ are the unstable breathers
located at the center and the ends of the spatial interval respectively, Wk, k —
4, . . . , 3n -f 3, are the unstable flapper triplets created by the pitchfork bifurcation
in Theorem 4.2. W% is the unstable manifold of Wk, k — 1,. . ., 3n + 3.

The fractal dimension of ,/& can be estimated, see Temam [T] and Babin and
Vishik [BV], and to prove that

we need to show that the lower count of dimension obtained from 3B and W agrees
with a sharp upper estimate of the dimension of j&. Unfortunately, this is not a not a
simple counting argument because the flapper triplets are not linearly independent and
they span most of the six-dimensional space where the breathers reside, see Grauer
and Birnir [GB]. However, for a range of L the upper estimates agree with the lower
ones, see Birnir [B4]. Below we will describe the numerical results which indicate
that J& — J3 U W for a large range of spatial intervals (L). This is the only part of
the paper that relies on numerics and an analytic proof will be given in Birnir [B4].

Numerical Results. Consider the parameter ranges, 45 < L < 200, 0 < ε, δ < 10"1,
and let the driving function be / = cos(c<;£). Then the 5-attractor consists of only
the stable flat periodic orbit, below the curve Γ in the δ — ε plane, on Fig. 5.1.
Above this curve the 5-attractor consists of the flat and the two stable breathers.
The flat remains stable and time-periodic, but whereas the spatial profiles of the
breathers remain the same, their temporal evolutions can become very complex due
to bifurcations, see below, on a center manifold. The two breathers do not interact
and evolve independently due to the spatial exponential decay. If more breathers are
introduced through the initial data, they are destroyed and the solution goes to the
flat. The basis of attraction of breathers is small whereas the basis of the flat is large.
When L > 300 the breathers cannot feel each other through their exponential tails
and more than one pair can exist, showing identical bifurcations.

Now consider the parameter range L < 45, ε,δ > 10~ι. Then the two breathers
interact but are not destroyed. This B-attractor was found and explored by Bishop
et al [BM 1, 2, 3, 4]. A four mode truncation seems to give a qualitatively faithful
picture of the dynamics of the PDE, see Bishop et al [3, 4]. Overman et al. [O], [MO]
and Kovacic and Wiggins [Ko, KW]. In principle, this ought to be provable by the
center-manifold reductions of Grauer and Birnir [GB] but the full bifurcation analysis
of the PDE remains open.

Bifurcations of the Breathers. The stable breathers become marginal, and bifurcate
as the ratio of the driving to the damping amplitudes ε/δ increases. We will now
describe the bifurcations of spatially localized breathers; for 0 < ε, δ < 10"1, they
are summarized in Table 5.2 but Grauer and Birnir [GB] contains the details. We find
three types of bifurcations, including two bifurcation sequences which are caused by
a symmetry. In each case we start with a breather in the center, or the wings, whose
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Fig. 5.2. The period doubling sequence of the breather-torus, δ — 0.004, ω = 0.98, L = 80

-o.

-1.0

0.0096 0.0098 0.0100 0.0102 0.0104
 ε
 0.0106

Fig. 5.3. The bifurcation sequence of the breather-torus showing quasi-periodicity and phase-
locking, near period 3, δ = 0.004, ω = 0.96, L = 80

time behavior is periodic. That is to say, for ε/δ small but satisfying Condition 5.6,
the breather is a periodic orbit in phase space. Then a Hopf bifurcations to a torus
takes place, but thereafter there are three possibilities depending on ω. We fix L = 80,
then if ω > 0.97 a period doubling cascade of tori to a strange attractor takes place.
It is exhibited in Fig. 5.2. On the other hand, if 0.93 < ω < 0.97, we get a 2nd
Hopf bifurcation of the 2-torus to a 3-torus. As ε/δ increases there is a short (in ε/δ)
cascade of quasi-periodic orbits on 3-tori that culminates in a period tripling cascade
to a strange attractor. The whole bifurcation sequence close to period 3 is shown in
Fig. 5.3. In Fig. 5.4 the subregion where the cascade of quasi-periodic orbits takes
place is enlarged. If ω < 0.93, complicated transients are observed, but the solution
eventually always goes to the flat. More details of all this are spelled out in Grauer
and Birnir [GB].
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Fig. 5.4. A magnification of the cascade of quasi-periodic orbits in Fig. 5.3

Remark 5.1. Table 5.2 constitutes a very satisfying manifestation of the Feigenbaum
and Ruelle-Takens theories for spatially localized solutions of PDE's. However, long-
time chaotic evolution is localized in phase-space because it only occurs on the two
separate breather-attractors. Moreover, the latter are spatially coherent so the situation
is far from being "turbulent." Finally, the basin of attraction of the breathers is small
compared to the flat, so most orbits are destined for the regular part (flat) of the
£-attractor.

Table

ω

ε/δ

i

5.2

1-.97

Periodic orbit

Hopf

2-Torus

Period, doubling

Strange attractor

.97 - .93

Periodic orbit

Hopf

2-Torus

2nd Hopf

3-Torus

Quasi-per. break-up

Period tripling

Strange attractor

<.93

Periodic orbit

Hopf

The flat

Conclusion. The damped and driven sine-Gordon equation has a finite-dimensional
A-attractor ^ . A complete qualitative analysis of the components of ^& is possible
by use of modern analytic techniques. In fact these methods apply equally well to
nonlinear wave equations and perhaps most dissipative PDE's on finite domains. The
A-attractors decompose into a low-dimensional B-attractor J? which attracts most
of phase-space and a "hyperbolic structure" W which is associated with transient
dynamics but can have a large dimension. This may resolve the apparent contradiction
that estimates of dim./*? are typically large but numerically the long-time asymptotics
seem to lie on a low-dimensional set, for most weakly-turbulent systems.
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The components of the J3-attractor which are numerically verified to be all
its components in the parameter region under consideration, are strikingly simple.
They are a spatially homogeneous periodic orbit and the simplest spatially localized
solutions possible: two breathers. Moreover, the bifurcations of the breathers are
generic within the simple symmetries present.

When the spatial simplicity and temporal complexity of the B-attractor is compared
with spatial complexity and temporal simplicity of the solutions to the completely
integrable unperturbed sine-Gordon equation, one must conclude that there is little
if any overlap. Compare Remark 4.3. This is not surprising considering the faith of
the phase portrait of the nonlinear pendulum with added dissipation and remembering
that there are infinitely many more directions to decay in, in function space.

It is matter of debate whether the attractor, above the ε threshold Γ in Fig. 5.1,
has something to do with the integrable structure of the unperturbed sine-Gordon
equation or not. Breathers exist above this line and the nonexistence of breathers
result of Birnir, McKean and Weinstein [BMW], see also Segur and Kruskal [SK],
can be inteφreted to say that the PDE has to be integrable for breathers to exist,
in the conservative case. We believe that the existence of these spatially localized
solutions has more to do with the symmetry of the nonlinearity; that it is odd and
permits a spatially localized hump. In fact, nonlinear wave equations which do not
have breather solutions by Birnir, McKean and Weinstein [BMW] obtain breathers
when the right amount of damping and driving is added, see Birnir and Nelson [BN],
to the PDE.

Appendix. The Center Manifold of the Flappers

Proof of Proposition 4.4. We write the damped and driven sine-Gordon equation in
the form

w = Aw + N(w) + ε/,

where w = (u^υ), N(w) = (0, — sin(w)), / = (0, f(x, £)), and

-'*

The equation linearized about a stationary flapper can be written

w = Aw 4- N(wn) + εDwN(wm)w3 + εf,

where wm = (um,vm) is the (m th) flapper in Proposition 4.1 and w3 = (u3,v3) is
the linear periodic orbit in Proposition 4.2. We let z = w — w_ and subtract the second
equation from the first to get

z = A(um)z + N(z,w3), (A.I)

where

A{Um)={d2

x-cos(um(x)) -δ

and

N(z, w3) = (0, -[sinOOC?! + εu3f/2 + cos(um)(2;1 + εu3)
3/6] + Θ\z, ε)4).
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By Lemma 4.1, σ(A(um)) contains one eigenvalue λr on the positive real axis, one
eigenvalue λ2 at 0, and the remaining eigenvalues satisfy the bound

Reλ,. < - ί / 2 , j ϊ 0,1,2, j e Z .

Then by the center manifold theorem for flows, see for example Bates and Jones [BJ],
there exist an unstable manifold Wu, a center manifold Wc and a stable manifold
Ws,

dim Wu = 1 = dim Wc, codim Ws = 2,

of the stationary solution (u,v) = (um, 0). We have to do the Floquet Theory of the
flow on these manifolds to prove the existence of a periodic orbit and find its stability.
First we compute the equations defining the flow on Wc. The operator A(um) has
the eigenvectors

wλ = I ) ids and w2 = ( 1 ids,

corresponding to the eigenvalues 0 and —6 respectively and their dual vectors are

1 IR ) ίdS a Π d W2 = [ Λ /cι/°J \~ιl°

where ds is the Jacobi elliptic functions. This makes the projections onto wx and w2

be
L

Πx(u,v) = I (u-\-υ/δ)ids dx \ jids,

o
L

f ( M
Π2(u,υ) — — I (v/6)idsdx ( I ids.

0

Now let
w = (awx + bw2)ids + y.

Then Π1 of (A.I) gives the ODE

a = -2ε(a + b)ζ - ε2ζ + ^(α, 6, ε)3

where
L

ζ" = (1/6) / (ids)'(ids)2f(x)dxcos(ωt — φ),

o

ξ = (1/6) / (ids)'(ids) f2(x)dx cos2(ωt — 0).

o

The coefficient of (α + b)2 vanishes,

L

'(ids)3 dx = *

o

/ ids(ic
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by the periodicity of ds. Similarly, Π2 of (A.I) gives the ODE

and the equation for y is

y = A(um)y +

- 2ε(α + b)ζ - ε2ξ

- Πx - Π2)

(α, 6, ε)3,

lids'((a + b)ids + εf(x) cos(ωt - φ))2 + &{a, 5, ε)3

where we have used that sin(i6m) = 2(\/l — ns2)ns = —lids'. Now suppose that
/ is an even function of x. Then ζ — 0 = ξ and we have to go to cubic order to
compute the equation for α. The quadratic (in α) terms in y contribute to the cubic
term in

'ά\ ( °
π — —Πx cos(um)((a + b)ids + εfcos(ωt — φ)) /6

\ + sin(ί/m)((α + δ)ids + ε/ cos(u;^ - φ))yλ,

We must know yλ up to cubic terms to do the computation. By Lemma A.I,

-l\a2 (Q~l(idsy(ids?) +

 εl (Q~Ί(x)(ids)n

where Q = d2, — cos(wm). This is substituted into the above formula to get

ά = aa3 + /?α2ε COS(CJ£ — φ) + 7αε2 cos2(α;^ — (/>) + με3 cos3(u;t — (/>),

because b(t) = bQe~δt + ^ ( α , 6, ε)3 requires 60 = 0 on Wc. The coefficients α, /3, 7,
μ are collected in Table A.I,

Table A.I.

= (l/δ) ί

= (l/δ)

+ 2 ( i t f e ) / ( j d a ) 2 Q - i ( i d a ) > l / ( a ; ) d ! 1 .

where we have used the identities

sin(wm) = —lids, cos(?im) = 2ns2 - 1.

We are jumping the gun here to get the values of the coefficients. The precise argument
for computing a and y is given below. Finally the equation for y follows if we notice
that ΠkN(z, w) = 0, k = 1,2, up to cubic terms. D
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Proof of Proposition 4.5. We start with the equation

L

ά = — - / [cos(itm)((α)i<is + εfcos(ωt — φ)Ϋ/β

o

+ sin(iim)((α)ids + εf cos(ωt — φ))y^\ids dx

from the proof of Proposition 4.4, recalling that b = 0 on Wc. We need to know yx

up to cubic terms and by the center-manifold theorem y{ can be expressed as

where g% (i — 1,2,3) are functions of x only. We substitute yx into the equation for
a and get the equation

a — cos(2(α;t — φ))a = aa? + βa2ε cos(ωt — φ)

^ + με3 cos3(α;ί - 0),

where the coefficients α, β, 7, μ involve integrals over the unknown functions gi

( i = 1,2,3).
The Floquet Theory of this equation is simple because it can be solved explicitly.

The solution is

a = a^ecε ύn{2{ωt-φ))

( Γ 2

\aa3 + /3α2ε COS(CJT - φ) + ^ - + με2 cos3 (CUT - φ)

0

χ ecε2[sm(2(ωt-φ))-sin(2(ωr-φ))

where c = —η/Aω. This function is periodic in t if

, ., 7αε2

 9

aa + pα ε COS(CJ£ — φ) -\ \- με '
^ 2

o
χ e-cε2[sin(2(T-c/>))-sin(2(α;ί-0))] ^ = Q >

A substitution of the leading order

(cβ siπ(2(cc'ί—0)) Λ / i i ,-2 oί- -i/Ό/ -/• /̂v\\
el — COΛC — C2IΛ( i ~ι c ε αin(^(cc/Z/ — ψ)) ~

into this condition, gives the equation

that is,

/ T= O or αo = ± W — ε .
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The form of a
α = αo(l + cε2 sin(2(ωt - φ)) + &(ε4)

now suffices to compute y up to cubic order. In other words, we compute g%

(i = 1,2,3) in Lemma A.I, and this determines α, β, 7, μ, see Table A.I.
Now

L

a = (l/δ) j \{2nsl ~V{ιds)Λ + A(ids)'{idsfQ-\ids)'{idsγ\ dx < 0,

because
= * 2 = ̂ (l-^)<l, if L«2πn,

L \ L J

in addition, ns does have a localized peak and ds = 0, where ns = K. Thus,

L

1(2ns2 - l)(ids)4

dx < 0.
6

Moreover, ids'ids2 is peφendicular to the eigenfunctions of Q with positive and zero
eigenvalues,

L L

/ ids'ids3 dx = 0 = / idsids2icsdx,

o o

and all the other eigenvalues of Q are negative. The upshot is that,

L

I (ids)'(ids)2Q~x(ids)'(ids)2 dx < 0.

o

The constant

L
Γ //•»_. - 7 -i w Ϊ \7

• 2(ids)'(ids)2Q-\ids)' f(x)dx

u

can either be positive or negative depending on /. When 7 < 0, we get a supercritical
pitchfork bifurcation with two stable and one unstable branches. When 7 > 0, we get
a subcritical pitchfork bifurcation with one stable branch.

The upshot is that we get three branches bifurcating from a = 0, if 7 < 0 and one
branch if 7 > 0. In particular, / = 1 gives 7 < 0.

The existence and smoothness in ε, of these branches, follows from the implicit
function theorem in M2, because

— Π N
®a a=0

d3

and

by Table A.I.

0,
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The α0 = 0 branch is unstable and the α0 = ± W — ε branches are stable, for

7 < 0. For 7 > 0, there is only one stable branch α0 = 0. D

Lemma A.I. The infinite-dimensional part y, of the solution in Proposition 4.4 is
time-periodic if and only if

Proof We let

and substitute into the y equation in Proposition 4.4. Then y is the T-periodic if

T T

Qgι-δhιJ \ Qg2 - δh2

if h3 \] ι J i f 0

J + 2 f
. , , . , c o s ( α ; t — φ) + ε 2 ( _ . r 9 I c o s 2 ( α ; t — < / > ) > d t ,

ids ids j ) \ιds j J JJ

where Q — d2

x — cos(ιxm). By Proposition 4.5 the above formula for y implies that a
has the form

a = αo(l + cε2 ύn(2(ωt - φ)) + ^(ε 4 )) ,

and we obtain the formula for y by substituting this expression in for a. D
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